From 33613a85afc4b1481367fbe92a17ee59c240250b Mon Sep 17 00:00:00 2001 From: Sven Eisenhauer Date: Fri, 10 Nov 2023 15:11:48 +0100 Subject: add new repo --- Bachelor/Numerische Mathematik/Num05Aufg0.nb | 699 +++++++++++++++++++++++++++ 1 file changed, 699 insertions(+) create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg0.nb (limited to 'Bachelor/Numerische Mathematik/Num05Aufg0.nb') diff --git a/Bachelor/Numerische Mathematik/Num05Aufg0.nb b/Bachelor/Numerische Mathematik/Num05Aufg0.nb new file mode 100644 index 0000000..2446849 --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg0.nb @@ -0,0 +1,699 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 21013, 607]*) +(*NotebookOutlinePosition[ 21657, 629]*) +(* CellTagsIndexPosition[ 21613, 625]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ Numerik\ : \ \ Aufgabe\ \ +0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ +S\ 2005\ \ \ \ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[ + General::spell1]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ +Polynom\ \ vom\ \ Grade\ \ m\ \ in\ \ drei\ \ verschiedenen\ \ Formen\ \ \ \ \ +\ \ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(m = 9;\), " ", + StyleBox[\( (*\ \ Grad\ des\ Polynoms\ \ *) \), + FontColor->RGBColor[1, 0, 1], + Background->GrayLevel[1]]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ eps1, \(\(\ \)\(\ \)\) + eps2, \(\(\ \ \)\(\ \)\) eps3\ \ und \(\(\ \)\(\ \)\) + eps4\ \ sind\ \ vorgegenene\ \ Konstanten\ \ \ \ \ \ \ \ \ \ \ \ *) \ +\), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(eps1 = 0.001; \ \ \ eps2 = 0.005; \ \ eps3\ = \ 0.01; \ \ \ eps4 = + 0.05;\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ Vorgegebene\ Nullstellen\ \ x[ + i], \ \ i\ = \ 1, \ m\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(\(x0 = 1.3;\)\), "\n", + \(For\ [\ \ i := 1, i <= m, \(i++\), \ x[i]\ = \ i\ x0\ ]\), "\n", + \(Table[\ PaddedForm[x[i], 4]\ , {i, 1, m}]\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ Berechnung\ \ der\ \ Koeffizienten\ \ \ a[ + i], \ \ i\ = \ 0, \ m\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(\(a[0] = 1;\)\), "\n", + \(Do[\ + a[i] = 1; \[IndentingNewLine]Do[\ + a[i - j] = a[i - j - 1] - x[i]*a[i - j], {j, 1, i - 1}]; + a[0] = \(-x[i]\)*a[0], {i, 1, m}]\), "\n", + \(Table[AccountingForm[PaddedForm[a[i], {16, 7}]], {i, 0, m}]\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ 1. \ \ Produktform\ \ \ P[x]\ \ \ \ \ \ \ \ \ *) \), + + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(P[xx_] := \[Product]\+\(i = 1\)\%m\((xx - x[i])\)\), "\n", + \(\ P[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], + "Subsection"], + StyleBox[\(Grenzen \(\(\ \)\(\ \)\) f\[UDoubleDot]r\ \ die\ \ x - + Werte \(\(\ \)\(\ \)\) und\ \ die\ \ y - + Werte\ \ in\ \ der\ \ Graphik\ \ setzen\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(xmin = 0; \ \ xmax = + 16; \ \ \ \ ymin = \(-60000\); \ \ \ \ ymax = 70000;\), "\n", + RowBox[{\(<< Graphics`Colors`\), + StyleBox[ + RowBox[{" ", + StyleBox[" ", + Background->RGBColor[1, 1, 0]]}]], + StyleBox[\( (*\ \ Package\ zur\ Farbdefinition\ in\ der\ Graphik\ \ *) \ +\), + FontColor->RGBColor[1, 0, 1], + Background->RGBColor[1, 1, 0]]}], "\n", + RowBox[{ + RowBox[{\(Kurv[1]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(P[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {ymin, + ymax}}, \[IndentingNewLine]PlotPoints \[Rule] 40, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ + PlotStyle -> Green\), "]"}]}], ";"}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ 2. \ \ Summenform\ \ \ S[ + x]\ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(S[xx_] := \[Sum]\+\(i = 0\)\%m a[i]\ xx\^i\), "\n", + \(S[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{\(Kurv[2]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", \(S[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, PlotPoints \[Rule] 40, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Red\), + "]"}]}], ";"}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ 3. \ \ Hornerform\ \ \ \ H[ + x]\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(\(Hsum[xx_] = a[m];\)\ \), "\[IndentingNewLine]", + \(Do\ [ + Hsum[xx_] = Hsum[xx]*xx + a[m - i], {i, 1, + m}]\), "\[IndentingNewLine]", + \(Hsum[xx]\)}], "Input"], + +Cell[BoxData[ + \( (*\ \ H[xx_, i_] := \(H[xx, i] = H[xx, i - 1]*xx + a[m - i]\)\ ; \ \ H[ + xx_, 0] = + 1\ \ \ ; \ (*\ \ Horner\ - \ + Schema\ \(rekursiv\ !\)\ \ *) \ \ *) \)], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Kurv[3]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(Hsum[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Blue\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ \ S1[ + x]\ \ mit\ \ \[CapitalADoubleDot]nderung1\ \ in\ \ a[ + m - 2]\ = \ a[m - 2]\ + \ eps1\ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[\ b[i] = a[i], {i, 0, m}]\), "\n", + \(\(b[m - 2] = a[m - 2] + \ eps1;\)\), "\n", + \(S1[xx_] := \[Sum]\+\(i = 0\)\%m\ SetPrecision[b[i], 7]\ xx\^i\), "\n", + \(\ S1[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[4]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(S1[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Brown\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Summenform\ \ S2[ + x]\ \ mit\ \ \[CapitalADoubleDot]nderung2\ \ in\ \ a[ + m - 2]\ = \ a[m - 2]\ + \ eps2\ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[\ c[i] = a[i], {i, 0, m}]\), "\n", + \(\(c[m - 2] = a[m - 2] + \ eps2;\)\), "\n", + \(S2[xx_] := \[Sum]\+\(i = 0\)\%m\ SetPrecision[c[i], 7]\ xx\^i\), "\n", + \(S2[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[5]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(S2[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Magenta\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Summenform\ \ S3[ + x]\ \ mit\ \ \[CapitalADoubleDot]nderung2\ \ in\ \ a[ + m - 2]\ = \ a[m - 2]\ + \ eps3\ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[\ d[i] = a[i], {i, 0, m}]\), "\n", + \(\(d[m - 2] = a[m - 2] + \ eps3;\)\), "\n", + \(S3[xx_] := \[Sum]\+\(i = 0\)\%m d[i]\ xx\^i\), "\n", + \(S3[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[6]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(S3[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Apricot\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ + Summenform\ S4[x]\ mit\ \[CapitalADoubleDot]nderung2\ in\ a[m - 2] = + a[m - 2] + eps4\ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[\ e[i] = a[i], {i, 0, m}]\), "\n", + \(\(e[m - 2] = a[m - 2] + \ eps4;\)\), "\n", + \(S4[xx_] := \[Sum]\+\(i = 0\)\%m e[i]\ xx\^i\), "\n", + \(\ \ S4[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[7]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(S4[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Brick\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ \ \ S[ + x]\ \ \ minus\ \ \ \ Produktform\ \ \ P[x]\ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(DiSumPro[xx_] := S[xx] - P[xx]\), "\n", + \(\ DiSumPro[xx]\)}], "Input"], + +Cell[BoxData[{ + StyleBox[\(dxmin = 0; \ \ dxmax = 12; \ \ dymin = \(-0.00003\); + dymax = 0.00008; \ \ \ \ \ \ \ neuer\ \(\(Ma\[SZ]stab\ !!\)!