From 33613a85afc4b1481367fbe92a17ee59c240250b Mon Sep 17 00:00:00 2001 From: Sven Eisenhauer Date: Fri, 10 Nov 2023 15:11:48 +0100 Subject: add new repo --- Bachelor/Numerische Mathematik/Num05Aufg0.nb | 699 + Bachelor/Numerische Mathematik/Num05Aufg1.nb | 1575 + Bachelor/Numerische Mathematik/Num05Aufg1_erg.nb | 2095 ++ Bachelor/Numerische Mathematik/Num05Aufg2.nb | 815 + Bachelor/Numerische Mathematik/Num05Aufg2_erg.nb | 5122 +++ Bachelor/Numerische Mathematik/Num05Aufg3.nb | 2655 ++ Bachelor/Numerische Mathematik/Num05Aufg4A.nb | 840 + Bachelor/Numerische Mathematik/Num05Aufg4B.nb | 1437 + Bachelor/Numerische Mathematik/Num05Aufg4C.nb | 1452 + Bachelor/Numerische Mathematik/Num05Aufg4_erg.nb | 31991 +++++++++++++++++++ Bachelor/Numerische Mathematik/Num05Aufg5.nb | 1115 + Bachelor/Numerische Mathematik/docu0020.jpg | Bin 0 -> 386037 bytes Bachelor/Numerische Mathematik/docu0022.jpg | Bin 0 -> 383612 bytes Bachelor/Numerische Mathematik/docu0023.jpg | Bin 0 -> 418468 bytes Bachelor/Numerische Mathematik/docu0024.jpg | Bin 0 -> 349116 bytes Bachelor/Numerische Mathematik/docu0025.jpg | Bin 0 -> 374727 bytes Bachelor/Numerische Mathematik/docu0026.jpg | Bin 0 -> 360361 bytes .../Numerische Mathematik/faberPr\303\274fung.GIF" | Bin 0 -> 27527 bytes .../numerische_mathematik_faber_nmfaw992.pdf | Bin 0 -> 1048735 bytes Bachelor/Numerische Mathematik/sei_aufg4.nb | 11474 +++++++ .../Numerische Mathematik/uni-muenster-skript.pdf | Bin 0 -> 1028608 bytes 21 files changed, 61270 insertions(+) create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg0.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg1.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg1_erg.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg2.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg2_erg.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg3.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg4A.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg4B.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg4C.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg4_erg.nb create mode 100644 Bachelor/Numerische Mathematik/Num05Aufg5.nb create mode 100644 Bachelor/Numerische Mathematik/docu0020.jpg create mode 100644 Bachelor/Numerische Mathematik/docu0022.jpg create mode 100644 Bachelor/Numerische Mathematik/docu0023.jpg create mode 100644 Bachelor/Numerische Mathematik/docu0024.jpg create mode 100644 Bachelor/Numerische Mathematik/docu0025.jpg create mode 100644 Bachelor/Numerische Mathematik/docu0026.jpg create mode 100644 "Bachelor/Numerische Mathematik/faberPr\303\274fung.GIF" create mode 100644 Bachelor/Numerische Mathematik/numerische_mathematik_faber_nmfaw992.pdf create mode 100644 Bachelor/Numerische Mathematik/sei_aufg4.nb create mode 100644 Bachelor/Numerische Mathematik/uni-muenster-skript.pdf (limited to 'Bachelor/Numerische Mathematik') diff --git a/Bachelor/Numerische Mathematik/Num05Aufg0.nb b/Bachelor/Numerische Mathematik/Num05Aufg0.nb new file mode 100644 index 0000000..2446849 --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg0.nb @@ -0,0 +1,699 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 21013, 607]*) +(*NotebookOutlinePosition[ 21657, 629]*) +(* CellTagsIndexPosition[ 21613, 625]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ Numerik\ : \ \ Aufgabe\ \ +0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ +S\ 2005\ \ \ \ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[ + General::spell1]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ +Polynom\ \ vom\ \ Grade\ \ m\ \ in\ \ drei\ \ verschiedenen\ \ Formen\ \ \ \ \ +\ \ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(m = 9;\), " ", + StyleBox[\( (*\ \ Grad\ des\ Polynoms\ \ *) \), + FontColor->RGBColor[1, 0, 1], + Background->GrayLevel[1]]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ eps1, \(\(\ \)\(\ \)\) + eps2, \(\(\ \ \)\(\ \)\) eps3\ \ und \(\(\ \)\(\ \)\) + eps4\ \ sind\ \ vorgegenene\ \ Konstanten\ \ \ \ \ \ \ \ \ \ \ \ *) \ +\), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(eps1 = 0.001; \ \ \ eps2 = 0.005; \ \ eps3\ = \ 0.01; \ \ \ eps4 = + 0.05;\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ Vorgegebene\ Nullstellen\ \ x[ + i], \ \ i\ = \ 1, \ m\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(\(x0 = 1.3;\)\), "\n", + \(For\ [\ \ i := 1, i <= m, \(i++\), \ x[i]\ = \ i\ x0\ ]\), "\n", + \(Table[\ PaddedForm[x[i], 4]\ , {i, 1, m}]\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ Berechnung\ \ der\ \ Koeffizienten\ \ \ a[ + i], \ \ i\ = \ 0, \ m\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(\(a[0] = 1;\)\), "\n", + \(Do[\ + a[i] = 1; \[IndentingNewLine]Do[\ + a[i - j] = a[i - j - 1] - x[i]*a[i - j], {j, 1, i - 1}]; + a[0] = \(-x[i]\)*a[0], {i, 1, m}]\), "\n", + \(Table[AccountingForm[PaddedForm[a[i], {16, 7}]], {i, 0, m}]\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ 1. \ \ Produktform\ \ \ P[x]\ \ \ \ \ \ \ \ \ *) \), + + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(P[xx_] := \[Product]\+\(i = 1\)\%m\((xx - x[i])\)\), "\n", + \(\ P[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], + "Subsection"], + StyleBox[\(Grenzen \(\(\ \)\(\ \)\) f\[UDoubleDot]r\ \ die\ \ x - + Werte \(\(\ \)\(\ \)\) und\ \ die\ \ y - + Werte\ \ in\ \ der\ \ Graphik\ \ setzen\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(xmin = 0; \ \ xmax = + 16; \ \ \ \ ymin = \(-60000\); \ \ \ \ ymax = 70000;\), "\n", + RowBox[{\(<< Graphics`Colors`\), + StyleBox[ + RowBox[{" ", + StyleBox[" ", + Background->RGBColor[1, 1, 0]]}]], + StyleBox[\( (*\ \ Package\ zur\ Farbdefinition\ in\ der\ Graphik\ \ *) \ +\), + FontColor->RGBColor[1, 0, 1], + Background->RGBColor[1, 1, 0]]}], "\n", + RowBox[{ + RowBox[{\(Kurv[1]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(P[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {ymin, + ymax}}, \[IndentingNewLine]PlotPoints \[Rule] 40, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ + PlotStyle -> Green\), "]"}]}], ";"}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ 2. \ \ Summenform\ \ \ S[ + x]\ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(S[xx_] := \[Sum]\+\(i = 0\)\%m a[i]\ xx\^i\), "\n", + \(S[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{\(Kurv[2]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", \(S[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, PlotPoints \[Rule] 40, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Red\), + "]"}]}], ";"}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ 3. \ \ Hornerform\ \ \ \ H[ + x]\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(\(Hsum[xx_] = a[m];\)\ \), "\[IndentingNewLine]", + \(Do\ [ + Hsum[xx_] = Hsum[xx]*xx + a[m - i], {i, 1, + m}]\), "\[IndentingNewLine]", + \(Hsum[xx]\)}], "Input"], + +Cell[BoxData[ + \( (*\ \ H[xx_, i_] := \(H[xx, i] = H[xx, i - 1]*xx + a[m - i]\)\ ; \ \ H[ + xx_, 0] = + 1\ \ \ ; \ (*\ \ Horner\ - \ + Schema\ \(rekursiv\ !\)\ \ *) \ \ *) \)], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Kurv[3]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(Hsum[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Blue\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ \ S1[ + x]\ \ mit\ \ \[CapitalADoubleDot]nderung1\ \ in\ \ a[ + m - 2]\ = \ a[m - 2]\ + \ eps1\ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[\ b[i] = a[i], {i, 0, m}]\), "\n", + \(\(b[m - 2] = a[m - 2] + \ eps1;\)\), "\n", + \(S1[xx_] := \[Sum]\+\(i = 0\)\%m\ SetPrecision[b[i], 7]\ xx\^i\), "\n", + \(\ S1[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[4]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(S1[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Brown\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Summenform\ \ S2[ + x]\ \ mit\ \ \[CapitalADoubleDot]nderung2\ \ in\ \ a[ + m - 2]\ = \ a[m - 2]\ + \ eps2\ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[\ c[i] = a[i], {i, 0, m}]\), "\n", + \(\(c[m - 2] = a[m - 2] + \ eps2;\)\), "\n", + \(S2[xx_] := \[Sum]\+\(i = 0\)\%m\ SetPrecision[c[i], 7]\ xx\^i\), "\n", + \(S2[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[5]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(S2[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Magenta\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Summenform\ \ S3[ + x]\ \ mit\ \ \[CapitalADoubleDot]nderung2\ \ in\ \ a[ + m - 2]\ = \ a[m - 2]\ + \ eps3\ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[\ d[i] = a[i], {i, 0, m}]\), "\n", + \(\(d[m - 2] = a[m - 2] + \ eps3;\)\), "\n", + \(S3[xx_] := \[Sum]\+\(i = 0\)\%m d[i]\ xx\^i\), "\n", + \(S3[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[6]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(S3[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Apricot\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ + Summenform\ S4[x]\ mit\ \[CapitalADoubleDot]nderung2\ in\ a[m - 2] = + a[m - 2] + eps4\ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[\ e[i] = a[i], {i, 0, m}]\), "\n", + \(\(e[m - 2] = a[m - 2] + \ eps4;\)\), "\n", + \(S4[xx_] := \[Sum]\+\(i = 0\)\%m e[i]\ xx\^i\), "\n", + \(\ \ S4[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[7]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(S4[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Brick\), + "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ \ \ S[ + x]\ \ \ minus\ \ \ \ Produktform\ \ \ P[x]\ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(DiSumPro[xx_] := S[xx] - P[xx]\), "\n", + \(\ DiSumPro[xx]\)}], "Input"], + +Cell[BoxData[{ + StyleBox[\(dxmin = 0; \ \ dxmax = 12; \ \ dymin = \(-0.00003\); + dymax = 0.00008; \ \ \ \ \ \ \ neuer\ \(\(Ma\[SZ]stab\ !!\)!\)\ ;\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], "\[IndentingNewLine]", + RowBox[{\(Kurv[8]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiSumPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ dymin, dymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, + PlotStyle -> HotPink\), "]"}]}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ Hornerform\ \ \ H[ + x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(DiHomPro[xx_] := Hsum[xx] - P[xx]\), "\n", + \(DiHomPro[xx]\)}], "Input"], + +Cell[BoxData[ + RowBox[{\(Kurv[9]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiHomPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ dymin, dymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, + PlotStyle -> Cobalt\), "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ S1[ + x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(DiS1mPro[xx_] := S1[xx] - P[xx]\), "\n", + \(DiS1mPro[xx]\)}], "Input"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + StyleBox[ + RowBox[{ + StyleBox["pdiff", + "Subsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox["min", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}]], + StyleBox["=", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox["0", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], + StyleBox[";", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\(pdiffmax = 50000\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[";", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\( (*\ + neuer\ Ma\[SZ]stab\ \ f\[UDoubleDot]r\ die\ \(Differenzkurve + n\)*) \), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], "\n", + RowBox[{\(Kurv[10]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiS1mPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {pdiffmin, pdiffmax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Orange\), + "]"}]}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ \ \ S2[ + x]\ \ \ \ \ minus\ \ \ \ Produktform\ \ \ \ P[x]\ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(DiS2mPro[xx_] := S2[xx] - P[xx]\), "\n", \(DiS2mPro[ + xx]\), "\n", + RowBox[{\(Kurv[11]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiS2mPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ pdiffmin, pdiffmax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> ForestGreen\), "]"}]}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Summenform\ \ S3[ + x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(DiS3mPro[xx_] := S3[xx] - P[xx]\), "\n", \(DiS3mPro[ + xx]\), "\n", + RowBox[{\(Kurv[12]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiS3mPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {pdiffmin, pdiffmax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> IndianRed\), "]"}]}]}], "Input"], + +Cell[BoxData[ + \(\(liste1 = {Green, Red, Blue, HotPink, Brown, Magenta, Brick, Apricot, + DarkGreen, Cobalt, Orange, IndianRed, ForestGreen};\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Summenform\ \ \ S4[ + x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[0, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(DiS4mPro[xx_] := S4[xx] - P[xx]\), "\n", \(DiS4mPro[ + xx]\), "\n", + RowBox[{\(Kurv[13]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(DiS4mPro[xx], {xx, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {\ pdiffmin, pdiffmax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> DarkGreen\), "]"}]}]}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ +\)\) eins\ \ bis\ \ sieben\ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[\ Kurv[1], Kurv[2], Kurv[3], Kurv[4], Kurv[5], Kurv[6], + Kurv[7]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ +\)\) acht\ \ und\ \ neun\ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Kurv[8], Kurv[9]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ +\)\) zehn\ \ bis\ \ dreizehn\ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Kurv[10], Kurv[11], Kurv[12], Kurv[13]]\)], "Input"], + +Cell[BoxData[{ + RowBox[{ + StyleBox[\(diffxmin = \(-0.010\); diffxmax = 0.5; + diffymin = \(-0.000000002\); diffymax = 0.000000003;\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\( (*\ \ neuer\ \(\(Ma\[SZ]stab!!\)!\)\ \ \ \(f\[UDoubleDot] + r\)\ die\ Differenzkurven\ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], "\n", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \({\ DiSumPro[xx], DiHomPro[xx], DiS1mPro[xx], DiS2mPro[xx]}, {xx, + diffxmin, + diffxmax}, \[IndentingNewLine]PlotRange \[Rule] {{diffxmin, + diffxmax}, {\ diffymin, diffymax}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, \ + PlotStyle -> {\ HotPink, Cobalt, Orange, ForestGreen\ }\), + "]"}]}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\( (*\ + Neuer\ \ Ma\[SZ]stab\ \ f\[UDoubleDot]\ +r\ \ die\ \ Differenzkurvenkurven\ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \({\ DiSumPro[xx], DiHomPro[xx], DiS1mPro[xx]}, {xx, 0, 12}, + PlotPoints \[Rule] 100, + PlotRange -> {{0, 2}, {\(-0.000000005\), 0.000000005}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> {HotPink, Cobalt, Orange}\), "]"}]], "Input"], + +Cell[BoxData[{ + RowBox[{ + StyleBox[\(xplmin = 11.6999999999; \ \ xplmax = 11.7000000001;\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]], + StyleBox[\( (*\ + neuer\ Ma\[SZ]stab\ f\[UDoubleDot]r\ die\ Kurven\ 1\ bis\ 3\ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 1]]}], "\n", + RowBox[{\(Kurv[14]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \({P[xx], S[xx], Hsum[xx]\ }, {xx, xplmin - 0.0000049998, + xplmax + 0.0000011}, + PlotRange -> {{xplmin, xplmax}, {\(-0.000000006\), 0.000000006}}, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, + PlotStyle -> {Green, Red, Blue}\), "]"}]}]}], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 695}}, +WindowSize->{1016, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 280, 6, 59, "Input"], +Cell[2037, 59, 133, 2, 30, "Input"], +Cell[2173, 63, 246, 6, 54, "Input"], +Cell[2422, 71, 197, 4, 30, "Input"], +Cell[2622, 77, 324, 7, 46, "Input"], +Cell[2949, 86, 113, 2, 30, "Input"], +Cell[3065, 90, 233, 5, 46, "Input"], +Cell[3301, 97, 179, 3, 70, "Input"], +Cell[3483, 102, 245, 5, 46, "Input"], +Cell[3731, 109, 293, 6, 90, "Input"], +Cell[4027, 117, 200, 5, 49, "Input"], +Cell[4230, 124, 108, 2, 71, "Input"], +Cell[4341, 128, 750, 23, 46, "Input"], +Cell[5094, 153, 885, 21, 90, "Input"], +Cell[5982, 176, 215, 5, 49, "Input"], +Cell[6200, 183, 99, 2, 71, "Input"], +Cell[6302, 187, 399, 9, 50, "Input"], +Cell[6704, 198, 221, 5, 49, "Input"], +Cell[6928, 205, 201, 5, 70, "Input"], +Cell[7132, 212, 247, 5, 46, "Input"], +Cell[7382, 219, 358, 9, 50, "Input"], +Cell[7743, 230, 288, 6, 46, "Input"], +Cell[8034, 238, 216, 4, 113, "Input"], +Cell[8253, 244, 357, 9, 30, "Input"], +Cell[8613, 255, 284, 6, 46, "Input"], +Cell[8900, 263, 214, 4, 113, "Input"], +Cell[9117, 269, 359, 9, 50, "Input"], +Cell[9479, 280, 284, 6, 46, "Input"], +Cell[9766, 288, 196, 4, 113, "Input"], +Cell[9965, 294, 359, 9, 50, "Input"], +Cell[10327, 305, 248, 6, 46, "Input"], +Cell[10578, 313, 200, 4, 113, "Input"], +Cell[10781, 319, 357, 9, 30, "Input"], +Cell[11141, 330, 231, 5, 46, "Input"], +Cell[11375, 337, 96, 2, 50, "Input"], +Cell[11474, 341, 634, 13, 70, "Input"], +Cell[12111, 356, 229, 5, 46, "Input"], +Cell[12343, 363, 97, 2, 50, "Input"], +Cell[12443, 367, 389, 9, 50, "Input"], +Cell[12835, 378, 220, 5, 46, "Input"], +Cell[13058, 385, 95, 2, 50, "Input"], +Cell[13156, 389, 1741, 48, 70, "Input"], +Cell[14900, 439, 236, 5, 46, "Input"], +Cell[15139, 446, 454, 10, 90, "Input"], +Cell[15596, 458, 230, 5, 46, "Input"], +Cell[15829, 465, 450, 10, 90, "Input"], +Cell[16282, 477, 168, 2, 30, "Input"], +Cell[16453, 481, 226, 5, 46, "Input"], +Cell[16682, 488, 452, 10, 90, "Input"], +Cell[17137, 500, 285, 6, 46, "Input"], +Cell[17425, 508, 109, 2, 30, "Input"], +Cell[17537, 512, 283, 6, 46, "Input"], +Cell[17823, 520, 55, 1, 30, "Input"], +Cell[17881, 523, 287, 6, 46, "Input"], +Cell[18171, 531, 77, 1, 30, "Input"], +Cell[18251, 534, 1061, 24, 90, "Input"], +Cell[19315, 560, 357, 10, 30, "Input"], +Cell[19675, 572, 398, 9, 50, "Input"], +Cell[20076, 583, 933, 22, 70, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg1.nb b/Bachelor/Numerische Mathematik/Num05Aufg1.nb new file mode 100644 index 0000000..42bcdbe --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg1.nb @@ -0,0 +1,1575 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 53396, 1444]*) +(*NotebookOutlinePosition[ 54102, 1468]*) +(* CellTagsIndexPosition[ 54058, 1464]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ Numerik : \ \ Aufgabe\ \ +1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ +S\ 2005\ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ Simulation\ eines\ L - + stelligen\ Rechners\ auf\ einem\ n - + stelligen\ Rechner\ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Berechnung\ des\ Exponenten\ zur\ Verschiebung\ und\ \ +Ermitteln\ des\ Vorzeichens\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(PaddedForm[1. + 0.6*10^\(-15\), {18, 16}]\), + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ Stellenzahl\ ?\ \ Abschneiden\ oder\ \(\(Runden\)\(\ +\ \ \)\(?\)\)\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]]}]], "Input"], + +Cell[BoxData[{\(signum[xN_] := If[xN < 0, \(-1\), 1]\), "\[IndentingNewLine]", + + RowBox[{"st", "=", \(IntegerPart[$MachinePrecision\ + 2]\), + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ st\ wird\ beim\ Abschneiden\ und\ Runden\ \ +gebraucht, \ \(\(warum\)\(\ \)\(?\)\)*) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]]}]}], "Input"], + +Cell[BoxData[ + RowBox[{\(expo[xN_, L_] := + If[\ Abs[xN] < 1, L - IntegerPart[Log[10. , Abs[xN]]], + L - IntegerPart[Log[10. , Abs[xN]]] - 1]\), " ", + "\[IndentingNewLine]", + " \ + ", + StyleBox[\( (*\ Verschiebung\ beim\ Abschneiden\ bzw . \ Runden*) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(Funktionsunterprogramm\ zum\ Abschneiden\ auf\ L\ Stellen\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(\(\ \)\(\ \ \ \)\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Abschn[xN_, L_] := \[IndentingNewLine]\ \ \ \ \ \ \ If[xN == 0, 0. , + signum[xN]* + Floor[Abs[xN]*10. \^expo[xN, L] + + 3. *10. \^\((L - st)\)]*10. \^\(-expo[xN, L]\)]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(Funktionsunterprogramm\ zum\ Runden\ auf\ L\ Stellen\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(Runden[xN_, L_]\)\(:=\)\(\ \)\(If[xN == 0, 0. , + signum[xN]* + Floor[Abs[xN]*10. \^expo[xN, L] + 0.5 + + 3. *10. \^\((L - st)\)]*10. \^\(-expo[xN, L]\)]\)\(\t\t\t\ +\)\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \(Be ispiel\)\ zum\ Runden\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Runden[\(-0.00034567\), 4]\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Alle\ vorgegebenen\ n - + Werte\ in\ einer\ Liste\ anlegen\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(nlist = {10, 50, 100, 200, 300, 500, 800, 1000};\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Alle\ Rechengenauigkeiten\ \((L\ Stellen)\)\ \ in\ \ +einer\ Liste\ anlegen\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(listgen = {3, 6, 12};\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox[\(Berechnung\ der\ Summen\ f\[UDoubleDot]r\ alle \(\(\ \)\(\ \ +\)\) n - Werte\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(\(a lle\)\ Rechengenauigkeiten\ \((L)\)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox[\(mit\ Abschneiden\ und\ Runden\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(wachsend\ und\ fallend\ mit\ den\ zugeh\[ODoubleDot]rigen\ \ +Differenzen\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{"Do", "[", " ", + RowBox[{ + RowBox[{"{", " ", + + RowBox[{\(jab = 2 j - 1\), ",", \(jru = 2 j\), ",", + " ", \(L = listgen[\([j]\)]\), ",", "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + + StyleBox[\( (*\ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\ +\[UDoubleDot]r \(\(\ \)\(\ \)\) Abschneiden\ \ und\ \ Wachsen\ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], "\n", + "\t ", \(Do[{summe[0] = 0, diff = 0, + Do[{summe[i]\ = \ + Abschn[summe[i - 1] + Abschn[1. /i, L], + L], \n\t\t\t\t\tdiff = + Abschn[ + diff + summe[i] - summe[i - 1] - Abschn[1. /i, L], + L]}, {i, 1, + nlist[\([n]\)]}], \n\ \ \t\ \t\ \ \ \ Tabelle[4 n - 3, + jab] = \ \(SuAbwa[n, j] = summe[nlist[\([n]\)]]\), \ + Tabelle[4 n - 2, jab] = \(DiAbwa[n, j] = diff\)}, {n, 1, + 8}]\), ",", "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + + StyleBox[\( (*\ \ \ \ Berechnung\ \ der\ Summen\ \ f\ +\[UDoubleDot]r\ \ Runden\ \ \ und\ \ \ \ Wachsen\ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], " ", "\n", + " ", \(Do[{summe[0] = 0, diff = 0, + Do[{summe[i]\ = \ + Runden[summe[i - 1] + Runden[1. /i, L], + L], \n\t\t\t\t\tdiff = + Runden[ + diff + summe[i] - summe[i - 1] - Runden[1. /i, L], + L]}, {i, 1, + nlist[\([n]\)]}], \n\ \ \ \t\t\ \tTabelle[4 n - 3, + jru] = \(SuRuwa[n, j] = summe[nlist[\([n]\)]]\), \ + Tabelle[4 n - 2, jru] = \ \(DiRuwa[n, j] = diff\)}, {n, 1, + 8}]\), ",", " \t", "\[IndentingNewLine]", " ", + + + StyleBox[\( (*\ \ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\ +\[UDoubleDot]r\ \ Abschneiden\ \ und \(\(\ \)\(\ \)\) Fallen\ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], "\n", + "\t ", \(Do[{summe[0] = 0, diff = 0, + Do[{summe[i] = \ + Abschn[ + summe[i - 1] + + Abschn[1. /\((nlist[\([n]\)] - i + 1)\), L], + L], \n\t\t\t\t\ \ diff = + Abschn[ + diff + summe[i] - summe[i - 1] - + Abschn[1. /\((nlist[\([n]\)] - i + 1)\), L], + L]}, {\ i, 1, nlist[\([n]\)]}], \n\t\t\t\t\tTabelle[ + 4 n - 1, jab] = \(SuAbfal[n, j] = + summe[nlist[\([n]\)]]\), + Tabelle[4 n, jab] = \(DiAbfal[n, j] = diff\)}, {n, 1, + 8}]\), ",", "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + + StyleBox[\( (*\ \ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\ +\[UDoubleDot]r\ \ Runden\ \ und \(\(\ \)\(\ \)\) Fallen\ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], "\n", + " \t", \(Do[{summe[0] = 0, diff = 0, + Do[{summe[i]\ = \ + Runden[ + summe[i - 1] + + Runden[1. /\((nlist[\([n]\)] - i + 1)\), L], + L], \n\t\t\t\ \ \ \ \ diff = + Runden[ + diff + summe[i] - summe[i - 1] - + Runden[1. /\((nlist[\([n]\)] - i + 1)\), L], + L]}, {i, 1, nlist[\([n]\)]}], \n\t\t\t\t\tTabelle[ + 4 n - 1, jru] = \(SuRufal[n, j] = + summe[nlist[\([n]\)]]\), + Tabelle[4 n, jru] = \(DiRufal[n, j] = diff\)}, {n, 1, + 8}]\)}], "}"}], ",", "\t\t", "\n", + " \t \t\t", \({j, 1, 3}\)}], "]"}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Berechnung\ der\ Summe, \ + wachsend\ und\ mit\ voller\ Genauigkeit\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[\ {sumgenwa = 0, + Do[sumgenwa = sumgenwa + 1. /i, {i, 1, + nlist[\([n]\)]}], \n\t\tTabelle[4 n - 3, 7] = sumgenwa}, {n, 1, + 8}]\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ Berechnung\ der\ Summe, \ \(fall + end\)\ und\ mit\ voller\ Genauigkeit\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[\ {sumgenfal = 0, + Do[sumgenfal = sumgenfal + 1. /\((nlist[\([n]\)] - i + 1)\), {i, 1, + nlist[\([n]\)]}], \n\t\t\tTabelle[4 n - 1, 7] = sumgenfal}, {n, + 1, 8}]\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ Differenzen\ \ bei\ voller\ Genauigkeit \(\(\ \ +\)\(\ \)\) Null\ \ setzen\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[Tabelle[2 n, 7] = \(diff = 0\), {n, 1, 16}]\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Tabelle\ beschriften\ , \ + wachsen\ \ und\ \ fallend\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{\(Tabelle[4 n - 3, \(-1\)]\), "=", "\"\<\!\(\* +StyleBox[\"wa\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ",", + + RowBox[{\(Tabelle[4 n - 1, \(-1\)]\), "=", " ", "\"\<\!\(\* +StyleBox[\"fa\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}]}], + "}"}], ",", " ", \({\ n, 1, 8}\)}], + "]"}], "\n", \(Do[{Tabelle[4 n - 2, \(-1\)] = "\", + Tabelle[4 n, \(-1\)] = \ "\"}, \ {\ n, 1, 8}]\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Tabelle\ beschriften\ , \ \ n - Werte\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(Do[Tabelle[4 n - 3, 0] = \(Tabelle[4 n - 1, 0] = \ + nlist[\([n]\)]\), {n, 1, 8}]\ \), "\n", + \(Do[Tabelle[4 n - 2, 0] = \(Tabelle[4 n, 0] = \ "\< \>"\), {n, 1, + 8}]\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Tabelle\ beschriften, \ \ \ +\[CapitalUDoubleDot]berschriften \(\(\ \)\(\ \)\) angeben\ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{\(Tabelle[0, 0]\), "=", "\"\<\!\(\* +StyleBox[\(\\\ \\\ \* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\* +StyleBox[\"n\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\) \>\""}], ";", + + RowBox[{\(Tabelle[0, 1]\), "=", "\"\<\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"Absch\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], + ";", + RowBox[{\(Tabelle[0, 2]\), "=", "\"\<\!\(\* +StyleBox[\(\\\ \* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\* +StyleBox[\"Rund\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], + ";"}], "\n", + RowBox[{ + RowBox[{\(Tabelle[0, 3]\), "=", "\"\< \!\(\* +StyleBox[\"Abschn\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], + ";", + RowBox[{\(Tabelle[0, 4]\), "=", "\"\<\!\(\* +StyleBox[\(\\\ \\\ \\\ \* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\* +StyleBox[\"Runden\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], + ";", + RowBox[{\(Tabelle[0, 5]\), "=", "\"\< \!\(\* +StyleBox[\"Abschnei\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], + ";"}], "\n", + RowBox[{ + RowBox[{\(Tabelle[0, 6]\), "=", "\"\< \!\(\* +StyleBox[\"Runden\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], + ";", + RowBox[{\(Tabelle[0, 7]\), "=", "\"\< \!\(\* +StyleBox[\"Volle\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"Genauigkeit\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)\>\""}], ";", \(Tabelle[0, \(-1\)] = "\< \>"\), "\t", ";", + "\[IndentingNewLine]"}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Stellenzahlen\ f\[UDoubleDot]r\ die\ Ausgabe\ \ +festlegen\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(tabgen = {4, + 4, {4, 3}, {4, 3}, {7, 6}, {7, 6}, {13, 12}, {13, 12}, {17, + 15}};\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Ausgabe\ der\ \ vollst\[ADoubleDot]ndigen\ \ +Tabelle\ \ mit\ Beschriftung\ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(TableForm[ + Table[AccountingForm[ + PaddedForm[Tabelle[n, j - 2], tabgen[\([j]\)]]], \n\t\t{n, 0, + 32}, {j, 1, 9}], TableSpacing -> {2, 1}]\)], "Input"], + +Cell[BoxData[ + \(<< Graphics`Colors`\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ \ \ \ \ \ +Graphische\ \ Darstellung\ \ f\[UDoubleDot]r\ \ die\ \ Rechengenauigkeit\ \ L \ += 3\ \ \ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]], " "}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ 1. \ \ \ \ \ \ Abschneiden \(\(\ \)\(\ +\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Tabpkte[1]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 1]}, {n, 1, + 8}], PlotJoined\ -> \ False, \n\t + PlotRange -> {{0, 1000}, {2.0, 7.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Tabsp[1]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 1]}, {n, 1, + 8}], PlotJoined\ -> \ True, \n + PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Red, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ 2. \ \ \ \ \ \ \ Runden \(\(\ \)\(\ \ +\)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Tabpkte[2]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 2]}, {n, 1, + 8}], PlotJoined\ \[Rule] False, \n\t + PlotRange -> {{0, 1000}, {2.0, 7.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, + AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Tabsp[2]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 2]}, {n, 1, + 8}], PlotJoined\ -> \ True, \n + PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Green, + AspectRatio -> 0.6, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(3. \ \ \ \ \ \ \ \ Abschneiden \(\(\ \)\(\ \)\) + und\ \ fallend\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Tabpkte[3]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 1]}, {n, 1, + 8}], PlotJoined\ \[Rule] False, \n\t + PlotRange -> {{0, 1000}, {2.0, 7.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Tabsp[3]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 1]}, {n, 1, + 8}], PlotJoined\ -> \ True, \n\t + PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Brown, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ 4. \ \ \ \ \ \ Runden \(\(\ \)\(\ \ +\)\) und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Tabpkte[4]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 2]}, {n, 1, + 8}], PlotJoined\ -> \ False, \n + PlotRange -> {{0, 1000}, {2.0, 7.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, + AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Tabsp[4]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 2]}, {n, 1, + 8}], PlotJoined\ -> \ True, \n + PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Blue, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\[CapitalUDoubleDot]berlagerung\ \ der\ \ vier\ \ Funktionen\ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Tabsp[1], Tabsp[2], Tabsp[3], Tabsp[4], Tabpkte[1], Tabpkte[2], + Tabpkte[3], Tabpkte[4], Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \ +Abschneiden \(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ l\) = + 3\ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(AbwTabpkte[1]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 1]}, {n, 1, 8}], + PlotJoined\ -> \ False, \n\t + PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(AbwTabsp[1]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 1]}, {n, 1, 8}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweixhungen : \ \ \ \ \ \ \ Runden \ +\(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \ + 3\ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(AbwTabpkte[2]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 2]}, {n, 1, 8}], + PlotJoined\ \[Rule] False, \n\t + PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, + AspectRatio -> 0.7, \ + AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(AbwTabsp[2]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 2]}, {n, 1, 8}], + PlotJoined\ \[Rule] True, \n\t + PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, + AspectRatio -> 0.7, \ + AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["3.", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + StyleBox["Abweichungen", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[":", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + StyleBox["Abschneiden", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(\(\ \)\(\ \)\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["und", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["fallend", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["l", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]}]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["3", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(AbwTabpkte[3]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 1]}, {n, 1, 8}], + PlotJoined\ \[Rule] False, \n\t + PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(AbwTabsp[3]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 1]}, {n, 1, 8}], + PlotJoined\ \[Rule] True, \n\t + PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \ +Runden \(\(\ \)\(\ \)\) + und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \ + 3\ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(AbwTabpkte[4]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 2]}, {n, 1, 8}], + PlotJoined\ -> \ False, \nPlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, + AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(AbwTabsp[4]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 2]}, {n, 1, 8}], + PlotJoined\ -> \ True, \nPlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, + AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\[CapitalUDoubleDot]\ +berlagerung\ \ der\ \ vier\ \ Abweichungen\ \ \ \ \ \ \ \ l\ = \ + 3\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[AbwTabsp[1], AbwTabsp[2], AbwTabsp[3], AbwTabsp[4], AbwTabpkte[1], + AbwTabpkte[2], AbwTabpkte[3], AbwTabpkte[4], + Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \ +Abschneiden \(\(\ \)\(\ \)\) + und\ \ wachsend\ \ \ \ \ \ \ \ \ l\)\ = \ \ 6\ \ \ \ \ \ \ \ +\ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Ab6Tabpkte[1]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 3]}, {n, 1, 8}], + PlotJoined\ -> \ False, \n\t + PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Ab6Tabsp[1]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 3]}, {n, 1, 8}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweichungen : \ \ \ \ \ \ \ Runden \ +\(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \ + 6\ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Ab6Tabpkte[2]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 4]}, {n, 1, 8}], + PlotJoined\ \[Rule] False, \n\t + PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, + AspectRatio -> 0.7, \ + AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Ab6Tabsp[2]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 4]}, {n, 1, 8}], + PlotJoined\ \[Rule] True, \n\t + PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, + AspectRatio -> 0.7, \ + AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["3.", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + StyleBox["Abweichungen", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[":", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + StyleBox["Abschneiden", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(\(\ \)\(\ \)\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["und", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["fallend", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["l", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]}]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["6", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Ab6Tabpkte[3]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 3]}, {n, 1, 8}], + PlotJoined\ \[Rule] False, \n\t + PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Ab6Tabsp[3]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 3]}, {n, 1, 8}], + PlotJoined\ \[Rule] True, \n\t + PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, + AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), + "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \ +Runden \(\(\ \)\(\ \)\) + und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \ + 6\ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Ab6Tabpkte[4]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 4]}, {n, 1, 8}], + PlotJoined\ -> \ False, \n + PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, + AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Ab6Tabsp[4]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 4]}, {n, 1, 8}], + PlotJoined\ -> \ True, \n + PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, + AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\[CapitalUDoubleDot]berlagerung\ \ der\ \ \ Abweichungen\ \ \ \ \ eins\ \ +und\ \ drei\ \ \((\ Abschneiden\ )\)\ \ \ l\ = \ + 6\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Ab6Tabsp[1], Ab6Tabsp[3], Ab6Tabpkte[1], Ab6Tabpkte[3], + Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\[CapitalUDoubleDot]\ +berlagerung\ \ der\ \ \ \ Abweichungen\ \ \ \ zwei\ \ \ und\ \ vier\ \ \ \((\ + Runden\ )\)\ \ l\ = \ 6\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Ab6Tabsp[2], Ab6Tabsp[4], Ab6Tabpkte[2], Ab6Tabpkte[4], + Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \ +Abschneiden \(\(\ \)\(\ \)\) + und\ \ wachsend\ \ \ \ \ \ \ \ \ l\)\ = \ \ 12\ \ \ \ \ \ \ +\ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Ab12Tabpkte[1]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 5]}, {n, 1, 8}], + PlotJoined\ -> \ False, \n\t + PlotRange -> {{0, 1000}, {\(-0.0000000005\), 0.0000000025}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, + AspectRatio -> 0.7, + AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Ab12Tabsp[1]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 5]}, {n, 1, 8}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{0, 1000}, {\(-0.0000000005\), 0.0000000025}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, + AspectRatio -> 0.7, + AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweichungen : \ \ \ \ \ \ \ Runden \ +\(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \ + 12\ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Ab12Tabpkte[2]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 6]}, {n, 1, 8}], + PlotJoined\ \[Rule] False, \n\t + PlotRange -> {{0, 1000}, {\(-0.0000000001\), 0.0000000002}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, + AspectRatio -> 0.7, \ + AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Ab12Tabsp[2]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 3, 0], + Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 6]}, {n, 1, 8}], + PlotJoined\ \[Rule] True, \n\t + PlotRange -> {{0, 1000}, {\(-0.0000000001\), 0.0000000002}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, + AspectRatio -> 0.7, \ + AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["3.", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + StyleBox["Abweichungen", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[":", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + StyleBox["Abschneiden", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(\(\ \)\(\ \)\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["und", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["fallend", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["l", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]}]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["12", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Ab12Tabpkte[3]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 5]}, {n, 1, 8}], + PlotJoined\ \[Rule] False, \n\t + PlotRange -> {{0, 1000}, {\(-0.000000001\), 0.0000000025}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, + AspectRatio -> 0.7, + AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Ab12Tabsp[3]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 5]}, {n, 1, 8}], + PlotJoined\ \[Rule] True, \n\t + PlotRange -> {{0, 1000}, {\(-0.000000001\), 0.0000000025}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, + AspectRatio -> 0.7, + AxesLabel -> {"\<> n\>", "\< ^ a126(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \ +Runden \(\(\ \)\(\ \)\) + und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \ + 12\ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(Ab12Tabpkte[4]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 6]}, {n, 1, 8}], + PlotJoined\ -> \ False, \n + PlotRange -> {{0, 1000}, {\(-0.00000000002\), 0.00000000009}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, + AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Ab12Tabsp[4]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[4 n - 1, 0], + Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 6]}, {n, 1, 8}], + PlotJoined\ -> \ True, \n + PlotRange -> {{0, 1000}, {\(-0.00000000002\), 0.00000000009}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, + AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\[CapitalUDoubleDot]berlagerung\ \ der\ \ \ Abweichungen\ \ \ \ \ eins\ \ +und\ \ drei\ \ \((\ Abschneiden\ )\)\ \ \ l\ = \ + 12\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Ab12Tabsp[1], Ab12Tabsp[3], Ab12Tabpkte[1], Ab12Tabpkte[3], + Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\[CapitalUDoubleDot]\ +berlagerung\ \ der\ \ \ \ Abweichungen\ \ \ \ zwei\ \ \ und\ \ vier\ \ \ \((\ + Runden\ )\)\ \ \ l\ = \ 12\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Show[Ab12Tabsp[2], Ab12Tabsp[4], Ab12Tabpkte[2], Ab12Tabpkte[4], + Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1018, 650}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +PrintingCopies->1, +PrintingPageRange->{Automatic, Automatic} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 406, 10, 59, "Input"], +Cell[2163, 63, 299, 7, 49, "Input"], +Cell[2465, 72, 232, 5, 46, "Input"], +Cell[2700, 79, 397, 10, 30, "Input"], +Cell[3100, 91, 509, 11, 50, "Input"], +Cell[3612, 104, 521, 10, 50, "Input"], +Cell[4136, 116, 563, 17, 46, "Input"], +Cell[4702, 135, 229, 4, 51, "Input"], +Cell[4934, 141, 544, 17, 46, "Input"], +Cell[5481, 160, 234, 5, 31, "Input"], +Cell[5718, 167, 177, 4, 46, "Input"], +Cell[5898, 173, 59, 1, 30, "Input"], +Cell[5960, 176, 217, 5, 46, "Input"], +Cell[6180, 183, 85, 1, 30, "Input"], +Cell[6268, 186, 224, 5, 46, "Input"], +Cell[6495, 193, 58, 1, 30, "Input"], +Cell[6556, 196, 1617, 49, 66, "Input"], +Cell[8176, 247, 4905, 99, 390, "Input"], +Cell[13084, 348, 224, 5, 46, "Input"], +Cell[13311, 355, 191, 4, 50, "Input"], +Cell[13505, 361, 239, 5, 46, "Input"], +Cell[13747, 368, 224, 4, 50, "Input"], +Cell[13974, 374, 227, 5, 46, "Input"], +Cell[14204, 381, 80, 1, 30, "Input"], +Cell[14287, 384, 212, 5, 46, "Input"], +Cell[14502, 391, 592, 12, 50, "Input"], +Cell[15097, 405, 187, 4, 46, "Input"], +Cell[15287, 411, 228, 4, 50, "Input"], +Cell[15518, 417, 233, 5, 46, "Input"], +Cell[15754, 424, 1784, 37, 90, "Input"], +Cell[17541, 463, 207, 5, 46, "Input"], +Cell[17751, 470, 139, 3, 30, "Input"], +Cell[17893, 475, 223, 5, 46, "Input"], +Cell[18119, 482, 195, 4, 50, "Input"], +Cell[18317, 488, 52, 1, 30, "Input"], +Cell[18372, 491, 278, 7, 49, "Input"], +Cell[18653, 500, 417, 10, 46, "Input"], +Cell[19073, 512, 495, 11, 70, "Input"], +Cell[19571, 525, 445, 10, 50, "Input"], +Cell[20019, 537, 412, 10, 46, "Input"], +Cell[20434, 549, 502, 11, 70, "Input"], +Cell[20939, 562, 447, 10, 50, "Input"], +Cell[21389, 574, 774, 23, 46, "Input"], +Cell[22166, 599, 500, 11, 70, "Input"], +Cell[22669, 612, 449, 10, 50, "Input"], +Cell[23121, 624, 411, 10, 46, "Input"], +Cell[23535, 636, 522, 11, 70, "Input"], +Cell[24060, 649, 446, 10, 50, "Input"], +Cell[24509, 661, 434, 11, 46, "Input"], +Cell[24946, 674, 168, 2, 30, "Input"], +Cell[25117, 678, 454, 11, 46, "Input"], +Cell[25574, 691, 542, 12, 70, "Input"], +Cell[26119, 705, 539, 12, 70, "Input"], +Cell[26661, 719, 449, 11, 46, "Input"], +Cell[27113, 732, 549, 12, 70, "Input"], +Cell[27665, 746, 546, 12, 70, "Input"], +Cell[28214, 760, 2463, 71, 46, "Input"], +Cell[30680, 833, 547, 12, 70, "Input"], +Cell[31230, 847, 544, 12, 70, "Input"], +Cell[31777, 861, 495, 12, 46, "Input"], +Cell[32275, 875, 560, 11, 70, "Input"], +Cell[32838, 888, 557, 11, 70, "Input"], +Cell[33398, 901, 458, 12, 46, "Input"], +Cell[33859, 915, 199, 3, 50, "Input"], +Cell[34061, 920, 464, 12, 46, "Input"], +Cell[34528, 934, 548, 12, 70, "Input"], +Cell[35079, 948, 545, 12, 70, "Input"], +Cell[35627, 962, 449, 11, 46, "Input"], +Cell[36079, 975, 557, 12, 70, "Input"], +Cell[36639, 989, 554, 12, 70, "Input"], +Cell[37196, 1003, 2463, 71, 46, "Input"], +Cell[39662, 1076, 553, 12, 70, "Input"], +Cell[40218, 1090, 550, 12, 70, "Input"], +Cell[40771, 1104, 495, 12, 46, "Input"], +Cell[41269, 1118, 577, 12, 70, "Input"], +Cell[41849, 1132, 574, 12, 70, "Input"], +Cell[42426, 1146, 477, 12, 46, "Input"], +Cell[42906, 1160, 136, 2, 30, "Input"], +Cell[43045, 1164, 480, 12, 46, "Input"], +Cell[43528, 1178, 136, 2, 30, "Input"], +Cell[43667, 1182, 465, 12, 46, "Input"], +Cell[44135, 1196, 563, 12, 70, "Input"], +Cell[44701, 1210, 559, 12, 70, "Input"], +Cell[45263, 1224, 450, 11, 46, "Input"], +Cell[45716, 1237, 569, 12, 70, "Input"], +Cell[46288, 1251, 566, 12, 70, "Input"], +Cell[46857, 1265, 2463, 71, 46, "Input"], +Cell[49323, 1338, 566, 12, 70, "Input"], +Cell[49892, 1352, 563, 12, 70, "Input"], +Cell[50458, 1366, 496, 12, 46, "Input"], +Cell[50957, 1380, 591, 12, 70, "Input"], +Cell[51551, 1394, 588, 12, 70, "Input"], +Cell[52142, 1408, 478, 12, 46, "Input"], +Cell[52623, 1422, 140, 2, 30, "Input"], +Cell[52766, 1426, 483, 12, 46, "Input"], +Cell[53252, 1440, 140, 2, 30, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg1_erg.nb b/Bachelor/Numerische Mathematik/Num05Aufg1_erg.nb new file mode 100644 index 0000000..7deeaf2 --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg1_erg.nb @@ -0,0 +1,2095 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 72187, 2061]*) +(*NotebookOutlinePosition[ 72831, 2083]*) +(* CellTagsIndexPosition[ 72787, 2079]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + TagBox[GridBox[{ + { + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + + TagBox["\<\"\\!\\(\\* StyleBox[\\(\\\\ \\\\ \\* StyleBox[\\\" \ +\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)]\\)\\!\\(\\* \ +StyleBox[\\\"n\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\) \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + + TagBox["\<\"\\!\\(\\* StyleBox[\\\" \ +\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\\* StyleBox[\\\ +\"Absch\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + + TagBox["\<\"\\!\\(\\* StyleBox[\\(\\\\ \\* StyleBox[\\\" \ +\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)]\\)\\!\\(\\* \ +StyleBox[\\\"Rund\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\"\>", + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + + TagBox["\<\" \\!\\(\\* \ +StyleBox[\\\"Abschn\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\ +\>", + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + + TagBox["\<\"\\!\\(\\* StyleBox[\\(\\\\ \\\\ \\\\ \\* \ +StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)]\\)\\!\ +\\(\\* StyleBox[\\\"Runden\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\"\>", + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + + TagBox["\<\" \\!\\(\\* \ +StyleBox[\\\"Abschnei\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\ +\"\>", + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + + TagBox["\<\" \\!\\(\\* \ +StyleBox[\\\"Runden\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\ +\>", + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + + TagBox["\<\" \\!\\(\\* StyleBox[\\\"Volle\\\",\\nFontSize->14,\ +\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\\* StyleBox[\\\" \ +\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\\* StyleBox[\\\ +\"Genauigkeit\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"wa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 10\"\>", + 10, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.910\"\>", + 2.9100000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.930\"\>", + 2.9300000000000002, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928950\"\>", + 2.9289500000000004, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928970\"\>", + 2.9289700000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928968253950\"\>", + 2.9289682539499999, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928968253970\"\>", + 2.9289682539699999, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928968253968254\"\>", + 2.9289682539682538, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"diwa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.017\"\>", + -.0167, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.001\"\>", + .001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000017\"\>", + -.000016999799999999999, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000002\"\>", + .19999999999999999*^-5, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000017\"\>", + -.170000818977*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000002\"\>", + .199983085647*^-11, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"fa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 10\"\>", + 10, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.920\"\>", + 2.9199999999999999, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.930\"\>", + 2.9300000000000002, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928960\"\>", + 2.9289600000000005, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928970\"\>", + 2.9289700000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928968253960\"\>", + 2.9289682539599999, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928968253970\"\>", + 2.9289682539699999, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 2.928968253968254\"\>", + 2.9289682539682538, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"difa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.007\"\>", + -.0069900000000000006, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.001\"\>", + .001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000007\"\>", + -.69999499999999998*^-5, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000002\"\>", + .19999999999999999*^-5, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000007\"\>", + -.69996231033499997*^-11, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000002\"\>", + .20002888234700001*^-11, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"wa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 50\"\>", + 50, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.320\"\>", + 4.3200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.500\"\>", + 4.5, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499010\"\>", + 4.4990100000000002, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499210\"\>", + 4.4992100000000006, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499205338120\"\>", + 4.4992053381199995, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499205338320\"\>", + 4.4992053383199995, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499205338329423\"\>", + 4.499205338329423, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"diwa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.163\"\>", + -.16300000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.001\"\>", + .00079999999999999993, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000192\"\>", + -.000192289, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000005\"\>", + .49999999999999996*^-5, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000206\"\>", + -.20629851646399998*^-9, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000009\"\>", + -.91015910086400004*^-11, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"fa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 50\"\>", + 50, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.430\"\>", + 4.4299999999999997, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.510\"\>", + 4.5099999999999998, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499130\"\>", + 4.4991300000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499210\"\>", + 4.4992100000000006, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499205338250\"\>", + 4.4992053382499995, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499205338330\"\>", + 4.4992053383299995, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.499205338329425\"\>", + 4.4992053383294248, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"difa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.065\"\>", + -.064700000000000008, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.011\"\>", + .010800000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000072\"\>", + -.0000722989, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000005\"\>", + .49999999999999996*^-5, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000076\"\>", + -.76301076568000006*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000001\"\>", + .89939167224899996*^-12, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"wa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 100\"\>", + 100, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.820\"\>", + 4.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.160\"\>", + 5.1600000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.186920\"\>", + 5.1869200000000006, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187390\"\>", + 5.1873900000000006, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187377517210\"\>", + 5.1873775172099998, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187377517610\"\>", + 5.1873775176099999, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187377517639621\"\>", + 5.1873775176396206, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"diwa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.325\"\>", + -.32500000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.027\"\>", + -.027300000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000452\"\>", + -.00045236100000000003, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000013\"\>", + .000012800000000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000424\"\>", + -.42449887181699994*^-9, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000029\"\>", + -.29203519810700004*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"fa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 100\"\>", + 100, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.030\"\>", + 5.0300000000000002, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.200\"\>", + 5.2000000000000002, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187220\"\>", + 5.1872200000000008, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187370\"\>", + 5.1873700000000005, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187377517480\"\>", + 5.1873775174799999, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187377517650\"\>", + 5.1873775176499999, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.187377517639622\"\>", + 5.1873775176396215, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"difa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.142\"\>", + -.14200000000000002, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.013\"\>", + .012700000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000152\"\>", + -.00015238800000000002, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000007\"\>", + -.71999999999999997*^-5, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000154\"\>", + -.154499413262*^-9, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000011\"\>", + .10799472427400001*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"wa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 200\"\>", + 200, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.820\"\>", + 4.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.160\"\>", + 6.1600000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.877100\"\>", + 5.8771000000000004, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.878000\"\>", + 5.8780000000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.878030947200\"\>", + 5.8780309472000001, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.878030948080\"\>", + 5.8780309480799993, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.878030948121446\"\>", + 5.8780309481214461, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"diwa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.969\"\>", + -.96899999999999997, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.284\"\>", + .28400000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000925\"\>", + -.0009252450000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000031\"\>", + -.000030689999999999999, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000916\"\>", + -.91583906690999993*^-9, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000041\"\>", + -.41073917704500001*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"fa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 200\"\>", + 200, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.510\"\>", + 5.5099999999999998, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.900\"\>", + 5.9000000000000004, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.877650\"\>", + 5.87765, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.878040\"\>", + 5.8780400000000004, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.878030947770\"\>", + 5.8780309477699992, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.878030948100\"\>", + 5.8780309480999993, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.878030948121443\"\>", + 5.8780309481214426, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"difa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.328\"\>", + -.32800000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.022\"\>", + .022100000000000002, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000375\"\>", + -.00037528400000000003, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000009\"\>", + .9309999999999999*^-5, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000346\"\>", + -.34584057839699999*^-9, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000021\"\>", + -.21071033806700002*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"wa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 300\"\>", + 300, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.820\"\>", + 4.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.160\"\>", + 6.1600000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.281240\"\>", + 6.2812400000000004, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282640\"\>", + 6.2826400000000007, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282663878900\"\>", + 6.2826638788999993, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282663880230\"\>", + 6.2826638802299994, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282663880299502\"\>", + 6.2826638802995021, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"diwa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-1.000\"\>", + -1.0, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.118\"\>", + -.11800000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.001417\"\>", + -.0014172500000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000024\"\>", + -.000023589999999999999, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000001393\"\>", + -.139341130647*^-8, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000069\"\>", + -.69110637351799999*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"fa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 300\"\>", + 300, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.820\"\>", + 5.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.260\"\>", + 6.2599999999999998, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282080\"\>", + 6.2820800000000006, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282670\"\>", + 6.2826700000000004, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282663879750\"\>", + 6.2826638797499994, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282663880260\"\>", + 6.2826638802599994, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.282663880299501\"\>", + 6.2826638802995012, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"difa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.413\"\>", + -.41300000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.023\"\>", + -.022600000000000002, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000578\"\>", + -.00057768300000000006, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000006\"\>", + .64099999999999996*^-5, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000543\"\>", + -.54341053878899995*^-9, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000039\"\>", + -.39110825689200003*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"wa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 500\"\>", + 500, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.820\"\>", + 4.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.160\"\>", + 6.1600000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.790400\"\>", + 6.7904000000000009, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.792800\"\>", + 6.7928000000000006, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.792823427560\"\>", + 6.7928234275599992, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.792823429970\"\>", + 6.7928234299699994, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.792823429990520\"\>", + 6.7928234299905199, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"diwa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-1.000\"\>", + -1.0, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.618\"\>", + -.61799999999999999, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.002415\"\>", + -.00241494, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000023\"\>", + -.000023070000000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000002424\"\>", + -.24235593514599999*^-8, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000020\"\>", + -.20052624491499999*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"fa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 500\"\>", + 500, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.820\"\>", + 5.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.980\"\>", + 6.9800000000000004, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.791840\"\>", + 6.7918400000000005, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.792780\"\>", + 6.7927800000000005, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.792823429020\"\>", + 6.7928234290199994, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.792823429930\"\>", + 6.7928234299299994, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.792823429990523\"\>", + 6.7928234299905235, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"difa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.849\"\>", + -.84899999999999998, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.186\"\>", + .186, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000976\"\>", + -.00097623600000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000043\"\>", + -.000043069999999999999, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000964\"\>", + -.96355978751399989*^-9, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000060\"\>", + -.60051408290500003*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"wa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 800\"\>", + 800, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.820\"\>", + 4.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.160\"\>", + 6.1600000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.258550\"\>", + 7.2585500000000005, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.262440\"\>", + 7.2624400000000007, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.262452258510\"\>", + 7.2624522585099998, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.262452262240\"\>", + 7.2624522622399992, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.262452262361148\"\>", + 7.2624522623611485, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"diwa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-1.000\"\>", + -1.0, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-1.000\"\>", + -1.0, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.003891\"\>", + -.0038908599999999999, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000012\"\>", + -.000011940000000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000003843\"\>", + -.384279744028*^-8, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000121\"\>", + -.12063797075*^-9, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"fa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 800\"\>", + 800, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.820\"\>", + 5.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.160\"\>", + 7.1600000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.260860\"\>", + 7.260860000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.262430\"\>", + 7.2624300000000002, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.262452260840\"\>", + 7.26245226084, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.262452262280\"\>", + 7.2624522622799992, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.262452262361142\"\>", + 7.2624522623611423, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"difa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-1.000\"\>", + -1.0, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.104\"\>", + -.10400000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.001583\"\>", + -.00158289, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000022\"\>", + -.00002194, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000001513\"\>", + -.151280044047*^-8, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000081\"\>", + -.80628725918100006*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"wa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 1000\"\>", + 1000, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 4.820\"\>", + 4.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 6.160\"\>", + 6.1600000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.480580\"\>", + 7.4805800000000007, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.485450\"\>", + 7.485450000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.485470855730\"\>", + 7.4854708557299992, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.485470860470\"\>", + 7.4854708604699995, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.485470860550343\"\>", + 7.4854708605503433, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"diwa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-1.000\"\>", + -1.0, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-1.000\"\>", + -1.0, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.004878\"\>", + -.0048776100000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000021\"\>", + -.00002052, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000004811\"\>", + -.481105077911*^-8, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000080\"\>", + -.79870886814100004*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + + TagBox["\<\"\\!\\(\\* \ +StyleBox[\\\"fa\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 1000\"\>", + 1000, + Editable->False], + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 5.820\"\>", + 5.8200000000000003, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.160\"\>", + 7.1600000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.483440\"\>", + 7.4834400000000008, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.485460\"\>", + 7.4854600000000007, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.485470858550\"\>", + 7.4854708585499994, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.485470860500\"\>", + 7.4854708604999995, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 7.485470860550341\"\>", + 7.4854708605503406, + AutoDelete->True], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]}, + { + TagBox[ + TagBox["\<\"difa\"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox["\<\" \"\>", + (PaddedForm[ #, 4]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-1.000\"\>", + -1.0, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.323\"\>", + -.32300000000000001, + AutoDelete->True], + (PaddedForm[ #, {4, 3}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.002020\"\>", + -.00202002, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000011\"\>", + -.000010520000000000001, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000001991\"\>", + -.19910507687*^-8, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\"-0.000000000050\"\>", + -.49859560924400004*^-10, + AutoDelete->True], + (PaddedForm[ #, {13, 12}]&)], + AccountingForm], + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000000000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {17, 15}]&)], + AccountingForm]} + }, + RowSpacings->2, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], + Function[ BoxForm`e$, + TableForm[ BoxForm`e$, TableSpacing -> {2, 1}]]]], "Output"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1016, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 70429, 2008, 753, "Output"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg2.nb b/Bachelor/Numerische Mathematik/Num05Aufg2.nb new file mode 100644 index 0000000..ccc43e8 --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg2.nb @@ -0,0 +1,815 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 29056, 742]*) +(*NotebookOutlinePosition[ 29701, 764]*) +(* CellTagsIndexPosition[ 29657, 760]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ Numerik\ : \ \ Aufgabe\ \ +2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ 2005\ \ \ +\ \ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Off[General::spell]; \ \ \ Off[General::spell1];\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ + Achtung : \ \[IndentingNewLine]\ \ Bitte\ nach\ jeder\ \(F + unktion\)\ die\ Ergebnisse\ \(abspeichern\ !\)\ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["\[IndentingNewLine]", + "Subtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\( (*\ \ Anschlie\[SZ]end\ istgen\ = \ 0\ setzen, \ + siehe\ Programmende\ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\ + Dann\ mit\ neuer\ Funktion\ \(\(weiter arbeiten\)\(.\)\)\ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\( (*\ \ \ D . h . \ + das\ Programm\ mit\ verschiedener\ Genauigkeit\ \ \((\ + igen\ = \ 1, \ 2, \ 3, \ 4, \ und\ 5\ )\)\ \ und\ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\( (*\ + mit\ jeweils\ zwei\ oder\ drei\ verschiedenen\ Startwerten\ \((\ + siehe\ Graphik\ )\)\ laufen\ lassen\ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]], " "}]], "Input", + Background->RGBColor[0, 0, 1]], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ +Berechnung\ \ der\ \ Nullstellen\ \ einer\ \ Funktion\ \ \ y\ = \ + f \((x)\)\ \ \ \ \ \ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(listgen = {8, 16, 24, 36, 48};\), "\n", + RowBox[{ + RowBox[{\(igen = 1\), ";", " ", + StyleBox[\( (*\ \ \ Bitte\ \ Rechnergenauigkeit\ \ +w\[ADoubleDot]hlen\ \ igen\ = \ 1, \ 2, \ 3, \ 4\ \(u nd\)\ 5\ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], + "\[IndentingNewLine]", \(ista\ = \ 0\), ";"}], + " "}], "\n", \(genist[0]\ = \ 0;\), "\n", \(gen = \ + listgen[\([\)\(igen\)\(]\)];\), "\n", + RowBox[{\(If\ \ [\ + gen\ < \ $MinPrecision, $MaxPrecision = \ \($MinPrecision = + gen\), \[IndentingNewLine]$MinPrecision = \ \($MaxPrecision = + gen\)];\), " "}]}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ 1. \ +\ \ \ Definition\ \ der\ \ Beispielfunktionen\ \ \ einschlie\[SZ]\ +lich\ \ ihrer\ \ Ableitungen\ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{\(ifunk\ = \ 1\), " ", ";", " ", + StyleBox[\( (*\ \ Bitte\ Funktion\ ausw\[ADoubleDot]hlen\ \ ifunk\ = \ + 1, \ 2, \ 3\ und\ 4\ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], + StyleBox[" ", + "Subsection"]}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ B\ e\ i\ s\ p\ i\ e\ l\ f\ u\ n\ k\ t\ i\ o\ \ +n\ \ 1\ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(\(If[\ + ifunk \[Equal] + 1, {\(funk[1]\)[x_] := + SetPrecision[1. , gen] - SetPrecision[1. , gen]/x - + SetPrecision[2. , gen]*Log[x]; \ \(abl1funk[1]\)[ + x_] := \(funk[1]'\)[x]; \[IndentingNewLine]\(abl2funk[1]\)[ + x_] := \(funk[1]''\)[x]}];\)\), "\n", + \(If[ifunk \[Equal] + 1, {\(funk[1]\)[x], \(abl1funk[1]\)[x], \(abl2funk[1]\)[ + x]}]\), "\n", + \(If[ifunk \[Equal] 1, + PaddedForm[ + SetPrecision[\(funk[1]\)[3], gen], {gen + 2, gen}]]\)}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ B\ e\ i\ s\ p\ i\ e\ l\ f\ u\ n\ k\ t\ i\ o\ \ +n\ \ 2\ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(\(If[ + ifunk \[Equal] + 2, {\(funk[2]\)[x_] := + SetPrecision[1. , gen]/x - SetPrecision[1. , gen] - + Sin[x]; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\(abl1funk[2]\)[x_] := \(funk[2]'\)[x]; \ \ \(abl2funk[2]\)[ + x_] := \(funk[2]''\)[x]; }];\)\), "\n", + \(If[ifunk \[Equal] + 2, {\(funk[2]\)[x], \(abl1funk[2]\)[x], \(abl2funk[2]\)[ + x]}]\), "\n", + \(If[ifunk \[Equal] 2, + PaddedForm[ + SetPrecision[\(abl1funk[2]\)[3], gen], {gen + 2, gen}]]\)}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ B\ e\ i\ s\ p\ i\ e\ l\ f\ u\ n\ k\ t\ i\ o\ \ +n\ \ 3\ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(\(If[ + ifunk \[Equal] + 3, {\(funk[3]\)[x_] := + SetPrecision[1. , gen] + + Sin[x]; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \(abl1funk[3]\)[x_] := \(funk[3]'\)[ + x]; \[IndentingNewLine]\ \ \(abl2funk[3]\)[x_] := \(funk[3]''\)[ + x]; }];\)\), "\n", + \(If[ifunk \[Equal] + 3, {\(funk[3]\)[x], \(abl1funk[3]\)[x], \(abl2funk[3]\)[ + x]}]\), "\n", + \(If[ifunk \[Equal] 3, + PaddedForm[ + SetPrecision[\(funk[3]\)[3], gen], {gen + 2, gen}]]\)}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ B\ e\ i\ s\ p\ i\ e\ l\ f\ u\ n\ k\ t\ i\ o\ \ +n\ \ 4\ \ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(\(If[ + ifunk \[Equal] + 4, {\(funk[4]\)[x_] := + SetPrecision[\[Pi], gen] - x - \ + Sin[x]; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \(abl1funk[4]\)[x_] := \(funk[4]'\)[x]; \ \ \(abl2funk[4]\)[ + x_] := \(funk[4]''\)[x]; }];\)\), "\n", + \(If[ifunk \[Equal] 4, + PaddedForm[ + SetPrecision[\(abl1funk[4]\)[3], gen], {gen + 2, gen}]]\)}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \(If\)\([\)\(ifunk \[Equal] + 2, \ \ 2. \ \ \ Schaubilder\ \ der\ \ \ Beispielfunktionen\)\(\ \ +\ \ \ \ \ \ \)*) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{"<<", "Graphics`Colors`", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + Background->RGBColor[1, 1, 0]]}]], + StyleBox[\( (*\ \ Package\ zur\ Farbdefinition\ in\ der\ Graphik\ \ *) \ +\), + FontColor->RGBColor[1, 0, 1], + Background->RGBColor[1, 1, 0]]}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + StyleBox["(*", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], + "Subsection"], + RowBox[{ + StyleBox[\(Funktion\ 1\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[":", + "Subsection", + FontColor->RGBColor[1, 0, 1]], " ", + + StyleBox[\(Grenzen\ \ f\[UDoubleDot]r\ \ die\ \ x - + Werte\ und\ \ die\ \ y - Werte\ \ setzen\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"If", "[", + RowBox[{\(ifunk \[Equal] 1\), ",", + RowBox[{"{", + + RowBox[{\(xmin = 0.01\), ";", " ", \(xmax = 5\), ";", + " ", \(ymin = \(-3\)\), ";", " ", \(ymax = 1\), ";", "\n", + + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(\(funk[1]\)[x], {x, xmin, xmax}, + PlotRange -> {{xmin - 1, xmax}, {ymin, ymax}}, + AspectRatio \[Rule] + 0.6, \[IndentingNewLine]PlotPoints \[Rule] 40, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ + PlotStyle -> Green\), "]"}]}], "}"}]}], "]"}], ";"}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + StyleBox["(*", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubsection"], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(Funktion\ 2\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[":", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + + StyleBox[\(Grenzen\ \ f\[UDoubleDot]r\ \ die\ \ x - + Werte\ und\ \ die\ \ y - Werte\ \ setzen\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{"If", "[", + RowBox[{\(ifunk \[Equal] 2\), ",", + RowBox[{"{", + + RowBox[{\(xmin = \(-9. \)\), ";", " ", \(xmax = 18\), ";", + " ", \(ymin = \(-3\)\), ";", " ", \(ymax = 2\), ";", "\n", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(\(funk[2]\)[x], {x, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {ymin, ymax}}, + AspectRatio \[Rule] 0.6, \[IndentingNewLine]PlotPoints \[Rule] + 40, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ + PlotStyle \[Rule] Red\), "]"}]}], "}"}]}], "]"}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + StyleBox["(*", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubsection"], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(Funktion\ 3\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[":", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + + StyleBox[\(Grenzen\ \ f\[UDoubleDot]r\ \ die\ \ x - + Werte\ und\ \ die\ \ y - Werte\ \ setzen\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{"If", "[", + RowBox[{\(ifunk \[Equal] 3\), ",", + RowBox[{"{", + + RowBox[{\(xmin = \(-3.0\)\), ";", " ", \(xmax = 15\), ";", + " ", \(ymin = \(-0.5\)\), ";", " ", \(ymax = 2.5\), ";", + "\n", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(\(funk[3]\)[x], {x, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {ymin, ymax}}, + AspectRatio \[Rule] 0.6, \[IndentingNewLine]PlotPoints \[Rule] + 40, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ + PlotStyle \[Rule] Brown\), "]"}]}], "}"}]}], "]"}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + StyleBox["(*", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubsection"], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(Funktion\ 4\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[":", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + + StyleBox[\(Grenzen\ \ f\[UDoubleDot]r\ \ die\ \ x - + Werte\ und\ \ die\ \ y - Werte\ \ setzen\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{"If", "[", + RowBox[{\(ifunk \[Equal] 4\), ",", + RowBox[{"{", + + RowBox[{\(xmin = \(-6.0\)\), ";", " ", \(xmax = 15\), ";", + " ", \(ymin = \(-9\)\), ";", " ", \(ymax = 9\), ";", "\n", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(\(funk[4]\)[x], {x, xmin, xmax}, + PlotRange -> {{xmin, xmax}, {ymin, ymax}}, + AspectRatio \[Rule] 0.6, \[IndentingNewLine]PlotPoints \[Rule] + 40, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ + PlotStyle \[Rule] Blue\), "]"}]}], "}"}]}], "]"}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ 3. \ +\ \ \ Verfahren\ \ von\ \ Newton\ \ zur\ \ Nullstellenbestimmumg\ \ \ \ \ \ \ \ +*) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ Hier\ wird\ die\ Beipielfunktion\ \ +ifunk\ \ eingesetzt\ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(funktion[x_] := \(funk[ifunk]\)[x]; \ \ \ abl1funktion[ + x_] := \ \(abl1funk[ifunk]\)[x]; \ \ \ abl2funktion[ + x_] := \(abl2funk[ifunk]\)[x]\), "\n", + \(\(genaus[igen] = gen;\)\)}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ H\ i\ e\ r\ \ S\ t\ a\ r\ t\ w\ e\ r\ t\ e\ \ f\ \ +\[UDoubleDot]\ r\ \ d\ a\ s\ \ j\ e\ w\ e\ i\ l\ i\ g\ e\ \ B\ e\ i\ s\ p\ i\ \ +e\ l\ \ e\ i\ n\ s\ e\ t\ z\ e\ n\ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle"], "\[IndentingNewLine]", " ", + StyleBox[\( (*\ + Achtung\ Programm\ von\ hier\ aus\ laufen\ \(\(lassen\ !!\)!\)\ \ +Nicht\ von\ oben\ \(starten\ !\)\ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{\(Tabnew[0, 1]\), "=", "\"\<\!\(\* +StyleBox[\"FuNr\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], + ";", + RowBox[{\(Tabnew[0, 2]\), "=", "\"\<\!\(\* +StyleBox[\"Gen\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], " ", + ";", + RowBox[{\(Tabnew[0, 3]\), "=", "\"\<\!\(\* +StyleBox[\"St\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"Nr\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";", + RowBox[{\(Tabnew[0, 4]\), "=", "\"\<\!\(\* +StyleBox[\"Verf\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";", + RowBox[{\(Tabnew[0, 5]\), "=", "\"\< \!\(\* +StyleBox[\"Startw\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";", + RowBox[{\(Tabnew[0, 6]\), "=", "\"\< \!\(\* +StyleBox[\"L\[ODoubleDot]sung\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)\>\""}], ";", + RowBox[{\(Tabnew[0, 7]\), "=", " ", "\"\< \!\(\* +StyleBox[\"Funktionsw\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)\!\(\* +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";", + RowBox[{\(Tabnew[0, 8]\), "=", " ", "\"\<\!\(\* +StyleBox[\"It\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"Schr\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";"}], + " "}], "\[IndentingNewLine]", \(\(Tabmod[0, + 1] = "\< \>"\)\(;\)\(Tabmod[0, + 2] = "\< \>"\)\(\ \)\(;\)\(Tabmod[0, + 3] = "\< \>"\)\(;\)\(Tabmod[0, 4] = "\< \>"\)\(;\)\(Tabmod[ + 0, 5] = "\< \>"\)\(;\)\(Tabmod[0, + 6] = "\< \>"\)\(;\)\(Tabmod[0, + 7] = \ "\< \>"\)\(;\)\(Tabmod[0, + 8] = \ "\< \>"\)\(;\)\(\ \ \ \ \ \)\)}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ Klassisches\ \ Newton\ - \ + Verfahren\ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + RowBox[{\(xx = SetPrecision[2, gen]\ *10^\(-1\)\), + StyleBox[ + RowBox[{" ", + StyleBox[" ", + Background->RGBColor[1, 1, 0]]}]], + StyleBox[\( (*\ \ \ Startwert\ \ \[ADoubleDot]ndern\ \(?? ?\)\ \ *) \), + FontSize->16, + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]]}], "\n", \(xstart = + PaddedForm[xx, 6];\), "\n", + RowBox[{\(ista = ista\ + \ 1\), ";", + " ", + StyleBox[\( (*\ \ Nummer\ des\ Startwertes\ \(\(erh\[ODoubleDot]hen\ \ +!!\)!\)\ \ *) \), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], "\n", \(genist[igen]\ = \ ista\), + ";"}], "\n", \(sumgen\ = \ 0; + Do[sumgen\ = \ sumgen\ + \ genist[ig - 1], {ig, 1, + igen}];\), "\n", \(istgen\ = \ sumgen\ + \ ista;\), "\n", \(mod = + 0; \ nschr\ = \ 99;\), "\n", + RowBox[{\(Do[{\ + xx\ = \ SetPrecision[xx\ - \ funktion[xx]/abl1funktion[xx], + gen], Print["\", n, "\< xx = \>", + AccountingForm[ + PaddedForm[xx, {gen + 1, gen}]], "\< , f(xx) = \>", \ + ScientificForm[ + PaddedForm[funktion[xx], {7, 6}]], "\< , f'(xx) = \>", \ + ScientificForm[PaddedForm[abl1funktion[xx], {7, 6}]]], + If[Abs[funktion[xx]] < 10^\(-gen\), \ {nschr\ = \ n, + Break[]}]}, {n, 1, nschr}];\), + " "}], "\n", \(Tabnew[istgen, 1] = ifunk; Tabnew[istgen, 2] = igen; + Tabnew[istgen, 3] = ista; Tabnew[istgen, 4] = "\"; + Tabnew[istgen, 5] = xstart; Tabnew[istgen, 6] = xx; + Tabnew[istgen, 8] = PaddedForm[nschr, 3]; + Tabnew[istgen, 7] = + ScientificForm[PaddedForm[funktion[xx], {7, 6}]];\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ Tabelle\ der\ Nullstellen\ f\[UDoubleDot]r\ \ +vesch . \ Funktionen\ und\ vesch . \ Genauigkeiten\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(TableForm[Table[Tabnew[isg, j], {isg, 1, istgen}, \n\t\t{j, 1, 8}], + TableSpacing -> {2, 1}]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ 4. \ \ \ Modifiziertes\ \ Newton\ - \ + Verfahren\ \ \ \ f\[UDoubleDot]r\ \ \ mehrfache\ \ \ Nullstellen\ \ +\ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ H\ i\ e\ r\ \ S\ t\ a\ r\ t\ w\ e\ rt\ e\ \ f\ \ +\[UDoubleDot]\ r\ \ d\ a\ s\ \ j\ e\ w\ e\ i\ l\ i\ g\ e\ \ B\ e\ i\ s\ p\ i\ \ +e\ l\ \ e\ i\ n\ s\ e\ t\ z\ e\ n\ \ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], " "}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + RowBox[{\(xx = SetPrecision[2, gen]*10^\(-1\)\), + StyleBox[ + RowBox[{" ", + StyleBox[" ", + Background->RGBColor[1, 1, 0]]}]], + StyleBox[\( (*\ \ \ Startwert\ \ \[ADoubleDot]ndern\ \(?? ?