\)\ ;\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], "\[IndentingNewLine]", + RowBox[{\(Kurv[8]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiSumPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ dymin, dymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, + PlotStyle -> HotPink\), "]"}]}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ Hornerform\ \ \ H[ + x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(DiHomPro[xx_] := Hsum[xx] - P[xx]\), "\n", + \(DiHomPro[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[9]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiHomPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ dymin, dymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, + PlotStyle -> Cobalt\), "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ S1[ + x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(DiS1mPro[xx_] := S1[xx] - P[xx]\), "\n", + \(DiS1mPro[xx]\)}], "Input"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + StyleBox[ + RowBox[{ + StyleBox["pdiff", + "Subsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox["min", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}]], + StyleBox["=", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox["0", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], + StyleBox[";", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\(pdiffmax = 50000\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[";", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\( (*\ + neuer\ Ma\[SZ]stab\ \ f\[UDoubleDot]r\ die\ \(Differenzkurve + n\)*) \), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], "\n", + RowBox[{\(Kurv[10]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiS1mPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {pdiffmin, pdiffmax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Orange\), + "]"}]}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ \ \ S2[ + x]\ \ \ \ \ minus\ \ \ \ Produktform\ \ \ \ P[x]\ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(DiS2mPro[xx_] := S2[xx] - P[xx]\), "\n", \(DiS2mPro[ + xx]\), "\n", + RowBox[{\(Kurv[11]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiS2mPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ pdiffmin, pdiffmax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> ForestGreen\), "]"}]}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ S3[ + x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(DiS3mPro[xx_] := S3[xx] - P[xx]\), "\n", \(DiS3mPro[ + xx]\), "\n", + RowBox[{\(Kurv[12]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiS3mPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {pdiffmin, pdiffmax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> IndianRed\), "]"}]}]}], "Input"], + +Cell[BoxData[ + \(\(liste1 = {Green, Red, Blue, HotPink, Brown, Magenta, Brick, Apricot, + DarkGreen, Cobalt, Orange, IndianRed, ForestGreen};\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Summenform\ \ \ S4[ + x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(DiS4mPro[xx_] := S4[xx] - P[xx]\), "\n", \(DiS4mPro[ + xx]\), "\n", + RowBox[{\(Kurv[13]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiS4mPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ pdiffmin, pdiffmax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> DarkGreen\), "]"}]}]}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ +\)\) eins\ \ bis\ \ sieben\ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[\ Kurv[1], Kurv[2], Kurv[3], Kurv[4], Kurv[5], Kurv[6], + Kurv[7]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ +\)\) acht\ \ und\ \ neun\ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Kurv[8], Kurv[9]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ +\)\) zehn\ \ bis\ \ dreizehn\ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Kurv[10], Kurv[11], Kurv[12], Kurv[13]]\)], "Input"], + +Cell[BoxData[{ + RowBox[{ + StyleBox[\(diffxmin = \(-0.010\); diffxmax = 0.5; + diffymin = \(-0.000000002\); diffymax = 0.000000003;\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\( (*\ \ neuer\ \(\(Ma\[SZ]stab!!\)!