\)\ \ *) \), + FontSize->16, + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]]}], "\n", \(xstart\ = \ + PaddedForm[xx, 6];\), "\n", \(mod\ = 1; \ + nschr\ = \ 50;\), "\n", \(q[x_] := + funktion[x]*abl2funktion[x]/abl1funktion[x]^2. ; \ \ \ \ \ \ \ p[x_] := + SetPrecision[\ 1. , + gen]/\((SetPrecision[1. , gen] - + q[x])\);\), "\n", \(Do[\ \ {\[IndentingNewLine]xx\ = \ + xx\ - SetPrecision[\ p[xx]*funktion[xx]/abl1funktion[xx], gen], + Print["\", n, "\< xx = \>", + AccountingForm[ + PaddedForm[Re[xx], {gen + 1, gen}]], "\< , f(xx) = \>", + ScientificForm[ + PaddedForm[Re[funktion[xx]], {7, 6}]], "\< , f'(xx) = \>", \ + ScientificForm[ + PaddedForm[ + Re[abl1funktion[xx]], {7, 6}]], "\< f''(xx) = \>"\ , \ + ScientificForm[ + PaddedForm[ + Re[abl2funktion[xx]], {7, 6}]], "\< , q(xx) = \>", \ + ScientificForm[ + PaddedForm[Re[q[xx]], {7, 6}]], "\< , p(xx) = \>", \ + AccountingForm[PaddedForm[Re[p[xx]], {7, 6}]]], + If[Abs[funktion[xx]] < 10^\(-gen\), \ {nschr\ = \ n, + Break[]}]}, {n, 1, nschr}];\), "\n", \(Tabmod[istgen, 1] = + ifunk; Tabmod[istgen, 2] = igen; Tabmod[istgen, 3] = ista; + Tabmod[istgen, 4] = "\"; Tabmod[istgen, 5] = xstart; + Tabmod[istgen, 6] = Re[xx]; Tabmod[istgen, 8] = \ PaddedForm[nschr, 3]; + Tabmod[istgen, 7] = + ScientificForm[PaddedForm[Re[funktion[xx]], {7, 6}]];\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ Tabelle\ der\ Nullstellen\ f\[UDoubleDot]r\ \ +vesch . \ Funktionen\ und\ vesch . \ Genauigkeiten\ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"Print", "[", "\"\< \!\(\* +StyleBox[\"Ergebnisse\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"der\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"beiden\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"Verfahren\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"mit\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"allen\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"Genauigkeiten\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\ +\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"und\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"verschiedenen\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\ +\(\* +StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* +StyleBox[\"Startwerten\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\) \ +\>\"", "]"}], + ";"}], "\[IndentingNewLine]", \(If[ifunk \[Equal] 1, + Print[\*"\"\< Funktion 1: f(x) = 1 - \!\(1\/x\) - 2 \ +Log(x)\>\""]];\), "\[IndentingNewLine]", + RowBox[{ + " ", \(If[ifunk \[Equal] 2, + Print[\*"\"\< Funktion 2: f(x) = \!\(1\/x\) - 1 - \ +Sin(x)\>\""]];\)}], "\[IndentingNewLine]", + RowBox[{ + " ", \(If[ifunk == 3, + Print["\< Funktion 3: f(x) = 1 + Sin(x) , X = \>"\ \ , \ +\ SetPrecision[3 Pi/2, gen]]];\), + "\[IndentingNewLine]"}], "\[IndentingNewLine]", + RowBox[{ + " ", \(If[ifunk\ \[Equal] 4, + Print["\< Funktion 4: f(x) = \[Pi] - x - Sin(x) , X = \ +\>"\ \ , \ \ SetPrecision[Pi, gen]]];\), "\[IndentingNewLine]"}], "\n", + RowBox[{\(TableForm[ + Table[{Tabnew[isg, j], Tabmod[isg, j]}, {isg, 0, istgen}, \n\t{j, 1, + 8}], TableSpacing -> {2, 1}]\), " "}]}], "Input"], + +Cell[BoxData[ + \(\(\(\ \ \ \ \)\( (*\ \ \ \ istgen\ = \ 0\ \ *) \)\)\)], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 695}}, +WindowSize->{1012, 653}, +WindowMargins->{{Automatic, -2}, {4, Automatic}} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 258, 6, 59, "Input"], +Cell[2015, 59, 81, 1, 30, "Input"], +Cell[2099, 62, 1538, 38, 182, "Input"], +Cell[3640, 102, 262, 6, 54, "Input"], +Cell[3905, 110, 733, 14, 150, "Input"], +Cell[4641, 126, 267, 6, 49, "Input"], +Cell[4911, 134, 338, 8, 30, "Input"], +Cell[5252, 144, 282, 6, 46, "Input"], +Cell[5537, 152, 577, 13, 110, "Input"], +Cell[6117, 167, 282, 6, 46, "Input"], +Cell[6402, 175, 574, 13, 90, "Input"], +Cell[6979, 190, 282, 6, 46, "Input"], +Cell[7264, 198, 605, 14, 90, "Input"], +Cell[7872, 214, 282, 6, 46, "Input"], +Cell[8157, 222, 458, 10, 70, "Input"], +Cell[8618, 234, 325, 7, 46, "Input"], +Cell[8946, 243, 356, 9, 30, "Input"], +Cell[9305, 254, 1096, 34, 46, "Input"], +Cell[10404, 290, 810, 18, 72, "Input"], +Cell[11217, 310, 1312, 40, 46, "Input"], +Cell[12532, 352, 732, 15, 72, "Input"], +Cell[13267, 369, 1312, 40, 46, "Input"], +Cell[14582, 411, 751, 16, 72, "Input"], +Cell[15336, 429, 1312, 40, 46, "Input"], +Cell[16651, 471, 733, 15, 72, "Input"], +Cell[17387, 488, 291, 7, 46, "Input"], +Cell[17681, 497, 275, 6, 46, "Input"], +Cell[17959, 505, 229, 4, 50, "Input"], +Cell[18191, 511, 757, 18, 66, "Input"], +Cell[18951, 531, 2232, 39, 110, "Input"], +Cell[21186, 572, 272, 6, 46, "Input"], +Cell[21461, 580, 1832, 36, 290, "Input"], +Cell[23296, 618, 258, 5, 46, "Input"], +Cell[23557, 625, 131, 2, 50, "Input"], +Cell[23691, 629, 308, 7, 46, "Input"], +Cell[24002, 638, 374, 7, 46, "Input"], +Cell[24379, 647, 1921, 37, 310, "Input"], +Cell[26303, 686, 258, 5, 46, "Input"], +Cell[26564, 693, 2400, 44, 218, "Input"], +Cell[28967, 739, 85, 1, 30, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg2_erg.nb b/Bachelor/Numerische Mathematik/Num05Aufg2_erg.nb new file mode 100644 index 0000000..ebabc31 --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg2_erg.nb @@ -0,0 +1,5122 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 188763, 5073]*) +(*NotebookOutlinePosition[ 189407, 5095]*) +(* CellTagsIndexPosition[ 189363, 5091]*) +(*WindowFrame->Normal*) + + + +Notebook[{ + +Cell[CellGroupData[{ +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ Numerik\ : \ \ Aufgabe\ \ +2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ 2005\ \ \ +\ \ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + "\[IndentingNewLine]", "\<\"\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\ +\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Ergebnisse\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"der\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"beiden\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Verfahren\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"f\[UDoubleDot]r\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"alle\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Genauigkeiten\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"und\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"jeweils\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"mehrere\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Startwerte\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\":\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\) \"\>"}]], "Print", + GeneratedCell->False, + CellAutoOverwrite->False], + +Cell[BoxData[ + \(" Funktion 1: f(x) = 1 - \!\(1\/x\) - 2 Log(x)"\)], "Print"], + +Cell[BoxData[ + InterpretationBox[GridBox[{ + {GridBox[{ + {"\<\"FuNr\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Gen\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"St.Nr.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Verf.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" Startw.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" L\[ODoubleDot]sung\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" Funktionsw.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"It.Schr.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.200000\"\>", + + 0.199999999999999999989157978275144955659925471991`8.\ +000000000000002, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.200000\"\>", + + 0.199999999999999999989157978275144955659925471991`8.\ +000000000000002, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.284668137040647012414324584783642535512626636773`8."}, + {"0.284668137041384459843835347259144441522948909551`8."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.017473"\[Times]10\^"-12"\), + -1.01747316084629946253414800594327971339225769043`8.*\ +^-12, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.901700"\[Times]10\^"-12"\), + + 2.90169955121169498291067156969802454113960266113`8.\ +000000000000002*^-12, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`7.999999999999999, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`7.999999999999999, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1.`7.999999999999999"}, + {"1.`7.999999999999999"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 4\"\>", + 4, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 4\"\>", + 4, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.700000\"\>", + 0.699999999999999999989157978275144955659925471991`8., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.700000\"\>", + 0.699999999999999999989157978275144955659925471991`8., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1.00000000000022835504103965731381720161152770743`8."}, + {"0.999999990539926070004430463944444795743038412184`8."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.283550"\[Times]10\^"-13"\), + + 2.28355041039657313817201611527707427740097045898`8.\ +000000000000002*^-13, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 9.460074"\[Times]10\^"-9"\), + + 9.46007392998767823301179932023868834889412937628`8.\ +000000000000002*^-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.300000\"\>", + + 0.300000000000000000010842021724855044340074528009`7.\ +999999999999999, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.300000\"\>", + + 0.300000000000000000010842021724855044340074528009`7.\ +999999999999999, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + "0.284668136157915677717303304383733575377846136689`8.\ +000000000000002"}, + {"0.284668137591065129911316322619541097083128988743`8."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-4.692273"\[Times]10\^"-9"\), + -4.6922733129019754405586439816033816896378993988`8.\ +000000000000002*^-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.924167"\[Times]10\^"-9"\), + + 2.92416726081637726175621594393305713310837745667`7.\ +999999999999999*^-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.300000\"\>", + 0.300000000000000000000000000002524354896707237777`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.300000\"\>", + 0.300000000000000000000000000002524354896707237777`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.284668137040838457131645362971848475907011619675`16."}, + {"0.284668137040838463446725877730972917384050036687`16."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-2.417333"\[Times]10\^"-17"\), + -2.41733278621245758490894320823585034478317434825`16.\ +*^-17, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 9.388026"\[Times]10\^"-18"\), + + 9.38802562125665899674948083618657124985867890032`16.\ +000000000000004*^-18, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 4\"\>", + 4, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 4\"\>", + 4, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.600000\"\>", + 0.600000000000000000000000000005048709793414475555`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.600000\"\>", + 0.600000000000000000000000000005048709793414475555`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.99999999999999999999841522430893946045343825117`16."}, + {"0.99999999999999999999999997932553339596772260377`16."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.584776"\[Times]10\^"-21"\), + -1.58477569106053954656174882810741773309093360922`15.\ +999999999999998*^-21, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.067447"\[Times]10\^"-26"\), + + 2.06744666040322773962305822389312615072753942513`15.\ +999999999999998*^-26, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 4\"\>", + 4, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.600000\"\>", + 0.600000000000000000000000000000000000001175494351`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.600000\"\>", + 0.600000000000000000000000000000000000001175494351`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1.`24."}, + {"0.99999999999999999999999997932048468617548362257`24."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.067952"\[Times]10\^"-26"\), + + 2.06795153138245163774343950142411026026080805268`24.*\ +^-26, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.200000\"\>", + 0.199999999999999999999999999999999999999412252825`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.200000\"\>", + 0.199999999999999999999999999999999999999412252825`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.284668137040838461680225676769719130174869536555`24."}, + {"0.284668137040838461680225676769719133160625187644`24."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.293338"\[Times]10\^"-35"\), + -1.29333765949222183064260237507877580701998677884`23.\ +999999999999996*^-35, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.390956"\[Times]10\^"-35"\), + + 2.39095550957253279120841011671004770868316574247`24.\ +000000000000007*^-35, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 7\"\>", + 7, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 8\"\>", + 8, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.200000\"\>", + 0.2`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.200000\"\>", + 0.2`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.284668137040838461680225676769719130986502904403`36."}, + {"0.284668137040838461680225676769719130986548385798`36."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.276210"\[Times]10\^"-42"\), + -1.27620999686755628847496812272921662084458633278`36.\ +*^-42, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.414190"\[Times]10\^"-40"\), + + 2.41419028201960022202885661878924400238554678945`36.*\ +^-40, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 7\"\>", + 7, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 8\"\>", + 8, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.99999999999999999999999999999999999999998634075`36."}, + {"1.`36."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.365925"\[Times]10\^"-41"\), + -1.36592450463879404834980722581947487001919192715`36.\ +*^-41, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5"}, + {"5"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1.`48."}, + {"1.`48."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5"}, + {"5"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.400000\"\>", + 0.4`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.400000\"\>", + 0.4`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.284668137040838461680225676769719130986502670585`48."}, + {"0.284668137040838461680225676769719130986502670585`48."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-7.456785"\[Times]10\^"-54"\), + -7.45678530843766937308908047783132864843028309149`48.\ +000000000000014*^-54, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.846615"\[Times]10\^"-52"\), + + 2.84661468831511121875677790987083807210865958334`48.*\ +^-52, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 10\"\>", + 10, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 9\"\>", + 9, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]} + }, + RowSpacings->2, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], + TableForm[ {{{"FuNr", " "}, {"Gen", " "}, {"St.Nr.", " "}, { + "Verf.", " "}, {" Startw.", " "}, {" L\[ODoubleDot]sung", + " "}, {" Funktionsw.", " "}, {"It.Schr.", + " "}}, {{1, 1}, {1, 1}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ + 0.199999999999999999989157978275144955659925471991`8.000000000000002, + 6], + PaddedForm[ + 0.199999999999999999989157978275144955659925471991`8.000000000000002, + 6]}, {0.284668137040647012414324584783642535512626636773`8., + 0.284668137041384459843835347259144441522948909551`8.}, { + ScientificForm[ + + PaddedForm[ \ +-1.01747316084629946253414800594327971339225769043`8.*^-12, {7, 6}]], + ScientificForm[ + PaddedForm[ + 2.90169955121169498291067156969802454113960266113`8.000000000000002*\ +^-12, {7, 6}]]}, { + PaddedForm[ 5, 3], + PaddedForm[ 6, 3]}}, {{1, 1}, {1, 1}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 2.`7.999999999999999, 6], + PaddedForm[ 2.`7.999999999999999, 6]}, {1.`7.999999999999999, + 1.`7.999999999999999}, { + ScientificForm[ + PaddedForm[ 0, {7, 6}]], + ScientificForm[ + PaddedForm[ 0, {7, 6}]]}, { + PaddedForm[ 4, 3], + PaddedForm[ 4, 3]}}, {{1, 1}, {1, 1}, {3, 3}, {"Newt", "Nmod"}, { + PaddedForm[ 0.699999999999999999989157978275144955659925471991`8., 6], + + PaddedForm[ + 0.699999999999999999989157978275144955659925471991`8., 6]}, { + 1.00000000000022835504103965731381720161152770743`8., + 0.999999990539926070004430463944444795743038412184`8.}, { + ScientificForm[ + PaddedForm[ + 2.28355041039657313817201611527707427740097045898`8.000000000000002*\ +^-13, {7, 6}]], + ScientificForm[ + PaddedForm[ + 9.46007392998767823301179932023868834889412937628`8.000000000000002*\ +^-9, {7, 6}]]}, { + PaddedForm[ 3, 3], + PaddedForm[ 3, 3]}}, {{1, 1}, {1, 1}, {4, 4}, {"Newt", "Nmod"}, { + PaddedForm[ + 0.300000000000000000010842021724855044340074528009`7.999999999999999, + 6], + PaddedForm[ + 0.300000000000000000010842021724855044340074528009`7.999999999999999, + 6]}, {0.284668136157915677717303304383733575377846136689`8.\ +000000000000002, 0.284668137591065129911316322619541097083128988743`8.}, { + ScientificForm[ + + PaddedForm[ \ +-4.6922733129019754405586439816033816896378993988`8.000000000000002*^-9, {7, + 6}]], + ScientificForm[ + PaddedForm[ + 2.92416726081637726175621594393305713310837745667`7.999999999999999*\ +^-9, {7, 6}]]}, { + PaddedForm[ 3, 3], + PaddedForm[ 3, 3]}}, {{1, 1}, {2, 2}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ + 0.300000000000000000000000000002524354896707237777`16., 6], + PaddedForm[ + 0.300000000000000000000000000002524354896707237777`16., 6]}, { + 0.284668137040838457131645362971848475907011619675`16., + 0.284668137040838463446725877730972917384050036687`16.}, { + ScientificForm[ + + PaddedForm[ \ +-2.41733278621245758490894320823585034478317434825`16.*^-17, {7, 6}]], + ScientificForm[ + PaddedForm[ + 9.38802562125665899674948083618657124985867890032`16.\ +000000000000004*^-18, {7, 6}]]}, { + PaddedForm[ 4, 3], + PaddedForm[ 4, 3]}}, {{1, 1}, {2, 2}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ + 0.600000000000000000000000000005048709793414475555`16., 6], + PaddedForm[ + 0.600000000000000000000000000005048709793414475555`16., 6]}, { + 0.99999999999999999999841522430893946045343825117`16., + 0.99999999999999999999999997932553339596772260377`16.}, { + ScientificForm[ + + PaddedForm[ \ +-1.58477569106053954656174882810741773309093360922`15.999999999999998*^-21, { + 7, 6}]], + ScientificForm[ + PaddedForm[ + 2.06744666040322773962305822389312615072753942513`15.\ +999999999999998*^-26, {7, 6}]]}, { + PaddedForm[ 4, 3], + PaddedForm[ 5, 3]}}, {{1, 1}, {3, 3}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ + 0.600000000000000000000000000000000000001175494351`24., 6], + PaddedForm[ + 0.600000000000000000000000000000000000001175494351`24., 6]}, {1.`24., + 0.99999999999999999999999997932048468617548362257`24.}, { + ScientificForm[ + PaddedForm[ 0, {7, 6}]], + ScientificForm[ + PaddedForm[ + 2.06795153138245163774343950142411026026080805268`24.*^-26, {7, + 6}]]}, { + PaddedForm[ 5, 3], + PaddedForm[ 5, 3]}}, {{1, 1}, {3, 3}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ + 0.199999999999999999999999999999999999999412252825`24., 6], + PaddedForm[ + 0.199999999999999999999999999999999999999412252825`24., 6]}, { + 0.284668137040838461680225676769719130174869536555`24., + 0.284668137040838461680225676769719133160625187644`24.}, { + ScientificForm[ + + PaddedForm[ \ +-1.29333765949222183064260237507877580701998677884`23.999999999999996*^-35, { + 7, 6}]], + ScientificForm[ + PaddedForm[ + 2.39095550957253279120841011671004770868316574247`24.\ +000000000000007*^-35, {7, 6}]]}, { + PaddedForm[ 7, 3], + PaddedForm[ 8, 3]}}, {{1, 1}, {4, 4}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 0.2`36., 6], + PaddedForm[ 0.2`36., 6]}, { + 0.284668137040838461680225676769719130986502904403`36., + 0.284668137040838461680225676769719130986548385798`36.}, { + ScientificForm[ + + PaddedForm[ \ +-1.27620999686755628847496812272921662084458633278`36.*^-42, {7, 6}]], + ScientificForm[ + PaddedForm[ + 2.41419028201960022202885661878924400238554678945`36.*^-40, {7, + 6}]]}, { + PaddedForm[ 7, 3], + PaddedForm[ 8, 3]}}, {{1, 1}, {4, 4}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 2.`36., 6], + PaddedForm[ 2.`36., 6]}, { + 0.99999999999999999999999999999999999999998634075`36., 1.`36.}, { + ScientificForm[ + + PaddedForm[ \ +-1.36592450463879404834980722581947487001919192715`36.*^-41, {7, 6}]], + ScientificForm[ + PaddedForm[ 0, {7, 6}]]}, { + PaddedForm[ 5, 3], + PaddedForm[ 5, 3]}}, {{1, 1}, {5, 5}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 2.`48., 6], + PaddedForm[ 2.`48., 6]}, {1.`48., 1.`48.}, { + ScientificForm[ + PaddedForm[ 0, {7, 6}]], + ScientificForm[ + PaddedForm[ 0, {7, 6}]]}, { + PaddedForm[ 5, 3], + PaddedForm[ 5, 3]}}, {{1, 1}, {5, 5}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 0.4`48., 6], + PaddedForm[ 0.4`48., 6]}, { + 0.284668137040838461680225676769719130986502670585`48., + 0.284668137040838461680225676769719130986502670585`48.}, { + ScientificForm[ + + PaddedForm[ \ +-7.45678530843766937308908047783132864843028309149`48.000000000000014*^-54, { + 7, 6}]], + ScientificForm[ + PaddedForm[ + 2.84661468831511121875677790987083807210865958334`48.*^-52, {7, + 6}]]}, { + PaddedForm[ 10, 3], + PaddedForm[ 9, 3]}}}, TableSpacing -> {2, 1}]]], "Output"], + +Cell[BoxData[ + RowBox[{ + "\[IndentingNewLine]", "\<\"\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\ +\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Ergebnisse\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"der\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"beiden\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Verfahren\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"f\[UDoubleDot]r\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"alle\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Genauigkeiten\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"und\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"jeweils\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"mehrere\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Startwerte\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\":\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\) \"\>"}]], "Print", + GeneratedCell->False, + CellAutoOverwrite->False], + +Cell[BoxData[ + \(" Funktion 2: f(x) = \!\(1\/x\) - 1 - Sin(x)"\)], "Print"], + +Cell[BoxData[ + InterpretationBox[GridBox[{ + {GridBox[{ + {"\<\"\\!\\(\\* \ +StyleBox[\\\"FuNr\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"\\!\\(\\* \ +StyleBox[\\\"Gen\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"\\!\\(\\* \ +StyleBox[\\\"St\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\ +\\* StyleBox[\\\".\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\ +\\(\\* StyleBox[\\\"Nr\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\".\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"\\!\\(\\* \ +StyleBox[\\\"Verf\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\".\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" \\!\\(\\* \ +StyleBox[\\\"Startw\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\".\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" \\!\\(\\* \ +StyleBox[\\\"L\[ODoubleDot]sung\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" \\!\\(\\* \ +StyleBox[\\\"Funktionsw\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\".\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"\\!\\(\\* \ +StyleBox[\\\"It\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\ +\\* StyleBox[\\\".\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\ +\\(\\* StyleBox[\\\"Schr\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\ +\\)\\!\\(\\* StyleBox[\\\".\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.400000\"\>", + + 0.399999999999999999978315956550289911319850943983`8.\ +000000000000002, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.400000\"\>", + + 0.399999999999999999978315956550289911319850943983`8.\ +000000000000002, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.629446484073333277172758448703149269931600429118`8."}, + {"0.629446484247695035602748747649570759676862508059`8."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 1.769418"\[Times]10\^"-16"\), + + 1.769417945496343236300162971019744873046875`8.\ +000000000000002*^-16, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\("-5.810278"\[Times]10\^"-10"\), + -5.81027769408666572292787577680428512394428253174`8.\ +000000000000002*^-10, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 4.00000\"\>", + 4.`7.999999999999999, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 4.00000\"\>", + 4.`7.999999999999999, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + "3.98857250219184425107932234766394685721024870872`8.\ +000000000000002"}, + { + "3.98857250988137560703070821910287691025587264448`7.\ +999999999999999"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-2.288130"\[Times]10\^"-9"\), + -2.28813007890947897604583260999788763001561164856`8.*\ +^-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.320902"\[Times]10\^"-9"\), + + 2.32090169408364840886171975853358162567019462585`8.*^\ +-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 2\"\>", + 2, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 2\"\>", + 2, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`8.000000000000002, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`8.000000000000002, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5.33467649001032636696872576975714252967009088024`8."}, + {"5.33467646965176589221070690971515659839496947825`8."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-3.553824"\[Times]10\^"-9"\), + -3.55382401420268126401857955443119863048195838928`7.\ +999999999999999*^-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 9.028457"\[Times]10\^"-9"\), + + 9.02845721529590625187289276709634577855467796326`8.*^\ +-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 4\"\>", + 4, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 4\"\>", + 4, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5.33467648426011789249868678350775154695596852504`16."}, + {"5.33467648426011773310559209390967980992867558676`16."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.321560"\[Times]10\^"-17"\), + -1.32156025371595382375283585283121123594290979852`16.\ +*^-17, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 8.529474"\[Times]10\^"-17"\), + + 8.52947394614172333148452039838729213079918101137`16.\ +000000000000004*^-17, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 15.0000\"\>", + 15.`15.999999999999998, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 15.0000\"\>", + 15.`15.999999999999998, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + "16.9333741430355550934158003791347359547650079238`15.\ +999999999999998"}, + { + "16.9333741430355551129712029776748085653945651539`15.\ +999999999999998"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-6.550413"\[Times]10\^"-18"\), + -6.55041292111959177036369818815128942580960913489`16.\ +*^-18, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.053004"\[Times]10\^"-21"\), + + 2.05300404348914765305531365826804436613972626446`16.*\ +^-21, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 7\"\>", + 7, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0.100000\"\>", + 0.100000000000000000000000000005048709793414475555`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0.100000\"\>", + 0.100000000000000000000000000005048709793414475555`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.629446484073333329964536479248288518981676057574`16."}, + {"Indeterminate"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 1.433240"\[Times]10\^"-24"\), + + 1.43324035792898485663868822037689959580930576521`16.*\ +^-24, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox["Indeterminate", + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 8\"\>", + 8, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 50\"\>", + 50, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 1.00000\"\>", + 1.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 1.00000\"\>", + 1.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.629446484073333329958093263719869671724999255458`16."}, + {"0.629446484073333329964536908943979036487690512564`16."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.147224"\[Times]10\^"-20"\), + + 2.14722439346452426386298406959553253248174087275`16.\ +000000000000004*^-20, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 7.699282"\[Times]10\^"-28"\), + + 7.69928243495707522081847079715999360161049480666`16.\ +000000000000004*^-28, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 1.00000\"\>", + 1.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 1.00000\"\>", + 1.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"0.629446484073333329964536909268839906747488604198`24."}, + {"0.629446484073333329964536909269088337051900002869`24."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 6.553381"\[Times]10\^"-37"\), + + 6.553381005834252856925706195014019653839060479`23.\ +999999999999996*^-37, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\("-8.278486"\[Times]10\^"-31"\), + -8.27848555742093385745715349231249882625560061097`24.\ +*^-31, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 7\"\>", + 7, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"10.5568030366315241496823359858103645960410671829`24."}, + {"10.5568030366315241496823359858129285574972384065`24."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.066235"\[Times]10\^"-30"\), + -1.066234810469324619528529255353853407396266658`24.*^\ +-30, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 9.110081"\[Times]10\^"-38"\), + + 9.11008121887272818675770816347240400309465806498`24.*\ +^-38, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 12.0000\"\>", + 12.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 12.0000\"\>", + 12.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"11.417228738611477548187599359666909721905774463`24."}, + {"11.4172287386114775481875993596486103893093053273`24."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-7.629761"\[Times]10\^"-30"\), + -7.62976075866787599072722728535109578449896043003`24.\ +*^-30, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\("-9.697828"\[Times]10\^"-38"\), + -9.69782839428387194074207643208352684200399084337`24.\ +*^-38, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 12.0000\"\>", + 12.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 12.0000\"\>", + 12.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"11.4172287386114775481875993596486103888755777407`36."}, + {"11.417228738611477548187599359648610388886127361`36."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-4.105367"\[Times]10\^"-48"\), + -4.10536659470161251247186401354467616586014240784`36.\ +*^-48, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\("-4.398580"\[Times]10\^"-39"\), + -4.39858003152171428708225848133792250853429789881`36.\ +*^-39, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 7\"\>", + 7, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"10.5568030366315241496823359858129285576279196995`36."}, + {"10.5568030366315241496823359858129285576382977286`36."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 4.105367"\[Times]10\^"-48"\), + + 4.10536659470161251247186401354467616586014240784`36.*\ +^-48, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 4.315750"\[Times]10\^"-39"\), + + 4.31574995120714034951720470023139911615965409453`35.\ +99999999999999*^-39, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 7\"\>", + 7, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 6\"\>", + 6, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5"}, + {"5"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"10.5568030366315241496823359858129285576279196995`48."}, + {"10.5568030366315241496823359858129285576279196995`48."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\("-2.254225"\[Times]10\^"-55"\), + -2.2542250542524199719958657628413122049114129456`48.*\ +^-55, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 7\"\>", + 7, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 7\"\>", + 7, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5"}, + {"5"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 100.000\"\>", + 100.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 100.000\"\>", + 100.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"99.1023487131191838518127490642395867207485514753`48."}, + {"99.1023487131191838518127490642395867207485514753`48."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox["\<\" 0.000000\"\>", + 0, + Editable->False], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.593092"\[Times]10\^"-58"\), + -1.59309191113245227702888039776771180559110455519`48.\ +*^-58, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 9\"\>", + 9, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 8\"\>", + 8, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]} + }, + RowSpacings->2, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], + TableForm[ {{{ + "\!\(\* StyleBox[\"FuNr\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)", " "}, { + "\!\(\* StyleBox[\"Gen\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)", " "}, { + "\!\(\* StyleBox[\"St\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)\!\(\* StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\ +\(\* StyleBox[\"Nr\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* \ +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)", " "}, { + "\!\(\* StyleBox[\"Verf\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)\!\(\* StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)", + " "}, { + " \!\(\* StyleBox[\"Startw\",\nFontSize->14,\nFontColor->RGBColor[1, \ +0, 0]]\)\!\(\* StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)", " "}, { + " \!\(\* StyleBox[\"L\[ODoubleDot]sung\",\nFontSize->14,\n\ +FontColor->RGBColor[1, 0, 0]]\)", " "}, { + " \!\(\* StyleBox[\"Funktionsw\",\nFontSize->14,\n\ +FontColor->RGBColor[1, 0, 0]]\)\!\(\* StyleBox[\".\",\nFontSize->14,\n\ +FontColor->RGBColor[1, 0, 0]]\)", " "}, { + "\!\(\* StyleBox[\"It\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ +0]]\)\!\(\* StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\ +\(\* StyleBox[\"Schr\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* \ +StyleBox[\".\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)", + " "}}, {{2, 2}, {1, 1}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ + 0.399999999999999999978315956550289911319850943983`8.000000000000002, + 6], + PaddedForm[ + 0.399999999999999999978315956550289911319850943983`8.000000000000002, + 6]}, {0.629446484073333277172758448703149269931600429118`8., + 0.629446484247695035602748747649570759676862508059`8.}, { + ScientificForm[ + PaddedForm[ + 1.769417945496343236300162971019744873046875`8.000000000000002*^-16,\ + {7, 6}]], + ScientificForm[ + + PaddedForm[ \ +-5.81027769408666572292787577680428512394428253174`8.000000000000002*^-10, {7, + 6}]]}, { + PaddedForm[ 5, 3], + PaddedForm[ 5, 3]}}, {{2, 2}, {1, 1}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 4.`7.999999999999999, 6], + PaddedForm[ 4.`7.999999999999999, 6]}, { + 3.98857250219184425107932234766394685721024870872`8.000000000000002, + 3.98857250988137560703070821910287691025587264448`7.999999999999999}, \ +{ + ScientificForm[ + + PaddedForm[ \ +-2.28813007890947897604583260999788763001561164856`8.*^-9, {7, 6}]], + ScientificForm[ + PaddedForm[ + 2.32090169408364840886171975853358162567019462585`8.*^-9, {7, + 6}]]}, { + PaddedForm[ 2, 3], + PaddedForm[ 2, 3]}}, {{2, 2}, {1, 1}, {3, 3}, {"Newt", "Nmod"}, { + PaddedForm[ 5.`8.000000000000002, 6], + PaddedForm[ 5.`8.000000000000002, 6]}, { + 5.33467649001032636696872576975714252967009088024`8., + 5.33467646965176589221070690971515659839496947825`8.}, { + ScientificForm[ + + PaddedForm[ \ +-3.55382401420268126401857955443119863048195838928`7.999999999999999*^-9, {7, + 6}]], + ScientificForm[ + PaddedForm[ + 9.02845721529590625187289276709634577855467796326`8.*^-9, {7, + 6}]]}, { + PaddedForm[ 4, 3], + PaddedForm[ 4, 3]}}, {{2, 2}, {2, 2}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 5.`16., 6], + PaddedForm[ 5.`16., 6]}, { + 5.33467648426011789249868678350775154695596852504`16., + 5.33467648426011773310559209390967980992867558676`16.}, { + ScientificForm[ + + PaddedForm[ \ +-1.32156025371595382375283585283121123594290979852`16.*^-17, {7, 6}]], + ScientificForm[ + PaddedForm[ + 8.52947394614172333148452039838729213079918101137`16.\ +000000000000004*^-17, {7, 6}]]}, { + PaddedForm[ 5, 3], + PaddedForm[ 5, 3]}}, {{2, 2}, {2, 2}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 15.`15.999999999999998, 6], + PaddedForm[ 15.`15.999999999999998, 6]}, { + 16.9333741430355550934158003791347359547650079238`15.999999999999998, + 16.9333741430355551129712029776748085653945651539`15.999999999999998},\ + { + ScientificForm[ + + PaddedForm[ \ +-6.55041292111959177036369818815128942580960913489`16.*^-18, {7, 6}]], + ScientificForm[ + PaddedForm[ + 2.05300404348914765305531365826804436613972626446`16.*^-21, {7, + 6}]]}, { + PaddedForm[ 6, 3], + PaddedForm[ 7, 3]}}, {{2, 2}, {2, 2}, {3, 3}, {"Newt", "Nmod"}, { + PaddedForm[ + 0.100000000000000000000000000005048709793414475555`16., 6], + PaddedForm[ + 0.100000000000000000000000000005048709793414475555`16., 6]}, { + 0.629446484073333329964536479248288518981676057574`16., + Indeterminate}, { + ScientificForm[ + PaddedForm[ + 1.43324035792898485663868822037689959580930576521`16.*^-24, {7, + 6}]], + ScientificForm[ + PaddedForm[ Indeterminate, {7, 6}]]}, { + PaddedForm[ 8, 3], + PaddedForm[ 50, 3]}}, {{2, 2}, {2, 2}, {4, 4}, {"Newt", "Nmod"}, { + PaddedForm[ 1.`16., 6], + PaddedForm[ 1.`16., 6]}, { + 0.629446484073333329958093263719869671724999255458`16., + 0.629446484073333329964536908943979036487690512564`16.}, { + ScientificForm[ + PaddedForm[ + 2.14722439346452426386298406959553253248174087275`16.\ +000000000000004*^-20, {7, 6}]], + ScientificForm[ + PaddedForm[ + 7.69928243495707522081847079715999360161049480666`16.\ +000000000000004*^-28, {7, 6}]]}, { + PaddedForm[ 6, 3], + PaddedForm[ 6, 3]}}, {{2, 2}, {3, 3}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 1.`24., 6], + PaddedForm[ 1.`24., 6]}, { + 0.629446484073333329964536909268839906747488604198`24., + 0.629446484073333329964536909269088337051900002869`24.}, { + ScientificForm[ + PaddedForm[ + 6.553381005834252856925706195014019653839060479`23.999999999999996*^\ +-37, {7, 6}]], + ScientificForm[ + + PaddedForm[ \ +-8.27848555742093385745715349231249882625560061097`24.*^-31, {7, 6}]]}, { + PaddedForm[ 7, 3], + PaddedForm[ 6, 3]}}, {{2, 2}, {3, 3}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 10.`24., 6], + PaddedForm[ 10.`24., 6]}, { + 10.5568030366315241496823359858103645960410671829`24., + 10.5568030366315241496823359858129285574972384065`24.}, { + ScientificForm[ + + PaddedForm[ \ +-1.066234810469324619528529255353853407396266658`24.*^-30, {7, 6}]], + ScientificForm[ + PaddedForm[ + 9.11008121887272818675770816347240400309465806498`24.*^-38, {7, + 6}]]}, { + PaddedForm[ 6, 3], + PaddedForm[ 6, 3]}}, {{2, 2}, {3, 3}, {3, 3}, {"Newt", "Nmod"}, { + PaddedForm[ 12.`24., 6], + PaddedForm[ 12.`24., 6]}, { + 11.417228738611477548187599359666909721905774463`24., + 11.4172287386114775481875993596486103893093053273`24.}, { + ScientificForm[ + + PaddedForm[ \ +-7.62976075866787599072722728535109578449896043003`24.*^-30, {7, 6}]], + ScientificForm[ + + PaddedForm[ \ +-9.69782839428387194074207643208352684200399084337`24.*^-38, {7, 6}]]}, { + PaddedForm[ 6, 3], + PaddedForm[ 6, 3]}}, {{2, 2}, {4, 4}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 12.`36., 6], + PaddedForm[ 12.`36., 6]}, { + 11.4172287386114775481875993596486103888755777407`36., + 11.417228738611477548187599359648610388886127361`36.}, { + ScientificForm[ + + PaddedForm[ \ +-4.10536659470161251247186401354467616586014240784`36.*^-48, {7, 6}]], + ScientificForm[ + + PaddedForm[ \ +-4.39858003152171428708225848133792250853429789881`36.*^-39, {7, 6}]]}, { + PaddedForm[ 7, 3], + PaddedForm[ 6, 3]}}, {{2, 2}, {4, 4}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 10.`36., 6], + PaddedForm[ 10.`36., 6]}, { + 10.5568030366315241496823359858129285576279196995`36., + 10.5568030366315241496823359858129285576382977286`36.}, { + ScientificForm[ + PaddedForm[ + 4.10536659470161251247186401354467616586014240784`36.*^-48, {7, + 6}]], + ScientificForm[ + PaddedForm[ + 4.31574995120714034951720470023139911615965409453`35.99999999999999*\ +^-39, {7, 6}]]}, { + PaddedForm[ 7, 3], + PaddedForm[ 6, 3]}}, {{2, 2}, {5, 5}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 10.`48., 6], + PaddedForm[ 10.`48., 6]}, { + 10.5568030366315241496823359858129285576279196995`48., + 10.5568030366315241496823359858129285576279196995`48.}, { + ScientificForm[ + PaddedForm[ 0, {7, 6}]], + ScientificForm[ + + PaddedForm[ \ +-2.2542250542524199719958657628413122049114129456`48.*^-55, {7, 6}]]}, { + PaddedForm[ 7, 3], + PaddedForm[ 7, 3]}}, {{2, 2}, {5, 5}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 100.`48., 6], + PaddedForm[ 100.`48., 6]}, { + 99.1023487131191838518127490642395867207485514753`48., + 99.1023487131191838518127490642395867207485514753`48.}, { + ScientificForm[ + PaddedForm[ 0, {7, 6}]], + ScientificForm[ + + PaddedForm[ \ +-1.59309191113245227702888039776771180559110455519`48.*^-58, {7, 6}]]}, { + PaddedForm[ 9, 3], + PaddedForm[ 8, 3]}}}, TableSpacing -> {2, 1}]]], "Output"], + +Cell[BoxData["\<\"\\!\\(\\* StyleBox[\\\" \ +\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\\* StyleBox[\\\ +\"Ergebnisse\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* \ +StyleBox[\\\"der\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"beiden\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Verfahren\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"f\[UDoubleDot]r\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"alle\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Genauigkeiten\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"und\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"jeweils\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"mehrere\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Startwerte\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\":\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\) \"\>"], "Print"], + +Cell[BoxData[ + InterpretationBox[\(" Funktion 3: f(x) = 1 + Sin(x) , X = "\ +\[InvisibleSpace]4.71238898038468985769396507491925432629575409906`48. \), + SequenceForm[ + " Funktion 3: f(x) = 1 + Sin(x) , X = ", + 4.71238898038468985769396507491925432629575409906`48.], + Editable->False]], "Print"], + +Cell[BoxData[ + InterpretationBox[GridBox[{ + {GridBox[{ + {"\<\"FuNr\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Gen\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"St.Nr.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Verf.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" Startw.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" L\[ODoubleDot]sung\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" Funktionsw.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"It.Schr.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 4.00000\"\>", + 4.`7.999999999999999, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 4.00000\"\>", + 4.`7.999999999999999, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4.71230696431170629958490314592722825182136148214`8."}, + {"4.71235519767279267128179398582688008900731801987`8."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 3.363318"\[Times]10\^"-9"\), + + 3.3633181119167333827935095769134932197630405426`8.\ +000000000000002*^-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 5.706358"\[Times]10\^"-10"\), + + 5.70635811498153289189616543808369897305965423584`8.*^\ +-10, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 13\"\>", + 13, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 2\"\>", + 2, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`8.000000000000002, + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`8.000000000000002, + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + "10.9954664163306464893469366339573412005847785622`7.\ +999999999999999"}, + { + "10.9955742875209755140750167434759987372672185302`8.\ +000000000000002"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 5.818102"\[Times]10\^"-9"\), + + 5.81810151678531159435969755122641799971461296082`8.*^\ +-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + {"1.`*^-8"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 13\"\>", + 13, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 10.0000\"\>", + 10.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"10.995574274396401152692573955046198446883125764`16."}, + {"10.9955742875209753940538362493306578926421934739`16."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 8.669647"\[Times]10\^"-17"\), + + 8.66964684033954757757502031291941825249039443868`16.\ +000000000000004*^-17, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 9.374857"\[Times]10\^"-22"\), + + 9.37485732887309951394675378824779266029310065278`16.*\ +^-22, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 26\"\>", + 26, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + "4.71238898887729436971025155320435853497126895229`16.\ +000000000000004"}, + {"4.71238899064723530327181144627957110060378909111`16."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 3.606217"\[Times]10\^"-17"\), + + 3.606216569876396027887823475158480548106998409`15.\ +999999999999998*^-17, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 5.265992"\[Times]10\^"-17"\), + + 5.26599195112702649192752512973783092118870707843`15.\ +999999999999998*^-17, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 25\"\>", + 25, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 2\"\>", + 2, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4.71238898038572655258068584985533846004152641339`24."}, + {"4.71238898038468985769396481878533037906606195655`24."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 5.373681"\[Times]10\^"-25"\), + + 5.37368144076499124494813195988873080787034300282`24.*\ +^-25, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + {"1.`*^-24"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 38\"\>", + 38, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4.7123889803846898586826343623343774741997862962`36."}, + {"4.71238898038468985769396481878533037906606195655`36."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 4.887335"\[Times]10\^"-37"\), + + 4.88733479938809446071394236655807964477581374188`36.*\ +^-37, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + {"1.`*^-36"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 58\"\>", + 58, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5"}, + {"5"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5.00000\"\>", + 5.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4.71238898038468985769396601778776111945351377683`48."}, + {"4.71238898038468985769396481878533037906606195655`48."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 4.445005"\[Times]10\^"-49"\), + + 4.44500510525518860825758786370437585235448653854`48.*\ +^-49, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 3.280229"\[Times]10\^"-50"\), + + 3.28022934277511728303685811158737620554656463066`48.*\ +^-50, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 78\"\>", + 78, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5"}, + {"5"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0\"\>", + 0, + Editable->False], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0\"\>", + 0, + Editable->False], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {\(-1.57079632679489661923132078169370638722654977453`48. \ +\)}, + {\(-1.57079632679489661923132169163975293948348955886`48. \)} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 4.140009"\[Times]10\^"-49"\), + + 4.14000902414864846033201012530224831410308696303`48.*\ +^-49, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + {"1.`*^-48"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 80\"\>", + 80, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 5\"\>", + 5, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]} + }, + RowSpacings->2, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], + TableForm[ {{{"FuNr", " "}, {"Gen", " "}, {"St.Nr.", " "}, { + "Verf.", " "}, {" Startw.", " "}, {" L\[ODoubleDot]sung", + " "}, {" Funktionsw.", " "}, {"It.Schr.", + " "}}, {{3, 3}, {1, 1}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 4.`7.999999999999999, 6], + PaddedForm[ 4.`7.999999999999999, 6]}, { + 4.71230696431170629958490314592722825182136148214`8., + 4.71235519767279267128179398582688008900731801987`8.}, { + ScientificForm[ + PaddedForm[ + 3.3633181119167333827935095769134932197630405426`8.000000000000002*^\ +-9, {7, 6}]], + ScientificForm[ + PaddedForm[ + 5.70635811498153289189616543808369897305965423584`8.*^-10, {7, + 6}]]}, { + PaddedForm[ 13, 3], + PaddedForm[ 2, 3]}}, {{3, 3}, {1, 1}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 10.`8.000000000000002, 6], + PaddedForm[ 10.`8.000000000000002, 6]}, { + 10.9954664163306464893469366339573412005847785622`7.999999999999999, + 10.9955742875209755140750167434759987372672185302`8.000000000000002}, \ +{ + ScientificForm[ + PaddedForm[ + 5.81810151678531159435969755122641799971461296082`8.*^-9, {7, + 6}]], .1*^-7}, { + PaddedForm[ 13, 3], + PaddedForm[ 3, 3]}}, {{3, 3}, {2, 2}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 10.`16., 6], + PaddedForm[ 10.`16., 6]}, { + 10.995574274396401152692573955046198446883125764`16., + 10.9955742875209753940538362493306578926421934739`16.}, { + ScientificForm[ + PaddedForm[ + 8.66964684033954757757502031291941825249039443868`16.\ +000000000000004*^-17, {7, 6}]], + ScientificForm[ + PaddedForm[ + 9.37485732887309951394675378824779266029310065278`16.*^-22, {7, + 6}]]}, { + PaddedForm[ 26, 3], + PaddedForm[ 3, 3]}}, {{3, 3}, {2, 2}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 5.`16., 6], + PaddedForm[ 5.`16., 6]}, { + 4.71238898887729436971025155320435853497126895229`16.000000000000004, + 4.71238899064723530327181144627957110060378909111`16.}, { + ScientificForm[ + PaddedForm[ + 3.606216569876396027887823475158480548106998409`15.999999999999998*^\ +-17, {7, 6}]], + ScientificForm[ + PaddedForm[ + 5.26599195112702649192752512973783092118870707843`15.\ +999999999999998*^-17, {7, 6}]]}, { + PaddedForm[ 25, 3], + PaddedForm[ 2, 3]}}, {{3, 3}, {3, 3}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 5.`24., 6], + PaddedForm[ 5.`24., 6]}, { + 4.71238898038572655258068584985533846004152641339`24., + 4.71238898038468985769396481878533037906606195655`24.}, { + ScientificForm[ + PaddedForm[ + 5.37368144076499124494813195988873080787034300282`24.*^-25, {7, + 6}]], .99999999999999992*^-24}, { + PaddedForm[ 38, 3], + PaddedForm[ 3, 3]}}, {{3, 3}, {4, 4}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 5.`36., 6], + PaddedForm[ 5.`36., 6]}, { + 4.7123889803846898586826343623343774741997862962`36., + 4.71238898038468985769396481878533037906606195655`36.}, { + ScientificForm[ + PaddedForm[ + 4.88733479938809446071394236655807964477581374188`36.*^-37, {7, + 6}]], .99999999999999994*^-36}, { + PaddedForm[ 58, 3], + PaddedForm[ 3, 3]}}, {{3, 3}, {5, 5}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 5.`48., 6], + PaddedForm[ 5.`48., 6]}, { + 4.71238898038468985769396601778776111945351377683`48., + 4.71238898038468985769396481878533037906606195655`48.}, { + ScientificForm[ + PaddedForm[ + 4.44500510525518860825758786370437585235448653854`48.*^-49, {7, + 6}]], + ScientificForm[ + PaddedForm[ + 3.28022934277511728303685811158737620554656463066`48.*^-50, {7, + 6}]]}, { + PaddedForm[ 78, 3], + PaddedForm[ 3, 3]}}, {{3, 3}, {5, 5}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 0, 6], + PaddedForm[ + 0, 6]}, {-1.57079632679489661923132078169370638722654977453`48., \ +-1.57079632679489661923132169163975293948348955886`48.}, { + ScientificForm[ + PaddedForm[ + 4.14000902414864846033201012530224831410308696303`48.*^-49, {7, + 6}]], .99999999999999997*^-48}, { + PaddedForm[ 80, 3], + PaddedForm[ 5, 3]}}}, TableSpacing -> {2, 1}]]], "Output"], + +Cell[BoxData["\<\" \\!\\(\\* \ +StyleBox[\\\"Ergebnisse\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"der\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"beiden\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Verfahren\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"mit\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"allen\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\\!\ +\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\\)\ +\\!\\(\\* \ +StyleBox[\\\"Genauigkeiten\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"und\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"verschiedenen\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, \ +0]]\\)\\!\\(\\* StyleBox[\\\" \\\",\\nFontSize->14,\\nFontColor->RGBColor[1, \ +0, 0]]\\)\\!\\(\\* \ +StyleBox[\\\"Startwerten\\\",\\nFontSize->14,\\nFontColor->RGBColor[1, 0, 0]]\ +\\) \"\>"], "Print"], + +Cell[BoxData[ + InterpretationBox[\(" Funktion 4: f(x) = \[Pi] - x - Sin(x) , \ +X = "\[InvisibleSpace]3.14159265358979323846264338327950288419716939938`48. \ +\), + SequenceForm[ + " Funktion 4: f(x) = \[Pi] - x - Sin(x) , X = ", + 3.14159265358979323846264338327950288419716939938`48.], + Editable->False]], "Print"], + +Cell[BoxData[ + InterpretationBox[GridBox[{ + {GridBox[{ + {"\<\"FuNr\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Gen\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"St.Nr.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Verf.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" Startw.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" L\[ODoubleDot]sung\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\" Funktionsw.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"It.Schr.\"\>"}, + {"\<\" \"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0\"\>", + 0, + Editable->False], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0\"\>", + 0, + Editable->False], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + "3.13826965891226294361106979868836219793593045324`7.\ +999999999999999"}, + {"3.14066218884726925406145753294495648333395365626`8."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 6.115577"\[Times]10\^"-9"\), + + 6.1155771150945081905432345328367064446236630931`8.\ +000000000000002*^-9, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 1.342606"\[Times]10\^"-10"\), + + 1.34260572488426089252323769267771079104179746816`7.\ +999999999999999*^-10, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 16\"\>", + 16, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 0\"\>", + 0, + Editable->False], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 0\"\>", + 0, + Editable->False], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3.14158506500806209742938412547275585415193696485`16."}, + {"3.14159265353608900667090878882220751719219463208`16."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 7.283340"\[Times]10\^"-17"\), + + 7.28334022460820998330258877836244507111162028069`16.\ +000000000000004*^-17, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 3.029484"\[Times]10\^"-28"\), + + 3.02948402733285225476904989899104614252677115216`16.\ +000000000000004*^-28, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 31\"\>", + 31, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 4\"\>", + 4, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 1.00000\"\>", + 1.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 1.00000\"\>", + 1.`16., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + "3.14158622727443946805092172739686359699096215218`15.\ +999999999999998"}, + {"3.14159252112176956214795175981180364033207297325`16."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 4.423182"\[Times]10\^"-17"\), + + 4.42318241424182448658598557002313821759170946694`16.*\ +^-17, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 3.874202"\[Times]10\^"-22"\), + + 3.87420199323770720813938005345890225531855283358`16.*\ +^-22, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 31\"\>", + 31, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3"}, + {"3"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 1.00000\"\>", + 1.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`24., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3.14159263891428509610787555262235963712967815356`24."}, + {"3.14159265358978011059988121739250388486652809661`24."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 5.267787"\[Times]10\^"-25"\), + + 5.267786836976641223915010120849291220397470861`24.*^-\ +25, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.939113"\[Times]10\^"-39"\), + + 2.93911295497744211303111188376525827305249814601`24.*\ +^-39, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 46\"\>", + 46, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 2.00000\"\>", + 2.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3.14159265358804687535517595737308253204827356632`36."}, + {"3.14159265358978011059988121739250388486652809661`36."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 8.876717"\[Times]10\^"-37"\), + + 8.87671740573206734166099621232997058487062619577`36.*\ +^-37, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 3.770784"\[Times]10\^"-43"\), + + 3.77078370458402343641796330535009170737055690459`36.*\ +^-43, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 67\"\>", + 67, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 3\"\>", + 3, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 20.0000\"\>", + 20.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 20.0000\"\>", + 20.`36., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3.14159265359148438283143382258215616124494622292`36."}, + {"3.14159265358974228794959604460501623179879970849`36."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-8.061035"\[Times]10\^"-37"\), + -8.06103489361982627315950838903710195590512366913`36.\ +*^-37, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 2.204421"\[Times]10\^"-41"\), + + 2.20442053305344643203301404308397501310958325141`36.*\ +^-41, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 68\"\>", + 68, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 16\"\>", + 16, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5"}, + {"5"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"1"}, + {"1"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 20.0000\"\>", + 20.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\" 20.0000\"\>", + 20.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3.1415926535897933891517039940625607449372956669`48."}, + {"3.1415926535897932384626433832667115411604258325`48."} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\("-5.702876"\[Times]10\^"-49"\), + -5.70287596898201250823934379461921820107850974048`48.\ +*^-49, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\("-1.593092"\[Times]10\^"-58"\), + -1.59309191113245227702888039776771180559110455519`48.\ +*^-58, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 91\"\>", + 91, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 17\"\>", + 17, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]}, + {GridBox[{ + {"4"}, + {"4"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"5"}, + {"5"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"2"}, + {"2"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"\<\"Newt\"\>"}, + {"\<\"Nmod\"\>"} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\"-20.0000\"\>", + -20.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]}, + { + TagBox[ + InterpretationBox["\<\"-20.0000\"\>", + -20.`48., + AutoDelete->True], + (PaddedForm[ #, 6]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + {"3.14159265358979310773251221742583592983654130569`48."}, + {\(-83.5493596574127937205711535995078520500101149082`48. \)} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + TagBox[ + InterpretationBox[\(" 3.723710"\[Times]10\^"-49"\), + + 3.72370990678700853975629113521000661408978219805`48.*\ +^-49, + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]}, + { + TagBox[ + TagBox[ + InterpretationBox[\(" 8.764713"\[Times]10\^"1"\), + 87.6471258817698223782972538101298331207716090835`48., + + AutoDelete->True], + (PaddedForm[ #, {7, 6}]&)], + ScientificForm]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], GridBox[{ + { + TagBox[ + InterpretationBox["\<\" 94\"\>", + 94, + Editable->False], + (PaddedForm[ #, 3]&)]}, + { + TagBox[ + InterpretationBox["\<\" 94\"\>", + 94, + Editable->False], + (PaddedForm[ #, 3]&)]} + }, + RowSpacings->0.25, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}]} + }, + RowSpacings->2, + ColumnSpacings->1, + RowAlignments->Baseline, + ColumnAlignments->{Left}], + TableForm[ {{{"FuNr", " "}, {"Gen", " "}, {"St.Nr.", " "}, { + "Verf.", " "}, {" Startw.", " "}, {" L\[ODoubleDot]sung", + " "}, {" Funktionsw.", " "}, {"It.Schr.", + " "}}, {{4, 4}, {1, 1}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 0, 6], + PaddedForm[ 0, 6]}, { + 3.13826965891226294361106979868836219793593045324`7.999999999999999, + 3.14066218884726925406145753294495648333395365626`8.}, { + ScientificForm[ + PaddedForm[ + 6.1155771150945081905432345328367064446236630931`8.000000000000002*^\ +-9, {7, 6}]], + ScientificForm[ + PaddedForm[ + 1.34260572488426089252323769267771079104179746816`7.999999999999999*\ +^-10, {7, 6}]]}, { + PaddedForm[ 16, 3], + PaddedForm[ 3, 3]}}, {{4, 4}, {2, 2}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 0, 6], + PaddedForm[ 0, 6]}, { + 3.14158506500806209742938412547275585415193696485`16., + 3.14159265353608900667090878882220751719219463208`16.}, { + ScientificForm[ + PaddedForm[ + 7.28334022460820998330258877836244507111162028069`16.\ +000000000000004*^-17, {7, 6}]], + ScientificForm[ + PaddedForm[ + 3.02948402733285225476904989899104614252677115216`16.\ +000000000000004*^-28, {7, 6}]]}, { + PaddedForm[ 31, 3], + PaddedForm[ 4, 3]}}, {{4, 4}, {2, 2}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 1.`16., 6], + PaddedForm[ 1.`16., 6]}, { + 3.14158622727443946805092172739686359699096215218`15.999999999999998, + 3.14159252112176956214795175981180364033207297325`16.}, { + ScientificForm[ + PaddedForm[ + 4.42318241424182448658598557002313821759170946694`16.*^-17, {7, + 6}]], + ScientificForm[ + PaddedForm[ + 3.87420199323770720813938005345890225531855283358`16.*^-22, {7, + 6}]]}, { + PaddedForm[ 31, 3], + PaddedForm[ 3, 3]}}, {{4, 4}, {3, 3}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 1.`24., 6], + PaddedForm[ 2.`24., 6]}, { + 3.14159263891428509610787555262235963712967815356`24., + 3.14159265358978011059988121739250388486652809661`24.}, { + ScientificForm[ + PaddedForm[ + 5.267786836976641223915010120849291220397470861`24.*^-25, {7, 6}]], + + ScientificForm[ + PaddedForm[ + 2.93911295497744211303111188376525827305249814601`24.*^-39, {7, + 6}]]}, { + PaddedForm[ 46, 3], + PaddedForm[ 3, 3]}}, {{4, 4}, {4, 4}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 2.`36., 6], + PaddedForm[ 2.`36., 6]}, { + 3.14159265358804687535517595737308253204827356632`36., + 3.14159265358978011059988121739250388486652809661`36.}, { + ScientificForm[ + PaddedForm[ + 8.87671740573206734166099621232997058487062619577`36.*^-37, {7, + 6}]], + ScientificForm[ + PaddedForm[ + 3.77078370458402343641796330535009170737055690459`36.*^-43, {7, + 6}]]}, { + PaddedForm[ 67, 3], + PaddedForm[ 3, 3]}}, {{4, 4}, {4, 4}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ 20.`36., 6], + PaddedForm[ 20.`36., 6]}, { + 3.14159265359148438283143382258215616124494622292`36., + 3.14159265358974228794959604460501623179879970849`36.}, { + ScientificForm[ + + PaddedForm[ \ +-8.06103489361982627315950838903710195590512366913`36.*^-37, {7, 6}]], + ScientificForm[ + PaddedForm[ + 2.20442053305344643203301404308397501310958325141`36.*^-41, {7, + 6}]]}, { + PaddedForm[ 68, 3], + PaddedForm[ 16, 3]}}, {{4, 4}, {5, 5}, {1, 1}, {"Newt", "Nmod"}, { + PaddedForm[ 20.`48., 6], + PaddedForm[ 20.`48., 6]}, { + 3.1415926535897933891517039940625607449372956669`48., + 3.1415926535897932384626433832667115411604258325`48.}, { + ScientificForm[ + + PaddedForm[ \ +-5.70287596898201250823934379461921820107850974048`48.*^-49, {7, 6}]], + ScientificForm[ + + PaddedForm[ \ +-1.59309191113245227702888039776771180559110455519`48.*^-58, {7, 6}]]}, { + PaddedForm[ 91, 3], + PaddedForm[ 17, 3]}}, {{4, 4}, {5, 5}, {2, 2}, {"Newt", "Nmod"}, { + PaddedForm[ -20.`48., 6], + PaddedForm[ -20.`48., 6]}, { + 3.14159265358979310773251221742583592983654130569`48., \ +-83.5493596574127937205711535995078520500101149082`48.}, { + ScientificForm[ + PaddedForm[ + 3.72370990678700853975629113521000661408978219805`48.*^-49, {7, + 6}]], + ScientificForm[ + PaddedForm[ + 87.6471258817698223782972538101298331207716090835`48., {7, 6}]]}, { + PaddedForm[ 94, 3], + PaddedForm[ 94, 3]}}}, TableSpacing -> {2, 1}]]], "Output"] +}, Open ]] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1016, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ + +Cell[CellGroupData[{ +Cell[1776, 53, 258, 6, 59, "Input"], +Cell[2037, 61, 2114, 38, 44, "Print"], +Cell[4154, 101, 90, 1, 38, "Print"], +Cell[4247, 104, 50338, 1368, 513, "Output"], +Cell[54588, 1474, 2114, 38, 44, "Print"], +Cell[56705, 1514, 90, 1, 38, "Print"], +Cell[56798, 1517, 60654, 1632, 603, "Output"], +Cell[117455, 3151, 2019, 34, 25, "Print"], +Cell[119477, 3187, 346, 6, 25, "Print"], +Cell[119826, 3195, 32629, 895, 357, "Output"], +Cell[152458, 4092, 1680, 29, 25, "Print"], +Cell[154141, 4123, 362, 7, 25, "Print"], +Cell[154506, 4132, 34241, 938, 357, "Output"] +}, Open ]] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg3.nb b/Bachelor/Numerische Mathematik/Num05Aufg3.nb new file mode 100644 index 0000000..a591124 --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg3.nb @@ -0,0 +1,2655 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 88646, 2521]*) +(*NotebookOutlinePosition[ 89370, 2546]*) +(* CellTagsIndexPosition[ 89326, 2542]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ Numerik\ : \ \ Aufgabe\ \ +3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ +S\ \ 2005\ \ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Off[General::spell]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + RowBox[{ + StyleBox[\(\(\ \ \ \ \ \ \)\(\ \)\(\ \)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Stellenzahl", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["die", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Eingabematrix", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["vorgeben", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["ipl", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["1", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["2", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["3", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(4\ \ oder\ 5\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(ipl\ = \ 1;\), "\n", " ", + RowBox[{\(stlist\ = \ {\ 8, \ 12, \ 16, \ 20, 24\ }\), ";", + " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], + StyleBox[" ", + Background->RGBColor[1, 1, 0]], + StyleBox[\(Liste\ der\ vorgegebenen\ Stellenzahlen\), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]]}], "\n", + " ", \(st = \ stlist[\([ipl]\)]\), ";", " "}]}]}]], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Berechnung\ der\ inversen\ Matrix\ zur\ \ +Hilbertmatrix\ H\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \( (*\ \ \ \ \ \ Rechengenauigkeit\ gen\ \(festlegen\ !\)\ \ Standard\ \ +ist\ gen\ = \ 16\ \ \ \ *) \)], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(\($MinPrecision = \($MaxPrecision = \(gen = + 28\)\);\)\(\ \ \ \)\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Bereitstellen\ der\ Fakult\ +\[ADoubleDot]t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Fakul[k_] := Fakul[k - 1]*k\ \ ; \ \ Fakul[0] = 1. ;\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], " "}]], + StyleBox[\(Funktionsunterprogramm\ zum\ Runden\ auf\ L\ Stellen\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(Runden[xN_, + L_]\)\(:=\)\(\ \)\((\ \ signum = + If[xN\ < 0, \ SetPrecision[\(-1. \), gen], + SetPrecision[1.0, gen]]; + zehn = SetPrecision[10.0, gen]; \[IndentingNewLine]expo = + If[\ Abs[xN] < 1, L - IntegerPart[Log[10. , Abs[xN]]], + L - IntegerPart[Log[10. , Abs[xN]]] - 1]; \[IndentingNewLine]xL = + If[xN == 0, 0. , + signum*Floor[ + Abs[xN]*zehn\^expo + SetPrecision[0.5, gen] + + zehn\^\((L - gen)\)]*zehn\^\(-expo\)]; + xL)\)\(\t\)\)\)], "Input"], + +Cell[BoxData[ + \(PaddedForm[Runden[1/3, 18], {gen, 19}]\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ Bereitstellen\ der\ Zeilensummen - + Norm\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(NormMat[matrix_, n_] := \ \ \((\ + Do[zeisum[matrix, i, + n] = \ \[Sum]\+\(j = 1\)\%n Abs[matrix[i, j]], {i, 1, n}]\ ; + zwimax = zeisum[matrix, 1, n]; + Do[zwimax = Max[zwimax, zeisum[matrix, i, n]], {i, 2, n}]; + zwimax\ )\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ +Erstellen\ \ einer\ \ Liste\ \ von\ \ vorgegebenen\ \ Ordnungen\ n\ \ der\ \ +Matrizen\ nach\ Hilbert\ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(\(nlist = {3, 5, 7, 9, 11, 13, 15, 17, 19};\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["Erstellen", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["der", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["Hilbertmatrix", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["Hplus", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["mit", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["gen", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], " ", + StyleBox["Stellen", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[{n = nlist[\([l]\)], \n + Do[Do[Htabplus[l, i, j] = \(Hplus[i, j] = + SetPrecision[1/\((i + j - 1)\), gen]\), {i, 1, + nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}]]}, \t{l, 1, + 9}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + StyleBox["Test", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["-", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle"], + StyleBox[\(Ausgabe\ der\ \ Hilbertmatrix\ \ Htabplus\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + StyleBox["Hplus", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["und", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["\[IndentingNewLine]", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["ihrer", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["intern", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["berechneten", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Inversen", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Hinvplus", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["e", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["i", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["n", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["e", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["n", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Wert", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["lfest", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(\(\(lfest = 3;\)\[IndentingNewLine] + Print["\", + nlist[\([lfest]\)]]\[IndentingNewLine] + TableForm[ + Table[ScientificForm[ + PaddedForm[Htabplus[l, i, j]\ , {gen, gen - 1}]], {l, lfest, + lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + \(\(Hmatplus[lfest] = + Table[Htabplus[lfest, i, j], {i, 1, nlist[\([lfest]\)]}, {j, 1, + nlist[\([lfest]\)]}\ ];\)\)], "Input"], + +Cell[BoxData[{ + \(Print["\", + nlist[\([lfest]\)]]\), "\[IndentingNewLine]", + \(Hmatplus[lfest] // MatrixForm\)}], "Input"], + +Cell[BoxData[ + \(\(Hinvplus = Inverse[Hmatplus[lfest]];\)\)], "Input"], + +Cell[BoxData[ + \(\(\(\(lfest = 3;\)\t\n + Print["\", + nlist[\([lfest]\)]]\[IndentingNewLine] + TableForm[ + Table[ScientificForm[ + PaddedForm[Hinvplus[\([i, j]\)]\ , {gen, gen - 1}]], {l, lfest, + lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["Erstellen", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["der", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["Hilbertmatrix", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["H", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["mit", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["st", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Stellen", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\ \ \ \ \ \ \ +Gleichzeitig\ \ werden\ \ alle\ \ Normen\ \ von\ \ H\ \ \(b + erechnet\)\ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[{n = nlist[\([l]\)], \n + Do[Do[Htab[l, i, j] = \(H[i, j] = + Runden[Htabplus[l, i, j], st]\)\ , {i, 1, + nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}]], \[IndentingNewLine]\ + NormHil[l] = NormMat[H, n]}, {l, 1, 9}]\)], "Input"], + +Cell[BoxData[ + StyleBox[\(\( (*\ \ \ \ \ \ \ Ausgabe\ \ der\ \ Hilbertmatrix\ \ Htab\ = \ +\ \(H\ \ \ und\ \[IndentingNewLine] + \ \ \ \ \ \ ihrer\ \ intern\ \ berechneten\ \ Inversen\ \ \ Hinv\ \ f\ +\[UDoubleDot]r\ \ e\ i\ n\ e\ n\ \ Wert\ \ von\ \ nlist = + lfest\)\ \ \ \ \ \ \ *) \)\(\ \ \)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(lfest = 8;\)\ \ \ \ \ \ \[IndentingNewLine] + Print["\", + nlist[\([lfest]\)]]\[IndentingNewLine] + TableForm[ + Table[ScientificForm[PaddedForm[Htab[l, i, j]\ , {st, st - 1}]], {l, + lfest, lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \ \ \ \ \ \)\)\)], "Input"], + +Cell[BoxData[ + \(\(Hmat[lfest] = + Table[Htab[lfest, i, j], {i, 1, nlist[\([lfest]\)]}, {j, 1, + nlist[\([lfest]\)]}\ ];\)\)], "Input"], + +Cell[BoxData[{ + \(Print["\", + nlist[\([lfest]\)]]\ \ \), "\[IndentingNewLine]", + \(\ Hmat[lfest] // MatrixForm\)}], "Input"], + +Cell[BoxData[ + \(\(Hinv = Inverse[Hmat[lfest]];\)\)], "Input"], + +Cell[BoxData[ + \(\(\(Print["\", + nlist[\([lfest]\)]]\[IndentingNewLine] + TableForm[ + Table[ScientificForm[PaddedForm[Hinv[\([i, j]\)]\ , {st, st - 1}]], {l, + lfest, lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox[\(Erstellen\ der\ Differenzmatrix\ \ Hplus\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["-", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["H", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], " ", + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\(\(\ \ \ \)\(\ \)\(\ \ \)\) + Gleichzeitig\ \ werden\ \ alle\ \ Normen\ \ von\ \ HplusminH\ \ be\ +rechnet\ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[\ {n = nlist[\([l]\)], \n\ \ \ \ \ \ \ Do[ + Do[HtabplusminHtab[l, i, j] = \(HplusminH[i, j] = + SetPrecision[Htabplus[l, i, j] - Htab[l, i, j], gen]\), {i, + 1, n}, {j, 1, n}]], \n\t + NormDiffHil[l] = NormMat[HplusminH, n]}, {l, 1, 9}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ Ergebnis\ \ \ Differenzmatrix\ \ Hplus\ \ + - \ H\ \ \ \ f\[UDoubleDot]r\ \ e\ i\ n\ e\ n\ \ Wert\ \ von\ \ nlist\ = \ + lfest\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(lfest = 3;\)\[IndentingNewLine] + Print["\", + nlist[\([lfest]\)]]\[IndentingNewLine] + TableForm[ + Table[ScientificForm[ + PaddedForm[HtabplusminHtab[l, i, j]\ , {5, 3}]], {l, lfest, + lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox[\(Gau\[SZ] - Zerlegung\ der\ Matrix\ A\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["=", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["H", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[\((\ ohne\ Zeilenvertauschung\ )\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], "\[IndentingNewLine]", " ", + + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]}], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ Dreiecks - Zerlegung\ der\ Matrix\ A\ \ = \ + H\ \((\ erste\ k - Schleife\ )\)\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "\n", + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[ + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + + StyleBox[\(Vorw\[ADoubleDot]rtsrechnung\ \((\ + erste\ i - Schleife\ \ \ )\)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}]], + + StyleBox[\(R\[UDoubleDot]ckw\[ADoubleDot]rtsrechnung\ \((\ + zweite\ i - Schleife\ )\)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[{n = nlist[\([l]\)], \n\ \ \ \ \ \ \tDo[ + Do[\ A[i, j] = H[i, j], {i, 1, n}], {j, 1, n}], \n\t\t\t\tDo[ + Do[{A[i, k] = A[i, k]/A[k, k], + Do[A[i, j] = A[i, j] - A[i, k]*A[k, j], {j, k + 1, n}]}, {i, + k + 1, n}], {k, 1, + n - 1}], \n\t\t\t\tDo[{Do[{b[i] = + If[i == k, SetPrecision[1, gen], 0], + sumAb = SetPrecision[0. , gen], \n\t\t\t\tDo[ + sumAb = sumAb + A[i, j]*b[j], {j, 1, i - 1}], + b[i] = b[i] - sumAb}, {i, 1, + n}], \n\t\t\t\t\t\tDo[{sumAX = SetPrecision[0. , gen], + Do[sumAX = sumAX + A[i, j]*Xgauss[l, j, k], {j, i + 1, + n}], \n\t\t\t\t\t\t\ \ \ \ \ \ Xgauss[l, i, + k] = \((b[i] - sumAX)\)/A[i, i]}, {i, n, + 1, \(-1\)}]}, {k, 1, + n}], \[IndentingNewLine]\ \ \ \ \ \ \ \ If[ + Abs[A[n, n]] \[LessEqual] \ + 10^\((\(-st\) + + 2)\), \[IndentingNewLine]\ \ \ \ \ \ Print["\", + n, "\< fast singul\[ADoubleDot]r !!! \>"\ , \[IndentingNewLine]\ \ +\ \ \ "\< A(n,n) = \>", \ PaddedForm[A[n, n], {6, 3}]]\ ]\ }, \t\n\t{l, 1, + 9}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]]}]], + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox[\(Ausgabe\ \ der\ \ Gau\[SZ]\ - \ + Zerlegung\ \ von\ \ A\ , \ \ zu\ \ Testzwecken\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input", + FontColor->RGBColor[0, 1, 0], + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + StyleBox[\(\(\ \ \)\(\(lfest = 1;\)\(\[IndentingNewLine]\)\(\n\) + \(\ \ \)\(TableForm[ + Table[\ ScientificForm[PaddedForm[A[i, j], {st, st - 1}]], {i, 1, + nlist[\([lfest]\)]}, \n\t\t\t\ \ {j, 1, nlist[\([lfest]\)]}], \ + TableSpacing -> {2, 1}]\)\(\ \ \)\)\), + FontColor->RGBColor[1, 0, 1]]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ +Ergebnis\ \ Xgauss\ \ ist\ \ die\ \ nach\ \ Gau\[SZ]\ +\ \ berechnete\ \ inverse\ \ Hilbertmatrix\ H^\(-1\)\ \n\t\t\t\ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ f\[UDoubleDot]r\ \ e\ i\ n\ e\ n\ \ +Wert\ \ von\ \ nlist\ = \ lfest\ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], " "}]], + "Subsubtitle"], " "}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(lfest = 4;\)\[IndentingNewLine] + Print["\", nlist[\([lfest]\)]]\n + TableForm[ + Table[ScientificForm[PaddedForm[Xgauss[l, i, j]\ , {st, st - 1}]], {l, + lfest, lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox[\(Cholesky - Zerlegung\ der\ Matrix\ A\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["=", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["H", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[\((\ verketteter\ Algorithmus\ )\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + " "}]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]}], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Cholesky\ - \ + Zerlegung\ \ der\ \ Matrix\ \ A\ \ = \ \ H\ \ \ \((\ + erste\ k - Schleife\ )\)\ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "\n", + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + RowBox[{ + + StyleBox[\(Vorw\[ADoubleDot]rtsrechnung\ \((\ + erste\ i - Schleife\ \ \ )\)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}]], + + StyleBox[\(R\[UDoubleDot]ckw\[ADoubleDot]rtsrechnung\ \((\ + zweite\ i - Schleife\ )\)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"{", + + RowBox[{\(n = nlist[\([l]\)]\), ",", "\n", + " \t", \(Do[Do[\ A[i, j] = H[i, j], {i, 1, n}], {j, 1, n}]\), + ",", "\n", + "\t\t", \(Do[{Do[{sumAjiAjk = SetPrecision[0. , gen], + Do[sumAjiAjk = sumAjiAjk + A[j, i]*A[j, k], {j, 1, + i - 1}], \n\t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tA[i, + k] = \((A[i, k] - sumAjiAjk)\)/A[i, i]}, {i, 1, + k - 1}], + sumAjk2 = + SetPrecision[0. , + gen], \n\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Do[ + sumAjk2 = sumAjk2 + A[j, k]*A[j, k], {j, 1, + k - 1}], \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +AkkminsumAjk2 = SetPrecision[A[k, k] - sumAjk2, gen], + A[k, k] = + SetPrecision[Sqrt[AkkminsumAjk2], + gen]}, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +{k, 1, n}]\), ",", "\t\t", "\n", + "\t\t", \(Do[{Do[{b[i] = If[i == k, SetPrecision[1, gen], 0], + sumAb = SetPrecision[0. , gen], \n\t\t\ \ \ \ \ Do[ + sumAb = sumAb + A[j, i]*b[j], {j, 1, i - 1}], + b[i] = \((b[i] - sumAb)\)/A[i, i]}, {i, 1, + n}], \n\t\ \ \ \ \ \tDo[{sumAX = SetPrecision[0. , gen], + Do[sumAX = sumAX + A[i, j]*Xchol[l, j, k], {j, i + 1, + n}], \n\t\t\tXchol[l, i, k] = \((b[i] - sumAX)\)/ + A[i, i]}, {i, n, + 1, \(-1\)}]\ \ \ }, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ +\ \ \ \ {k, 1, n}]\), " ", ",", " ", + + StyleBox[\( (*\ \ \(Print[\ "\", l, "\< \>", + AkkminsumAjk2, "\< \>", A[n, n]]\)\(,\)\ \ *) \), + Background->RGBColor[1, 1, 0]], "\[IndentingNewLine]", + " ", \(If[AkkminsumAjk2 \[LessEqual] 10. ^\((\(-st\) + 2)\), + Print["\< Die Matrix ist bei der Ordnung n = \>", + n, "\< nicht mehr positiv definit !!! \>"\ , \ "\< A(n,n) = \ +\>", PaddedForm[A[n, n], {4, 3}]]]\)}], " ", "}"}], ",", "\n", + " ", \({l, 1, 9}\)}], "]"}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]], " "}]], + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(Ausgabe\ \ der\ \ Cholesky - \ + Zerlegung\ \ von\ \ A\ \ , \ \ \ zu\ \ \ \ Testzwecken\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input", + FontColor->RGBColor[0, 1, 0], + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + StyleBox[\(\(\ \)\(lfest = 1;\)\), + FontColor->RGBColor[1, 0, 1]], "\n", + StyleBox[\(\(\ \)\(TableForm[ + Table[\ ScientificForm[PaddedForm[A[i, j], {st, st - 1}]], {i, 1, + nlist[\([lfest]\)]}, \n\t\t\t\ \ {j, 1, nlist[\([lfest]\)]}], \ + TableSpacing -> {2, 1}]\)\(\ \ \)\), + FontColor->RGBColor[1, 0, 1]]}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ Ergebnis\ \ Xchol\ \ ist\ die\ nach\ Cholesky\ \ +berechnete\ \ inverse\ \ Hilbertmatrix\ H^\(-1\)\ \n\t\t\t\ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ f\[UDoubleDot]r\ \ e\ i\ n\ e\ n\ Wert\ \ von\ nlist\ \ += \ lfest\ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], " "}]], + "Subsubtitle"], " "}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(lfest = 4;\)\n + Print["\", + nlist[\([lfest]\)]]\[IndentingNewLine] + TableForm[ + Table[Chop[ + ScientificForm[PaddedForm[Xchol[l, i, j]\ , {st, st - 1}]]], {l, + lfest, lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + + StyleBox[\(\ +Erstellen\ \ der\ \ exakten\ \ inversen\ \ Hilbertmatrix\ \ Xexakt\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["=", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox[\(H^\(-1\)\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], "\[IndentingNewLine]", " ", + + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\t\)\(Do[{n = nlist[\([l]\)], \n\ \ \ \ \ \ \ \ \ \ \ \ \ Do[ + Do[Xexakttab[l, i, j] = \ \(Xexakt[i, j] = + SetPrecision[Fakul[n + i - 1], + gen]*\((\(-1\))\)^\((i + + j)\)/\n\t\ \ \ \ \ \ \ \((\((i + j - 1)\)* + SetPrecision[\ Fakul[i - 1]^2, gen]* + SetPrecision[Fakul[j - 1]^2, gen]* + SetPrecision[Fakul[n - i], gen]* + SetPrecision[Fakul[n - j], gen])\)* + SetPrecision[Fakul[n + j - 1], + gen]\), \[IndentingNewLine]\t{i, 1, n}], {j, \ 1, + n}]\ , \ NormHilInv[l] = + NormMat[Xexakt, n]}, \[IndentingNewLine]\t\ \ {\ l, 1, + 9}\ ]\)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ \ \ \ \ +Ergebnis\ \ Xexakt\ \ ist\ \ die\ \ exakte\ \ inverse\ \ Hilbertmatrix\ \ +H^\(-1\)\ \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ f\[UDoubleDot]r\ \ e\ i\ n\ e\ \ +n\ \ Wert\ \ von\ \ nlist\ = \ lfest\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(lfest = 4;\)\t\n + Print["\", + nlist[\([lfest]\)]]\[IndentingNewLine] + TableForm[ + Table[ScientificForm[ + PaddedForm[Xexakttab[l, i, j]\ , {st, st - 1}]], {l, lfest, + lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + RowBox[{ + StyleBox[\(Erstellen\ \ der\ \ Differenzmatrix\ \ Xexakt\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["-", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["Xgauss", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\(\(\ \ \ \)\(\ \)\(\ \ \)\) + Gleichzeitig\ \ werden\ \ alle\ \ Normen\ \ von\ \ XexaminXgau\ \ b\ +erechnet\ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[{n = nlist[\([l]\)], \n + Do[Do[XexaminXgautab[l, i, j] = \(XexaminXgau[i, j] = + Xexakttab[l, i, j] - Xgauss[l, i, j]\), {i, 1, n}], {j, 1, + n}], \n\tNormDiffHilInv[l] = NormMat[XexaminXgau, n]}, {l, 1, + 9}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ \ \ Ergebnis\ \ \ Diferenzmatrix\ \ Xexakt\ - \ + Xgauss\ \ \ \ f\[UDoubleDot]r\ \ e\ i\ n\ e\ \ +n\ \ Wert\ \ von\ \ nlist\ = lfest\ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(lfest = 3;\)\t\n + TableForm[ + Table[ScientificForm[ + PaddedForm[ + XexaminXgautab[l, i, j], {st, + st - 1}]], \n\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \t\t\ +{l, lfest, lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + RowBox[{ + StyleBox[\(Erstellen\ \ der\ \ Differenzmatrix\ \ Xchol\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["-", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["Xgauss", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\(\(\ \ \ \)\(\ \)\(\ \ \)\) + Gleichzeitig\ \ werden\ \ alle\ \ Normen\ \ von\ \ XcholminXgau\ \ b\ +erechnet\ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[{n = nlist[\([l]\)], \n + Do[Do[XcholminXgautab[l, i, j] = \(XcholminXgau[i, j] = + Xchol[l, i, j] - Xgauss[l, i, j]\), {i, 1, n}], {j, 1, + n}], \n\tNormDiffCholGau[l] = NormMat[XcholminXgau, n]}, {l, 1, + 9}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + RowBox[{ + StyleBox[\(Erstellen\ \ der\ \ Differenzmatrix\ \ Xexakt\), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["-", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + RowBox[{ + StyleBox["Xchol", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["alle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Werte", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["von", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\(\(\ \ \ \)\(\ \)\(\ \ \)\) + Gleichzeitig\ \ werden\ \ alle\ \ Normen\ \ von\ \ XexaminXchol\ \ b\ +erechnet\ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[{n = nlist[\([l]\)], \n + Do[Do[XexaminXcholtab[l, i, j] = \(XexaminXchol[i, j] = + Xexakttab[l, i, j] - Xchol[l, i, j]\), {i, 1, n}], {j, 1, + n}], \n\tNormDiffHilInvChol[l] = NormMat[XexaminXchol, n]}, {l, + 1, 9}]\)], "Input"], + +Cell[BoxData[ + \(TableForm[ + Do[Print[ScientificForm[ + PaddedForm[NormDiffHilInv[l], {15, 6}]], "\< \>", + ScientificForm[ + PaddedForm[NormDiffHilInvChol[l], {15, 6}]], "\< \>", + ScientificForm[PaddedForm[NormDiffCholGau[l], {15, 6}]]], {l, 1, + 9}]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ \ \ Ergebnis\ \ \ Differenzmatrix\ \ Xexakt\ - \ + Xchol\ \ \ \ f\[UDoubleDot]r\ \ e\ i\ n\ e\ \ +n\ \ Wert\ \ von\ \ nlist\ = lfest\ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(lfest = 3;\)\t\n + TableForm[ + Table[ScientificForm[ + PaddedForm[ + XexaminXcholtab[l, i, j], {st, + st - 1}]], \n\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \t\t\ +{l, lfest, lfest}, {i, 1, nlist[\([l]\)]}, {j, 1, nlist[\([l]\)]}], + TableSpacing -> {2, 1}]\)\(\ \ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(Erstellen\ \ des\ \ Tabellenkopfes\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle"], " "}]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(Tabelle[0, 1] = "\< n\>"; Tabelle[0, 2] = "\< || Hil || \>"; + Tabelle[0, 3] = "\<|| HilInV||\>"; Tabelle[0, 4] = "\<||Hplus-Hil||\>";\n + Tabelle[0, 5] = "\<||Exakt-Xgau\[SZ]|| \>"; + Tabelle[0, 6] = "\< Kond_Fakt\>"; + Tabelle[0, 7] = "\< Cond_Zahl\>";\)\(\t\)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + StyleBox["Erstellen", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["der", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Tabelle", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["mit", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle"]}]], + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Berechnung", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["des", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["Konditionsfaktors", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["k", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["und", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", " ", + StyleBox["der", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Konditionszahl", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["\[Mu]", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(cond \((H)\)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[{Tabelle[i, 1] = nlist[\([i]\)], \ Tabelle[i, 2] = NormHil[i], \ + Tabelle[i, 3] = NormHilInv[i], \ Tabelle[i, 4] = NormDiffHil[i], + Tabelle[i, 5] = NormDiffHilInv[i], + Tabelle[i, 6] = \(kfakt[i] = + NormHil[i]/NormHilInv[i]* + NormDiffHilInv[i]/NormDiffHil[i]\)\ , \n\ \ \ \ \ Tabelle[i, + 7] = \(mue[i] = NormHil[i]*NormHilInv[i]\)}, \ \ {i, 1, + 9}\ ]\)], "Input"], + +Cell[BoxData[ + \(\(genlist = {3, {6, 3}, {4, 3}, {4, 3}, {5, 3}, {4, 3}, {4, + 3}};\)\)], "Input"], + +Cell[BoxData[ + \(TableForm[ + Table[ScientificForm[PaddedForm[Tabelle[i, j], genlist[\([j]\)]]], {i, + 0, 9}, {j, 1, 7}], TableSpacing -> {2, 1}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ \ \ \ \ Graphische\ \ Darstellung\ \ der\ \ +Konditionszahlen\ \ \[Mu]\ \ und\ Konditionsfaktoren\ \ k\ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]], " "}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(<< Graphics`Colors`\)], "Input"], + +Cell[BoxData[ + \(\(farblist\ = \ {\ Cyan, Green, \ Brown, \ Blue, + Magenta\ };\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Konditionsfaktoren\ \ \ k\ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(Print["\< Konditionsfaktoren k \ +\>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabpkte[ipl]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], Log[10. , Tabelle[n, 6]]}, {n, 1, 9}], + PlotJoined\ -> \ False, \n\tPlotRange -> {{0, 20}, {0, 30}}, + Prolog\ -> \ AbsolutePointSize[4], + PlotStyle \[Rule] farblist[\([ipl]\)], AspectRatio -> 0.6, + PlotLabel \[Rule] "\<\>", + AxesLabel -> {"\<> n\>", "\< ^ lg(k)\>"}\), "]"}]}]}], "Input"], + +Cell[BoxData[{\(Print["\< Konditionsfaktoren k\>"];\), \ +"\[IndentingNewLine]", + RowBox[{\(Tabsp[ipl]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], Log[10. , Tabelle[n, 6]]}, {n, 1, 9}], + PlotJoined\ -> \ True, \n\ \ \ \ PlotRange -> {{0, 20}, {0, 30}}, + PlotStyle \[Rule] farblist[\([ipl]\)], AspectRatio -> 0.6, + PlotLabel \[Rule] "\<\>", + AxesLabel -> {"\<> n\>", "\< ^ lg(k)\>"}\), "]"}]}]}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle"]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Konditionszahlen\ +\ \ \ \ \ \[Mu]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Tabelle[0, 1]\ = \ 1; \ Tabelle[0, 7] = 1. ;\)], "Input"], + +Cell[BoxData[{\(Print["\< Konditionszahlen \ +\[Mu]\>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabpkte[0]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], Log[10. , Tabelle[n, 7]]}, {n, 0, 9}], + PlotJoined\ -> \ False, \n\tPlotRange -> {{0, 20}, {0, 30}}, + Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, + AspectRatio -> 0.6, PlotLabel \[Rule] "\<\>", + AxesLabel -> {"\<> n\>", "\< ^ lg(\[Mu])\>"}\), "]"}]}]}], "Input"], + +Cell[BoxData[{\(Print["\< Konditionszahlenen \ +\[Mu]\>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabsp[0]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], Log[10. , Tabelle[n, 7]]}, {n, 0, 9}], + PlotJoined\ -> \ True, \n\tPlotRange -> {{0, 20}, {0, 30}}, + PlotStyle \[Rule] Red, AspectRatio -> 0.6, PlotLabel \[Rule] "\<\>", + AxesLabel -> {"\<> n\>", "\< ^ lg(\[Mu])\>"}\), + "]"}]}]}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(Nummern \(\(\ \)\(\ \)\) + der\ \ auszugebenden\ Kurven\ festlegen\), + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(\(If\ [\ + ipl\ == \ 1, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 1; \ \ ipl3\ = \ 1; \ \ ipl4\ = \ 1, + ipl5\ = \ 1\ }];\)\), "\[IndentingNewLine]", + \(\(If\ [\ + ipl\ == \ 2, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 2; \ \ ipl3\ = \ 1; \ \ ipl4\ = \ 1, + ipl5\ = \ 1\ }];\)\), "\[IndentingNewLine]", + \(\(If\ [\ + ipl\ == \ 3, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 2; \ \ ipl3\ = \ 3; \ \ ipl4\ = \ 1, + ipl5\ = \ 1\ }];\)\), "\[IndentingNewLine]", + \(\(If\ [\ + ipl\ == \ 4, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 2; \ \ ipl3\ = \ 3; \ \ ipl4\ = \ 4, + ipl5\ = \ 1\ }];\)\), "\[IndentingNewLine]", + \(\(If\ [\ + ipl\ == \ 5, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 2; \ \ ipl3\ = \ 3; \ \ ipl4\ = \ 4, + ipl5\ = \ 5\ }];\)\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Gesamtgraphik : \ \ \ +Konditionszahlen\ \ und\ \ Konditionsfaktoren\ f\[UDoubleDot]r\ \ st\ = \ \ \ +8\ , \ 12, \ 16\ , \ 20\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(\(Print["\< Konditionsfaktoren und \ +Konditionszahlen\>"];\)\), "\[IndentingNewLine]", + \(Show[Tabsp[0], Tabsp[ipl1], Tabsp[ipl2], Tabsp[ipl3], Tabsp[ipl4], + Tabsp[ipl5], Tabpkte[0], Tabpkte[ipl1], Tabpkte[ipl2], Tabpkte[ipl3], + Tabpkte[ipl4], Tabpkte[ipl5], + Prolog\ -> \ AbsolutePointSize[4]]\)}], "Input"], + +Cell[BoxData[ + StyleBox[ + RowBox[{"(*", " ", + RowBox[{ + "Relativer", " ", "Fehler", " ", "bei", " ", "der", " ", "Berechnung", + " ", "der", " ", "inversen", " ", "Matrizen", " ", + StyleBox[ + RowBox[{"f", + StyleBox["\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], " ", "alle", " ", "Werte", + " ", "von", " ", "nlist"}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], " "}]], "*)"}], + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(Print["\< Relativer Fehler in % \ +\>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabpkteproz[ipl]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], + 100*NormDiffHilInv[n]/NormHilInv[n]}, {n, 1, 9}], + PlotJoined\ -> \ False, \n\tPlotRange -> {{0, 20}, {\(-10\), 150}}, + Prolog\ -> \ AbsolutePointSize[4], + PlotStyle \[Rule] farblist[\([ipl]\)], AspectRatio -> 0.6, + PlotLabel \[Rule] "\<\>", AxesLabel -> {"\<> n\>", "\< ^ %\>"}\), + "]"}]}]}], "Input"], + +Cell[BoxData[{\(Print["\< Relativer Fehler in % \ +\>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabspproz[ipl]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], + 100*NormDiffHilInv[n]/NormHilInv[n]}, {n, 1, 9}], + PlotJoined\ -> \ True, \n\tPlotRange -> {{0, 20}, {\(-10\), 150}}, + Prolog\ -> \ AbsolutePointSize[4], + PlotStyle \[Rule] farblist[\([ipl]\)], AspectRatio -> 0.6, + PlotLabel \[Rule] "\<\>", AxesLabel -> {"\<> n\>", "\< ^ %\>"}\), + "]"}]}]}], "Input"], + +Cell[BoxData[{ + \(\(Print["\< Relativer Fehler in % \>"];\)\), "\ +\[IndentingNewLine]", + \(Show[Tabspproz[ipl1], Tabspproz[ipl2], Tabspproz[ipl3], + Tabspproz[ipl4], Tabspproz[ipl5], Tabpkteproz[ipl1], Tabpkteproz[ipl2], + Tabpkteproz[ipl3], Tabpkteproz[ipl4], Tabpkteproz[ipl5], + Prolog\ -> \ AbsolutePointSize[4]]\)}], "Input"], + +Cell[BoxData[ + StyleBox[ + RowBox[{"(*", " ", + RowBox[{ + "Relativer", " ", "Fehler", " ", "bei", " ", "der", " ", "Berechnung", + " ", "der", " ", "inversen", " ", "Matrizen", " ", + StyleBox[ + RowBox[{"f", + StyleBox["\[UDoubleDot]r", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], " ", "alle", " ", "Werte", + " ", "von", " ", "nlist"}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], " "}]], "*)"}], + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(Print["\< Relativer Fehler in Log % \ +\>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabpktelog[ipl]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], + Log[10, 100*NormDiffHilInv[n]/NormHilInv[n]]}, {n, 1, 9}], + PlotJoined\ -> \ False, \n\tPlotRange -> {{0, 20}, {\(-21\), 5}}, + Prolog\ -> \ AbsolutePointSize[4], + PlotStyle \[Rule] farblist[\([ipl]\)], AspectRatio -> 0.6, + PlotLabel \[Rule] "\<\>", + AxesLabel -> {"\<> n\>", "\< ^ Log %\>"}\), "]"}]}]}], "Input"], + +Cell[BoxData[{\(Print["\< Relativer Fehler in Log % \ +\>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabsplog[ipl]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], + Log[10, 100*NormDiffHilInv[n]/NormHilInv[n]]}, {n, 1, 9}], + PlotJoined\ -> \ True, \n\tPlotRange -> {{0, 20}, {\(-21\), 5}}, + Prolog\ -> \ AbsolutePointSize[4], + PlotStyle \[Rule] farblist[\([ipl]\)], AspectRatio -> 0.6, + PlotLabel \[Rule] "\<\>", + AxesLabel -> {"\<> n\>", "\< ^ Log %\>"}\), "]"}]}]}], "Input"], + +Cell[BoxData[{ + \(\(Print["\< Relativer Fehler in % \>"];\)\ +\), "\[IndentingNewLine]", + \(Show[Tabsplog[ipl1], Tabsplog[ipl2], Tabsplog[ipl3], Tabsplog[ipl4], + Tabsplog[ipl5], Tabpktelog[ipl1], Tabpktelog[ipl2], Tabpktelog[ipl3], + Tabpktelog[ipl4], Tabpktelog[ipl5], + Prolog\ -> \ AbsolutePointSize[4]]\)}], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["Unterschied", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["zwischen", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Gauss", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["und", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Cholesky", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["beim", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Invertieren", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["f\[UDoubleDot]r", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox["alle", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Werte", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox["von", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox["nlist", + "Subsubsection", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[ + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], " "}]], + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{\(Print["\< Unterschied D = Gauss - \ +Cholesky \>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabpktediff[ipl]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], Log[10, NormDiffCholGau[n]]}, {n, 1, + 9}], PlotJoined\ -> \ False, \n\t + PlotRange -> {{0, 20}, {\(-35\), 20}}, + Prolog\ -> \ AbsolutePointSize[4], + PlotStyle \[Rule] farblist[\([ipl]\)], AspectRatio -> 0.6, + PlotLabel \[Rule] "\<\>", + AxesLabel -> {"\<> n\>", "\< ^ lg(D)\>"}\), "]"}]}]}], "Input"], + +Cell[BoxData[{\(Print["\< Unterschied D = Gauss - \ +Cholesky \>"];\), "\[IndentingNewLine]", + RowBox[{\(Tabspdiff[ipl]\), "=", + RowBox[{ + StyleBox["ListPlot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + "[", \(Table[{Tabelle[n, 1], Log[10, NormDiffCholGau[n]]}, {n, 1, + 9}], PlotJoined\ -> \ True, \n\t + PlotRange -> {{0, 20}, {\(-35\), 20}}, + Prolog\ -> \ AbsolutePointSize[4], + PlotStyle \[Rule] farblist[\([ipl]\)], AspectRatio -> 0.6, + PlotLabel \[Rule] "\<\>", + AxesLabel -> {"\<> n\>", "\< ^ lg(D)\>"}\), "]"}]}]}], "Input"], + +Cell[BoxData[ + \(Show[Tabpktediff[ipl1], Tabpktediff[ipl2], Tabpktediff[ipl3], + Tabpktediff[ipl4], Tabpktediff[ipl5], Tabspdiff[ipl1], Tabspdiff[ipl2], + Tabspdiff[ipl3], Tabspdiff[ipl4], Tabspdiff[ipl5]]\)], "Input"], + +Cell[BoxData[""], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1016, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +PrintingCopies->1, +PrintingPageRange->{Automatic, Automatic}, +Magnification->1 +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 290, 6, 59, "Input"], +Cell[2047, 59, 52, 1, 30, "Input"], +Cell[2102, 62, 2929, 91, 46, "Input"], +Cell[5034, 155, 876, 20, 70, "Input"], +Cell[5913, 177, 253, 5, 54, "Input"], +Cell[6169, 184, 165, 3, 46, "Input"], +Cell[6337, 189, 113, 2, 30, "Input"], +Cell[6453, 193, 281, 6, 49, "Input"], +Cell[6737, 201, 85, 1, 30, "Input"], +Cell[6825, 204, 604, 19, 46, "Input"], +Cell[7432, 225, 593, 12, 72, "Input"], +Cell[8028, 239, 71, 1, 30, "Input"], +Cell[8102, 242, 245, 5, 49, "Input"], +Cell[8350, 249, 300, 6, 99, "Input"], +Cell[8653, 257, 257, 6, 49, "Input"], +Cell[8913, 265, 88, 1, 30, "Input"], +Cell[9004, 268, 3359, 103, 49, "Input"], +Cell[12366, 373, 254, 5, 70, "Input"], +Cell[12623, 380, 5397, 155, 66, "Input"], +Cell[18023, 537, 389, 8, 90, "Input"], +Cell[18415, 547, 164, 3, 30, "Input"], +Cell[18582, 552, 170, 3, 50, "Input"], +Cell[18755, 557, 73, 1, 30, "Input"], +Cell[18831, 560, 377, 8, 90, "Input"], +Cell[19211, 570, 3700, 112, 69, "Input"], +Cell[22914, 684, 288, 5, 70, "Input"], +Cell[23205, 691, 420, 8, 73, "Input"], +Cell[23628, 701, 394, 7, 90, "Input"], +Cell[24025, 710, 156, 3, 30, "Input"], +Cell[24184, 715, 172, 3, 50, "Input"], +Cell[24359, 720, 65, 1, 30, "Input"], +Cell[24427, 723, 337, 6, 70, "Input"], +Cell[24767, 731, 3031, 89, 69, "Input"], +Cell[27801, 822, 315, 5, 70, "Input"], +Cell[28119, 829, 700, 18, 46, "Input"], +Cell[28822, 849, 388, 8, 90, "Input"], +Cell[29213, 859, 3549, 100, 71, "Input"], +Cell[32765, 961, 2344, 71, 66, "Input"], +Cell[35112, 1034, 1293, 23, 230, "Input"], +Cell[36408, 1059, 876, 27, 46, "Input"], +Cell[37287, 1088, 355, 6, 90, "Input"], +Cell[37645, 1096, 709, 18, 66, "Input"], +Cell[38357, 1116, 350, 6, 90, "Input"], +Cell[38710, 1124, 3760, 106, 71, "Input"], +Cell[42473, 1232, 2408, 72, 66, "Input"], +Cell[44884, 1306, 2313, 41, 310, "Input"], +Cell[47200, 1349, 767, 23, 46, "Input"], +Cell[47970, 1374, 376, 7, 70, "Input"], +Cell[48349, 1383, 702, 17, 66, "Input"], +Cell[49054, 1402, 373, 8, 90, "Input"], +Cell[49430, 1412, 2929, 87, 71, "Input"], +Cell[52362, 1501, 795, 14, 130, "Input"], +Cell[53160, 1517, 872, 21, 66, "Input"], +Cell[54035, 1540, 375, 8, 90, "Input"], +Cell[54413, 1550, 3248, 96, 69, "Input"], +Cell[57664, 1648, 285, 5, 70, "Input"], +Cell[57952, 1655, 661, 18, 46, "Input"], +Cell[58616, 1675, 351, 8, 70, "Input"], +Cell[58970, 1685, 3248, 96, 69, "Input"], +Cell[62221, 1783, 285, 5, 70, "Input"], +Cell[62509, 1790, 3248, 96, 69, "Input"], +Cell[65760, 1888, 291, 5, 70, "Input"], +Cell[66054, 1895, 324, 7, 70, "Input"], +Cell[66381, 1904, 661, 18, 46, "Input"], +Cell[67045, 1924, 352, 8, 70, "Input"], +Cell[67400, 1934, 937, 30, 46, "Input"], +Cell[68340, 1966, 314, 5, 70, "Input"], +Cell[68657, 1973, 4185, 125, 66, "Input"], +Cell[72845, 2100, 454, 8, 70, "Input"], +Cell[73302, 2110, 112, 2, 30, "Input"], +Cell[73417, 2114, 174, 3, 30, "Input"], +Cell[73594, 2119, 282, 6, 49, "Input"], +Cell[73879, 2127, 52, 1, 30, "Input"], +Cell[73934, 2130, 107, 2, 30, "Input"], +Cell[74044, 2134, 387, 10, 46, "Input"], +Cell[74434, 2146, 624, 12, 90, "Input"], +Cell[75061, 2160, 581, 11, 90, "Input"], +Cell[75645, 2173, 389, 10, 46, "Input"], +Cell[76037, 2185, 78, 1, 30, "Input"], +Cell[76118, 2188, 600, 11, 90, "Input"], +Cell[76721, 2201, 565, 11, 70, "Input"], +Cell[77289, 2214, 575, 18, 46, "Input"], +Cell[77867, 2234, 891, 20, 110, "Input"], +Cell[78761, 2256, 273, 6, 49, "Input"], +Cell[79037, 2264, 366, 6, 70, "Input"], +Cell[79406, 2272, 747, 20, 49, "Input"], +Cell[80156, 2294, 652, 13, 90, "Input"], +Cell[80811, 2309, 649, 13, 90, "Input"], +Cell[81463, 2324, 366, 6, 70, "Input"], +Cell[81832, 2332, 747, 20, 49, "Input"], +Cell[82582, 2354, 670, 13, 90, "Input"], +Cell[83255, 2369, 667, 13, 90, "Input"], +Cell[83925, 2384, 373, 6, 70, "Input"], +Cell[84301, 2392, 2749, 90, 46, "Input"], +Cell[87053, 2484, 663, 13, 90, "Input"], +Cell[87719, 2499, 660, 13, 90, "Input"], +Cell[88382, 2514, 231, 3, 50, "Input"], +Cell[88616, 2519, 26, 0, 30, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg4A.nb b/Bachelor/Numerische Mathematik/Num05Aufg4A.nb new file mode 100644 index 0000000..16f3e96 --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg4A.nb @@ -0,0 +1,840 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 27879, 747]*) +(*NotebookOutlinePosition[ 28541, 770]*) +(* CellTagsIndexPosition[ 28497, 766]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Numerik\ - \ + Aufgabe\ 4\ \ A\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ \ +2005\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \)\(\ \)\), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(\(Interpolation\)\(:\)\), + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section"], + + StyleBox[ + " \ + ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section"]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\n", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +1. \ Klassische\ Interpolation\ \((Newton)\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]], "\n", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +2. Nat\[UDoubleDot]rliche\ Kubische\ Spline - + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[ + General::spell1]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{\(lauf = 1\), ";", " ", + StyleBox[\( (*\ \ Lauf\ mit\ der\ Nummer\ lauf\ \ , \ + alle\ vorhergehenden\ L\[ADoubleDot]ufe\ bleiben\ \(erhalten\ !\)\ *) \ +\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Vorgeben\ \(("\")\)\ der\ m + + 1\ St\[UDoubleDot]tzpunkte\ , \[IndentingNewLine]\ \ \ \ \ \ \ L\ +\[ODoubleDot]schen\ \(("\< L \>")\)\ , \ \ Einf\[UDoubleDot]gen\ \(("\< E \ +\>")\)\ \ oder\ \ \[CapitalADoubleDot]ndern\ \(("\< K\>")\)\ eines\ Punktes\ \ +\ ?\ \ \ \ \ nichts\ \[CapitalADoubleDot]ndern\ \ \(("\< N \>")\)\ \ \ \ \ \ *) \ +\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(sch = \ "\"\), ";", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontSize->16, + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ Erster\ Lauf\ mit\ vorgegebenen\ \(Werten\ \ +!\)\ \ \ \ *) \), + FontSize->16, + FontColor->RGBColor[0, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[0, 0, 1]], "\[IndentingNewLine]", + StyleBox[" ", + FontSize->14, + FontColor->RGBColor[1, 0, 0]], + StyleBox[\( (*\ + Hier\ \[CapitalADoubleDot]nderungen\ \((L, E, + K)\)\ eingeben\ und\ direkt\ ausf\[UDoubleDot]hren\ \ +\[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ oder\ N\ f\[UDoubleDot]r\ nicht\ \ +\[ADoubleDot]ndern\ bei\ einem\ neuen\ Lauf\ *) \), + FontSize->16, + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + FontSize->16, + FontColor->RGBColor[1, 0, 0]]}]}]], "Input"], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ \ , \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\(St\[UDoubleDot]tzpunkte\ 0, .. , m\ \ eingeben\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(If[\ + sch == "\", {\ \ m = 10, \[IndentingNewLine]\ + xp[0] = \(-4. \); \ \ \ yp[0] = + 0. ; \ \ \ xp[1] = \(-3.95\); \ \ \ \ \ yp[1] = + 0.5; \ \ \ \ \ \ xp[2] = \(-3.5\); \ \ \ \ \ \ yp[2] = + 1.5; \ \ \ \ \ \ \ xp[3] = \(-3. \); \ \ \ yp[3] = + 2. ; \ \ \ xp[4] = \ \(-2\); \ \ \ \ \ \ \ \ \ \ yp[4] = + 2.6; \ \ \ \ \ \ xp[5] = \ \(-1\); \ \ \ \ \ \ \ \ \ yp[5] = + 2.9; \ \ \ \ \ \ \ \ \ xp[6] = \ \ \ 0. ; \ \ \ yp[6] = + 3. ; \ \ xp[7] = \ \ \ 2; \ \ \ \ \ \ \ \ \ \ \ yp[7] = + 2.6; \ \ \ \ \ \ \ xp[8] = \(+3. \); \ \ \ \ \ \ \ \ yp[8] = + 2. ; \n\ \ \ \ \ \ \ \ xp[9] = \ 3.75; \ + yp[9] = 1; \ \ \ \ xp[10] = \(+4. \); \ \ \ \ \ \ yp[10] = + 0. ;\ \ \ }\ \ \ \ ];\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(Vorgegebene\ St\[UDoubleDot]tzpunkte\ 0, .. , m\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch == "\", + TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], "\< yp[\>", ind, "\<] = \>", + PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ +L\[ODoubleDot]schen\ \ eines\ \ Punktes\ \ mit\ \ der\ \ Nummer\ \ index\ \ \ \ +*) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(index\ = \ 1\), " ", ";", " ", + StyleBox[\( (*\ + Nummer\ des\ zu\ entfernenden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], " ", "\n", + " ", \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ , {m = + m - 1; \n\ \ \ \ \ \ \ \ \ Do[{\ xp[j] = xp[j + 1], + yp[j] = yp[j + 1]}, {j, index, m}]}]]\), ";", + " "}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Entfernen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ \ , \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ +Einf\[UDoubleDot]gen\ \ eins\ \ Punktes\ \ mit\ \ der\ \ Nummer\ i\ ndex\ \ \ \ +\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(index\ = \ 2\), " ", ";", " ", + StyleBox[\( (*\ + Nummer\ des\ einzuf\[UDoubleDot]genden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], " ", "\[IndentingNewLine]", + + RowBox[{"If", "[", + RowBox[{\(sch \[Equal] "\"\), ",", + RowBox[{"If", "[", + + RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] m\), + ",", + RowBox[{"{", + + RowBox[{\(m = m + 1\), + ";", \(Do[{xp[j], yp[j]}, {j, 0, index - 1}]\), ";", + "\[IndentingNewLine]", + " ", \(Do[{xp[j] = xp[j - 1], yp[j] = yp[j - 1]}, {j, + m, index + 1, \(-1\)}]\), ";", "\[IndentingNewLine]", + " ", \(xp[index] = \ \ 3.75\), + " ", + StyleBox[\( (*\ xp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + " ", \(yp[index] = \ \ \ 1.0\)}], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox[\( (*\ yp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox["}", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m, \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \[CapitalADoubleDot]ndern\ des\ Punktes\ mit\ \ +der\ Nummer\ index\ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(index\ = \ \ 2\), ";", " ", + StyleBox[\( (*\ + Nummer\ des\ zu\ \[ADoubleDot]ndernden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], " ", "\n", " ", + RowBox[{"If", "[", + RowBox[{\(sch \[Equal] "\"\), ",", + RowBox[{"If", "[", + + RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] m\), + ",", + RowBox[{"{", " ", + + RowBox[{\(xp[index] = \ \ \ \(-3.75\)\), + " ", + StyleBox[\( (*\ xp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + " ", \(yp[index] = \ \ \ 1.0\)}], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox[\( (*\ yp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox["}", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m, \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + \(\(nummer[lauf] = m;\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\ +\ den\ Graph\ der\ Ellipse\ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(nd = 400;\)\)], "Input"], + +Cell[BoxData[ + \(Do[{xel[j] = xp[0] + j*\((xp[m] - xp[0])\)/nd, + yel[j] = 3/4*Sqrt[16 - xel[j]^2]}, {j, 0, nd}]\)], "Input"], + +Cell[BoxData[ + \(<< Graphics`Colors`\)], "Input"], + +Cell[BoxData[ + \(\(liste1 = {Red, HotPink, Green, Apricot, Brown, DarkGreen, Cobalt, + Brick, Orange, Magenta, IndianRed, ForestGreen};\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ Plotten\ der\ Ellipse\ \ x\^2\/16\ +\ + \ y\^2\/9 = \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(ellipsplot = + ListPlot[Table[{xel[j], yel[j]}, {j, 0, nd}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \tPlotStyle -> Brown, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(linienplot = + ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ True, \t + PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \n\tPlotStyle -> Blue, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(punktplot = + ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ False, \t + PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \n\tPlotStyle -> Blue, + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5, + AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(Show[ellipsplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Newton\ - \ + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Dividierte\ Differenzen\ f\ +\[UDoubleDot]r\ die\ Newton - Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[DivDiff[k, 1] = \((yp[k + 1] - yp[k])\)/\((xp[k + 1] - xp[k])\), {k, + 0, m - 1}]\)], "Input"], + +Cell[BoxData[ + \(Do[Do[ + DivDiff[k, + j] = \((DivDiff[k + 1, j - 1] - + DivDiff[k, j - 1])\)/\((xp[k + j] - xp[k])\), {k, 0, + m - j}], {j, 2, m}]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\ den\ \ +Graph\ der\ Newton - Interpolation\ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[{xnew[j] = xel[j], ynew[j] = yp[0], + pro = xel[j] - + xp[0], \n\t\tDo[{ynew[j] = ynew[j] + pro*DivDiff[0, i], + pro = pro*\((xnew[j] - xp[i])\)}, {i, 1, m}]}, {j, 0, + nd}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Graph\ der\ Newton - + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(newtonplot = + ListPlot[Table[{xnew[j], ynew[j]}, {j, 0, nd}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \tPlotStyle -> Red, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ Nat\[UDoubleDot]rliche\ Spline - + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \ +\), + "Section", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Erstellen\ \ +der\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], "\n", + " ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \((\ + Haupt - \ und\ Nebendiagonale\ )\)\ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(\(Du[0] = xp[1] - xp[0];\)\), "\n", + \(Do[{Du[k] = xp[k + 1] - xp[k], Dh[k] = 2 \((Du[k - 1] + Du[k])\)}, {k, + 1, m - 1}]\)}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Cholesky - + Zerlegung\ der\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(\(Ch[1] = Sqrt[Dh[1]];\)\), "\n", + \(Do[{Cn[k - 1] = Du[k - 1]/Ch[k - 1], + Ch[k] = Sqrt[Dh[k] - Cn[k - 1]^2]}, {k, 2, m - 1}]\)}], "Input"], + +Cell[BoxData[ + StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Vorw\ +\[ADoubleDot]rtsrechnung\ "\"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ *) \)\(\n\)\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tund\ \ +Erstellen\ der\ rechten\ Seite\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \)\), + + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(Dv[0] = yp[1] - yp[0]; \ \ \ \ \ \ \ Dv[1] = yp[2] - yp[1];\), "\n", + \(\(Dr[1] = 3 \((Dv[1]/Du[1] - Dv[0]/Du[0])\);\)\), "\n", + \(\(Z[1] = Dr[1]/Ch[1];\)\), "\n", + \(Do[{Dv[k] = yp[k + 1] - yp[k], \n\t\tDr[k] = + 3 \((Dv[k]/Du[k] - Dv[k - 1]/Du[k - 1])\), \n\t\tZ[ + k] = \((Dr[k] - Z[k - 1]*Cn[k - 1])\)/Ch[k]}, \n{k, 2, + m - 1}]\)}], "Input"], + +Cell[BoxData[ + StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +R\[UDoubleDot]ckw\[ADoubleDot]rtsrechnung\ "\"\ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ *) \)\(\n\)\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \tBerechnung\ der\ Koeffizienten\ B\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ *) \)\), + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[{ + \(B[m] = 0; \ \ B[m - 1] = Z[m - 1]/Ch[m - 1];\), "\n", + \(Do[B[k] = \((Z[k] - B[k + 1]*Cn[k])\)/Ch[k], {k, m - 2, 1, \(-1\)}]; \ + B[0] = 0;\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tBerechnung\ der\ \ +Koeffizienten\ A\_\(\(k\)\(\ \)\), \ C\_k\ , \ + D\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[{A[ + k] = \((B[k + 1] - B[k])\)/\((3 + Du[k])\), \n\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ Cc[k] = + Dv[k]/Du[k] - Du[k]*\((B[k + 1] + 2 B[k])\)/3, \ + Dc[k] = yp[k]}, {k, 0, m - 1}]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\ den\ \ +Graph\ der\ Spline - Interpolation\ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[{xnat[j] = xel[j], + xint = xp[0], \n\t\tDo[{Dnt[k] = xp[k + 1] - xp[k], + If[\((xnat[j] >= xint\ )\)\ \[And] \ \ \((xnat[j] <= + xint + Dnt[k]\ )\), {knt = k, Break[]}\ , + xint = xint + Dnt[k]]}, {k, 0, m - 1}], \n\t\tDntmj = + xnat[j] - xp[knt], \n\t\t\t\t\t\tynat[j] = + A[knt]*Dntmj^3 + B[knt]*Dntmj^2 + Cc[knt]*Dntmj + + Dc[knt]\ }, \n\t{j, 0, nd}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Graph\ der\ nat . \ Spline - + Funktion\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(natsplplot = + ListPlot[Table[{xnat[j], ynat[j]}, {j, 0, nd}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \tPlotStyle -> Green, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(graf[lauf] = + Show[natsplplot, newtonplot, ellipsplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"], + +Cell[BoxData[ + \(Do[{Print["\< Lauf Nummer \>", l\ , "\< mit \>", + nummer[l], "\< St\[UDoubleDot]tzpunkten \>"\ ], Show[graf[l]]}, {l, + 1, lauf}]\)], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1016, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +Magnification->1 +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 324, 6, 59, "Input"], +Cell[2081, 59, 1439, 38, 97, "Input"], +Cell[3523, 99, 133, 2, 30, "Input"], +Cell[3659, 103, 294, 6, 30, "Input"], +Cell[3956, 111, 518, 10, 69, "Input"], +Cell[4477, 123, 1032, 26, 70, "Input"], +Cell[5512, 151, 434, 7, 70, "Input"], +Cell[5949, 160, 724, 23, 46, "Input"], +Cell[6676, 185, 851, 14, 110, "Input"], +Cell[7530, 201, 450, 13, 46, "Input"], +Cell[7983, 216, 305, 6, 70, "Input"], +Cell[8291, 224, 292, 7, 46, "Input"], +Cell[8586, 233, 567, 12, 70, "Input"], +Cell[9156, 247, 1235, 39, 46, "Input"], +Cell[10394, 288, 434, 7, 70, "Input"], +Cell[10831, 297, 300, 7, 46, "Input"], +Cell[11134, 306, 1927, 41, 110, "Input"], +Cell[13064, 349, 1246, 39, 46, "Input"], +Cell[14313, 390, 430, 7, 70, "Input"], +Cell[14746, 399, 292, 6, 49, "Input"], +Cell[15041, 407, 1607, 35, 70, "Input"], +Cell[16651, 444, 1246, 39, 46, "Input"], +Cell[17900, 485, 430, 7, 70, "Input"], +Cell[18333, 494, 54, 1, 30, "Input"], +Cell[18390, 497, 362, 9, 46, "Input"], +Cell[18755, 508, 46, 1, 30, "Input"], +Cell[18804, 511, 135, 2, 30, "Input"], +Cell[18942, 515, 52, 1, 30, "Input"], +Cell[18997, 518, 162, 2, 30, "Input"], +Cell[19162, 522, 374, 9, 54, "Input"], +Cell[19539, 533, 275, 5, 50, "Input"], +Cell[19817, 540, 262, 4, 50, "Input"], +Cell[20082, 546, 307, 5, 50, "Input"], +Cell[20392, 553, 115, 2, 30, "Input"], +Cell[20510, 557, 337, 7, 49, "Input"], +Cell[20850, 566, 317, 6, 46, "Input"], +Cell[21170, 574, 124, 2, 30, "Input"], +Cell[21297, 578, 204, 5, 30, "Input"], +Cell[21504, 585, 272, 5, 46, "Input"], +Cell[21779, 592, 245, 5, 50, "Input"], +Cell[22027, 599, 371, 9, 46, "Input"], +Cell[22401, 610, 275, 5, 50, "Input"], +Cell[22679, 617, 323, 7, 49, "Input"], +Cell[23005, 626, 538, 10, 66, "Input"], +Cell[23546, 638, 168, 3, 50, "Input"], +Cell[23717, 643, 309, 6, 46, "Input"], +Cell[24029, 651, 172, 3, 50, "Input"], +Cell[24204, 656, 402, 7, 66, "Input"], +Cell[24609, 665, 405, 7, 150, "Input"], +Cell[25017, 674, 416, 7, 66, "Input"], +Cell[25436, 683, 181, 3, 50, "Input"], +Cell[25620, 688, 267, 5, 46, "Input"], +Cell[25890, 695, 252, 5, 50, "Input"], +Cell[26145, 702, 272, 5, 46, "Input"], +Cell[26420, 709, 470, 8, 130, "Input"], +Cell[26893, 719, 350, 9, 46, "Input"], +Cell[27246, 730, 277, 5, 50, "Input"], +Cell[27526, 737, 161, 3, 30, "Input"], +Cell[27690, 742, 185, 3, 30, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg4B.nb b/Bachelor/Numerische Mathematik/Num05Aufg4B.nb new file mode 100644 index 0000000..e9223fd --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg4B.nb @@ -0,0 +1,1437 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 49607, 1336]*) +(*NotebookOutlinePosition[ 50269, 1359]*) +(* CellTagsIndexPosition[ 50225, 1355]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Numerik\ - \ + Aufgabe\ \ +4\ \ B\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ \ +2005\ \ \ \ \ *) \)\(\ \)\), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(\(Interpolation\)\(:\)\), + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section"], + + StyleBox[ + " \ + ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section"]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\n", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + StyleBox["Parametrische", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Darstellung", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["x", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + StyleBox["\[CurlyPhi]", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\((x)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["und", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["y", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["\[Psi]", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\((x)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[")", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + RowBox[{ + StyleBox["(", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(f\[UDoubleDot]r\ geschlossene\ Kurven\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[")", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\[IndentingNewLine]", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + RowBox[{ + StyleBox["1.", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Klassische", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Interpolation", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\((\ Newton\ )\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], " "}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\n", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + StyleBox["2.", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Nat\[UDoubleDot]rliche", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["kubische", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Spline", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox["-", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Funktion", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], " "}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[ + General::spell1]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{\(lauf = 1\), ";", " ", + StyleBox[\( (*\ \ Lauf\ mit\ der\ Nummer\ lauf\ \ , \ + alle\ vorhergehenden\ L\[ADoubleDot]ufe\ bleiben\ \(erhalten\ !\)\ *) \ +\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Vorgeben\ \(("\")\)\ der\ m + + 1\ St\[UDoubleDot]tzpunkte\ , \[IndentingNewLine]\ \ \ \ \ \ \ L\ +\[ODoubleDot]schen\ \(("\< L \>")\)\ , \ \ Einf\[UDoubleDot]gen\ \(("\< E \ +\>")\)\ \ oder\ \ \[CapitalADoubleDot]ndern\ \(("\< K\>")\)\ eines\ Punktes\ \ +\ ?\ \ \ \ \ \ \ \ nichts\ \[CapitalADoubleDot]ndern\ \ \(("\< N \>")\)\ \ \ \ +\ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(sch = \ "\"\), ";", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontSize->16, + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ Erster\ Lauf\ mit\ vorgegebenen\ \(Werten\ \ +!