\)\ \ \ \(f\[UDoubleDot] + r\)\ die\ Differenzkurven\ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], "\n", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \({\ DiSumPro[xx], DiHomPro[xx], DiS1mPro[xx], DiS2mPro[xx]}, {xx, + diffxmin, + diffxmax}, \[IndentingNewLine]PlotRange \[Rule] {{diffxmin, + diffxmax}, {\ diffymin, diffymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, \ + PlotStyle -> {\ HotPink, Cobalt, Orange, ForestGreen\ }\), + "]"}]}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\( (*\ + Neuer\ \ Ma\[SZ]stab\ \ f\[UDoubleDot]\ +r\ \ die\ \ Differenzkurvenkurven\ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \({\ DiSumPro[xx], DiHomPro[xx], DiS1mPro[xx]}, {xx, 0, 12}, + PlotPoints \[Rule] 100, + PlotRange -> {{0, 2}, {\(-0.000000005\), 0.000000005}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> {HotPink, Cobalt, Orange}\), "]"}]], "Input"], + +Cell[BoxData[{ + RowBox[{ + StyleBox[\(xplmin = 11.6999999999; \ \ xplmax = 11.7000000001;\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\( (*\ + neuer\ Ma\[SZ]stab\ f\[UDoubleDot]r\ die\ Kurven\ 1\ bis\ 3\ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], "\n", + RowBox[{\(Kurv[14]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \({P[xx], S[xx], Hsum[xx]\ }, {xx, xplmin - 0.0000049998, + xplmax + 0.0000011}, + PlotRange -> {{xplmin, xplmax}, {\(-0.000000006\), 0.000000006}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> {Green, Red, Blue}\), "]"}]}]}], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 695}}, +WindowSize->{1016, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 280, 6, 59, "Input"], +Cell[2037, 59, 133, 2, 30, "Input"], +Cell[2173, 63, 246, 6, 54, "Input"], +Cell[2422, 71, 197, 4, 30, "Input"], +Cell[2622, 77, 324, 7, 46, "Input"], +Cell[2949, 86, 113, 2, 30, "Input"], +Cell[3065, 90, 233, 5, 46, "Input"], +Cell[3301, 97, 179, 3, 70, "Input"], +Cell[3483, 102, 245, 5, 46, "Input"], +Cell[3731, 109, 293, 6, 90, "Input"], +Cell[4027, 117, 200, 5, 49, "Input"], +Cell[4230, 124, 108, 2, 71, "Input"], +Cell[4341, 128, 750, 23, 46, "Input"], +Cell[5094, 153, 885, 21, 90, "Input"], +Cell[5982, 176, 215, 5, 49, "Input"], +Cell[6200, 183, 99, 2, 71, "Input"], +Cell[6302, 187, 399, 9, 50, "Input"], +Cell[6704, 198, 221, 5, 49, "Input"], +Cell[6928, 205, 201, 5, 70, "Input"], +Cell[7132, 212, 247, 5, 46, "Input"], +Cell[7382, 219, 358, 9, 50, "Input"], +Cell[7743, 230, 288, 6, 46, "Input"], +Cell[8034, 238, 216, 4, 113, "Input"], +Cell[8253, 244, 357, 9, 30, "Input"], +Cell[8613, 255, 284, 6, 46, "Input"], +Cell[8900, 263, 214, 4, 113, "Input"], +Cell[9117, 269, 359, 9, 50, "Input"], +Cell[9479, 280, 284, 6, 46, "Input"], +Cell[9766, 288, 196, 4, 113, "Input"], +Cell[9965, 294, 359, 9, 50, "Input"], +Cell[10327, 305, 248, 6, 46, "Input"], +Cell[10578, 313, 200, 4, 113, "Input"], +Cell[10781, 319, 357, 9, 30, "Input"], +Cell[11141, 330, 231, 5, 46, "Input"], +Cell[11375, 337, 96, 2, 50, "Input"], +Cell[11474, 341, 634, 13, 70, "Input"], +Cell[12111, 356, 229, 5, 46, "Input"], +Cell[12343, 363, 97, 2, 50, "Input"], +Cell[12443, 367, 389, 9, 50, "Input"], +Cell[12835, 378, 220, 5, 46, "Input"], +Cell[13058, 385, 95, 2, 50, "Input"], +Cell[13156, 389, 1741, 48, 70, "Input"], +Cell[14900, 439, 236, 5, 46, "Input"], +Cell[15139, 446, 454, 10, 90, "Input"], +Cell[15596, 458, 230, 5, 46, "Input"], +Cell[15829, 465, 450, 10, 90, "Input"], +Cell[16282, 477, 168, 2, 30, "Input"], +Cell[16453, 481, 226, 5, 46, "Input"], +Cell[16682, 488, 452, 10, 90, "Input"], +Cell[17137, 500, 285, 6, 46, "Input"], +Cell[17425, 508, 109, 2, 30, "Input"], +Cell[17537, 512, 283, 6, 46, "Input"], +Cell[17823, 520, 55, 1, 30, "Input"], +Cell[17881, 523, 287, 6, 46, "Input"], +Cell[18171, 531, 77, 1, 30, "Input"], +Cell[18251, 534, 1061, 24, 90, "Input"], +Cell[19315, 560, 357, 10, 30, "Input"], +Cell[19675, 572, 398, 9, 50, "Input"], +Cell[20076, 583, 933, 22, 70, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + -- cgit v1.2.3