\)\ \ \ \ *) \), + FontSize->16, + FontColor->RGBColor[0, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[0, 0, 1]], "\[IndentingNewLine]", + StyleBox[" ", + FontSize->14, + FontColor->RGBColor[1, 0, 0]], + StyleBox[\( (*\ + Hier\ \[CapitalADoubleDot]nderungen\ \((L, E, + K)\)\ eingeben\ und\ direkt\ ausf\[UDoubleDot]hren\ \ +\[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ oder\ N\ f\[UDoubleDot]r\ nicht\ \ +\[ADoubleDot]ndern\ bei\ einem\ neuen\ Lauf\ *) \), + FontSize->16, + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + FontSize->16, + FontColor->RGBColor[1, 0, 0]]}]}]], "Input"], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ \ , \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\(St\[UDoubleDot]tzpunkte\ 0, .. , m\ \ eingeben\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(If[\ + sch == "\", {\ \ m = + 20, \[IndentingNewLine]xp[0] = \(-4. \); \ \ \ yp[0] = + 0. ; \ \ \ xp[1] = \(-3.95\); \ \ \ \ \ yp[1] = + 0.5; \ \ \ \ \ \ xp[2] = \(-3.5\); \ \ \ \ \ \ yp[2] = + 1.5; \ \ \ \ \ xp[3] = \(-3. \); \ \ \ yp[3] = + 2. ; \ \ \ xp[4] = \ \(-2\); \ \ \ \ \ \ \ \ \ \ yp[4] = + 2.6; \ \ \ \ \ \ xp[5] = \ \(-1\); \ \ \ \ \ \ \ \ \ yp[5] = + 2.9; \ \ \ \ \ \ \ \ xp[6] = \ \ \ 0. ; \ \ \ yp[6] = + 3. ; \ \ xp[7] = \ \ \ 2; \ \ \ \ \ \ \ \ \ \ \ yp[7] = + 2.6; \ \ \ \ \ \ \ xp[8] = \(+3. \); \ \ \ \ \ \ \ \ yp[8] = + 2. ; \nxp[9] = \ 3.75; \ \ \ \ \ \ yp[9] = + 1; \ \ \ \ \ \ \ \ \ \ xp[10] = \(+4. \); \ \ \ \ \ \ \ yp[10] = + 0. ; \ \ \ \ \ \ \ \ xp[11] = + 3.5; \ \ \ \ \ yp[11] = \(-1.5\); \ \ \ \ \ \ \n + xp[12] = \(+3. \); \ \ \ \ \ \ yp[12] = \(-2. \); \ \ \ \ xp[ + 13] = \ \ \ 1; \ \ \ \ \ \ \ \ \ yp[13] = \(-2.9\); \ \ xp[ + 14] = \ \ \ 0. ; \ \ \ yp[14] = \(-3. \); \[IndentingNewLine]xp[ + 15] = \ \(-2\); \ \ \ \ \ \ \ \ yp[15] = \(-2.6\); \ + xp[16] = \(-3. \); \ \ \ \ \ yp[16] = \(-2. \); \ \ \ \ \ xp[ + 17] = \(-3.5\); \ \ \ yp[ + 17] = \(-1.5\); \ \ \ \ \ \ \[IndentingNewLine]xp[ + 18] = \(-3.75\); \ + yp[18] = \(-1. \); \ \ xp[19] = \(-3.95\); \ \ \ \ yp[ + 19] = \(-0.5\); \ \ xp[20] = \(-4. \); \ \ \ yp[20] = + 0. ;}];\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(Vorgegebene\ St\[UDoubleDot]tzpunkte\ 0, .. , m\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch == "\", + TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], "\< yp[\>", ind, "\<] = \>", + PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ +L\[ODoubleDot]schen\ \ eines\ \ Punktes\ \ mit\ \ der\ \ Nummer\ \ index\ \ \ \ +*) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(index\ = 9\), " ", ";", " ", + StyleBox[\( (*\ + Nummer\ des\ zu\ entfernenden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], " ", "\n", + " ", \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ , {m = + m - 1; \n\ \ \ \ \ \ \ \ \ Do[{\ xp[j] = xp[j + 1], + yp[j] = yp[j + 1]}, {j, index, m}]}]]\), ";", + " "}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Entfernen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ \ , \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ +Einf\[UDoubleDot]gen\ \ eins\ \ Punktes\ \ mit\ \ der\ \ Nummer\ i\ ndex\ \ \ \ +\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + RowBox[{\(index\ = \ \ 1\ ;\), " ", + + StyleBox[\( (*\ + Nummer\ des\ einzuf\[UDoubleDot]genden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]]}], " ", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"If", "[", + RowBox[{\(sch \[Equal] "\"\), ",", + RowBox[{"If", "[", + + RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\), ",", + RowBox[{"{", + + RowBox[{\(m = m + 1\), + ";", \(Do[{xp[j], yp[j]}, {j, 0, index - 1}]\), ";", + "\[IndentingNewLine]", + " ", \(Do[{xp[j] = xp[j - 1], yp[j] = yp[j - 1]}, {j, + m, index + 1, \(-1\)}]\), ";", + "\[IndentingNewLine]", + " ", \(xp[index] = \ \ \(-\ 3.75\)\), + " ", + StyleBox[\( (*\ xp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + " ", \(yp[index] = \ \ \ 1.0\)}], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox[\( (*\ yp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox["}", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]]}]}]}]], "Input"], + +Cell[BoxData[ + \(\(nummer[lauf] = m;\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m, \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \[CapitalADoubleDot]ndern\ des\ Punktes\ mit\ \ +der\ Nummer\ index\ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + RowBox[{\(index\ = \ \ 19\ ;\), " ", + + StyleBox[\( (*\ + Nummer\ des\ zu\ \[ADoubleDot]ndernden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]]}], " ", "\n", " ", + RowBox[{ + RowBox[{"If", "[", + RowBox[{\(sch \[Equal] "\"\), ",", + RowBox[{"If", "[", + + RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\), ",", + RowBox[{"{", " ", + + RowBox[{\(xp[index] = \ \ \ \(-3.90\)\), + " ", + StyleBox[\( (*\ xp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + " ", \(yp[index] = \ \ \ \(-0.5\)\)}], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox[\( (*\ yp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox["}", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]]}]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m, \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ Bereitstellen\ des\ Parameters\ tp\ f\ +\[UDoubleDot]r\ die\ m\ St\[UDoubleDot]tzpunkte\ \ \ \ \ \ \ \ \ *) \), + "Subsection", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\ \)\(\(tp[0] = 0;\)\[IndentingNewLine] + Do[{Delt[k - 1] = + Sqrt[\((xp[k] - xp[k - 1])\)^2 + \((yp[k] - yp[k - 1])\)^2], + tp[k] = tp[k - 1] + Delt[k - 1]}, {k, 1, m}]\)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\ +\ die\ Parameterdarstellung\ der\ Ellipse\ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ und\ Bereitstellen\ des\ Parameters\ +\ tj, \ \((\ j, \ 0, \ nd\ )\)\ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(nd = 400;\)\)], "Input"], + +Cell[BoxData[ + \(Do[{tj[j] = tp[0] + j*\((tp[m] - tp[0])\)/nd, \ + tel[j] = + 8. *ArcTan[1]/nd* + j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xel[j] = \(-\ 4\)*Cos[tel[j]], + yel[j] = 3*Sin[tel[j]]}, {j, 0, nd}]\)], "Input"], + +Cell[BoxData[ + \(<< Graphics`Colors`\)], "Input"], + +Cell[BoxData[ + \(\(liste1 = {Red, HotPink, Green, Apricot, Brown, DarkGreen, Cobalt, + Brick, Orange, Magenta, IndianRed, ForestGreen};\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ Plotten\ der\ Ellipse\ \ x\ = \ \(4* + cos \((t)\)\ \ und\ \ y\ = \ + 3*sin \((t)\)\)\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(ellipsplot = + ListPlot[Table[{xel[j], yel[j]}, {j, 0, nd}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \tPlotStyle -> Brown, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(punktplot = + ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ False, \t + PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \n\tPlotStyle -> Blue, + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5, + AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(linienplot = + ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ True, \t + PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \n\tPlotStyle -> Blue, + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5, + AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(Show[ellipsplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Newton\ - \ + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ Funktionsunterprogramm\ zur\ Berechnung\ \ +der\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\ \ \ \ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ \ +Newton - Interpolation\ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], " "}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(FunkDivDiff[xpform_, + ypform_] := \ \((\[IndentingNewLine]Do[ + DivDiffret[k, + 1] = \((ypform[k + 1] - ypform[k])\)/\((xpform[k + 1] - + xpform[k])\), {k, 0, m - 1}]; \[IndentingNewLine]Do[ + Do[DivDiffret[k, + j] = \((DivDiffret[k + 1, j - 1] - + DivDiffret[k, j - 1])\)/\((xpform[k + j] - + xpform[k])\), {k, 0, m - j}], {j, 2, m}]; + DivDiffmatret = + Table[DivDiffret[0, j], {j, 1, m}]; {DivDiffmatret})\)\)], "Input"], + +Cell[BoxData[ + \(\(DivDiffxmat = FunkDivDiff[tp, xp]\ ;\)\)], "Input"], + +Cell[BoxData[ + RowBox[{\(DivDiffx = DivDiffxmat[\([1]\)];\), + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ x - + Werte\ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(DivDiffymat = FunkDivDiff[tp, yp]\ ;\), + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(DivDiffy = DivDiffymat[\([1]\)];\), " ", + StyleBox[\( (*\ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ y - + Werte\ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ xj\ und\ yj\ f\ +\[UDoubleDot]r\ den\ Graph\ der\ Newton - Interpolation\ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[{xnew[j] = xp[0], + prox = tj[j] - + tp[0], \[IndentingNewLine]Do[{xnew[j] = + xnew[j] + prox*DivDiffx[\([i]\)], + prox = prox*\((tj[j] - tp[i])\)}, {i, 1, + m}], \[IndentingNewLine]ynew[j] = yp[0], + proy = tj[j] - tp[0], \n\t + Do[{ynew[j] = ynew[j] + proy*DivDiffy[\([i]\)], + proy = proy*\((tj[j] - tp[i])\)}, {i, 1, m}]}, {j, 0, + nd}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ Parametrische\ Darstellung\ der\ Newton - + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(newtonplot = + ListPlot[Table[{xnew[j], ynew[j]}, {j, 0, nd}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \tPlotStyle -> Red, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(\(\(Show[newtonplot, ellipsplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)\(\[IndentingNewLine]\) + \)\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Nat\[UDoubleDot]rliche\ Spline - + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \ +\), + "Section", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ Funktionsunterprogramm\ zur\ Berechnung\ \ +der\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\ \ \ \ \ Koeffizienten\ f\[UDoubleDot]r\ die\ nat\ +\[UDoubleDot]rlichen\ Spline - Interpolation\ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], " "}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + RowBox[{\(FunkNatSpl[xpform_, ypform_]\), ":=", " ", + RowBox[{ + "(", "\[IndentingNewLine]", " ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Erstellen\ \ +der\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], "\n", + " ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \((\ + Haupt - \ und\ Nebendiagonale\ )\)\ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + RowBox[{\(Du[0] = xpform[1] - xpform[0]\), ";", "\n", + " ", \(Do[{Du[k] = xpform[k + 1] - xpform[k], + Dh[k] = 2 \((Du[k - 1] + Du[k])\)}, {k, 1, m - 1}]\), ";", + "\[IndentingNewLine]", " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Cholesky - + Zerlegung\ der\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + "\[IndentingNewLine]", \(Ch[1] = Sqrt[Dh[1]]\), ";", "\n", + " ", \(Do[{Cn[k - 1] = Du[k - 1]/Ch[k - 1], + Ch[k] = Sqrt[Dh[k] - Cn[k - 1]^2]}, {k, 2, m - 1}]\), ";", + "\[IndentingNewLine]", " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ Vorw\[ADoubleDot]rtsrechnung\ \ +"\"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + StyleBox["\n", + FontColor->RGBColor[1, 0, 1]], " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ und\ Erstellen\ der\ rechten\ \ +Seite\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + "\[IndentingNewLine]", \(Dv[0] = ypform[1] - ypform[0]\), ";", + " ", \(Dv[1] = ypform[2] - ypform[1]\), ";", "\n", + " ", \(Dr[1] = 3 \((Dv[1]/Du[1] - Dv[0]/Du[0])\)\), ";", "\n", + " ", \(Z[1] = Dr[1]/Ch[1]\), ";", "\n", + " ", \(Do[{Dv[k] = ypform[k + 1] - ypform[k], \n\t\tDr[k] = + 3 \((Dv[k]/Du[k] - Dv[k - 1]/Du[k - 1])\), \n\t\tZ[ + k] = \((Dr[k] - Z[k - 1]*Cn[k - 1])\)/Ch[k]}, \n\ \ \ {k, + 2, m - 1}]\), ";", "\[IndentingNewLine]", + " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R\[UDoubleDot]ckw\ +\[ADoubleDot]rtsrechnung\ "\"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + StyleBox["\n", + FontColor->RGBColor[1, 0, 1]], " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \tBerechnung\ der\ \ +Koeffizienten\ B\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + "\[IndentingNewLine]", \(B[m] = 0\), ";", + " ", \(B[m - 1] = Z[m - 1]/Ch[m - 1]\), ";", "\n", + " ", \(Do[ + B[k] = \((Z[k] - B[k + 1]*Cn[k])\)/Ch[k], {k, m - 2, + 1, \(-1\)}]\), ";", " ", \(B[0] = 0\), ";", + "\[IndentingNewLine]", " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ Berechnung\ der\ \ +Koeffizienten\ A\_\(\(k\)\(\ \)\), \ C\_k\ , \ + D\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + "\[IndentingNewLine]", \(Do[{A[ + k] = \((B[k + 1] - B[k])\)/\((3 + Du[k])\), \n\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ Cc[k] = + Dv[k]/Du[k] - Du[k]*\((B[k + 1] + 2 B[k])\)/3, \ + Dc[k] = ypform[k]}, {k, 0, m - 1}]\), ";", + "\[IndentingNewLine]", + " ", \(Aret = Table[A[k], \ {k, 0, m - 1}]\), ";", + " ", \(Bret = Table[B[k], {k, 0, m}]\), ";", " ", + "\[IndentingNewLine]", " ", \(Cret = Table[Cc[k], {k, 0, m - 1}]\), + ";", " ", \(Dret = Table[Dc[k], {k, 0, m - 1}]\), ";", + "\[IndentingNewLine]", \({Aret, Bret, Cret, Dret}\)}], + ")"}]}]], "Input"], + +Cell[BoxData[ + \(\(ABCDxmat = FunkNatSpl[tp, xp]\ \ ;\)\)], "Input"], + +Cell[BoxData[ + RowBox[{\(Anatx = ABCDxmat[\([1]\)]\ ;\), " ", + StyleBox[\( (*\ + Koeffizienen\ Ak\ \ \(f \[UDoubleDot]r\)\ die\ x - Werte\ *) \), + FontColor->RGBColor[1, 0, 1], + Background->None]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Bnatx = ABCDxmat[\([2]\)];\), " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Bk", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Cnatx = ABCDxmat[\([3]\)];\), " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Ck", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Dnatx = ABCDxmat[\([4]\)];\), " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Dk", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input"], + +Cell[BoxData[ + \(\(ABCDymat = FunkNatSpl[tp, yp]\ ;\)\)], "Input"], + +Cell[BoxData[ + RowBox[{\(Anaty = ABCDymat[\([1]\)];\), " ", + StyleBox[\( (*\ + Koeffizienen\ Ak\ \ \(f \[UDoubleDot]r\)\ die\ x - Werte\ *) \), + FontColor->RGBColor[1, 0, 1], + Background->None]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Bnaty = ABCDymat[\([2]\)];\), " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Bk", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Cnaty = ABCDymat[\([3]\)];\), " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Ck", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{\(Dnaty = ABCDymat[\([4]\)]\ ;\), " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Dk", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ xj\ und\ yj\ f\ +\[UDoubleDot]r\ den\ Graph\ der\ Spline - Interpolation\ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[{tint = tp[0], \n\t + Do[{Dnt[k] = tp[k + 1] - tp[k], + If[\((tj[j] \[GreaterEqual] + tint\ )\)\ \[And] \ \ \((tj[j] \[LessEqual] + tint + Dnt[k]\ )\), {knt = k, Break[]}\ , + tint = tint + Dnt[k]]}, {k, 0, m - 1}], \n\t + Dntmj = tj[j] - tp[knt], \[IndentingNewLine]\ \ \ \ \ xnat[j] = + Anatx[\([knt + 1]\)]*Dntmj^3 + Bnatx[\([knt + 1]\)]*Dntmj^2 + + Cnatx[\([knt + 1]\)]*Dntmj + Dnatx[\([knt + 1]\)]\ , \n\t + ynat[j] = + Anaty[\([knt + 1]\)]*Dntmj^3 + Bnaty[\([knt + 1]\)]*Dntmj^2 + + Cnaty[\([knt + 1]\)]*Dntmj + \ \ Dnaty[\([knt + 1]\)]\ }, \n\t{j, + 0, nd}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Graph\ der\ nat . \ Spline - + Funktion\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(natsplplot = + ListPlot[Table[{xnat[j], ynat[j]}, {j, 0, nd}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \tPlotStyle -> Green, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(graf[lauf] = + Show[natsplplot, newtonplot, ellipsplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"], + +Cell[BoxData[ + \(Do[{Print["\< Lauf Nummer \>", l\ , "\< mit \>", + nummer[l], "\< St\[UDoubleDot]tzpunkten \>"\ ], Show[graf[l]]}, {l, + 1, lauf}]\)], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1016, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +Magnification->1 +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 318, 7, 59, "Input"], +Cell[2075, 60, 7848, 236, 137, "Input"], +Cell[9926, 298, 133, 2, 30, "Input"], +Cell[10062, 302, 294, 6, 30, "Input"], +Cell[10359, 310, 527, 10, 69, "Input"], +Cell[10889, 322, 1032, 26, 70, "Input"], +Cell[11924, 350, 434, 7, 70, "Input"], +Cell[12361, 359, 724, 23, 46, "Input"], +Cell[13088, 384, 1583, 26, 170, "Input"], +Cell[14674, 412, 450, 13, 46, "Input"], +Cell[15127, 427, 305, 6, 70, "Input"], +Cell[15435, 435, 292, 7, 46, "Input"], +Cell[15730, 444, 565, 12, 70, "Input"], +Cell[16298, 458, 1235, 39, 46, "Input"], +Cell[17536, 499, 434, 7, 70, "Input"], +Cell[17973, 508, 300, 7, 46, "Input"], +Cell[18276, 517, 2079, 45, 110, "Input"], +Cell[20358, 564, 54, 1, 30, "Input"], +Cell[20415, 567, 1246, 39, 46, "Input"], +Cell[21664, 608, 430, 7, 70, "Input"], +Cell[22097, 617, 292, 6, 49, "Input"], +Cell[22392, 625, 1728, 38, 70, "Input"], +Cell[24123, 665, 1246, 39, 46, "Input"], +Cell[25372, 706, 430, 7, 70, "Input"], +Cell[25805, 715, 405, 10, 46, "Input"], +Cell[26213, 727, 228, 4, 50, "Input"], +Cell[26444, 733, 700, 16, 66, "Input"], +Cell[27147, 751, 46, 1, 30, "Input"], +Cell[27196, 754, 324, 6, 50, "Input"], +Cell[27523, 762, 52, 1, 30, "Input"], +Cell[27578, 765, 162, 2, 30, "Input"], +Cell[27743, 769, 411, 10, 46, "Input"], +Cell[28157, 781, 275, 5, 50, "Input"], +Cell[28435, 788, 307, 5, 50, "Input"], +Cell[28745, 795, 307, 5, 50, "Input"], +Cell[29055, 802, 115, 2, 30, "Input"], +Cell[29173, 806, 337, 7, 49, "Input"], +Cell[29513, 815, 570, 11, 66, "Input"], +Cell[30086, 828, 566, 11, 90, "Input"], +Cell[30655, 841, 73, 1, 30, "Input"], +Cell[30731, 844, 346, 8, 30, "Input"], +Cell[31080, 854, 143, 3, 30, "Input"], +Cell[31226, 859, 244, 4, 30, "Input"], +Cell[31473, 865, 285, 5, 46, "Input"], +Cell[31761, 872, 460, 10, 90, "Input"], +Cell[32224, 884, 380, 9, 46, "Input"], +Cell[32607, 895, 275, 5, 50, "Input"], +Cell[32885, 902, 163, 3, 50, "Input"], +Cell[33051, 907, 333, 7, 49, "Input"], +Cell[33387, 916, 585, 11, 66, "Input"], +Cell[33975, 929, 4213, 77, 552, "Input"], +Cell[38191, 1008, 71, 1, 30, "Input"], +Cell[38265, 1011, 262, 5, 30, "Input"], +Cell[38530, 1018, 1452, 41, 30, "Input"], +Cell[39985, 1061, 1453, 41, 30, "Input"], +Cell[41441, 1104, 1453, 41, 30, "Input"], +Cell[42897, 1147, 69, 1, 30, "Input"], +Cell[42969, 1150, 262, 5, 30, "Input"], +Cell[43234, 1157, 1452, 41, 30, "Input"], +Cell[44689, 1200, 1453, 41, 30, "Input"], +Cell[46145, 1243, 1454, 41, 30, "Input"], +Cell[47602, 1286, 285, 5, 46, "Input"], +Cell[47890, 1293, 728, 13, 150, "Input"], +Cell[48621, 1308, 350, 9, 46, "Input"], +Cell[48974, 1319, 277, 5, 50, "Input"], +Cell[49254, 1326, 161, 3, 30, "Input"], +Cell[49418, 1331, 185, 3, 30, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg4C.nb b/Bachelor/Numerische Mathematik/Num05Aufg4C.nb new file mode 100644 index 0000000..1ba3a2b --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg4C.nb @@ -0,0 +1,1452 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 51563, 1359]*) +(*NotebookOutlinePosition[ 52225, 1382]*) +(* CellTagsIndexPosition[ 52181, 1378]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Numerik\ - \ + Aufgabe\ 4\ \ C\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ 2005\ \ \ \ \ +*) \)\(\ \)\), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(\(Interpolation\)\(:\)\), + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section"], + + StyleBox[ + " \ + ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section"]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\n", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["Parametrische", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Darstellung", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["(", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["x", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + StyleBox["\[CurlyPhi]", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\((x)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["und", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["y", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["\[Psi]", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\((x)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[")", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]]}]], + RowBox[{ + StyleBox["(", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(f\[UDoubleDot]r\ geschlossene\ Kurven\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[")", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\[IndentingNewLine]", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + RowBox[{ + StyleBox["1.", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Klassische", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Interpolation", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\((\ Newton\ )\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], " "}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\n", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + StyleBox["2.", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Periodische", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["kubische", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Spline", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox["-", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Funktion", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], " "}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[ + General::spell1]\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{\(lauf = 1\), ";", " ", + StyleBox[\( (*\ \ Lauf\ mit\ der\ Nummer\ lauf\ \ , \ + alle\ vorhergehenden\ L\[ADoubleDot]ufe\ bleiben\ \(erhalten\ !\)\ *) \ +\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ Vorgeben\ \(("\")\)\ der\ m + + 1\ St\[UDoubleDot]tzpunkte\ , \[IndentingNewLine]\ \ \ \ \ \ \ L\ +\[ODoubleDot]schen\ \(("\< L \>")\)\ , \ \ Einf\[UDoubleDot]gen\ \(("\< E \ +\>")\)\ \ oder\ \ \[CapitalADoubleDot]ndern\ \(("\< K\>")\)\ eines\ Punktes\ \ +\ ?\ \ \ \ \ \ \[IndentingNewLine]\ \ \ nichts\ \[CapitalADoubleDot]ndern\ +\ \ \(("\< N \>")\)\ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(sch = \ "\"\), ";", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontSize->16, + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ Erster\ Lauf\ mit\ vorgegebenen\ \(Werten\ \ +!\)\ \ \ \ *) \), + FontSize->16, + FontColor->RGBColor[0, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[0, 0, 1]], "\[IndentingNewLine]", + StyleBox[" ", + FontSize->14, + FontColor->RGBColor[1, 0, 0]], + StyleBox[\( (*\ + Hier\ \[CapitalADoubleDot]nderungen\ \((L, E, + K)\)\ eingeben\ und\ direkt\ ausf\[UDoubleDot]hren\ \ +\[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ oder\ N\ f\[UDoubleDot]r\ nicht\ \ +\[ADoubleDot]ndern\ bei\ einem\ neuen\ Lauf\ *) \), + FontSize->16, + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + FontSize->16, + FontColor->RGBColor[1, 0, 0]]}]}]], "Input"], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ \ , \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\(St\[UDoubleDot]tzpunkte\ 0, .. , m\ \ eingeben\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(If[\ + sch == "\", {\ \ m = + 12, \[IndentingNewLine]xp[0] = \(-4.5\); \ \ \ yp[0] = + 0. ; \ \ \ xp[1] = \(-3.0\); \ \ \ \ \ yp[1] = + 3. ; \ \ \ \ \ \ \ \ \ \ xp[2] = \(-1.0\); \ \ \ \ \ \ yp[2] = + 1.5; \ \ \ \ \ xp[3] = 0.0; \ \ \ \ \ yp[3] = 0.0; \ \ xp[4] = \ + 1. ; \ \ \ \ \ \ \ \ \ \ yp[4] = \(-1.5\); \ \ \ \ \ xp[5] = \ + 3; \ \ \ \ \ \ \ \ \ yp[5] = \(-3. \); \ \ \ \ \ \ \ \ xp[6] = \ + 4.5; \ \ \ \ yp[6] = + 0.0; \ \ xp[7] = \ \ 3; \ \ \ \ \ \ \ \ \ \ \ yp[7] = \ + 3.0; \ \ \ \ \ \ \ xp[8] = \(+1. \); \ \ \ \ \ \ \ \ yp[8] = \ + 1.5; \n\ \ \ \ \ \ xp[9] = \ 0.0; \ \ \ \ \ yp[9] = + 0.0; \ \ xp[10] = \ \(-1.0\); \ \ \ yp[10] = \(-1.5\); \ \ \ xp[ + 11] = \(-3.0\); \ \ \ \ \ yp[ + 11] = \ \(-3.0\); \ \ \ \ \ \ \n\ \ \ \ \ \ xp[ + 12] = \(-4.5\); \ \ \ \ yp[12] = 0.0;\ \ }];\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(Vorgegebene\ St\[UDoubleDot]tzpunkte\ 0, .. , m\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch == "\", + TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], "\< yp[\>", ind, "\<] = \>", + PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ +L\[ODoubleDot]schen\ \ eines\ \ Punktes\ \ mit\ \ der\ \ Nummer\ \ index\ \ \ \ +*) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(index\ = 15\), ";", " ", + StyleBox[\( (*\ + Nummer\ des\ zu\ entfernenden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], " ", "\n", + " ", \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ , {m = + m - 1; \n\ \ \ \ \ \ \ \ \ Do[{\ xp[j] = xp[j + 1], + yp[j] = yp[j + 1]}, {j, index, m}]}]]\), ";", + " "}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Entfernen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m\ \ , \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ +Einf\[UDoubleDot]gen\ \ eins\ \ Punktes\ \ mit\ \ der\ \ Nummer\ i\ ndex\ \ \ \ +\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[""], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(index\ = \ 17\), ";", " ", + StyleBox[\( (*\ + Nummer\ des\ einzuf\[UDoubleDot]genden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], " ", "\[IndentingNewLine]", + + RowBox[{"If", "[", + RowBox[{\(sch \[Equal] "\"\), ",", + RowBox[{"If", "[", + + RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] m\), + ",", + RowBox[{"{", + + RowBox[{\(m = m + 1\), + ";", \(Do[{xp[j], yp[j]}, {j, 0, index - 1}]\), ";", + "\[IndentingNewLine]", + " ", \(Do[{xp[j] = xp[j - 1], yp[j] = yp[j - 1]}, {j, + m, index + 1, \(-1\)}]\), ";", "\[IndentingNewLine]", + " ", \(xp[index] = \ \ \(-4.45\)\), + " ", + StyleBox[\( (*\ xp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + " ", \(yp[index] = \ \ \ \(-\ 0.5\)\)}], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox[\( (*\ yp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox["}", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m, \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \[CapitalADoubleDot]ndern\ des\ Punktes\ mit\ \ +der\ Nummer\ index\ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{\(index\ = \ \ 1\), " ", ";", " ", + StyleBox[\( (*\ + Nummer\ des\ zu\ \[ADoubleDot]ndernden\ Punktes\ \((\ + index\ )\)\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], " ", "\n", " ", + RowBox[{"If", "[", + RowBox[{\(sch \[Equal] "\"\), ",", + RowBox[{"If", "[", + + RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] m\), + ",", + RowBox[{"{", " ", + + RowBox[{\(xp[index] = \ \ \ \(-4.45\)\), + " ", + StyleBox[\( (*\ xp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", + " ", \(yp[index] = \ 0.5\)}], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox[\( (*\ yp[i]\ eingeben\ *) \), + FontColor->RGBColor[1, 0, 0]], + StyleBox["}", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox["]", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[";", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 1]]}]], + RowBox[{ + StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\), + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["..", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["m", + "Subsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[",", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\), + FontColor->RGBColor[1, 0, 1]]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(If[sch \[Equal] "\", + If[index \[GreaterEqual] 0\ And\ index \[LessEqual] + m, \ \ \ \[IndentingNewLine]TableForm[ + Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>", + PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>", + ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}], + TableSpacing \[Rule] {1, 0}]]]\)], "Input"], + +Cell[BoxData[ + \(\(nummer[lauf] = m;\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ Bereitstellen\ des\ Parameters\ tp\ f\ +\[UDoubleDot]r\ die\ m\ St\[UDoubleDot]tzpunkte\ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(\(\ \)\(\(tp[0] = 0;\)\[IndentingNewLine] + Do[{Delt[k - 1] = + Sqrt[\((xp[k] - xp[k - 1])\)^2 + \((yp[k] - yp[k - 1])\)^2], + tp[k] = tp[k - 1] + Delt[k - 1]}, {k, 1, m}]\)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\ +\ die\ Parameterdarstellung\ einer\ Acht\ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ und\ Bereitstellen\ des\ Parameters\ +\ tj, \ \((\ j, \ 0, \ nd\ )\)\ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(nd = 400;\)\)], "Input"], + +Cell[BoxData[{ + \(Do[{\ + tach[j] = + 8. *ArcTan[1]/nd* + j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xach[j] = \(-3\)\ Cos[tach[j]] - 1.5, + yach[j] = 3*Sin[1.5 tach[j]]}, {j, \(-100\), + 100}]\), "\[IndentingNewLine]", + \(Do[{\ + tach[j] = + 8. *ArcTan[1]/nd* + j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xach[j] = \(-6\) + \ 3*tach[j], + yach[j] = \(-1.5\) xach[j]}, {j, 101, + 150}]\), "\[IndentingNewLine]", + \(Do[{\ + tach[j] = + 8. *ArcTan[1]/nd* + j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xach[j] = 6\ - \ 3*tach[251 + j], + yach[j] = + 1.5 xach[j]}, {j, \(-150\), \(-101\)}]\), "\[IndentingNewLine]", + \(\ Do[{\ + tach[j] = + 8. *ArcTan[1]/nd* + j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xach[j] = + 1.5 + \ 3*Cos[tach[\(-250\) + j]], + yach[j] = 3*Sin[1.5 tach[\(-250\) + j]]}, {j, 151, 360}]\)}], "Input"], + +Cell[BoxData[ + \(\(\(\ \)\(Do[ + tj[j] = tp[0] + j*\((tp[m] - tp[0])\)/nd, {j, 0, nd}];\)\)\)], "Input"], + +Cell[BoxData[ + \(<< Graphics`Colors`\)], "Input"], + +Cell[BoxData[ + \(\(liste1 = {Red, HotPink, Green, Apricot, Brown, DarkGreen, Cobalt, + Brick, Orange, Magenta, IndianRed, ForestGreen};\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ Plotten\ der\ \ +Acht\ \ aus\ \ Kreisb\[ODoubleDot]gen\ \ x\ = \ \(3* + cos \((t)\)\ \ und\ \ y\ = \ \(3* + sin \((t)\)\ und\ \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ linearen\ Teilen\ x\ = \ \(-6\) + 3*t\)\)\ , \ + y\ = \ \(\(-1.5\)*x\ \ \ \ und\ \ x\ = \ 6 - 3*t\)\ , \ + y\ = \ 1.5*x\ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(achtplot = + ListPlot[Table[{xach[j], yach[j]}, {j, \(-146\), 360}], + PlotJoined\ \[Rule] True, \n\t + PlotRange -> {{\(-6\), 5}, {\(-4\), 4}}, \tPlotStyle -> Brown, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(punktplot = + ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ False, \t + PlotRange -> {{\(-6\), 5}, {\(-4\), 4}}, \n\tPlotStyle -> Blue, + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5, + AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(linienplot = + ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ True, \t + PlotRange -> {{\(-6\), 5}, {\(-4\), 4}}, \n\tPlotStyle -> Blue, + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5, + AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(Show[achtplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Newton\ - \ + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ Funktionsunterprogramm\ zur\ Berechnung\ \ +der\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\ \ \ \ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ \ +Newton - Interpolation\ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], " "}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(FunkDivDiff[xpform_, + ypform_] := \ \((\[IndentingNewLine]Do[ + DivDiffret[k, + 1] = \((ypform[k + 1] - ypform[k])\)/\((xpform[k + 1] - + xpform[k])\), {k, 0, m - 1}]; \[IndentingNewLine]Do[ + Do[DivDiffret[k, + j] = \((DivDiffret[k + 1, j - 1] - + DivDiffret[k, j - 1])\)/\((xpform[k + j] - + xpform[k])\), {k, 0, m - j}], {j, 2, m}]; + DivDiffmatret = + Table[DivDiffret[0, j], {j, 1, m}]; {DivDiffmatret})\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{\(DivDiffxmat = FunkDivDiff[tp, xp]\ ;\), "\n", + RowBox[{\(DivDiffx = DivDiffxmat[\([1]\)];\), + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + + StyleBox[\( (*\ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ x \ +- Werte\ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}], + "\n", \(DivDiffymat = FunkDivDiff[tp, yp]\ ;\), + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], "\n", + RowBox[{\(DivDiffy = DivDiffymat[\([1]\)];\), " ", + + StyleBox[\( (*\ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ y \ +- Werte\ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]}], + "\[IndentingNewLine]"}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ xj\ und\ yj\ f\ +\[UDoubleDot]r\ den\ Graph\ der\ Newton - Interpolation\ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[{xnew[j] = xp[0], + prox = tj[j] - + tp[0], \[IndentingNewLine]Do[{xnew[j] = + xnew[j] + prox*DivDiffx[\([i]\)], + prox = prox*\((tj[j] - tp[i])\)}, {i, 1, + m}], \[IndentingNewLine]ynew[j] = yp[0], + proy = tj[j] - tp[0], \n\t + Do[{ynew[j] = ynew[j] + proy*DivDiffy[\([i]\)], + proy = proy*\((tj[j] - tp[i])\)}, {i, 1, m}]}, {j, 0, + nd}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ Parametrische\ Darstellung\ der\ Newton - + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(newtonplot = + ListPlot[Table[{xnew[j], ynew[j]}, {j, 0, nd}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{\(-6.0\), 5}, {\(-4\), 4}}, \tPlotStyle -> Red, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(\(\(Show[achtplot, newtonplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)\(\[IndentingNewLine]\) + \)\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Periodische\ Spline - + Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \ +\), + "Section", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ \ \ \ \ Funktionsunterprogramm\ zur\ Berechnung\ \ +der\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + " ", + StyleBox[\( (*\ \ \ \ \ Koeffizienten\ f\[UDoubleDot]r\ die\ \ +periodischen\ Spline - Interpolation\ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], " "}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + RowBox[{\(FunkPerSpl[xpform_, ypform_]\), ":=", " ", + RowBox[{ + "(", "\[IndentingNewLine]", " ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Erstellen\ der\ \ +"\"\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], "\n", + " ", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \((\ + Haupt - \ und\ Nebendiagonale\ )\)\ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + RowBox[{\(Du[0] = xpform[1] - xpform[0]\), ";", + " ", \(Du[m - 1] = xpform[m] - xpform[m - 1]\), ";", + "\[IndentingNewLine]", \(Dh[0] = 2*\((\ Du[m - 1] + Du[0]\ )\)\), + ";", "\n", + " ", \(Do[{Du[k] = xpform[k + 1] - xpform[k], + Dh[k] = 2 \((Du[k - 1] + Du[k])\), Dp[k] = 0}, {k, 1, m - 2}]\), + ";", "\[IndentingNewLine]", \(Dp[m - 2] = Du[m - 2]\), ";", + " ", \(Dh[m - 1] = 2*\((\ Du[m - 2] + Du[m - 1])\)\), ";", + "\[IndentingNewLine]", " ", + + StyleBox[\( (*\ \ \ \ \ \ \ Cholesky - + Zerlegung\ der\ "\"\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ +\ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 1]], + "\[IndentingNewLine]", \(Ch[0] = Sqrt[Dh[0]]\), ";", + " ", \(Cp[0] = Du[m - 1]/Ch[0]\), ";", "\n", + " ", \(Do[{Cn[k - 1] = Du[k - 1]/Ch[k - 1], + Ch[k] = Sqrt[Dh[k] - Cn[k - 1]^2], \ \ \ Cp[ + k] = \((\ Dp[k] - Cp[k - 1]*Cn[k - 1]\ )\)/Ch[k]}, {k, 1, + m - 2}]\), ";", "\[IndentingNewLine]", " ", \(Csum = 0\), + ";", " ", \(Do[\ Csum = Csum + Cp[i]^2, {i, 1, m - 2}]\), ";", + "\[IndentingNewLine]", " ", \(Cn[m - 2] = Cp[m - 2]\), ";", + " ", \(Ch[m - 1] = Sqrt[\ Dh[m - 1] - Csum]\), ";", + "\[IndentingNewLine]", " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ Vorw\[ADoubleDot]rtsrechnung\ \ +"\"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + StyleBox["\n", + FontColor->RGBColor[1, 0, 1]], " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ und\ Erstellen\ der\ rechten\ \ +Seite\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + "\[IndentingNewLine]", \(Dv[0] = ypform[1] - ypform[0]\), ";", + " ", \(Dv[m - 1] = ypform[m] - ypform[m - 1]\), ";", "\n", + " ", \(Dr[0] = 3 \((Dv[0]/Du[0] - Dv[m - 1]/Du[m - 1])\)\), ";", + "\n", " ", \(Z[0] = Dr[0]/Ch[0]\), ";", "\n", + " ", \(Do[{Dv[k] = ypform[k + 1] - ypform[k], \n\t\tDr[k] = + 3 \((Dv[k]/Du[k] - Dv[k - 1]/Du[k - 1])\), \n\t\tZ[ + k] = \((Dr[k] - Z[k - 1]*Cn[k - 1])\)/ + Ch[k]}, \n\ \ \ \ \ \ {k, 1, m - 1}]\), ";", + "\[IndentingNewLine]", " ", \(Zsum = 0\), ";", + " ", \(Do[\ Zsum = Zsum + Cp[i]*Z[i], {i, 0, m - 2}]\), ";", + "\[IndentingNewLine]", + " ", \(Z[m - 1] = \((\ Dr[m - 1] - Zsum\ )\)/Ch[m - 1]\), ";", + "\[IndentingNewLine]", " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R\[UDoubleDot]ckw\ +\[ADoubleDot]rtsrechnung\ "\"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + StyleBox["\n", + FontColor->RGBColor[1, 0, 1]], " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \tBerechnung\ der\ \ +Koeffizienten\ B\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", + " ", \(Cp[m - 2] = 0\), ";", "\[IndentingNewLine]", + " ", \(B[m - 1] = Z[m - 1]/Ch[m - 1]\), ";", "\n", + " ", \(Do[ + B[k] = \((\ Z[k] - B[k + 1]*Cn[k] - Cp[k]*B[m - 1])\)/Ch[k], {k, + m - 2, 0, \(-1\)}]\), ";", "\[IndentingNewLine]", + " ", \(B[m] = B[0]\), ";", "\[IndentingNewLine]", + " ", + + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ Berechnung\ der\ \ +Koeffizienten\ A\_\(\(k\)\(\ \)\), \ C\_k\ , \ + D\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]], + "\[IndentingNewLine]", \(Do[{A[ + k] = \((B[k + 1] - B[k])\)/\((3 + Du[k])\), \n\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ Cc[k] = + Dv[k]/Du[k] - Du[k]*\((B[k + 1] + 2 B[k])\)/3, \ + Dc[k] = ypform[k]}, {k, 0, m - 1}]\), ";", + "\[IndentingNewLine]", + " ", \(Aret = Table[A[k], \ {k, 0, m - 1}]\), ";", + " ", \(Bret = Table[B[k], {k, 0, m}]\), ";", " ", + "\[IndentingNewLine]", " ", \(Cret = Table[Cc[k], {k, 0, m - 1}]\), + ";", " ", \(Dret = Table[Dc[k], {k, 0, m - 1}]\), ";", + "\[IndentingNewLine]", \({Aret, Bret, Cret, Dret}\)}], + ")"}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{\(ABCDxmat = FunkPerSpl[tp, xp]\ \ ;\), "\n", + RowBox[{\(Aperx = ABCDxmat[\([1]\)]\ ;\), " ", + + StyleBox[\( (*\ + Koeffizienen\ Ak\ \ \(f \[UDoubleDot]r\)\ die\ x - + Werte\ *) \), + FontColor->RGBColor[1, 0, 1], + Background->None]}], "\n", \(Bperx = ABCDxmat[\([2]\)];\), + " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Bk", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}], + "\n", \(Cperx = ABCDxmat[\([3]\)];\), " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Ck", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}], + "\n", \(Dperx = ABCDxmat[\([4]\)];\)}], " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Dk", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{\(ABCDymat = FunkPerSpl[tp, yp]\ ;\), "\n", + RowBox[{\(Apery = ABCDymat[\([1]\)];\), " ", + + StyleBox[\( (*\ + Koeffizienen\ Ak\ \ \(f \[UDoubleDot]r\)\ die\ x - + Werte\ *) \), + FontColor->RGBColor[1, 0, 1], + Background->None]}], "\n", \(Bpery = ABCDymat[\([2]\)];\), + " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Bk", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}], + "\n", \(Cpery = ABCDymat[\([3]\)];\), " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Ck", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}], + "\n", \(Dpery = ABCDymat[\([4]\)]\ ;\)}], " ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + RowBox[{ + RowBox[{ + StyleBox["Koeffizienen", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["Dk", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox[\(f \[UDoubleDot]r\), + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["die", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["x", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox["-", + FontColor->RGBColor[1, 0, 1], + Background->None], + StyleBox["Werte", + FontColor->RGBColor[1, 0, 1], + Background->None]}], + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + FontColor->RGBColor[1, 0, 1]]}], "\[IndentingNewLine]"}]], "Input"], + +Cell[BoxData[ + RowBox[{" ", + StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ xj\ und\ yj\ f\ +\[UDoubleDot]r\ den\ Graph\ der\ Spline - Interpolation\ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[{tint = tp[0], \n\t + Do[{Dnt[k] = tp[k + 1] - tp[k], + If[\((tj[j] \[GreaterEqual] + tint\ )\)\ \[And] \ \ \((tj[j] \[LessEqual] + tint + Dnt[k]\ )\), {knt = k, Break[]}\ , + tint = tint + Dnt[k]]}, {k, 0, m - 1}], \n\t + Dntmj = tj[j] - tp[knt], \[IndentingNewLine]\ \ \ \ \ xper[j] = + Aperx[\([knt + 1]\)]*Dntmj^3 + Bperx[\([knt + 1]\)]*Dntmj^2 + + Cperx[\([knt + 1]\)]*Dntmj + Dperx[\([knt + 1]\)]\ , \n\t + yper[j] = + Apery[\([knt + 1]\)]*Dntmj^3 + Bpery[\([knt + 1]\)]*Dntmj^2 + + Cpery[\([knt + 1]\)]*Dntmj + \ \ Dpery[\([knt + 1]\)]\ }, \n\t{j, + 0, nd}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Graph\ der\ nat . \ Spline - + Funktion\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(persplplot = + ListPlot[Table[{xper[j], yper[j]}, {j, 0, nd}], + PlotJoined\ -> \ True, \n\t + PlotRange -> {{\(-6\), 5}, {\(-4\), 4}}, \tPlotStyle -> Green, + AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(Show[achtplot, persplplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"], + +Cell[BoxData[ + \(graf[lauf]\ = \ + Show[achtplot, persplplot, newtonplot, linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"], + +Cell[BoxData[ + \(Do[{Print["\< Lauf Nummer \>", l\ , "\< mit \>", + nummer[l], "\< St\[UDoubleDot]tzpunkten \>"\ ], Show[graf[l]]}, {l, + 1, lauf}]\)], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1012, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +Magnification->1 +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 276, 6, 59, "Input"], +Cell[2033, 59, 7880, 237, 137, "Input"], +Cell[9916, 298, 133, 2, 30, "Input"], +Cell[10052, 302, 294, 6, 30, "Input"], +Cell[10349, 310, 548, 10, 93, "Input"], +Cell[10900, 322, 1033, 26, 70, "Input"], +Cell[11936, 350, 434, 7, 70, "Input"], +Cell[12373, 359, 724, 23, 46, "Input"], +Cell[13100, 384, 998, 16, 130, "Input"], +Cell[14101, 402, 450, 13, 46, "Input"], +Cell[14554, 417, 305, 6, 70, "Input"], +Cell[14862, 425, 292, 7, 46, "Input"], +Cell[15157, 434, 561, 12, 70, "Input"], +Cell[15721, 448, 1235, 39, 46, "Input"], +Cell[16959, 489, 434, 7, 70, "Input"], +Cell[17396, 498, 300, 7, 46, "Input"], +Cell[17699, 507, 26, 0, 30, "Input"], +Cell[17728, 509, 1935, 41, 110, "Input"], +Cell[19666, 552, 1246, 39, 46, "Input"], +Cell[20915, 593, 430, 7, 70, "Input"], +Cell[21348, 602, 292, 6, 49, "Input"], +Cell[21643, 610, 1605, 35, 70, "Input"], +Cell[23251, 647, 1246, 39, 46, "Input"], +Cell[24500, 688, 430, 7, 70, "Input"], +Cell[24933, 697, 54, 1, 30, "Input"], +Cell[24990, 700, 383, 9, 46, "Input"], +Cell[25376, 711, 228, 4, 50, "Input"], +Cell[25607, 717, 699, 16, 66, "Input"], +Cell[26309, 735, 46, 1, 30, "Input"], +Cell[26358, 738, 1261, 28, 170, "Input"], +Cell[27622, 768, 113, 2, 30, "Input"], +Cell[27738, 772, 52, 1, 30, "Input"], +Cell[27793, 775, 162, 2, 30, "Input"], +Cell[27958, 779, 634, 14, 66, "Input"], +Cell[28595, 795, 286, 5, 50, "Input"], +Cell[28884, 802, 307, 5, 50, "Input"], +Cell[29194, 809, 307, 5, 50, "Input"], +Cell[29504, 816, 113, 2, 30, "Input"], +Cell[29620, 820, 337, 7, 49, "Input"], +Cell[29960, 829, 570, 11, 66, "Input"], +Cell[30533, 842, 566, 11, 90, "Input"], +Cell[31102, 855, 848, 20, 110, "Input"], +Cell[31953, 877, 285, 5, 46, "Input"], +Cell[32241, 884, 460, 10, 90, "Input"], +Cell[32704, 896, 380, 9, 46, "Input"], +Cell[33087, 907, 277, 5, 50, "Input"], +Cell[33367, 914, 161, 3, 50, "Input"], +Cell[33531, 919, 322, 7, 49, "Input"], +Cell[33856, 928, 574, 11, 66, "Input"], +Cell[34433, 941, 5284, 94, 712, "Input"], +Cell[39720, 1037, 4840, 132, 130, "Input"], +Cell[44563, 1171, 4862, 132, 130, "Input"], +Cell[49428, 1305, 285, 5, 46, "Input"], +Cell[49716, 1312, 728, 13, 150, "Input"], +Cell[50447, 1327, 350, 9, 46, "Input"], +Cell[50800, 1338, 277, 5, 50, "Input"], +Cell[51080, 1345, 125, 2, 30, "Input"], +Cell[51208, 1349, 163, 3, 30, "Input"], +Cell[51374, 1354, 185, 3, 30, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg4_erg.nb b/Bachelor/Numerische Mathematik/Num05Aufg4_erg.nb new file mode 100644 index 0000000..c0aeb6c --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg4_erg.nb @@ -0,0 +1,31991 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 1135071, 31907]*) +(*NotebookOutlinePosition[ 1135715, 31929]*) +(* CellTagsIndexPosition[ 1135671, 31925]*) +(*WindowFrame->Normal*) + + + +Notebook[{ + +Cell[CellGroupData[{ +Cell[BoxData[ + RowBox[{"\[IndentingNewLine]", + StyleBox[\( (*\ \ \ \ \ \ \ Numerik\ - \ + Aufgabe\ \ +4\ \ A\ \ \ \ \ \ \ \ \ \ \ Ergebnisse\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ +\ 2005\ \ \ \ \ \ \ \ \ \ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subtitle", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]"}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]1\ +\[InvisibleSpace]" mit "\[InvisibleSpace]10\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 1, " mit ", 10, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.1 0.1 [ +[.1 .0875 -6 -9 ] +[.1 .0875 6 0 ] +[.3 .0875 -6 -9 ] +[.3 .0875 6 0 ] +[.7 .0875 -3 -9 ] +[.7 .0875 3 0 ] +[.9 .0875 -3 -9 ] +[.9 .0875 3 0 ] +[1.025 .1 0 -6.4375 ] +[1.025 .1 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .2 -6 -4.5 ] +[.4875 .2 0 4.5 ] +[.4875 .3 -6 -4.5 ] +[.4875 .3 0 4.5 ] +[.4875 .4 -6 -4.5 ] +[.4875 .4 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .1 m +.1 .10625 L +s +[(-4)] .1 .0875 0 1 Mshowa +.3 .1 m +.3 .10625 L +s +[(-2)] .3 .0875 0 1 Mshowa +.7 .1 m +.7 .10625 L +s +[(2)] .7 .0875 0 1 Mshowa +.9 .1 m +.9 .10625 L +s +[(4)] .9 .0875 0 1 Mshowa +.125 Mabswid +.15 .1 m +.15 .10375 L +s +.2 .1 m +.2 .10375 L +s +.25 .1 m +.25 .10375 L +s +.35 .1 m +.35 .10375 L +s +.4 .1 m +.4 .10375 L +s +.45 .1 m +.45 .10375 L +s +.55 .1 m +.55 .10375 L +s +.6 .1 m +.6 .10375 L +s +.65 .1 m +.65 .10375 L +s +.75 .1 m +.75 .10375 L +s +.8 .1 m +.8 .10375 L +s +.85 .1 m +.85 .10375 L +s +.05 .1 m +.05 .10375 L +s +.95 .1 m +.95 .10375 L +s +.25 Mabswid +0 .1 m +1 .1 L +s +gsave +1.025 .1 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-1)] .4875 0 1 0 Mshowa +.5 .2 m +.50625 .2 L +s +[(1)] .4875 .2 1 0 Mshowa +.5 .3 m +.50625 .3 L +s +[(2)] .4875 .3 1 0 Mshowa +.5 .4 m +.50625 .4 L +s +[(3)] .4875 .4 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .02 m +.50375 .02 L +s +.5 .04 m +.50375 .04 L +s +.5 .06 m +.50375 .06 L +s +.5 .08 m +.50375 .08 L +s +.5 .12 m +.50375 .12 L +s +.5 .14 m +.50375 .14 L +s +.5 .16 m +.50375 .16 L +s +.5 .18 m +.50375 .18 L +s +.5 .22 m +.50375 .22 L +s +.5 .24 m +.50375 .24 L +s +.5 .26 m +.50375 .26 L +s +.5 .28 m +.50375 .28 L +s +.5 .32 m +.50375 .32 L +s +.5 .34 m +.50375 .34 L +s +.5 .36 m +.50375 .36 L +s +.5 .38 m +.50375 .38 L +s +.5 .42 m +.50375 .42 L +s +.5 .44 m +.50375 .44 L +s +.5 .46 m +.50375 .46 L +s +.5 .48 m +.50375 .48 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .1 m +.102 .12071 L +.104 .14061 L +.106 .15891 L +.108 .17525 L +.11 .18973 L +.112 .20245 L +.114 .21352 L +.116 .22304 L +.118 .23111 L +.12 .23784 L +.122 .24335 L +.124 .24772 L +.126 .25107 L +.128 .25351 L +.13 .25514 L +.132 .25606 L +.134 .25638 L +.136 .2562 L +.138 .25564 L +.14 .25479 L +.142 .25377 L +.144 .25267 L +.146 .25161 L +.148 .25068 L +.15 .25 L +.152 .24965 L +.154 .24963 L +.156 .24992 L +.158 .25051 L +.16 .25138 L +.162 .25251 L +.164 .25388 L +.166 .25548 L +.168 .25728 L +.17 .25928 L +.172 .26145 L +.174 .26377 L +.176 .26623 L +.178 .26881 L +.18 .27149 L +.182 .27426 L +.184 .27709 L +.186 .27997 L +.188 .28288 L +.19 .2858 L +.192 .28872 L +.194 .29162 L +.196 .29448 L +.198 .29728 L +Mistroke +.2 .3 L +.202 .30263 L +.204 .30518 L +.206 .30763 L +.208 .31 L +.21 .31228 L +.212 .31448 L +.214 .3166 L +.216 .31864 L +.218 .3206 L +.22 .32249 L +.222 .3243 L +.224 .32604 L +.226 .32772 L +.228 .32933 L +.23 .33087 L +.232 .33235 L +.234 .33377 L +.236 .33514 L +.238 .33644 L +.24 .33769 L +.242 .33889 L +.244 .34004 L +.246 .34114 L +.248 .34219 L +.25 .3432 L +.252 .34417 L +.254 .3451 L +.256 .34599 L +.258 .34684 L +.26 .34766 L +.262 .34845 L +.264 .3492 L +.266 .34993 L +.268 .35063 L +.27 .35131 L +.272 .35197 L +.274 .35261 L +.276 .35322 L +.278 .35383 L +.28 .35442 L +.282 .35499 L +.284 .35556 L +.286 .35612 L +.288 .35668 L +.29 .35723 L +.292 .35778 L +.294 .35833 L +.296 .35888 L +.298 .35944 L +Mistroke +.3 .36 L +.302 .36057 L +.304 .36115 L +.306 .36174 L +.308 .36233 L +.31 .36294 L +.312 .36354 L +.314 .36416 L +.316 .36478 L +.318 .3654 L +.32 .36603 L +.322 .36667 L +.324 .3673 L +.326 .36794 L +.328 .36859 L +.33 .36923 L +.332 .36988 L +.334 .37053 L +.336 .37118 L +.338 .37183 L +.34 .37249 L +.342 .37314 L +.344 .37379 L +.346 .37444 L +.348 .37509 L +.35 .37573 L +.352 .37638 L +.354 .37702 L +.356 .37766 L +.358 .37829 L +.36 .37892 L +.362 .37955 L +.364 .38017 L +.366 .38079 L +.368 .3814 L +.37 .382 L +.372 .3826 L +.374 .38319 L +.376 .38377 L +.378 .38434 L +.38 .38491 L +.382 .38546 L +.384 .38601 L +.386 .38655 L +.388 .38708 L +.39 .38759 L +.392 .3881 L +.394 .38859 L +.396 .38907 L +.398 .38954 L +Mistroke +.4 .39 L +.402 .39044 L +.404 .39087 L +.406 .39129 L +.408 .3917 L +.41 .39209 L +.412 .39247 L +.414 .39284 L +.416 .39319 L +.418 .39354 L +.42 .39387 L +.422 .39419 L +.424 .3945 L +.426 .3948 L +.428 .39509 L +.43 .39536 L +.432 .39563 L +.434 .39589 L +.436 .39614 L +.438 .39637 L +.44 .3966 L +.442 .39682 L +.444 .39703 L +.446 .39723 L +.448 .39742 L +.45 .39761 L +.452 .39778 L +.454 .39795 L +.456 .39811 L +.458 .39826 L +.46 .3984 L +.462 .39854 L +.464 .39867 L +.466 .39879 L +.468 .39891 L +.47 .39902 L +.472 .39912 L +.474 .39922 L +.476 .39931 L +.478 .39939 L +.48 .39947 L +.482 .39954 L +.484 .39961 L +.486 .39968 L +.488 .39974 L +.49 .39979 L +.492 .39984 L +.494 .39989 L +.496 .39993 L +.498 .39997 L +Mistroke +.5 .4 L +.502 .40003 L +.504 .40006 L +.506 .40008 L +.508 .4001 L +.51 .40012 L +.512 .40013 L +.514 .40014 L +.516 .40014 L +.518 .40014 L +.52 .40013 L +.522 .40012 L +.524 .4001 L +.526 .40008 L +.528 .40005 L +.53 .40002 L +.532 .39998 L +.534 .39994 L +.536 .39988 L +.538 .39983 L +.54 .39976 L +.542 .39969 L +.544 .39962 L +.546 .39953 L +.548 .39944 L +.55 .39935 L +.552 .39924 L +.554 .39913 L +.556 .39901 L +.558 .39888 L +.56 .39874 L +.562 .3986 L +.564 .39845 L +.566 .39829 L +.568 .39812 L +.57 .39794 L +.572 .39775 L +.574 .39755 L +.576 .39735 L +.578 .39713 L +.58 .39691 L +.582 .39667 L +.584 .39643 L +.586 .39618 L +.588 .39591 L +.59 .39564 L +.592 .39535 L +.594 .39506 L +.596 .39475 L +.598 .39443 L +Mistroke +.6 .3941 L +.602 .39376 L +.604 .39341 L +.606 .39305 L +.608 .39268 L +.61 .39229 L +.612 .39189 L +.614 .39148 L +.616 .39106 L +.618 .39062 L +.62 .39017 L +.622 .38971 L +.624 .38924 L +.626 .38875 L +.628 .38825 L +.63 .38773 L +.632 .3872 L +.634 .38666 L +.636 .38611 L +.638 .38554 L +.64 .38495 L +.642 .38435 L +.644 .38374 L +.646 .38311 L +.648 .38247 L +.65 .38181 L +.652 .38114 L +.654 .38045 L +.656 .37975 L +.658 .37903 L +.66 .37829 L +.662 .37754 L +.664 .37677 L +.666 .37599 L +.668 .37518 L +.67 .37437 L +.672 .37353 L +.674 .37268 L +.676 .37181 L +.678 .37093 L +.68 .37002 L +.682 .3691 L +.684 .36817 L +.686 .36721 L +.688 .36623 L +.69 .36524 L +.692 .36423 L +.694 .3632 L +.696 .36215 L +.698 .36109 L +Mistroke +.7 .36 L +.702 .35889 L +.704 .35777 L +.706 .35663 L +.708 .35547 L +.71 .3543 L +.712 .35311 L +.714 .35191 L +.716 .3507 L +.718 .34947 L +.72 .34823 L +.722 .34699 L +.724 .34573 L +.726 .34446 L +.728 .34319 L +.73 .34191 L +.732 .34063 L +.734 .33934 L +.736 .33805 L +.738 .33675 L +.74 .33545 L +.742 .33415 L +.744 .33285 L +.746 .33155 L +.748 .33025 L +.75 .32896 L +.752 .32767 L +.754 .32638 L +.756 .3251 L +.758 .32382 L +.76 .32255 L +.762 .32129 L +.764 .32004 L +.766 .31879 L +.768 .31756 L +.77 .31634 L +.772 .31513 L +.774 .31393 L +.776 .31275 L +.778 .31158 L +.78 .31043 L +.782 .3093 L +.784 .30818 L +.786 .30709 L +.788 .30601 L +.79 .30495 L +.792 .30391 L +.794 .3029 L +.796 .30191 L +.798 .30094 L +Mistroke +.8 .3 L +.802 .29908 L +.804 .29818 L +.806 .29729 L +.808 .29639 L +.81 .29548 L +.812 .29455 L +.814 .29359 L +.816 .29258 L +.818 .29153 L +.82 .29042 L +.822 .28924 L +.824 .28798 L +.826 .28663 L +.828 .28519 L +.83 .28364 L +.832 .28197 L +.834 .28018 L +.836 .27825 L +.838 .27617 L +.84 .27394 L +.842 .27155 L +.844 .26899 L +.846 .26624 L +.848 .2633 L +.85 .26016 L +.852 .2568 L +.854 .25323 L +.856 .24943 L +.858 .24538 L +.86 .24109 L +.862 .23654 L +.864 .23172 L +.866 .22662 L +.868 .22124 L +.87 .21556 L +.872 .20957 L +.874 .20327 L +.876 .19665 L +.878 .1897 L +.88 .18247 L +.882 .17498 L +.884 .16724 L +.886 .1593 L +.888 .15117 L +.89 .14288 L +.892 .13447 L +.894 .12594 L +.896 .11734 L +.898 .10868 L +Mistroke +.9 .1 L +Mfstroke +1 0 0 r +.1 .1 m +.102 .12195 L +.104 .14126 L +.106 .15817 L +.108 .1729 L +.11 .18567 L +.112 .19669 L +.114 .20613 L +.116 .21416 L +.118 .22095 L +.12 .22664 L +.122 .23137 L +.124 .23526 L +.126 .23843 L +.128 .24098 L +.13 .243 L +.132 .24459 L +.134 .24582 L +.136 .24676 L +.138 .24748 L +.14 .24804 L +.142 .24849 L +.144 .24887 L +.146 .24923 L +.148 .24959 L +.15 .25 L +.152 .25047 L +.154 .25104 L +.156 .2517 L +.158 .2525 L +.16 .25342 L +.162 .25449 L +.164 .25571 L +.166 .25709 L +.168 .25861 L +.17 .2603 L +.172 .26213 L +.174 .26412 L +.176 .26625 L +.178 .26852 L +.18 .27092 L +.182 .27344 L +.184 .27608 L +.186 .27882 L +.188 .28165 L +.19 .28457 L +.192 .28755 L +.194 .2906 L +.196 .2937 L +.198 .29684 L +Mistroke +.2 .3 L +.202 .30318 L +.204 .30636 L +.206 .30954 L +.208 .3127 L +.21 .31583 L +.212 .31893 L +.214 .32198 L +.216 .32497 L +.218 .3279 L +.22 .33076 L +.222 .33354 L +.224 .33624 L +.226 .33884 L +.228 .34134 L +.23 .34374 L +.232 .34604 L +.234 .34822 L +.236 .35028 L +.238 .35223 L +.24 .35406 L +.242 .35576 L +.244 .35734 L +.246 .35879 L +.248 .36012 L +.25 .36133 L +.252 .36241 L +.254 .36337 L +.256 .36421 L +.258 .36493 L +.26 .36553 L +.262 .36602 L +.264 .3664 L +.266 .36668 L +.268 .36685 L +.27 .36693 L +.272 .36691 L +.274 .36681 L +.276 .36662 L +.278 .36635 L +.28 .36602 L +.282 .36562 L +.284 .36515 L +.286 .36463 L +.288 .36407 L +.29 .36346 L +.292 .36282 L +.294 .36214 L +.296 .36144 L +.298 .36073 L +Mistroke +.3 .36 L +.302 .35927 L +.304 .35854 L +.306 .35781 L +.308 .3571 L +.31 .3564 L +.312 .35573 L +.314 .35509 L +.316 .35448 L +.318 .35391 L +.32 .35338 L +.322 .3529 L +.324 .35247 L +.326 .35211 L +.328 .3518 L +.33 .35155 L +.332 .35138 L +.334 .35127 L +.336 .35124 L +.338 .35128 L +.34 .3514 L +.342 .3516 L +.344 .35188 L +.346 .35224 L +.348 .35269 L +.35 .35322 L +.352 .35384 L +.354 .35454 L +.356 .35533 L +.358 .3562 L +.36 .35715 L +.362 .35819 L +.364 .3593 L +.366 .3605 L +.368 .36177 L +.37 .36311 L +.372 .36453 L +.374 .36602 L +.376 .36757 L +.378 .36919 L +.38 .37087 L +.382 .3726 L +.384 .37438 L +.386 .37622 L +.388 .37809 L +.39 .38001 L +.392 .38196 L +.394 .38394 L +.396 .38594 L +.398 .38796 L +Mistroke +.4 .39 L +.402 .39205 L +.404 .3941 L +.406 .39614 L +.408 .39818 L +.41 .40021 L +.412 .40222 L +.414 .4042 L +.416 .40615 L +.418 .40807 L +.42 .40994 L +.422 .41177 L +.424 .41354 L +.426 .41525 L +.428 .41691 L +.43 .41849 L +.432 .41999 L +.434 .42142 L +.436 .42276 L +.438 .42401 L +.44 .42516 L +.442 .42622 L +.444 .42717 L +.446 .42801 L +.448 .42874 L +.45 .42935 L +.452 .42984 L +.454 .4302 L +.456 .43044 L +.458 .43055 L +.46 .43052 L +.462 .43036 L +.464 .43006 L +.466 .42962 L +.468 .42904 L +.47 .42831 L +.472 .42744 L +.474 .42642 L +.476 .42526 L +.478 .42394 L +.48 .42249 L +.482 .42088 L +.484 .41913 L +.486 .41723 L +.488 .41519 L +.49 .413 L +.492 .41067 L +.494 .40821 L +.496 .40561 L +.498 .40287 L +Mistroke +.5 .4 L +.502 .397 L +.504 .39388 L +.506 .39064 L +.508 .38728 L +.51 .38381 L +.512 .38024 L +.514 .37655 L +.516 .37278 L +.518 .36891 L +.52 .36495 L +.522 .36091 L +.524 .3568 L +.526 .35262 L +.528 .34838 L +.53 .34408 L +.532 .33973 L +.534 .33535 L +.536 .33093 L +.538 .32648 L +.54 .32201 L +.542 .31753 L +.544 .31305 L +.546 .30857 L +.548 .30411 L +.55 .29966 L +.552 .29524 L +.554 .29085 L +.556 .28651 L +.558 .28222 L +.56 .27799 L +.562 .27382 L +.564 .26973 L +.566 .26572 L +.568 .26181 L +.57 .25799 L +.572 .25427 L +.574 .25067 L +.576 .24719 L +.578 .24384 L +.58 .24062 L +.582 .23754 L +.584 .23461 L +.586 .23184 L +.588 .22922 L +.59 .22677 L +.592 .22449 L +.594 .22238 L +.596 .22046 L +.598 .21873 L +Mistroke +.6 .21718 L +.602 .21583 L +.604 .21467 L +.606 .21372 L +.608 .21297 L +.61 .21242 L +.612 .21209 L +.614 .21197 L +.616 .21205 L +.618 .21235 L +.62 .21287 L +.622 .2136 L +.624 .21454 L +.626 .21569 L +.628 .21705 L +.63 .21862 L +.632 .2204 L +.634 .22238 L +.636 .22457 L +.638 .22695 L +.64 .22952 L +.642 .23229 L +.644 .23524 L +.646 .23836 L +.648 .24166 L +.65 .24513 L +.652 .24876 L +.654 .25254 L +.656 .25647 L +.658 .26053 L +.66 .26472 L +.662 .26904 L +.664 .27346 L +.666 .27799 L +.668 .28261 L +.67 .28731 L +.672 .29208 L +.674 .29691 L +.676 .3018 L +.678 .30672 L +.68 .31167 L +.682 .31663 L +.684 .3216 L +.686 .32656 L +.688 .3315 L +.69 .3364 L +.692 .34126 L +.694 .34607 L +.696 .3508 L +.698 .35545 L +Mistroke +.7 .36 L +.702 .36445 L +.704 .36877 L +.706 .37296 L +.708 .37701 L +.71 .3809 L +.712 .38463 L +.714 .38817 L +.716 .39152 L +.718 .39467 L +.72 .39761 L +.722 .40033 L +.724 .40282 L +.726 .40506 L +.728 .40706 L +.73 .4088 L +.732 .41027 L +.734 .41147 L +.736 .4124 L +.738 .41304 L +.74 .41339 L +.742 .41344 L +.744 .4132 L +.746 .41266 L +.748 .41182 L +.75 .41068 L +.752 .40923 L +.754 .40748 L +.756 .40544 L +.758 .40309 L +.76 .40045 L +.762 .39752 L +.764 .39431 L +.766 .39082 L +.768 .38705 L +.77 .38303 L +.772 .37876 L +.774 .37424 L +.776 .36949 L +.778 .36452 L +.78 .35935 L +.782 .35399 L +.784 .34846 L +.786 .34276 L +.788 .33693 L +.79 .33097 L +.792 .32491 L +.794 .31876 L +.796 .31254 L +.798 .30628 L +Mistroke +.8 .3 L +.802 .29372 L +.804 .28745 L +.806 .28123 L +.808 .27508 L +.81 .26902 L +.812 .26306 L +.814 .25724 L +.816 .25158 L +.818 .2461 L +.82 .24082 L +.822 .23576 L +.824 .23094 L +.826 .22638 L +.828 .2221 L +.83 .21811 L +.832 .21442 L +.834 .21106 L +.836 .20803 L +.838 .20534 L +.84 .20299 L +.842 .20098 L +.844 .19932 L +.846 .19799 L +.848 .197 L +.85 .19632 L +.852 .19593 L +.854 .19583 L +.856 .19597 L +.858 .19631 L +.86 .19683 L +.862 .19747 L +.864 .19818 L +.866 .19889 L +.868 .19954 L +.87 .20003 L +.872 .20029 L +.874 .2002 L +.876 .19967 L +.878 .19856 L +.88 .19675 L +.882 .19408 L +.884 .1904 L +.886 .18553 L +.888 .17928 L +.89 .17144 L +.892 .16179 L +.894 .15009 L +.896 .13608 L +.898 .11948 L +Mistroke +.9 .1 L +Mfstroke +.5 .165 .165 r +.1 .1 m +.102 .12996 L +.104 .14232 L +.106 .15177 L +.108 .1597 L +.11 .16666 L +.112 .17293 L +.114 .17867 L +.116 .184 L +.118 .18898 L +.12 .19367 L +.122 .19812 L +.124 .20235 L +.126 .20639 L +.128 .21027 L +.13 .21399 L +.132 .21758 L +.134 .22104 L +.136 .22438 L +.138 .22762 L +.14 .23077 L +.142 .23382 L +.144 .23679 L +.146 .23968 L +.148 .24249 L +.15 .24524 L +.152 .24792 L +.154 .25053 L +.156 .25309 L +.158 .25559 L +.16 .25803 L +.162 .26043 L +.164 .26278 L +.166 .26507 L +.168 .26733 L +.17 .26954 L +.172 .27171 L +.174 .27384 L +.176 .27593 L +.178 .27798 L +.18 .28 L +.182 .28198 L +.184 .28393 L +.186 .28585 L +.188 .28773 L +.19 .28959 L +.192 .29141 L +.194 .29321 L +.196 .29498 L +.198 .29672 L +Mistroke +.2 .29843 L +.202 .30012 L +.204 .30178 L +.206 .30342 L +.208 .30503 L +.21 .30662 L +.212 .30819 L +.214 .30974 L +.216 .31126 L +.218 .31276 L +.22 .31424 L +.222 .3157 L +.224 .31714 L +.226 .31856 L +.228 .31996 L +.23 .32135 L +.232 .32271 L +.234 .32405 L +.236 .32538 L +.238 .32669 L +.24 .32798 L +.242 .32925 L +.244 .33051 L +.246 .33175 L +.248 .33298 L +.25 .33419 L +.252 .33538 L +.254 .33656 L +.256 .33772 L +.258 .33887 L +.26 .34 L +.262 .34112 L +.264 .34222 L +.266 .34331 L +.268 .34438 L +.27 .34545 L +.272 .34649 L +.274 .34753 L +.276 .34855 L +.278 .34956 L +.28 .35055 L +.282 .35153 L +.284 .3525 L +.286 .35346 L +.288 .3544 L +.29 .35533 L +.292 .35625 L +.294 .35716 L +.296 .35805 L +.298 .35894 L +Mistroke +.3 .35981 L +.302 .36067 L +.304 .36152 L +.306 .36235 L +.308 .36318 L +.31 .364 L +.312 .3648 L +.314 .36559 L +.316 .36638 L +.318 .36715 L +.32 .36791 L +.322 .36866 L +.324 .3694 L +.326 .37013 L +.328 .37085 L +.33 .37156 L +.332 .37226 L +.334 .37295 L +.336 .37363 L +.338 .3743 L +.34 .37495 L +.342 .3756 L +.344 .37624 L +.346 .37687 L +.348 .3775 L +.35 .37811 L +.352 .37871 L +.354 .3793 L +.356 .37989 L +.358 .38046 L +.36 .38102 L +.362 .38158 L +.364 .38213 L +.366 .38267 L +.368 .38319 L +.37 .38371 L +.372 .38423 L +.374 .38473 L +.376 .38522 L +.378 .38571 L +.38 .38618 L +.382 .38665 L +.384 .38711 L +.386 .38756 L +.388 .388 L +.39 .38843 L +.392 .38886 L +.394 .38927 L +.396 .38968 L +.398 .39008 L +Mistroke +.4 .39047 L +.402 .39086 L +.404 .39123 L +.406 .3916 L +.408 .39196 L +.41 .39231 L +.412 .39265 L +.414 .39298 L +.416 .39331 L +.418 .39363 L +.42 .39394 L +.422 .39424 L +.424 .39454 L +.426 .39482 L +.428 .3951 L +.43 .39537 L +.432 .39563 L +.434 .39589 L +.436 .39614 L +.438 .39637 L +.44 .39661 L +.442 .39683 L +.444 .39705 L +.446 .39725 L +.448 .39745 L +.45 .39765 L +.452 .39783 L +.454 .39801 L +.456 .39818 L +.458 .39834 L +.46 .3985 L +.462 .39864 L +.464 .39878 L +.466 .39891 L +.468 .39904 L +.47 .39916 L +.472 .39926 L +.474 .39937 L +.476 .39946 L +.478 .39955 L +.48 .39962 L +.482 .3997 L +.484 .39976 L +.486 .39982 L +.488 .39986 L +.49 .39991 L +.492 .39994 L +.494 .39997 L +.496 .39998 L +.498 .4 L +Mistroke +.5 .4 L +.502 .4 L +.504 .39998 L +.506 .39997 L +.508 .39994 L +.51 .39991 L +.512 .39986 L +.514 .39982 L +.516 .39976 L +.518 .3997 L +.52 .39962 L +.522 .39955 L +.524 .39946 L +.526 .39937 L +.528 .39926 L +.53 .39916 L +.532 .39904 L +.534 .39891 L +.536 .39878 L +.538 .39864 L +.54 .3985 L +.542 .39834 L +.544 .39818 L +.546 .39801 L +.548 .39783 L +.55 .39765 L +.552 .39745 L +.554 .39725 L +.556 .39705 L +.558 .39683 L +.56 .39661 L +.562 .39637 L +.564 .39614 L +.566 .39589 L +.568 .39563 L +.57 .39537 L +.572 .3951 L +.574 .39482 L +.576 .39454 L +.578 .39424 L +.58 .39394 L +.582 .39363 L +.584 .39331 L +.586 .39298 L +.588 .39265 L +.59 .39231 L +.592 .39196 L +.594 .3916 L +.596 .39123 L +.598 .39086 L +Mistroke +.6 .39047 L +.602 .39008 L +.604 .38968 L +.606 .38927 L +.608 .38886 L +.61 .38843 L +.612 .388 L +.614 .38756 L +.616 .38711 L +.618 .38665 L +.62 .38618 L +.622 .38571 L +.624 .38522 L +.626 .38473 L +.628 .38423 L +.63 .38371 L +.632 .38319 L +.634 .38267 L +.636 .38213 L +.638 .38158 L +.64 .38102 L +.642 .38046 L +.644 .37989 L +.646 .3793 L +.648 .37871 L +.65 .37811 L +.652 .3775 L +.654 .37687 L +.656 .37624 L +.658 .3756 L +.66 .37495 L +.662 .3743 L +.664 .37363 L +.666 .37295 L +.668 .37226 L +.67 .37156 L +.672 .37085 L +.674 .37013 L +.676 .3694 L +.678 .36866 L +.68 .36791 L +.682 .36715 L +.684 .36638 L +.686 .36559 L +.688 .3648 L +.69 .364 L +.692 .36318 L +.694 .36235 L +.696 .36152 L +.698 .36067 L +Mistroke +.7 .35981 L +.702 .35894 L +.704 .35805 L +.706 .35716 L +.708 .35625 L +.71 .35533 L +.712 .3544 L +.714 .35346 L +.716 .3525 L +.718 .35153 L +.72 .35055 L +.722 .34956 L +.724 .34855 L +.726 .34753 L +.728 .34649 L +.73 .34545 L +.732 .34438 L +.734 .34331 L +.736 .34222 L +.738 .34112 L +.74 .34 L +.742 .33887 L +.744 .33772 L +.746 .33656 L +.748 .33538 L +.75 .33419 L +.752 .33298 L +.754 .33175 L +.756 .33051 L +.758 .32925 L +.76 .32798 L +.762 .32669 L +.764 .32538 L +.766 .32405 L +.768 .32271 L +.77 .32135 L +.772 .31996 L +.774 .31856 L +.776 .31714 L +.778 .3157 L +.78 .31424 L +.782 .31276 L +.784 .31126 L +.786 .30974 L +.788 .30819 L +.79 .30662 L +.792 .30503 L +.794 .30342 L +.796 .30178 L +.798 .30012 L +Mistroke +.8 .29843 L +.802 .29672 L +.804 .29498 L +.806 .29321 L +.808 .29141 L +.81 .28959 L +.812 .28773 L +.814 .28585 L +.816 .28393 L +.818 .28198 L +.82 .28 L +.822 .27798 L +.824 .27593 L +.826 .27384 L +.828 .27171 L +.83 .26954 L +.832 .26733 L +.834 .26507 L +.836 .26278 L +.838 .26043 L +.84 .25803 L +.842 .25559 L +.844 .25309 L +.846 .25053 L +.848 .24792 L +.85 .24524 L +.852 .24249 L +.854 .23968 L +.856 .23679 L +.858 .23382 L +.86 .23077 L +.862 .22762 L +.864 .22438 L +.866 .22104 L +.868 .21758 L +.87 .21399 L +.872 .21027 L +.874 .20639 L +.876 .20235 L +.878 .19812 L +.88 .19367 L +.882 .18898 L +.884 .184 L +.886 .17867 L +.888 .17293 L +.89 .16666 L +.892 .1597 L +.894 .15177 L +.896 .14232 L +.898 .12996 L +Mistroke +.9 .1 L +Mfstroke +0 0 1 r +.1 .1 m +.105 .15 L +.15 .25 L +.2 .3 L +.3 .36 L +.4 .39 L +.5 .4 L +.7 .36 L +.8 .3 L +.875 .2 L +.9 .1 L +s +5 Mabswid +.1 .1 Mdot +.105 .15 Mdot +.15 .25 Mdot +.2 .3 Mdot +.3 .36 Mdot +.4 .39 Mdot +.5 .4 Mdot +.7 .36 Mdot +.8 .3 Mdot +.875 .2 Mdot +.9 .1 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{645, 322.5}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg<0oooo1@000?m80?ooo`03 +0000003oool0oooo00P0oooo0P0000000`3oool000000000000C0?ooo`003P3ooolh000000D0003o +o`00003;000000D0003o>000000A0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`000000 +503oool002/0oooo00<000000?ooo`3oool0603oool50000oaX0oooo00<000000?ooo`3oool06@3o +ool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3o +ool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3o +ool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3o +ool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3o +ool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01P0oooo1@000?lJ0?ooo`030000003o +ool0oooo02d0oooo0P0000090?ooo`030000003oool0oooo01<0oooo000[0?ooo`030000003oool0 +oooo01T0oooo0`000?lK0?ooo`030000003oool0oooo01T0oooo00<000000?ooo`3oool06P3oool0 +0`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool0 +0`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool0 +0`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool0 +0`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool0 +0`000000oooo0?ooo`0I0?ooo`<0003o6`3oool00`000000oooo0?ooo`0/0?ooo`030000003oool0 +oooo00L0oooo0P0000000`3oool000000000000C0?ooo`00:`3oool00`000000oooo0?ooo`0J0?oo +o`030000o`3oool0oooo01X0oooo00<000000?ooo`3oool06@3oool00`000000oooo0?ooo`0J0?oo +o`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0J0?oo +o`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0J0?oo +o`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0J0?oo +o`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0J0?oo +o`030000003oool0oooo01T0oooo00<0003o07lZ:P3oool06`3oool00`000000oooo0?ooo`0[0?oo +o`030000003oool0oooo0200oooo00180?ooo`030000o`3oool0oooo0700oooo00<000000?ooo`3o +ool0L@3oool00`000000oooo0?ooo`1a0?ooo`030000003oool0oooo0700oooo00<0003o07lZ:P3o +ool0K03oool004P0oooo00<0003o0?ooo`3oool0i03oool00`000000oooo0?ooo`3T0?ooo`030000 +o`1o:RX0oooo06`0oooo00180?ooo`030000o`3oool0oooo0>@0oooo00<000000?ooo`3oool0h`3o +ool00`000?l0o`0007lZ:P1]0?ooo`00B03oool00`000?l0o`000?ooo`3T0?ooo`030000003oool0 +oooo0><0oooo00<0003o0?l0001o:RX0K@3oool004P0oooo00<0ObXZ0000o`3oool0i03oool00`00 +0000oooo0?ooo`3S0?ooo`030000o`3o0000ObXZ06d0oooo00180?ooo`0307lZ:P000?l0oooo0>@0 +oooo00<000000?ooo`3oool0h`3oool00`000?l0ObXZ0?ooo`1]0?ooo`00B@3oool00`000?l0oooo +0?ooo`3S0?ooo`030000003oool0oooo0>80oooo00<0003o003o001o:RX0KP3oool004T0oooo00<0 +003o0?ooo`3oool0h`3oool00`000000oooo0?ooo`3R0?ooo`030000o`00o`00ObXZ06h0oooo0019 +0?ooo`030000o`3oool0oooo0><0oooo0`00003R0?ooo`030000o`3oool0ObXZ06h0oooo00190?oo +o`030000o`3oool0oooo0><0oooo00<000000?ooo`3oool0hP3oool00`000?l0oooo07lZ:P1^0?oo +o`00B@3oool00`000?l0oooo0?ooo`3S0?ooo`030000003oool0oooo0>40oooo00@0003o0?ooo`3o +ool0ObXZKP3oool004T0oooo00<0003o0?ooo`3oool0h`3oool00`000000oooo0?ooo`3Q0?ooo`04 +0000o`3oool0oooo07lZ:Vh0oooo00190?ooo`030000o`3oool0oooo0><0oooo00<000000?ooo`3o +ool0h@3oool010000?l0oooo0?ooo`1o:RY^0?ooo`00B@3oool00`000?l0oooo0?ooo`3S0?ooo`03 +0000003oool0oooo0>40oooo00@0003o0?ooo`3o0000ObXZKP3oool004T0oooo00<0003o0?ooo`3o +ool0h`3oool00`000000oooo0?ooo`3P0?ooo`050000o`3oool0oooo0?l0001o:RX0KP3oool004T0 +oooo00<0003o0?l0003oool0h`3oool00`000000oooo0?ooo`3P0?ooo`050000o`3oool0oooo0?l0 +001o:RX0KP3oool004T0oooo00<0003o0?l0003oool0h`3oool00`000000oooo0?ooo`3P0?ooo`05 +0000o`3oool0oooo0?l0001o:RX0KP3oool004T0oooo00<0003o0?l0003oool0h`3oool00`000000 +oooo0?ooo`3P0?ooo`050000o`3oool0oooo0?l0001o:RX0KP3oool004X0oooo00<0003o0?ooo`3o +ool0hP3oool00`000000oooo0?ooo`3O0?ooo`050000o`00o`00oooo0?ooo`1o:RX0K`3oool004X0 +oooo00<0003o0?ooo`3oool0hP3oool00`000000oooo0?ooo`3O0?ooo`050000o`3oool0oooo0?l0 +001o:RX0K`3oool004X0oooo00<0003o0?ooo`3oool0hP3oool300000=l0oooo00D0003o0?ooo`3o +ool0o`0007lZ:P1_0?ooo`00BP3oool00`000?l0oooo0?ooo`3R0?ooo`030000003oool0oooo0=l0 +oooo00D0003o0?ooo`3oool0o`0007lZ:P1_0?ooo`00BP3oool00`000?l0oooo0?ooo`3R0?ooo`03 +0000003oool0oooo0=h0oooo00H0003o003o003oool0oooo0?l0001o:RY_0?ooo`00B@3oool30000 +on<0oooo00<000000?ooo`3oool0gP3oool01@000?l00?l00?ooo`3o0000ObXZ0700oooo00180?oo +o`D0003ohP3oool00`000000oooo0?ooo`3N0?ooo`050000o`3oool0oooo0?l0001o:RX0L03oool0 +04P0oooo1@000?oR0?ooo`030000003oool0oooo0=d0oooo00D0003o003o003oool0oooo07lZ:P1a +0?ooo`00B03oool50000on80oooo00<000000?ooo`3oool0g@3oool01@000?l00?l00?ooo`3oool0 +ObXZ0740oooo00190?ooo`<0003oh`3oool00`000000oooo0?ooo`3M0?ooo`050000o`00o`00oooo +0?ooo`1o:RX0L@3oool004/0oooo00<0003o0?ooo`3oool0h@3oool00`000000oooo0?ooo`3M0?oo +o`050000o`00o`00oooo0?ooo`1o:RX0L@3oool004/0oooo00<0o`000000o`3oool0h@3oool00`00 +0000oooo0?ooo`3L0?ooo`050000o`00o`00oooo0?ooo`1o:RX0LP3oool004/0oooo00<0o`000000 +o`3oool0h@3oool00`000000oooo0?ooo`3L0?ooo`050000o`00o`00oooo0?ooo`1o:RX0LP3oool0 +04/0oooo00<0o`0007lZ:P000?l0h@3oool300000=`0oooo00D0003o003o003oool0oooo07lZ:P1b +0?ooo`00B`3oool00`3o0000ObXZ0000o`3Q0?ooo`030000003oool0oooo0=`0oooo00D0003o003o +003oool0oooo07lZ:P1b0?ooo`00B`3oool0103o0000ObXZ0?ooo`000?oP0?ooo`030000003oool0 +oooo0=/0oooo00H0003o003o003oool0oooo07lZ:P3o001b0?ooo`00B`3oool0103o0000oooo07lZ +:P000?oP0?ooo`030000003oool0oooo0=/0oooo00H0003o003o003oool0oooo07lZ:P3o001b0?oo +o`00B`3oool01@00o`00o`0007lZ:P3oool0003o0=l0oooo00<000000?ooo`3oool0f`3oool01@00 +0?l00?l00?ooo`3oool0ObXZ07<0oooo001<0?ooo`040?l0001o:RX0oooo0000oml0oooo00<00000 +0?ooo`3oool0f`3oool01@000?l00?l00?ooo`3oool0ObXZ07<0oooo001<0?ooo`050?l0003oool0 +ObXZ0?ooo`000?l0gP3oool00`000000oooo0?ooo`3J0?ooo`060000o`3oool00?l00?ooo`1o:RX0 +o`00L`3oool004`0oooo00D0o`000?ooo`1o:RX0oooo0000o`3N0?ooo`030000003oool0oooo0=X0 +oooo00H0003o003o003oool0oooo07lZ:P3o001c0?ooo`00C03oool01P3o0000oooo0?ooo`1o:RX0 +oooo0000omd0oooo00<000000?ooo`3oool0fP3oool01P000?l00?l00?ooo`3oool0ObXZ0?l007<0 +oooo001<0?ooo`060?l0003oool0oooo07lZ:P3oool0003og@3oool00`000000oooo0?ooo`3J0?oo +o`050000o`00o`00oooo0?ooo`1o:RX0M03oool004`0oooo00H0o`000?ooo`3oool0oooo07lZ:P00 +0?oM0?ooo`030000003oool0oooo0=T0oooo00H0003o003o003oool0oooo07lZ:P3o001d0?ooo`00 +C03oool01`3o0000oooo0?ooo`3oool0ObXZ0?ooo`000?l0g03oool00`000000oooo0?ooo`3I0?oo +o`060000o`00o`00oooo0?ooo`1o:RX0o`00M03oool004`0oooo00L00?l00?l0003oool0oooo07lZ +:P3oool0003o0=`0oooo0`00003I0?ooo`060000o`3oool0oooo0?ooo`1o:RX0o`00M03oool004`0 +oooo00<00?l00?l0003oool00P3oool00`1o:RX0oooo0000o`3K0?ooo`030000003oool0oooo0=T0 +oooo00D0003o0?ooo`3oool0ObXZ0?l0001e0?ooo`00C@3oool01`3o0000oooo0?ooo`3oool0ObXZ +0?ooo`000?l0f`3oool00`000000oooo0?ooo`3H0?ooo`060000o`00o`00oooo0?ooo`1o:RX0o`00 +M@3oool004d0oooo00D0o`000?ooo`3oool0oooo07lZ:P020?ooo`030000o`3oool0oooo0=P0oooo +00<000000?ooo`3oool0f03oool01P000?l0oooo0?ooo`3oool0ObXZ0?l007D0oooo001=0?ooo`03 +0?l0003oool0oooo0080oooo00<0ObXZ0?ooo`000?l0fP3oool00`000000oooo0?ooo`3H0?ooo`06 +0000o`3oool0oooo07lZ:P3oool0o`00M@3oool004d0oooo00<00?l00?l0003oool00P3oool0101o +:RX0oooo0?ooo`000?oI0?ooo`030000003oool0oooo0=P0oooo00D0003o0?ooo`3oool0ObXZ0?l0 +001f0?ooo`00C@3oool00`00o`00o`000?ooo`020?ooo`0407lZ:P3oool0oooo0000omT0oooo00<0 +00000?ooo`3oool0e`3oool01P000?l00?l00?ooo`1o:RX0oooo0?l007H0oooo001=0?ooo`03003o +003o0000oooo00<0oooo00@0ObXZ0?ooo`3oool0003of03oool00`000000oooo0?ooo`3G0?ooo`05 +0000o`3oool0oooo07lZ:P3o0000M`3oool004h0oooo00<00?l00?l0003oool00P3oool0101o:RX0 +oooo0?ooo`000?oH0?ooo`030000003oool0oooo0=L0oooo00D0003o0?ooo`1o:RX0oooo0?l0001g +0?ooo`00CP3oool00`00o`00o`000?ooo`020?ooo`0507lZ:P3oool0oooo0?ooo`000?l0b`3oool5 +000000L0oooo00<000000?ooo`3oool0b03oool60?l000L0oooo0`000?l00`1o:RX0o`000?l0001h +0?ooo`00CP3oool00`00o`00o`000?ooo`030?ooo`0407lZ:P3oool0oooo0000old0oooo00<00000 +0?ooo`3oool01`3oool00`000000oooo0?ooo`360?ooo`80o`001P3oool30?l000<0oooo1@000?mj +0?ooo`00CP3oool00`00o`00o`000?ooo`030?ooo`0407lZ:P3oool0oooo0000old0oooo00<00000 +0?ooo`3oool01`3oool500000<<0oooo00<0o`000?ooo`3oool02@3oool30?l000D0003oNP3oool0 +04l0oooo00<0o`000?ooo`3oool00`3oool0101o:RX0oooo0?ooo`000?o<0?ooo`030000003oool0 +oooo00L0oooo00<000000?ooo`3oool0``3oool20?l000l0oooo1@000?mj0?ooo`00C`3oool00`00 +o`00o`000?ooo`030?ooo`0407lZ:P3oool0oooo0000ol`0oooo00<000000?ooo`3oool01`3oool0 +0`000000oooo0?ooo`320?ooo`030?l0003oool0oooo0100oooo0`000?mk0?ooo`00C`3oool00`00 +o`00o`000?ooo`040?ooo`0407lZ:P3oool0oooo0000olX0oooo0P0000090?ooo`030000003oool0 +oooo0<40oooo00<0o`000?ooo`3oool0403oool00`000?l0oooo07lZ:P1l0?ooo`00C`3oool00`00 +o`00o`000?ooo`050?ooo`0307lZ:P3oool0003o0=D0oooo00<000000?ooo`3oool0`03oool00`3o +0000oooo0?ooo`0@0?ooo`040000o`3oool00?l007lZ:W`0oooo001?0?ooo`03003o003o0000oooo +00D0oooo00@0ObXZ0?ooo`3oool0003oe03oool00`000000oooo0?ooo`300?ooo`030?l0003oool0 +oooo00l0oooo00@0003o0?ooo`3oool0ObXZO@3oool00500oooo00<0o`000?ooo`3oool01@3oool0 +0`1o:RX0oooo0000o`3D0?ooo`030000003oool0oooo0;l0oooo00<0o`000?ooo`3oool0403oool0 +10000?l0oooo0?ooo`1o:RYm0?ooo`00D03oool00`00o`00o`000?ooo`050?ooo`0407lZ:P3oool0 +oooo0000om<0oooo00<000000?ooo`3oool0?P3oool30?l007h0oooo00<0o`000?ooo`3oool03`3o +ool01@000?l0oooo0?ooo`1o:RX00?l007d0oooo001@0?ooo`03003o003o0000oooo00H0oooo00<0 +ObXZ0?ooo`000?l0d`3oool00`000000oooo0?ooo`0k0?ooo`<0o`000`3oool40?l007T0oooo00<0 +o`000?ooo`3oool03`3oool01@000?l0oooo0?ooo`3oool0ObXZ07h0oooo001@0?ooo`03003o003o +0000oooo00H0oooo00@0ObXZ0?ooo`3oool0003odP3oool00`000000oooo0?ooo`0j0?ooo`030?l0 +003oool0oooo00P0oooo0P3o001g0?ooo`030?l0003oool0oooo00h0oooo00H0003o0?ooo`3oool0 +oooo07lZ:P00o`1n0?ooo`00D03oool00`00o`00o`000?ooo`070?ooo`0307lZ:P3oool0003o0=80 +oooo00<000000?ooo`3oool0=`3oool30?l000d0oooo00<0o`000?ooo`3oool0L`3oool00`3o0000 +oooo0?ooo`0?0?ooo`050000o`3oool0oooo0?ooo`1o:RX0O`3oool00500oooo00<00?l00?ooo`3o +00001`3oool0101o:RX0oooo0?ooo`000?oA0?ooo`030000003oool0oooo03H0oooo00<0o`000?oo +o`3oool03`3oool20?l00780oooo00<0o`000?ooo`3oool03`3oool01P000?l0oooo0?ooo`3oool0 +ObXZ003o07l0oooo001A0?ooo`03003o003o0000oooo00H0oooo00@0ObXZ0?ooo`3oool0003od@3o +ool3000003D0oooo00<0o`000?ooo`3oool04P3oool00`3o0000oooo0?ooo`1^0?ooo`030?l0003o +ool0oooo00l0oooo00H0003o0?ooo`3oool0oooo07lZ:P00o`200?ooo`00D@3oool00`00o`00o`00 +0?ooo`070?ooo`0407lZ:P3oool0oooo0000om00oooo00<000000?ooo`3oool0=03oool00`3o0000 +oooo0?ooo`0D0?ooo`030?l0003oool0oooo06d0oooo00<0o`000?ooo`3oool03P3oool00`000?l0 +oooo0?ooo`020?ooo`0307lZ:P00o`00oooo07l0oooo001A0?ooo`03003o003o0000oooo00P0oooo +00<0ObXZ0?ooo`000?l0d03oool00`000000oooo0?ooo`0c0?ooo`030?l0003oool0oooo01D0oooo +00<0o`000?ooo`3oool0K@3oool00`3o0000oooo0?ooo`0>0?ooo`070000o`3oool0oooo0?ooo`1o +:RX0oooo003o00200?ooo`00D@3oool00`00o`00oooo0?l000090?ooo`0307lZ:P000?l0oooo00?ooo`030000003oool0oooo +0340oooo0P3o000J0?ooo`030?l0003oool0oooo06X0oooo00<0o`000?ooo`3oool03@3oool00`00 +0?l0oooo0?ooo`020?ooo`0307lZ:P3oool00?l00840oooo001B0?ooo`03003o003o0000oooo00T0 +oooo00<0ObXZ0000o`3oool0cP3oool00`000000oooo0?ooo`0`0?ooo`030?l0003oool0oooo01/0 +oooo00<0o`000?ooo`3oool0J03oool00`3o0000oooo0?ooo`0=0?ooo`030000o`3oool0oooo0080 +oooo00@0ObXZ0?ooo`3oool00?l0P@3oool00580oooo00<00?l00?ooo`3o00002P3oool00`1o:RX0 +003o0?ooo`3=0?ooo`030000003oool0oooo02l0oooo00<0o`000?ooo`3oool07@3oool00`3o0000 +oooo0?ooo`1W0?ooo`030?l0003oool0oooo00d0oooo00<0003o0?ooo`3oool00P3oool00`1o:RX0 +oooo003o00220?ooo`00DP3oool00`00o`00oooo0?l0000:0?ooo`0307lZ:P000?l0oooo003oool00`3o0000oooo0?ooo`1A0?ooo`030?l0003oool0oooo0080oooo00D0003o0?ooo`3o +ool0oooo07lZ:P070?ooo`03003o003oool0oooo08l0oooo001d0?ooo`050000o`3oool0oooo0?oo +o`3o0000]P3oool00`000000oooo0?ooo`0P0?ooo`030?l0003oool0oooo03X0oooo00<0o`000?oo +o`3oool0D03oool00`3o0000oooo0?ooo`020?ooo`040000o`3oool0oooo07lZ:PL0oooo00<00?l0 +0?ooo`3oool0T03oool007D0oooo00D0003o0?ooo`3oool00?l00?l0002e0?ooo`030000003oool0 +oooo0200oooo00<0o`000?ooo`3oool0>P3oool00`3o0000oooo0?ooo`1?0?ooo`030?l0003oool0 +oooo0080oooo00D0003o0?ooo`3oool0oooo07lZ:P070?ooo`03003o003oool0oooo0900oooo001f +0?ooo`050000o`3oool0oooo003o003o0000]03oool3000001l0oooo00<0o`000?ooo`3oool0?03o +ool00`3o0000oooo0?ooo`1>0?ooo`050?l0003oool0oooo0?ooo`000?l00`3oool00`1o:RX0oooo +0?ooo`050?ooo`03003o003oool0oooo0940oooo001g0?ooo`050000o`3oool0oooo003o003o0000 +/`3oool00`000000oooo0?ooo`0O0?ooo`030?l0003oool0oooo03d0oooo00<0o`000?ooo`3oool0 +C03oool01@3o0000oooo0?ooo`3oool0003o0080oooo0P1o:RX70?ooo`03003o003oool0oooo0980 +oooo001h0?ooo`050000o`3oool0oooo003o003o0000/P3oool00`000000oooo0?ooo`0N0?ooo`03 +0?l0003oool0oooo03h0oooo00<0o`000?ooo`3oool0C03oool01`3o0000oooo0?ooo`3oool0003o +0?ooo`1o:RX01`3oool2003o09D0oooo001i0?ooo`040000o`3oool0oooo0?l00;80oooo00<00000 +0?ooo`3oool07P3oool00`3o0000oooo0?ooo`0o0?ooo`030?l0003oool0oooo04X0oooo00L0o`00 +0?ooo`3oool0oooo0000o`3oool0ObXZ00L0oooo00<00?l00?ooo`3oool0U@3oool007X0oooo00@0 +003o07lZ:P00o`00o`00/@3oool00`000000oooo0?ooo`0N0?ooo`030?l0003oool0oooo03l0oooo +00<0o`000?ooo`3oool0BP3oool01P3o0000oooo0?ooo`000?l0oooo07lZ:PH0oooo0P00o`2H0?oo +o`00N`3oool00`000?l0ObXZ0?l0002a0?ooo`030000003oool0oooo01d0oooo00<0o`000?ooo`3o +ool0@03oool00`3o0000oooo0?ooo`1:0?ooo`050?l0003oool0003o0?ooo`1o:RX01P3oool00`00 +o`00oooo0?ooo`2H0?ooo`00O03oool00`000?l0ObXZ0?l0002`0?ooo`030000003oool0oooo01d0 +oooo00<0o`000?ooo`3oool0@@3oool00`3o0000oooo0?ooo`180?ooo`050?l0003oool0oooo0000 +o`1o:RX0103oool3003o09/0oooo001m0?ooo`030000o`1o:RX0oooo0:l0oooo00<000000?ooo`3o +ool0703oool00`3o0000oooo0?ooo`120?ooo`030?l0003oool0oooo04P0oooo00@0o`000?ooo`00 +0?l0ObXZ103oool00`00o`00oooo0?ooo`2L0?ooo`00OP3oool00`000?l0ObXZ0?ooo`2^0?ooo`03 +0000003oool0oooo01`0oooo00<0o`000?ooo`3oool0@P3oool00`3o0000oooo0?ooo`180?ooo`03 +0?l000000?l0ObXZ00<0oooo0P00o`2O0?ooo`00O`3oool40000oj00oooo100000080?ooo`030000 +003oool0oooo01/0oooo00<0o`000?ooo`3oool0A03oool00`3o0000oooo0?ooo`150?ooo`<0003o +0`3oool2003o0:40oooo001o0?ooo`D0003oW`3oool00`000000oooo0?ooo`090?ooo`030000003o +ool0oooo01X0oooo00<0o`000?ooo`3oool0A@3oool00`3o0000oooo0?ooo`140?ooo`D0003o0P00 +o`2S0?ooo`00O`3oool50000oj00oooo00<000000?ooo`3oool0203oool5000001P0oooo00<0o`00 +0?ooo`3oool0AP3oool00`3o0000oooo0?ooo`130?ooo`D0003oY@3oool007l0oooo1@000?l00`1o +:RX0oooo0?ooo`2N0?ooo`030000003oool0oooo00L0oooo00<000000?ooo`3oool06P3oool00`3o +0000oooo0?ooo`160?ooo`030?l0003oool0oooo04<0oooo1@000?nU0?ooo`00P03oool30000o`03 +0?l000000?l0003o09d0oooo00@000000?ooo`3oool00000203oool00`000000oooo0?ooo`0I0?oo +o`030?l0003oool0oooo04L0oooo00<0o`000?ooo`3oool0@@3oool20000o`040?ooo`000?l0003o +0000ojH0oooo00230?ooo`040?l00000o`00oooo0000oid0oooo0P0000090?ooo`030000003oool0 +oooo01T0oooo00<0o`000?ooo`3oool0B03oool00`3o0000oooo0?ooo`0n0?ooo`03003o00000?l0 +ObXZ0080oooo00<0o`000?ooo`3oool0YP3oool008@0oooo00<0o`000?ooo`3oool00P000?nV0?oo +o`030000003oool0oooo01P0oooo00<0o`000?ooo`3oool0B@3oool00`3o0000oooo0?ooo`0l0?oo +o`03003o00000?l0003o00@0oooo00<0o`000?ooo`3oool0YP3oool008@0oooo00D0o`00003o003o +ool0oooo07lZ:P020000oj@0oooo00<000000?ooo`3oool0603oool00`3o0000oooo0?ooo`1:0?oo +o`030?l0003oool0oooo03X0oooo0P000?l00`1o:RX0oooo0?ooo`030?ooo`030?l0003oool0oooo +0:H0oooo00250?ooo`040?l00000o`00oooo0?ooo`80ObXZ00<0003o0?ooo`3oool0X@3oool00`00 +0000oooo0?ooo`0H0?ooo`030?l0003oool0oooo04X0oooo00<0o`000?ooo`3oool0=`3oool2003o +00030000o`3oool0ObXZ00D0oooo00<0o`000?ooo`3oool0Y`3oool008D0oooo00<0o`000?ooo`00 +o`000`3oool00`1o:RX0003o0000o`2Q0?ooo`030000003oool0oooo01L0oooo00<0o`000?ooo`3o +ool0C03oool00`3o0000oooo0?ooo`0e0?ooo`05003o00000?l0003o0?ooo`1o:RX01P3oool00`3o +0000oooo0?ooo`2W0?ooo`00QP3oool00`3o00000?l00?ooo`030?ooo`0407lZ:P3oool0003o0000 +oil0oooo00<000000?ooo`3oool05`3oool00`3o0000oooo0?ooo`1<0?ooo`030?l0003oool0oooo +03<0oooo00<00?l00000o`000?l00P3oool00`1o:RX0oooo0?ooo`050?ooo`030?l0003oool0oooo +0:L0oooo00270?ooo`030?l00000o`00oooo00<0oooo0P1o:RX00`3oool0003o0?ooo`2M0?ooo`03 +0000003oool0oooo01H0oooo00<0o`000?ooo`3oool0CP3oool00`3o0000oooo0?ooo`0a0?ooo`03 +003o00000?l0oooo00<0ObXZ203oool00`3o0000oooo0?ooo`2W0?ooo`00Q`3oool0103o0000oooo +003o0000o`040?ooo`0407lZ:P3oool0003o0000oi`0oooo00<000000?ooo`3oool05P3oool00`3o +0000oooo0?ooo`1>0?ooo`030?l0003oool0oooo02l0oooo00D00?l00000o`000?l0oooo07lZ:P0: +0?ooo`030?l0003oool0oooo0:P0oooo00280?ooo`040?l0003oool0oooo003o00@0oooo0P1o:RX0 +0`3oool0003o0000o`2J0?ooo`030000003oool0oooo01D0oooo00<0o`000?ooo`3oool0C`3oool0 +0`3o0000oooo0?ooo`0]0?ooo`03003o00000?l0003o0080oooo00<0ObXZ0?ooo`3oool02@3oool0 +0`3o0000oooo0?ooo`2X0?ooo`00R@3oool0103o0000oooo0?ooo`00o`050?ooo`0407lZ:P3oool0 +oooo0000oiT0oooo0`00000E0?ooo`030?l0003oool0oooo0500oooo00<0o`000?ooo`3oool0:`3o +ool00`00o`00003o0?ooo`020?ooo`0307lZ:P3oool0oooo00T0oooo00<0o`000?ooo`3oool0Z@3o +ool008X0oooo00@0o`000?ooo`3oool00?l01@3oool207lZ:P030?ooo`000?l0003o09L0oooo00<0 +00000?ooo`3oool0503oool00`3o0000oooo0?ooo`1A0?ooo`030?l0003oool0oooo02T0oooo00<0 +0?l00000o`000?l00P3oool207lZ:P`0oooo00<0o`000?ooo`3oool0Z@3oool008X0oooo00D0o`00 +0?ooo`3oool0oooo003o00060?ooo`0307lZ:P3oool0oooo0080003oU@3oool00`000000oooo0?oo +o`0D0?ooo`030?l0003oool0oooo0540oooo00<0o`000?ooo`3oool0:03oool20000o`80oooo0P1o +:RX=0?ooo`030?l0003oool0oooo0:X0oooo002;0?ooo`050?l0003oool0oooo0?ooo`00o`001P3o +ool01@1o:RX0oooo0?ooo`3oool0003o09@0oooo00<000000?ooo`3oool04`3oool00`3o0000oooo +0?ooo`1C0?ooo`030?l0003oool0oooo02H0oooo00D0003o0?ooo`3oool0oooo07lZ:P0?0?ooo`03 +0?l0003oool0oooo0:X0oooo002<0?ooo`040?l0003oool0oooo0?ooo`800?l01@3oool307lZ:P03 +0?ooo`000?l0003o0980oooo00<000000?ooo`3oool04`3oool00`3o0000oooo0?ooo`1C0?ooo`03 +0?l0003oool0oooo02<0oooo00<00?l00000o`000?l00P3oool207lZ:Q00oooo00<0o`000?ooo`3o +ool0ZP3oool008`0oooo00<0o`000?ooo`3oool00`3oool00`00o`00oooo0?ooo`050?ooo`0407lZ +:P3oool0oooo0000oi40oooo00<000000?ooo`3oool04P3oool00`3o0000oooo0?ooo`1D0?ooo`03 +0?l0003oool0oooo0280oooo00<00?l00000o`3oool00P3oool00`1o:RX0oooo0?ooo`0?0?ooo`03 +0?l0003oool0oooo0:/0oooo002=0?ooo`030?l0003oool0oooo00<0oooo00<00?l00?ooo`3oool0 +1@3oool00`1o:RX0oooo0?ooo`020000ohl0oooo00<000000?ooo`3oool04P3oool00`3o0000oooo +0?ooo`1E0?ooo`030?l0003oool0oooo0200oooo0P000?l30?ooo`0307lZ:P3oool0oooo0100oooo +00<0o`000?ooo`3oool0Z`3oool008d0oooo00<0o`000?ooo`3oool0103oool00`00o`00oooo0?oo +o`050?ooo`80ObXZ0P3oool20000ohd0oooo00<000000?ooo`3oool04P3oool00`3o0000oooo0?oo +o`1E0?ooo`030?l0003oool0oooo01h0oooo0P000?l20?ooo`<0ObXZ4`3oool00`3o0000oooo0?oo +o`2[0?ooo`00SP3oool00`3o0000oooo0?ooo`040?ooo`03003o003oool0oooo00H0oooo00D0ObXZ +0?ooo`3oool0oooo0000o`2<0?ooo`030000003oool0oooo0140oooo00<0o`000?ooo`3oool0EP3o +ool00`3o0000oooo0?ooo`0L0?ooo`03003o00000?l0oooo0080oooo00<0ObXZ0?ooo`3oool04`3o +ool00`3o0000oooo0?ooo`2/0?ooo`00S`3oool00`3o0000oooo0?ooo`040?ooo`800?l01`3oool3 +07lZ:P030?ooo`000?l0003o08X0oooo00<000000?ooo`3oool04@3oool00`3o0000oooo0?ooo`1G +0?ooo`030?l0003oool0oooo01X0oooo0P000?l20?ooo`80ObXZ5P3oool00`3o0000oooo0?ooo`2/ +0?ooo`00T03oool00`3o0000oooo0?ooo`050?ooo`800?l0203oool00`1o:RX0oooo0?ooo`020000 +ohP0oooo00<000000?ooo`3oool0403oool00`3o0000oooo0?ooo`1H0?ooo`030?l0003oool0oooo +01P0oooo0P000?l30?ooo`0307lZ:P3oool0oooo01H0oooo00<0o`000?ooo`3oool0[03oool00940 +oooo00<0o`000?ooo`3oool01P3oool2003o00L0oooo0P1o:RX20?ooo`030000o`3oool0oooo08D0 +oooo0`00000@0?ooo`030?l0003oool0oooo05T0oooo00<0o`000?ooo`3oool05P3oool00`000?l0 +oooo0?ooo`0307lZ:QT0oooo00<0o`000?ooo`3oool0[03oool00980oooo00<0o`000?ooo`3oool0 +1`3oool00`00o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo0080003oQ@3oool00`000000oooo +0?ooo`0@0?ooo`030?l0003oool0oooo05T0oooo00<0o`000?ooo`3oool0503oool20000o`80oooo +00<0ObXZ0?ooo`3oool06@3oool00`3o0000oooo0?ooo`2]0?ooo`00TP3oool00`3o0000oooo0?oo +o`080?ooo`800?l01`3oool307lZ:P030?ooo`000?l0003o08<0oooo00<000000?ooo`3oool03`3o +ool00`3o0000oooo0?ooo`1K0?ooo`030?l0003oool0oooo0140oooo0P000?l01000o`00oooo07lZ +:P1o:RXL0?ooo`030?l0003oool0oooo0:d0oooo002C0?ooo`030?l0003oool0oooo00T0oooo0`00 +o`070?ooo`0407lZ:P3oool0oooo0000oh80oooo00<000000?ooo`3oool03`3oool00`3o0000oooo +0?ooo`1K0?ooo`030?l0003oool0oooo0100oooo00D0003o0?ooo`3oool0oooo07lZ:P0N0?ooo`03 +0?l0003oool0oooo0:d0oooo002D0?ooo`030?l0003oool0oooo00/0oooo0P00o`060?ooo`80ObXZ +00<0oooo0000o`000?l0P03oool00`000000oooo0?ooo`0>0?ooo`030?l0003oool0oooo05d0oooo +00<0o`000?ooo`3oool03@3oool20000o`040?ooo`1o:RX0ObXZ07lZ:Qh0oooo00<0o`000?ooo`3o +ool0[P3oool009D0oooo00<0o`000?ooo`3oool0303oool2003o00H0oooo0`1o:RX20000ogh0oooo +00<000000?ooo`3oool03@3oool00`3o0000oooo0?ooo`1N0?ooo`030?l0003oool0oooo00/0oooo +0P000?l00`00o`00ObXZ07lZ:P0Q0?ooo`030?l0003oool0oooo0:h0oooo002F0?ooo`030?l0003o +ool0oooo00d0oooo0`00o`060?ooo`0307lZ:P3oool0003o07d0oooo00<000000?ooo`3oool03@3o +ool00`3o0000oooo0?ooo`1O0?ooo`030?l0003oool0oooo00T0oooo00@0003o003o003oool0ObXZ +8`3oool00`3o0000oooo0?ooo`2^0?ooo`00UP3oool00`3o0000oooo0?ooo`0@0?ooo`<00?l0103o +ool207lZ:P80003o5P3oool<0?l005T0oooo00<000000?ooo`3oool0303oool00`3o0000oooo0?oo +o`1P0?ooo`030?l0003oool0oooo00L0oooo0P000?l00`00o`00ObXZ07lZ:P0S0?ooo`030?l0003o +ool0oooo0:l0oooo002G0?ooo`030?l0003oool0oooo0180oooo1000o`020?ooo`80ObXZ0P000?lA +0?ooo`<0o`00303oool50?l005@0oooo00<000000?ooo`3oool0303oool00`3o0000oooo0?ooo`1P +0?ooo`030?l0003oool0oooo00D0oooo0P000?l307lZ:RD0oooo00<0o`000?ooo`3oool0[`3oool0 +09P0oooo0P3o000F0?ooo`<00?l000@0oooo07lZ:P1o:RX0003o3@3oool30?l001@0oooo0P3o001B +0?ooo`030000003oool0oooo00/0oooo00<0o`000?ooo`3oool0HP3oool00`3o0000oooo0?ooo`03 +0?ooo`030000o`1o:RX0ObXZ02P0oooo00<0o`000?ooo`3oool0[`3oool009X0oooo0P3o000G0?oo +o`@00?l00P000?l0103oool0003o0000o`000?l30?ooo`@0o`006@3oool20?l00500oooo00<00000 +0?ooo`3oool02`3oool00`3o0000oooo0?ooo`1R0?ooo`<0003o00@0oooo0000o`000?l0ObXZ:@3o +ool00`3o0000oooo0?ooo`2`0?ooo`00W03oool00`3o0000oooo0?ooo`0H0?ooo`800?l01@000?l2 +0?l001l0oooo00<0o`000?ooo`3oool0C@3oool00`000000oooo0?ooo`0;0?ooo`030?l0003oool0 +oooo0640oooo1@000?l00`1o:RX0oooo0?ooo`0Y0?ooo`030?l0003oool0oooo0;00oooo002M0?oo +o`030?l0003oool0oooo01T0oooo1@000?lR0?ooo`<0o`00C03oool3000000X0oooo00<0o`000?oo +o`3oool0HP3oool50000ob/0oooo00<0o`000?ooo`3oool0/@3oool009h0oooo0`3o000G0?ooo`03 +0?l000000?l0003o00H0003o8P3oool00`3o0000oooo0?ooo`190?ooo`030000003oool0oooo00X0 +oooo00<0o`000?ooo`3oool0G@3oool:0000ob/0oooo00<0o`000?ooo`3oool0/@3oool00:40oooo +0P3o000A0?ooo`@0o`000P3oool30000o`<0oooo00D0ObXZ0000o`000?l0003o003o000O0?ooo`03 +0?l0003oool0oooo04P0oooo00<000000?ooo`3oool02@3oool00`3o0000oooo0?ooo`1I0?ooo`D0 +003o00H0oooo07lZ:P1o:RX0ObXZ003o003oool30000ob/0oooo00<0o`000?ooo`3oool0/P3oool0 +0:<0oooo0P3o000<0?ooo`<0o`003P3oool207lZ:P<0003o7P3oool00`3o0000oooo0?ooo`170?oo +o`030000003oool0oooo00T0oooo00<0o`000?ooo`3oool0E03oool50000o`@0oooo0P1o:RX00`00 +o`00oooo0?ooo`040?ooo`030?l0003oool0oooo02T0oooo00<0o`000?ooo`3oool0/P3oool00:D0 +oooo303o000D0?ooo`80ObXZ10000?lK0?ooo`80o`00A`3oool00`000000oooo0?ooo`080?ooo`03 +0?l0003oool0oooo0500oooo1@000?l70?ooo`80ObXZ0P00o`070?ooo`030?l0003oool0oooo02T0 +oooo00<0o`000?ooo`3oool0/P3oool00P3oool00`000000 +oooo0?ooo`030?ooo`030?l0003oool0oooo0280oooo1@000?lI0?ooo`@0ObXZ103oool4003o02H0 +oooo00<0o`000?ooo`3oool07`3oool00`3o0000oooo0?ooo`2f0?ooo`00i`3oool507lZ:P04003o +00000?l0003o0000o`<0oooo00@0o`000000o`000?l0003o>03oool00`000000oooo0?ooo`020?oo +o`030?l0003oool0oooo01h0oooo1@000?lJ0?ooo`@0ObXZ1@3oool3003o02X0oooo00<0o`000?oo +o`3oool07P3oool00`3o0000oooo0?ooo`2g0?ooo`00k03oool307lZ:P03003o00000?l0003o00H0 +003o=`3oool00`000000oooo0?ooo`020?ooo`030?l0003oool0oooo01T0oooo1@000?lK0?ooo`@0 +ObXZ1@3oool4003o02h0oooo00<0o`000?ooo`3oool07@3oool00`3o0000oooo0?ooo`2g0?ooo`00 +k`3oool407lZ:PL0003o=@3oool01@000000oooo0?ooo`3oool0o`0001L0oooo1@000?lJ0?ooo`H0 +ObXZ1P3oool3003o0380oooo00<0o`000?ooo`3oool0703oool00`3o0000oooo0?ooo`2h0?ooo`00 +l`3oool50000o`80ObXZ2P000?l[0?ooo`050000003oool0oooo0?ooo`3o00004P3oool50000oa/0 +oooo101o:RX70?ooo`D00?l0=P3oool00`3o0000oooo0?ooo`0J0?ooo`030?l0003oool0oooo0;T0 +oooo003d0?ooo`<0003o0`3oool607lZ:P04003o003oool0oooo0?ooo`X0003o8@3oool010000000 +oooo0?ooo`3o000>0?ooo`D0003o6P3oool607lZ:PH0oooo1@00o`0l0?ooo`030?l0003oool0oooo +01P0oooo00<0o`000?ooo`3oool0^P3oool00?L0oooo0P3o00070?ooo`L0ObXZ1`3oool90000oaP0 +oooo00@000000?ooo`3oool0o`002@3oool50000oaP0oooo1`1o:RX60?ooo`H00?l0@P3oool00`3o +0000oooo0?ooo`0G0?ooo`030?l0003oool0oooo0;X0oooo003i0?ooo`030?l0003oool0oooo00/0 +oooo201o:RX00`00o`00oooo0?ooo`050?ooo`X0003o0`3oool2000000P0oooo0`000?l00`3o0000 +oooo0?ooo`030?ooo`D0003o5@3oool807lZ:PD0oooo2000o`180?ooo`030?l0003oool0oooo01H0 +oooo00<0o`000?ooo`3oool0^`3oool00?X0oooo00<0o`000?ooo`3oool04P3oool;07lZ:P03003o +003oool0oooo00@0oooo2P000?l20?ooo`X0003o3P3oool<07lZ:P030?ooo`00o`000?l000X00?l0 +D@3oool00`3o0000oooo0?ooo`0E0?ooo`030?l0003oool0oooo0;/0oooo003k0?ooo`030?l0003o +ool0oooo01`0oooo4@1o:RX70000oa<0ObXZ3@00o`1N0?ooo`030?l0003oool0oooo01<0oooo00<0 +o`000?ooo`3oool0_03oool00?`0oooo00<0o`000?ooo`3oool09`3oool00`000000oooo0?ooo`04 +0?ooo`D0003oOP3oool00`3o0000oooo0?ooo`0B0?ooo`030?l0003oool0oooo0;d0oooo003l0?oo +o`030?l0003oool0oooo02@0oooo00@000000?ooo`3oool000001`3oool30000oh00oooo00<0o`00 +0?ooo`3oool04@3oool00`3o0000oooo0?ooo`2m0?ooo`00o@3oool00`3o0000oooo0?ooo`0T0?oo +o`8000001`3oool00`3o0000oooo000000220?ooo`030?l0003oool0oooo00l0oooo00<0o`000?oo +o`3oool0_P3oool00?h0oooo0P3o000/0?ooo`040?l0003oool0oooo000008<0oooo00<0o`000?oo +o`3oool03@3oool00`3o0000oooo0?ooo`2o0?ooo`00o`3oool10?ooo`030?l0003oool0oooo02T0 +oooo00@0o`000?ooo`3oool00000Q03oool00`3o0000oooo0?ooo`0;0?ooo`030?l0003oool0oooo +0<00oooo003o0?ooo`80oooo00<0o`000?ooo`3oool09`3oool01@3o0000oooo0?ooo`3oool00000 +08D0oooo0P3o00090?ooo`80o`00``3oool00?l0oooo0`3oool00`3o0000oooo0?ooo`0U0?ooo`03 +0?l0003oool0oooo0080oooo00<000000?ooo`3oool0Q@3oool20?l000H0oooo00<0o`000?ooo`3o +ool0``3oool00?l0oooo103oool00`3o0000oooo0?ooo`0S0?ooo`030?l0003oool0oooo00<0oooo +00<000000?ooo`3oool0Q`3oool60?l000?oo +o`80o`003P3oool00`000000oooo0?ooo`3o0?oooe@0oooo003o0?oooa80oooo0`3o00080?ooo`<0 +o`00403oool00`000000oooo0?ooo`3o0?oooe@0oooo003o0?oooaD0oooo203o000C0?ooo`030000 +003oool0oooo0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o +0?oooc00oooo00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000003oool0oooo +0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o0?oooc00oooo +0`00003o0?oooe@0oooo003o0?oooc00oooo00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool` +0?ooo`030000003oool0oooo0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oo +oe@0oooo003o0?oooc00oooo00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000 +003oool0oooo0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o +0?oooc00oooo00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000003oool0oooo +0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o0?oooc00oooo +00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000003oool0oooo0?l0ooooE03o +ool00?l0oooo<03oool300000?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oo +oe@0oooo003o0?oooc00oooo00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000 +003oool0oooo0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o +0?oooc00oooo00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000003oool0oooo +0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o0?oooc00oooo +00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000003oool0oooo0?l0ooooE03o +ool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o0?oooc00oooo00<000000?oo +o`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`<00000o`3ooomD0?ooo`00o`3oool`0?ooo`030000 +003oool0oooo0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o +0?oooc00oooo00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000003oool0oooo +0?l0ooooE03oool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o0?oooc00oooo +00<000000?ooo`3oool0o`3ooomD0?ooo`00o`3oool`0?ooo`030000003oool0oooo0?l0ooooE03o +ool00?l0oooo<03oool00`000000oooo0?ooo`3o0?oooe@0oooo003o0?ooobH0oooo0`0000070?oo +o`030000003oool0oooo0?l0ooooE03oool00?l0oooo9`3oool00`000000oooo0?ooo`060?ooo`03 +0000003oool0oooo0?l0ooooE03oool00?l0oooo903oool5000000L0oooo1@00003o0?oooe80oooo +003o0?ooob@0oooo00@000000?ooo`3oool00000o`3ooomO0?ooo`00o`3ooolU0?ooo`030000003o +ool000000?l0ooooG`3oool00?l0oooo9P3oool200000?l0ooooG`3oool00?l0ooooo`3ooon70?oo +o`00o`3ooooo0?ooohL0oooo003o0?ooool0ooooQ`3oool00?l0ooooo`3ooon70?ooo`00o`3ooooo +0?ooohL0oooo003o0?ooool0ooooQ`3oool00?l0ooooo`3ooon70?ooo`00o`3ooooo0?ooohL0oooo +003o0?ooool0ooooQ`3oool00?l0ooooo`3ooon70?ooo`00o`3ooooo0?ooohL0oooo003o0?ooool0 +ooooQ`3oool00?l0ooooo`3ooon70?ooo`00o`3ooolj0?ooo`800000o`3ooom;0?ooo`00o`3ooolk +0?ooo`030000003oool0oooo0?l0ooooB@3oool00?l0oooo?03oool00`000000oooo0?ooo`3o0?oo +odP0oooo003o0?oooc/0oooo00<000000?ooo`000000o`3ooom90?ooo`00o`3ooolj0?ooo`040000 +003oool0oooo00000?l0ooooB@3oool00?l0oooo>@3oool3000000030?ooo`00000000000?l0oooo +B03oool00?l0oooo;P3oool010000000oooo0?ooo`00003o0?oooeD0oooo003o0?ooobl0oooo0P00 +003o0?oooeH0oooo003o0?ooool0ooooQ`3oool00?l0ooooo`3ooon70?ooo`00o`3ooooo0?ooohL0 +oooo0000\ +\>"], + ImageRangeCache->{{{0, 644}, {321.5, 0}} -> {-5.24373, -1.07771, 0.0172628, \ +0.0172628}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]2\ +\[InvisibleSpace]" mit "\[InvisibleSpace]12\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 2, " mit ", 12, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.1 0.1 [ +[.1 .0875 -6 -9 ] +[.1 .0875 6 0 ] +[.3 .0875 -6 -9 ] +[.3 .0875 6 0 ] +[.7 .0875 -3 -9 ] +[.7 .0875 3 0 ] +[.9 .0875 -3 -9 ] +[.9 .0875 3 0 ] +[1.025 .1 0 -6.4375 ] +[1.025 .1 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .2 -6 -4.5 ] +[.4875 .2 0 4.5 ] +[.4875 .3 -6 -4.5 ] +[.4875 .3 0 4.5 ] +[.4875 .4 -6 -4.5 ] +[.4875 .4 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .1 m +.1 .10625 L +s +[(-4)] .1 .0875 0 1 Mshowa +.3 .1 m +.3 .10625 L +s +[(-2)] .3 .0875 0 1 Mshowa +.7 .1 m +.7 .10625 L +s +[(2)] .7 .0875 0 1 Mshowa +.9 .1 m +.9 .10625 L +s +[(4)] .9 .0875 0 1 Mshowa +.125 Mabswid +.15 .1 m +.15 .10375 L +s +.2 .1 m +.2 .10375 L +s +.25 .1 m +.25 .10375 L +s +.35 .1 m +.35 .10375 L +s +.4 .1 m +.4 .10375 L +s +.45 .1 m +.45 .10375 L +s +.55 .1 m +.55 .10375 L +s +.6 .1 m +.6 .10375 L +s +.65 .1 m +.65 .10375 L +s +.75 .1 m +.75 .10375 L +s +.8 .1 m +.8 .10375 L +s +.85 .1 m +.85 .10375 L +s +.05 .1 m +.05 .10375 L +s +.95 .1 m +.95 .10375 L +s +.25 Mabswid +0 .1 m +1 .1 L +s +gsave +1.025 .1 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-1)] .4875 0 1 0 Mshowa +.5 .2 m +.50625 .2 L +s +[(1)] .4875 .2 1 0 Mshowa +.5 .3 m +.50625 .3 L +s +[(2)] .4875 .3 1 0 Mshowa +.5 .4 m +.50625 .4 L +s +[(3)] .4875 .4 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .02 m +.50375 .02 L +s +.5 .04 m +.50375 .04 L +s +.5 .06 m +.50375 .06 L +s +.5 .08 m +.50375 .08 L +s +.5 .12 m +.50375 .12 L +s +.5 .14 m +.50375 .14 L +s +.5 .16 m +.50375 .16 L +s +.5 .18 m +.50375 .18 L +s +.5 .22 m +.50375 .22 L +s +.5 .24 m +.50375 .24 L +s +.5 .26 m +.50375 .26 L +s +.5 .28 m +.50375 .28 L +s +.5 .32 m +.50375 .32 L +s +.5 .34 m +.50375 .34 L +s +.5 .36 m +.50375 .36 L +s +.5 .38 m +.50375 .38 L +s +.5 .42 m +.50375 .42 L +s +.5 .44 m +.50375 .44 L +s +.5 .46 m +.50375 .46 L +s +.5 .48 m +.50375 .48 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .1 m +.102 .12071 L +.104 .14061 L +.106 .15891 L +.108 .17525 L +.11 .18973 L +.112 .20245 L +.114 .21352 L +.116 .22304 L +.118 .23111 L +.12 .23785 L +.122 .24335 L +.124 .24772 L +.126 .25108 L +.128 .25351 L +.13 .25514 L +.132 .25606 L +.134 .25638 L +.136 .2562 L +.138 .25564 L +.14 .25479 L +.142 .25377 L +.144 .25267 L +.146 .25161 L +.148 .25068 L +.15 .25 L +.152 .24965 L +.154 .24963 L +.156 .24992 L +.158 .25051 L +.16 .25137 L +.162 .2525 L +.164 .25387 L +.166 .25547 L +.168 .25728 L +.17 .25927 L +.172 .26144 L +.174 .26376 L +.176 .26622 L +.178 .2688 L +.18 .27148 L +.182 .27425 L +.184 .27708 L +.186 .27996 L +.188 .28287 L +.19 .2858 L +.192 .28872 L +.194 .29161 L +.196 .29447 L +.198 .29727 L +Mistroke +.2 .3 L +.202 .30264 L +.204 .30518 L +.206 .30764 L +.208 .31001 L +.21 .3123 L +.212 .3145 L +.214 .31662 L +.216 .31866 L +.218 .32063 L +.22 .32252 L +.222 .32434 L +.224 .32609 L +.226 .32777 L +.228 .32939 L +.23 .33093 L +.232 .33242 L +.234 .33385 L +.236 .33521 L +.238 .33652 L +.24 .33778 L +.242 .33898 L +.244 .34013 L +.246 .34124 L +.248 .34229 L +.25 .34331 L +.252 .34428 L +.254 .34521 L +.256 .3461 L +.258 .34695 L +.26 .34777 L +.262 .34856 L +.264 .34932 L +.266 .35004 L +.268 .35074 L +.27 .35142 L +.272 .35208 L +.274 .35271 L +.276 .35333 L +.278 .35393 L +.28 .35451 L +.282 .35508 L +.284 .35564 L +.286 .3562 L +.288 .35674 L +.29 .35729 L +.292 .35783 L +.294 .35836 L +.296 .35891 L +.298 .35945 L +Mistroke +.3 .36 L +.302 .36056 L +.304 .36112 L +.306 .36169 L +.308 .36227 L +.31 .36286 L +.312 .36345 L +.314 .36404 L +.316 .36464 L +.318 .36525 L +.32 .36586 L +.322 .36647 L +.324 .36709 L +.326 .36771 L +.328 .36834 L +.33 .36896 L +.332 .36959 L +.334 .37023 L +.336 .37086 L +.338 .37149 L +.34 .37213 L +.342 .37277 L +.344 .3734 L +.346 .37404 L +.348 .37468 L +.35 .37532 L +.352 .37595 L +.354 .37658 L +.356 .37722 L +.358 .37785 L +.36 .37847 L +.362 .3791 L +.364 .37972 L +.366 .38034 L +.368 .38096 L +.37 .38157 L +.372 .38217 L +.374 .38277 L +.376 .38337 L +.378 .38396 L +.38 .38455 L +.382 .38512 L +.384 .3857 L +.386 .38626 L +.388 .38682 L +.39 .38737 L +.392 .38791 L +.394 .38845 L +.396 .38898 L +.398 .38949 L +Mistroke +.4 .39 L +.402 .3905 L +.404 .39099 L +.406 .39147 L +.408 .39193 L +.41 .39239 L +.412 .39284 L +.414 .39328 L +.416 .3937 L +.418 .39412 L +.42 .39453 L +.422 .39492 L +.424 .3953 L +.426 .39567 L +.428 .39603 L +.43 .39638 L +.432 .39672 L +.434 .39704 L +.436 .39735 L +.438 .39765 L +.44 .39794 L +.442 .39821 L +.444 .39847 L +.446 .39872 L +.448 .39896 L +.45 .39918 L +.452 .39939 L +.454 .39959 L +.456 .39977 L +.458 .39994 L +.46 .40009 L +.462 .40023 L +.464 .40035 L +.466 .40047 L +.468 .40056 L +.47 .40064 L +.472 .40071 L +.474 .40076 L +.476 .4008 L +.478 .40082 L +.48 .40083 L +.482 .40082 L +.484 .40079 L +.486 .40075 L +.488 .40069 L +.49 .40062 L +.492 .40053 L +.494 .40042 L +.496 .4003 L +.498 .40016 L +Mistroke +.5 .4 L +.502 .39983 L +.504 .39963 L +.506 .39943 L +.508 .3992 L +.51 .39897 L +.512 .39871 L +.514 .39844 L +.516 .39816 L +.518 .39787 L +.52 .39756 L +.522 .39724 L +.524 .39691 L +.526 .39656 L +.528 .39621 L +.53 .39584 L +.532 .39547 L +.534 .39508 L +.536 .39469 L +.538 .39429 L +.54 .39387 L +.542 .39345 L +.544 .39303 L +.546 .39259 L +.548 .39215 L +.55 .39171 L +.552 .39126 L +.554 .3908 L +.556 .39034 L +.558 .38988 L +.56 .38941 L +.562 .38894 L +.564 .38846 L +.566 .38798 L +.568 .38751 L +.57 .38703 L +.572 .38655 L +.574 .38607 L +.576 .38559 L +.578 .38511 L +.58 .38463 L +.582 .38415 L +.584 .38367 L +.586 .3832 L +.588 .38273 L +.59 .38226 L +.592 .3818 L +.594 .38134 L +.596 .38089 L +.598 .38044 L +Mistroke +.6 .38 L +.602 .37956 L +.604 .37913 L +.606 .37871 L +.608 .37829 L +.61 .37788 L +.612 .37747 L +.614 .37706 L +.616 .37666 L +.618 .37626 L +.62 .37587 L +.622 .37548 L +.624 .37509 L +.626 .37471 L +.628 .37433 L +.63 .37395 L +.632 .37358 L +.634 .3732 L +.636 .37283 L +.638 .37246 L +.64 .37208 L +.642 .37171 L +.644 .37134 L +.646 .37097 L +.648 .3706 L +.65 .37023 L +.652 .36986 L +.654 .36949 L +.656 .36912 L +.658 .36874 L +.66 .36836 L +.662 .36798 L +.664 .3676 L +.666 .36722 L +.668 .36683 L +.67 .36644 L +.672 .36605 L +.674 .36565 L +.676 .36525 L +.678 .36484 L +.68 .36443 L +.682 .36401 L +.684 .36359 L +.686 .36316 L +.688 .36273 L +.69 .36229 L +.692 .36185 L +.694 .3614 L +.696 .36094 L +.698 .36047 L +Mistroke +.7 .36 L +.702 .35952 L +.704 .35903 L +.706 .35853 L +.708 .35801 L +.71 .35748 L +.712 .35692 L +.714 .35635 L +.716 .35575 L +.718 .35513 L +.72 .35449 L +.722 .35381 L +.724 .3531 L +.726 .35235 L +.728 .35158 L +.73 .35076 L +.732 .3499 L +.734 .349 L +.736 .34805 L +.738 .34706 L +.74 .34602 L +.742 .34493 L +.744 .34378 L +.746 .34258 L +.748 .34132 L +.75 .34 L +.752 .33862 L +.754 .33718 L +.756 .33569 L +.758 .33415 L +.76 .33258 L +.762 .33096 L +.764 .32931 L +.766 .32764 L +.768 .32594 L +.77 .32423 L +.772 .32251 L +.774 .32078 L +.776 .31904 L +.778 .31732 L +.78 .3156 L +.782 .31389 L +.784 .3122 L +.786 .31054 L +.788 .30891 L +.79 .30731 L +.792 .30575 L +.794 .30423 L +.796 .30277 L +.798 .30135 L +Mistroke +.8 .3 L +.802 .29871 L +.804 .29747 L +.806 .29628 L +.808 .29511 L +.81 .29397 L +.812 .29284 L +.814 .29171 L +.816 .29056 L +.818 .28939 L +.82 .28819 L +.822 .28695 L +.824 .28564 L +.826 .28428 L +.828 .28283 L +.83 .2813 L +.832 .27967 L +.834 .27793 L +.836 .27606 L +.838 .27407 L +.84 .27193 L +.842 .26964 L +.844 .26719 L +.846 .26456 L +.848 .26174 L +.85 .25873 L +.852 .25551 L +.854 .25207 L +.856 .2484 L +.858 .24449 L +.86 .24033 L +.862 .23591 L +.864 .23121 L +.866 .22623 L +.868 .22095 L +.87 .21537 L +.872 .20947 L +.874 .20324 L +.876 .19667 L +.878 .18978 L +.88 .18258 L +.882 .17511 L +.884 .16739 L +.886 .15945 L +.888 .15131 L +.89 .14301 L +.892 .13457 L +.894 .12603 L +.896 .1174 L +.898 .10871 L +Mistroke +.9 .1 L +Mfstroke +1 0 0 r +.1 .1 m +.102 .12207 L +.104 .14133 L +.106 .15807 L +.108 .17256 L +.11 .18504 L +.112 .19573 L +.114 .20484 L +.116 .21256 L +.118 .21907 L +.12 .22452 L +.122 .22905 L +.124 .23279 L +.126 .23587 L +.128 .23838 L +.13 .24043 L +.132 .24209 L +.134 .24345 L +.136 .24458 L +.138 .24553 L +.14 .24635 L +.142 .24709 L +.144 .2478 L +.146 .2485 L +.148 .24922 L +.15 .25 L +.152 .25084 L +.154 .25177 L +.156 .2528 L +.158 .25394 L +.16 .25519 L +.162 .25656 L +.164 .25805 L +.166 .25966 L +.168 .26139 L +.17 .26323 L +.172 .26519 L +.174 .26725 L +.176 .26941 L +.178 .27166 L +.18 .274 L +.182 .27641 L +.184 .27889 L +.186 .28142 L +.188 .28401 L +.19 .28663 L +.192 .28928 L +.194 .29195 L +.196 .29463 L +.198 .29732 L +Mistroke +.2 .3 L +.202 .30267 L +.204 .30531 L +.206 .30793 L +.208 .31051 L +.21 .31305 L +.212 .31555 L +.214 .31799 L +.216 .32037 L +.218 .32268 L +.22 .32494 L +.222 .32712 L +.224 .32922 L +.226 .33126 L +.228 .33321 L +.23 .33508 L +.232 .33687 L +.234 .33859 L +.236 .34021 L +.238 .34176 L +.24 .34322 L +.242 .3446 L +.244 .3459 L +.246 .34713 L +.248 .34827 L +.25 .34934 L +.252 .35033 L +.254 .35126 L +.256 .35211 L +.258 .3529 L +.26 .35363 L +.262 .35429 L +.264 .3549 L +.266 .35546 L +.268 .35596 L +.27 .35642 L +.272 .35683 L +.274 .35721 L +.276 .35755 L +.278 .35785 L +.28 .35813 L +.282 .35838 L +.284 .3586 L +.286 .35881 L +.288 .359 L +.29 .35918 L +.292 .35935 L +.294 .35952 L +.296 .35968 L +.298 .35984 L +Mistroke +.3 .36 L +.302 .36017 L +.304 .36034 L +.306 .36052 L +.308 .36071 L +.31 .36092 L +.312 .36114 L +.314 .36138 L +.316 .36164 L +.318 .36192 L +.32 .36222 L +.322 .36254 L +.324 .36288 L +.326 .36325 L +.328 .36364 L +.33 .36406 L +.332 .3645 L +.334 .36497 L +.336 .36546 L +.338 .36598 L +.34 .36653 L +.342 .3671 L +.344 .36769 L +.346 .36831 L +.348 .36895 L +.35 .36962 L +.352 .37031 L +.354 .37101 L +.356 .37174 L +.358 .37249 L +.36 .37325 L +.362 .37403 L +.364 .37483 L +.366 .37563 L +.368 .37646 L +.37 .37729 L +.372 .37813 L +.374 .37898 L +.376 .37983 L +.378 .38069 L +.38 .38155 L +.382 .38242 L +.384 .38328 L +.386 .38414 L +.388 .385 L +.39 .38586 L +.392 .3867 L +.394 .38754 L +.396 .38837 L +.398 .38919 L +Mistroke +.4 .39 L +.402 .39079 L +.404 .39157 L +.406 .39233 L +.408 .39308 L +.41 .3938 L +.412 .39451 L +.414 .3952 L +.416 .39586 L +.418 .3965 L +.42 .39712 L +.422 .39771 L +.424 .39827 L +.426 .39882 L +.428 .39933 L +.43 .39982 L +.432 .40028 L +.434 .40071 L +.436 .40111 L +.438 .40148 L +.44 .40183 L +.442 .40214 L +.444 .40243 L +.446 .40269 L +.448 .40292 L +.45 .40311 L +.452 .40329 L +.454 .40343 L +.456 .40354 L +.458 .40363 L +.46 .40368 L +.462 .40371 L +.464 .40372 L +.466 .4037 L +.468 .40365 L +.47 .40358 L +.472 .40348 L +.474 .40336 L +.476 .40321 L +.478 .40305 L +.48 .40286 L +.482 .40265 L +.484 .40243 L +.486 .40218 L +.488 .40192 L +.49 .40163 L +.492 .40134 L +.494 .40102 L +.496 .4007 L +.498 .40035 L +Mistroke +.5 .4 L +.502 .39963 L +.504 .39926 L +.506 .39887 L +.508 .39847 L +.51 .39807 L +.512 .39766 L +.514 .39724 L +.516 .39681 L +.518 .39638 L +.52 .39595 L +.522 .39551 L +.524 .39507 L +.526 .39463 L +.528 .39418 L +.53 .39374 L +.532 .39329 L +.534 .39285 L +.536 .3924 L +.538 .39196 L +.54 .39151 L +.542 .39107 L +.544 .39064 L +.546 .3902 L +.548 .38977 L +.55 .38934 L +.552 .38892 L +.554 .3885 L +.556 .38808 L +.558 .38767 L +.56 .38726 L +.562 .38686 L +.564 .38646 L +.566 .38606 L +.568 .38567 L +.57 .38529 L +.572 .38491 L +.574 .38454 L +.576 .38416 L +.578 .3838 L +.58 .38344 L +.582 .38308 L +.584 .38272 L +.586 .38237 L +.588 .38202 L +.59 .38168 L +.592 .38134 L +.594 .381 L +.596 .38067 L +.598 .38033 L +Mistroke +.6 .38 L +.602 .37967 L +.604 .37934 L +.606 .37901 L +.608 .37869 L +.61 .37836 L +.612 .37803 L +.614 .37771 L +.616 .37738 L +.618 .37705 L +.62 .37672 L +.622 .37639 L +.624 .37606 L +.626 .37573 L +.628 .37539 L +.63 .37506 L +.632 .37472 L +.634 .37437 L +.636 .37403 L +.638 .37368 L +.64 .37332 L +.642 .37297 L +.644 .37261 L +.646 .37224 L +.648 .37187 L +.65 .3715 L +.652 .37112 L +.654 .37073 L +.656 .37034 L +.658 .36995 L +.66 .36955 L +.662 .36914 L +.664 .36873 L +.666 .36831 L +.668 .36788 L +.67 .36745 L +.672 .36701 L +.674 .36657 L +.676 .36612 L +.678 .36565 L +.68 .36519 L +.682 .36471 L +.684 .36423 L +.686 .36373 L +.688 .36323 L +.69 .36272 L +.692 .3622 L +.694 .36166 L +.696 .36112 L +.698 .36057 L +Mistroke +.7 .36 L +.702 .35942 L +.704 .35883 L +.706 .35823 L +.708 .35761 L +.71 .35698 L +.712 .35633 L +.714 .35566 L +.716 .35498 L +.718 .35429 L +.72 .35357 L +.722 .35283 L +.724 .35208 L +.726 .3513 L +.728 .3505 L +.73 .34968 L +.732 .34884 L +.734 .34797 L +.736 .34707 L +.738 .34615 L +.74 .3452 L +.742 .34422 L +.744 .34321 L +.746 .34217 L +.748 .3411 L +.75 .34 L +.752 .33886 L +.754 .33769 L +.756 .33649 L +.758 .33524 L +.76 .33396 L +.762 .33265 L +.764 .33129 L +.766 .3299 L +.768 .32846 L +.77 .32699 L +.772 .32547 L +.774 .32391 L +.776 .32232 L +.778 .32068 L +.78 .319 L +.782 .31728 L +.784 .31551 L +.786 .31371 L +.788 .31187 L +.79 .30998 L +.792 .30806 L +.794 .3061 L +.796 .3041 L +.798 .30207 L +Mistroke +.8 .3 L +.802 .2979 L +.804 .29576 L +.806 .29359 L +.808 .2914 L +.81 .28917 L +.812 .28692 L +.814 .28465 L +.816 .28235 L +.818 .28003 L +.82 .2777 L +.822 .27534 L +.824 .27297 L +.826 .27058 L +.828 .26818 L +.83 .26576 L +.832 .26334 L +.834 .2609 L +.836 .25844 L +.838 .25598 L +.84 .25349 L +.842 .25099 L +.844 .24847 L +.846 .24593 L +.848 .24335 L +.85 .24074 L +.852 .23809 L +.854 .23539 L +.856 .23262 L +.858 .22978 L +.86 .22686 L +.862 .22382 L +.864 .22067 L +.866 .21737 L +.868 .2139 L +.87 .21023 L +.872 .20634 L +.874 .20219 L +.876 .19773 L +.878 .19294 L +.88 .18776 L +.882 .18214 L +.884 .17601 L +.886 .16933 L +.888 .16201 L +.89 .15399 L +.892 .14517 L +.894 .13547 L +.896 .12478 L +.898 .113 L +Mistroke +.9 .1 L +Mfstroke +.5 .165 .165 r +.1 .1 m +.102 .12996 L +.104 .14232 L +.106 .15177 L +.108 .1597 L +.11 .16666 L +.112 .17293 L +.114 .17867 L +.116 .184 L +.118 .18898 L +.12 .19367 L +.122 .19812 L +.124 .20235 L +.126 .20639 L +.128 .21027 L +.13 .21399 L +.132 .21758 L +.134 .22104 L +.136 .22438 L +.138 .22762 L +.14 .23077 L +.142 .23382 L +.144 .23679 L +.146 .23968 L +.148 .24249 L +.15 .24524 L +.152 .24792 L +.154 .25053 L +.156 .25309 L +.158 .25559 L +.16 .25803 L +.162 .26043 L +.164 .26278 L +.166 .26507 L +.168 .26733 L +.17 .26954 L +.172 .27171 L +.174 .27384 L +.176 .27593 L +.178 .27798 L +.18 .28 L +.182 .28198 L +.184 .28393 L +.186 .28585 L +.188 .28773 L +.19 .28959 L +.192 .29141 L +.194 .29321 L +.196 .29498 L +.198 .29672 L +Mistroke +.2 .29843 L +.202 .30012 L +.204 .30178 L +.206 .30342 L +.208 .30503 L +.21 .30662 L +.212 .30819 L +.214 .30974 L +.216 .31126 L +.218 .31276 L +.22 .31424 L +.222 .3157 L +.224 .31714 L +.226 .31856 L +.228 .31996 L +.23 .32135 L +.232 .32271 L +.234 .32405 L +.236 .32538 L +.238 .32669 L +.24 .32798 L +.242 .32925 L +.244 .33051 L +.246 .33175 L +.248 .33298 L +.25 .33419 L +.252 .33538 L +.254 .33656 L +.256 .33772 L +.258 .33887 L +.26 .34 L +.262 .34112 L +.264 .34222 L +.266 .34331 L +.268 .34438 L +.27 .34545 L +.272 .34649 L +.274 .34753 L +.276 .34855 L +.278 .34956 L +.28 .35055 L +.282 .35153 L +.284 .3525 L +.286 .35346 L +.288 .3544 L +.29 .35533 L +.292 .35625 L +.294 .35716 L +.296 .35805 L +.298 .35894 L +Mistroke +.3 .35981 L +.302 .36067 L +.304 .36152 L +.306 .36235 L +.308 .36318 L +.31 .364 L +.312 .3648 L +.314 .36559 L +.316 .36638 L +.318 .36715 L +.32 .36791 L +.322 .36866 L +.324 .3694 L +.326 .37013 L +.328 .37085 L +.33 .37156 L +.332 .37226 L +.334 .37295 L +.336 .37363 L +.338 .3743 L +.34 .37495 L +.342 .3756 L +.344 .37624 L +.346 .37687 L +.348 .3775 L +.35 .37811 L +.352 .37871 L +.354 .3793 L +.356 .37989 L +.358 .38046 L +.36 .38102 L +.362 .38158 L +.364 .38213 L +.366 .38267 L +.368 .38319 L +.37 .38371 L +.372 .38423 L +.374 .38473 L +.376 .38522 L +.378 .38571 L +.38 .38618 L +.382 .38665 L +.384 .38711 L +.386 .38756 L +.388 .388 L +.39 .38843 L +.392 .38886 L +.394 .38927 L +.396 .38968 L +.398 .39008 L +Mistroke +.4 .39047 L +.402 .39086 L +.404 .39123 L +.406 .3916 L +.408 .39196 L +.41 .39231 L +.412 .39265 L +.414 .39298 L +.416 .39331 L +.418 .39363 L +.42 .39394 L +.422 .39424 L +.424 .39454 L +.426 .39482 L +.428 .3951 L +.43 .39537 L +.432 .39563 L +.434 .39589 L +.436 .39614 L +.438 .39637 L +.44 .39661 L +.442 .39683 L +.444 .39705 L +.446 .39725 L +.448 .39745 L +.45 .39765 L +.452 .39783 L +.454 .39801 L +.456 .39818 L +.458 .39834 L +.46 .3985 L +.462 .39864 L +.464 .39878 L +.466 .39891 L +.468 .39904 L +.47 .39916 L +.472 .39926 L +.474 .39937 L +.476 .39946 L +.478 .39955 L +.48 .39962 L +.482 .3997 L +.484 .39976 L +.486 .39982 L +.488 .39986 L +.49 .39991 L +.492 .39994 L +.494 .39997 L +.496 .39998 L +.498 .4 L +Mistroke +.5 .4 L +.502 .4 L +.504 .39998 L +.506 .39997 L +.508 .39994 L +.51 .39991 L +.512 .39986 L +.514 .39982 L +.516 .39976 L +.518 .3997 L +.52 .39962 L +.522 .39955 L +.524 .39946 L +.526 .39937 L +.528 .39926 L +.53 .39916 L +.532 .39904 L +.534 .39891 L +.536 .39878 L +.538 .39864 L +.54 .3985 L +.542 .39834 L +.544 .39818 L +.546 .39801 L +.548 .39783 L +.55 .39765 L +.552 .39745 L +.554 .39725 L +.556 .39705 L +.558 .39683 L +.56 .39661 L +.562 .39637 L +.564 .39614 L +.566 .39589 L +.568 .39563 L +.57 .39537 L +.572 .3951 L +.574 .39482 L +.576 .39454 L +.578 .39424 L +.58 .39394 L +.582 .39363 L +.584 .39331 L +.586 .39298 L +.588 .39265 L +.59 .39231 L +.592 .39196 L +.594 .3916 L +.596 .39123 L +.598 .39086 L +Mistroke +.6 .39047 L +.602 .39008 L +.604 .38968 L +.606 .38927 L +.608 .38886 L +.61 .38843 L +.612 .388 L +.614 .38756 L +.616 .38711 L +.618 .38665 L +.62 .38618 L +.622 .38571 L +.624 .38522 L +.626 .38473 L +.628 .38423 L +.63 .38371 L +.632 .38319 L +.634 .38267 L +.636 .38213 L +.638 .38158 L +.64 .38102 L +.642 .38046 L +.644 .37989 L +.646 .3793 L +.648 .37871 L +.65 .37811 L +.652 .3775 L +.654 .37687 L +.656 .37624 L +.658 .3756 L +.66 .37495 L +.662 .3743 L +.664 .37363 L +.666 .37295 L +.668 .37226 L +.67 .37156 L +.672 .37085 L +.674 .37013 L +.676 .3694 L +.678 .36866 L +.68 .36791 L +.682 .36715 L +.684 .36638 L +.686 .36559 L +.688 .3648 L +.69 .364 L +.692 .36318 L +.694 .36235 L +.696 .36152 L +.698 .36067 L +Mistroke +.7 .35981 L +.702 .35894 L +.704 .35805 L +.706 .35716 L +.708 .35625 L +.71 .35533 L +.712 .3544 L +.714 .35346 L +.716 .3525 L +.718 .35153 L +.72 .35055 L +.722 .34956 L +.724 .34855 L +.726 .34753 L +.728 .34649 L +.73 .34545 L +.732 .34438 L +.734 .34331 L +.736 .34222 L +.738 .34112 L +.74 .34 L +.742 .33887 L +.744 .33772 L +.746 .33656 L +.748 .33538 L +.75 .33419 L +.752 .33298 L +.754 .33175 L +.756 .33051 L +.758 .32925 L +.76 .32798 L +.762 .32669 L +.764 .32538 L +.766 .32405 L +.768 .32271 L +.77 .32135 L +.772 .31996 L +.774 .31856 L +.776 .31714 L +.778 .3157 L +.78 .31424 L +.782 .31276 L +.784 .31126 L +.786 .30974 L +.788 .30819 L +.79 .30662 L +.792 .30503 L +.794 .30342 L +.796 .30178 L +.798 .30012 L +Mistroke +.8 .29843 L +.802 .29672 L +.804 .29498 L +.806 .29321 L +.808 .29141 L +.81 .28959 L +.812 .28773 L +.814 .28585 L +.816 .28393 L +.818 .28198 L +.82 .28 L +.822 .27798 L +.824 .27593 L +.826 .27384 L +.828 .27171 L +.83 .26954 L +.832 .26733 L +.834 .26507 L +.836 .26278 L +.838 .26043 L +.84 .25803 L +.842 .25559 L +.844 .25309 L +.846 .25053 L +.848 .24792 L +.85 .24524 L +.852 .24249 L +.854 .23968 L +.856 .23679 L +.858 .23382 L +.86 .23077 L +.862 .22762 L +.864 .22438 L +.866 .22104 L +.868 .21758 L +.87 .21399 L +.872 .21027 L +.874 .20639 L +.876 .20235 L +.878 .19812 L +.88 .19367 L +.882 .18898 L +.884 .184 L +.886 .17867 L +.888 .17293 L +.89 .16666 L +.892 .1597 L +.894 .15177 L +.896 .14232 L +.898 .12996 L +Mistroke +.9 .1 L +Mfstroke +0 0 1 r +.1 .1 m +.105 .15 L +.15 .25 L +.2 .3 L +.3 .36 L +.4 .39 L +.5 .4 L +.6 .38 L +.7 .36 L +.75 .34 L +.8 .3 L +.875 .2 L +.9 .1 L +s +5 Mabswid +.1 .1 Mdot +.105 .15 Mdot +.15 .25 Mdot +.2 .3 Mdot +.3 .36 Mdot +.4 .39 Mdot +.5 .4 Mdot +.6 .38 Mdot +.7 .36 Mdot +.75 .34 Mdot +.8 .3 Mdot +.875 .2 Mdot +.9 .1 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{748, 374}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`@000000P3oool010000000oooo0?ooo`00001m0?ooo`@00000 +103oool00`000000oooo0?ooo`220?ooo`<00000Q03oool00`000000oooo0?ooo`220?ooo`040000 +003oool0oooo000007X0oooo001E0?ooo`030000003oool0000008<0oooo00@000000?ooo`3oool0 +0000P`3oool00`000000oooo0?ooo`220?ooo`040000003oool0oooo000008@0oooo00<000000?oo +o`000000NP3oool005H0oooo0P0000240?ooo`800000Q03oool00`000000oooo0?ooo`230?ooo`80 +0000QP3oool2000007X0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3o +oomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o +0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`03 +0000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo +003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0 +oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo001B0?ooo`<0 +003oo`3oool>0?ooo`030000003oool0oooo0?l0oooo2`3oool30000oeH0oooo00<000000?ooo`3o +ool0203oool2000000030?ooo`000000000001@0oooo001A0?ooo`D0003oo`3oool=0?ooo`030000 +003oool0oooo0?l0oooo2P3oool50000oeH0oooo00<000000?ooo`3oool0203oool00`000000oooo +0000000E0?ooo`003`3ooom2000000D0003oo`00003o000001X000001@000?m2000001D0oooo0P00 +00090?ooo`030000003oool0oooo01@0oooo000a0?ooo`030000003oool0oooo01d0oooo1@000?lN +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0O +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0O +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07P3oool00`000000oooo0?ooo`0O +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0O +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0L +0?ooo`D0003o7`3oool00`000000oooo0?ooo`0d0?ooo`030000003oool0oooo00L0oooo0P000000 +0`3oool000000000000D0?ooo`00<@3oool00`000000oooo0?ooo`0N0?ooo`<0003o7`3oool00`00 +0000oooo0?ooo`0O0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3oool00`00 +0000oooo0?ooo`0O0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3oool00`00 +0000oooo0?ooo`0O0?ooo`030000003oool0oooo01h0oooo00<000000?ooo`3oool07`3oool00`00 +0000oooo0?ooo`0O0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3oool00`00 +0000oooo0?ooo`0O0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07@3oool30000 +ob00oooo00<000000?ooo`3oool0<`3oool00`000000oooo0?ooo`0Q0?ooo`00D`3oool00`000?l0 +oooo0?ooo`240?ooo`030000003oool0oooo08D0oooo00<000000?ooo`3oool0Q03oool00`000000 +oooo0?ooo`230?ooo`030000o`1o:RX0oooo07X0oooo001C0?ooo`030000o`3oool0oooo08@0oooo +00<000000?ooo`3oool0Q@3oool00`000000oooo0?ooo`240?ooo`030000003oool0oooo08<0oooo +00<0003o07lZ:P3oool0NP3oool005<0oooo00<0003o0?ooo`3oool0o`3oool=0?ooo`030000003o +ool0oooo0?l0oooo2`3oool00`000?l0ObXZ0?ooo`1j0?ooo`00D`3oool00`1o:RX0003o0?ooo`3o +0?ooo`d0oooo00<000000?ooo`3oool0o`3oool;0?ooo`030000o`1o:RX0oooo07X0oooo001C0?oo +o`0307lZ:P000?l0oooo0?l0oooo3@3oool00`000000oooo0?ooo`3o0?ooo`X0oooo00<0003o0?l0 +001o:RX0N`3oool005<0oooo00<0ObXZ0000o`3oool0o`3oool=0?ooo`030000003oool0oooo0?l0 +oooo2P3oool00`000?l0o`0007lZ:P1k0?ooo`00D`3oool00`1o:RX0003o0?ooo`3o0?ooo`d0oooo +00<000000?ooo`3oool0o`3oool:0?ooo`030000o`3o0000ObXZ07/0oooo001C0?ooo`0307lZ:P00 +0?l0oooo0?l0oooo3@3oool00`000000oooo0?ooo`3o0?ooo`X0oooo00<0003o07lZ:P3oool0N`3o +ool005@0oooo00<0003o0?ooo`3oool0o`3oool<0?ooo`030000003oool0oooo0?l0oooo2@3oool0 +0`000?l00?l007lZ:P1l0?ooo`00E03oool00`000?l0oooo0?ooo`3o0?ooo``0oooo00<000000?oo +o`3oool0o`3oool90?ooo`030000o`00o`00ObXZ07`0oooo001D0?ooo`030000o`3oool0oooo0?l0 +oooo303oool300000?l0oooo2@3oool00`000?l0o`0007lZ:P1l0?ooo`00E03oool00`000?l0oooo +0?ooo`3o0?ooo``0oooo00<000000?ooo`3oool0o`3oool90?ooo`030000o`3o0000ObXZ07`0oooo +001D0?ooo`030000o`3oool0oooo0?l0oooo303oool00`000000oooo0?ooo`3o0?ooo`P0oooo00@0 +003o003o003o0000ObXZO03oool005@0oooo00<0003o0?ooo`3oool0o`3oool<0?ooo`030000003o +ool0oooo0?l0oooo203oool010000?l0oooo0?l0001o:RYl0?ooo`00E03oool00`000?l0oooo0?oo +o`3o0?ooo``0oooo00<000000?ooo`3oool0o`3oool80?ooo`040000o`3oool0o`0007lZ:W`0oooo +001D0?ooo`0307lZ:P000?l0oooo0?l0oooo303oool00`000000oooo0?ooo`3o0?ooo`P0oooo00@0 +003o0?ooo`3o0000ObXZO03oool005@0oooo00<0ObXZ0000o`3oool0o`3oool<0?ooo`030000003o +ool0oooo0?l0oooo1`3oool01@000?l00?l00?l0003oool0ObXZ07`0oooo001D0?ooo`0307lZ:P00 +0?l0oooo0?l0oooo303oool00`000000oooo0?ooo`3o0?ooo`L0oooo00D0003o0?ooo`3o0000oooo +07lZ:P1l0?ooo`00E03oool00`1o:RX0003o0?ooo`3o0?ooo``0oooo00<000000?ooo`3oool0o`3o +ool70?ooo`050000o`3oool0o`000?ooo`1o:RX0O03oool005@0oooo00<0ObXZ0000o`3oool0o`3o +ool<0?ooo`030000003oool0oooo0?l0oooo1`3oool01@000?l0oooo0?l0003oool0ObXZ07`0oooo +001D0?ooo`0307lZ:P000?l0oooo0?l0oooo303oool00`000000oooo0?ooo`3o0?ooo`L0oooo00D0 +003o0?l0003oool0oooo07lZ:P1l0?ooo`00E03oool00`1o:RX0003o0?ooo`3o0?ooo``0oooo00<0 +00000?ooo`3oool0o`3oool60?ooo`050000o`00o`00o`000?ooo`1o:RX0O@3oool005D0oooo00<0 +003o0?ooo`3oool0o`3oool;0?ooo`030000003oool0oooo0?l0oooo1P3oool01@000?l00?l00?l0 +003oool0ObXZ07d0oooo001E0?ooo`030000o`3oool0oooo0?l0oooo2`3oool00`000000oooo0?oo +o`3o0?ooo`H0oooo00D0003o0?ooo`3o0000oooo07lZ:P1m0?ooo`00E@3oool00`000?l0oooo0?oo +o`3o0?ooo`/0oooo0`00003o0?ooo`H0oooo00D0003o0?l0003oool0oooo07lZ:P1m0?ooo`00E@3o +ool00`000?l0oooo0?ooo`3o0?ooo`/0oooo00<000000?ooo`3oool0o`3oool50?ooo`030000o`00 +o`00o`000080oooo00<0ObXZ0?ooo`3oool0N`3oool005D0oooo00<0ObXZ0000o`3oool0o`3oool; +0?ooo`030000003oool0oooo0?l0oooo1@3oool00`000?l00?l00?l000020?ooo`0307lZ:P3oool0 +oooo07/0oooo001E0?ooo`030?l000000?l0oooo0?l0oooo2`3oool00`000000oooo0?ooo`3o0?oo +o`D0oooo00D0003o003o003o0000oooo07lZ:P1n0?ooo`00EP3oool00`000?l0oooo0?ooo`3o0?oo +o`X0oooo00<000000?ooo`3oool0o`3oool50?ooo`050000o`3oool0o`000?ooo`1o:RX0OP3oool0 +05D0oooo0`000?oo0?ooo`/0oooo00<000000?ooo`3oool0o`3oool40?ooo`060000o`00o`00oooo +0?l0003oool0ObXZOP3oool005@0oooo1@000?oo0?ooo`X0oooo00<000000?ooo`3oool0o`3oool4 +0?ooo`030000o`3oool0o`000080oooo00<0ObXZ0?ooo`3oool0O03oool005@0oooo1@000?oo0?oo +o`X0oooo00<000000?ooo`3oool0o`3oool40?ooo`050000o`3oool0o`000?ooo`1o:RX0O`3oool0 +05@0oooo1@000?oo0?ooo`X0oooo00<000000?ooo`3oool0o`3oool40?ooo`050000o`3oool0o`00 +0?ooo`1o:RX0O`3oool005D0oooo0`000?oo0?ooo`/0oooo00<000000?ooo`3oool0o`3oool30?oo +o`060000o`00o`00oooo0?l0003oool0ObXZO`3oool005L0oooo00<0003o0?ooo`3oool0o`3oool9 +0?ooo`030000003oool0oooo0?l0oooo0`3oool01P000?l0oooo0?ooo`3o0000oooo07lZ:Wl0oooo +001G0?ooo`030?l000000?l0oooo0?l0oooo2@3oool00`000000oooo0?ooo`3o0?ooo`<0oooo00D0 +003o0?ooo`3o0000oooo07lZ:P200?ooo`00E`3oool00`3o0000003o0?ooo`3o0?ooo`T0oooo00<0 +00000?ooo`3oool0o`3oool30?ooo`050000o`3oool0o`000?ooo`1o:RX0P03oool005L0oooo00<0 +o`0007lZ:P000?l0o`3oool90?ooo`<00000o`3oool20?ooo`060000o`00o`00oooo0?l0003oool0 +ObXZP03oool005L0oooo00<0o`0007lZ:P000?l0o`3oool90?ooo`030000003oool0oooo0?l0oooo +0P3oool00`000?l00?l00?l000020?ooo`0307lZ:P3oool0oooo07h0oooo001G0?ooo`040?l0001o +:RX0oooo0000ool0oooo203oool00`000000oooo0?ooo`3o0?ooo`80oooo00<0003o003o003o0000 +0P3oool00`1o:RX0oooo0?ooo`1n0?ooo`00E`3oool0103o0000oooo07lZ:P000?oo0?ooo`P0oooo +00<000000?ooo`3oool0o`3oool20?ooo`050000o`3oool0o`000?ooo`1o:RX0P@3oool005L0oooo +00@0o`000?ooo`1o:RX0003oo`3oool80?ooo`030000003oool0oooo0?l0oooo0@3oool01P000?l0 +0?l00?ooo`3o0000oooo07lZ:X40oooo001G0?ooo`05003o003o0000ObXZ0?ooo`000?l0o`3oool7 +0?ooo`030000003oool0oooo0?l0oooo0@3oool00`000?l00?l00?l000020?ooo`0307lZ:P3oool0 +oooo07l0oooo001H0?ooo`040?l0001o:RX0oooo0000ool0oooo1`3oool00`000000oooo0?ooo`3o +0?ooo`40oooo00D0003o003o003o0000oooo07lZ:P220?ooo`00F03oool01@3o0000oooo07lZ:P3o +ool0003o0?l0oooo1P3oool00`000000oooo0?ooo`3o0?ooo`40oooo00D0003o0?ooo`3o0000oooo +07lZ:P220?ooo`00F03oool01@3o0000oooo07lZ:P3oool0003o0?l0oooo1P3oool00`000000oooo +0?ooo`3o0?ooo`40oooo00@0003o0?ooo`3o0000ObXZP`3oool005P0oooo00H0o`000?ooo`3oool0 +ObXZ0?ooo`000?oo0?ooo`D0oooo00<000000?ooo`3oool0o`3oool01@000?l00?l00?l0003oool0 +ObXZ08<0oooo001H0?ooo`060?l0003oool0oooo07lZ:P3oool0003oo`3oool50?ooo`030000003o +ool0oooo0?l0oooo00D0003o0?ooo`3o0000oooo07lZ:P230?ooo`00F03oool0103o0000oooo0?oo +o`1o:RX20?ooo`030000o`3oool0oooo0?l0oooo0P3oool00`000000oooo0?ooo`3o0?ooo`040000 +o`3oool0o`0007lZ:X@0oooo001H0?ooo`070?l0003oool0oooo0?ooo`1o:RX0oooo0000o`3o0?oo +o`@0oooo00<000000?ooo`3oool0o`3oool010000?l0o`000?ooo`1o:RZ40?ooo`00F03oool01@3o +0000oooo0?ooo`3oool0ObXZ0080oooo00<0003o0?ooo`3oool0o`3oool10?ooo`030000003oool0 +oooo0?h0oooo00D0003o003o003o0000oooo07lZ:P240?ooo`00F03oool01@00o`00o`000?ooo`3o +ool0ObXZ0080oooo00<0003o0?ooo`3oool0o`3oool10?ooo`<00000oP3oool01@000?l0o`000?oo +o`3oool0ObXZ08@0oooo001H0?ooo`05003o003o0000oooo0?ooo`1o:RX00P3oool00`000?l0oooo +0?ooo`3o0?ooo`40oooo00<000000?ooo`3oool0oP3oool010000?l0o`000?ooo`1o:RZ50?ooo`00 +F03oool00`00o`00o`000?ooo`020?ooo`0407lZ:P3oool0oooo0000ool0oooo0P3oool00`000000 +oooo0?ooo`3n0?ooo`040000o`3o0000oooo07lZ:XD0oooo001I0?ooo`050?l0003oool0oooo0?oo +o`1o:RX00P3oool00`000?l0oooo0?ooo`3o0?ooo`030000003oool0oooo0?d0oooo00D0003o0?l0 +003oool0oooo07lZ:P250?ooo`00F@3oool00`3o0000oooo0?ooo`020?ooo`0407lZ:P3oool0oooo +0000ool0oooo0@3oool00`000000oooo0?ooo`3m0?ooo`040000o`3o0000oooo07lZ:XH0oooo001I +0?ooo`030?l0003oool0oooo0080oooo00@0ObXZ0?ooo`3oool0003oo`3oool10?ooo`030000003o +ool0oooo0?d0oooo00@0003o0?l0003oool0ObXZQP3oool005T0oooo00<00?l00?l0003oool00`3o +ool0101o:RX0oooo0?ooo`000?oo0?ooo`030000003oool0oooo0?d0oooo00<0003o0?l0001o:RX0 +Q`3oool005T0oooo00<00?l00?l0003oool00`3oool0101o:RX0oooo0?ooo`000?oo0?ooo`030000 +003oool0oooo0?`0oooo00@0003o0?l0003oool0ObXZQ`3oool005T0oooo00<00?l00?l0003oool0 +103oool0101o:RX0oooo0?ooo`000?on0?ooo`030000003oool0oooo0?`0oooo00<0003o0?l0001o +:RX0R03oool005T0oooo00<00?l00?l0003oool0103oool0101o:RX0oooo0?ooo`000?on0?ooo`03 +0000003oool0oooo0?`0oooo00<0003o0?l0001o:RX0R03oool005X0oooo00<00?l00?l0003oool0 +0`3oool0101o:RX0oooo0?ooo`000?on0?ooo`030000003oool0oooo0?/0oooo00@00?l00000o`3o +ool0ObXZR03oool005X0oooo00<00?l00?l0003oool0103oool0101o:RX0oooo0?ooo`000?o_0?oo +o`D000002@3oool00`000000oooo0?ooo`3j0?ooo`<0003o00<0ObXZ0?ooo`3oool0Q`3oool005X0 +oooo00<00?l00?l0003oool0103oool0101o:RX0oooo0?ooo`000?oa0?ooo`030000003oool0oooo +00T0oooo00<000000?ooo`3oool0n@3oool50000ohT0oooo001J0?ooo`03003o003o0000oooo00D0 +oooo00@0ObXZ0?ooo`3oool0003ol03oool00`000000oooo0?ooo`090?ooo`D00000m`3oool50000 +ohT0oooo001K0?ooo`030?l0003oool0oooo00@0oooo00@0ObXZ0?ooo`3oool0003ol03oool00`00 +0000oooo0?ooo`090?ooo`030000003oool0oooo0?T0oooo1@000?n90?ooo`00F`3oool00`00o`00 +o`000?ooo`050?ooo`0407lZ:P3oool0oooo0000onl0oooo00<000000?ooo`3oool02@3oool00`00 +0000oooo0?ooo`3i0?ooo`@0003oRP3oool005/0oooo00<00?l00?l0003oool01@3oool0101o:RX0 +oooo0?ooo`000?o^0?ooo`8000002`3oool00`000000oooo0?ooo`3i0?ooo`030000o`3o0000ObXZ +08/0oooo001K0?ooo`03003o003o0000oooo00H0oooo00@0ObXZ0?ooo`3oool0003onP3oool00`00 +0000oooo0?ooo`3h0?ooo`030000o`3o0000ObXZ08`0oooo001K0?ooo`03003o003o0000oooo00H0 +oooo00@0ObXZ0?ooo`3oool0003onP3oool00`000000oooo0?ooo`3g0?ooo`040000o`3oool0o`00 +07lZ:X`0oooo001K0?ooo`03003o003o0000oooo00L0oooo00<0ObXZ0?ooo`000?l0nP3oool00`00 +0000oooo0?ooo`3f0?ooo`040000o`3oool0o`0007lZ:Xd0oooo001L0?ooo`03003o003o0000oooo +00L0oooo00<0ObXZ0?ooo`000?l0n@3oool00`000000oooo0?ooo`3f0?ooo`040000o`3o0000oooo +07lZ:Xd0oooo001L0?ooo`03003o003o0000oooo00L0oooo00<0ObXZ0?ooo`000?l0n@3oool00`00 +0000oooo0?ooo`3e0?ooo`040000o`3oool0o`0007lZ:Xh0oooo001L0?ooo`03003o003o0000oooo +00P0oooo00<0ObXZ0?ooo`000?l0n03oool00`000000oooo0?ooo`3d0?ooo`050000o`3oool0o`00 +0?ooo`1o:RX0SP3oool005`0oooo00<00?l00?l0003oool0203oool00`1o:RX0oooo0000o`3h0?oo +o`030000003oool0oooo0?<0oooo00D0003o0?ooo`3oool0o`0007lZ:P2?0?ooo`00G03oool00`00 +o`00oooo0?l000080?ooo`0407lZ:P3oool0oooo0000ooL0oooo00<000000?ooo`3oool0l`3oool0 +1@000?l0oooo0?l0001o:RX00?l008l0oooo001L0?ooo`03003o003oool0o`0000T0oooo00<0ObXZ +0?ooo`000?l0m`3oool00`000000oooo0?ooo`3b0?ooo`060000o`3oool0o`000?ooo`1o:RX00?l0 +S`3oool005`0oooo00@00?l00?ooo`3oool0o`002@3oool00`1o:RX0oooo0000o`3f0?ooo`030000 +003oool0oooo0?40oooo00H0003o0?ooo`3o0000oooo07lZ:P00o`2@0?ooo`00G@3oool00`00o`00 +oooo0?l000090?ooo`0307lZ:P3oool0003o0?H0oooo0`00003`0?ooo`070000o`3oool0oooo0?l0 +003oool0ObXZ003o002@0?ooo`00G@3oool00`00o`00oooo0?l0000:0?ooo`0307lZ:P000?l0oooo +0?D0oooo00<000000?ooo`3oool0l03oool01`000?l0oooo0?ooo`3o0000ObXZ0?ooo`00o`00T03o +ool005d0oooo00@00?l00?ooo`3oool0o`002@3oool00`1o:RX0oooo0000o`3e0?ooo`030000003o +ool0oooo0>l0oooo00L0003o0?ooo`3oool0o`0007lZ:P3oool00?l00940oooo001M0?ooo`04003o +003oool0oooo0?l000X0oooo00<0ObXZ0000o`3oool0m03oool00`000000oooo0?ooo`3^0?ooo`08 +0000o`3oool0oooo0?ooo`3o0000ObXZ0?ooo`00o`2A0?ooo`00GP3oool00`00o`00oooo0?l0000: +0?ooo`0307lZ:P3oool0003o0?@0oooo00<000000?ooo`3oool0k@3oool020000?l0oooo0?ooo`3o +ool0o`0007lZ:P3oool00?l0TP3oool005h0oooo00@00?l00?ooo`3oool0o`002P3oool00`1o:RX0 +003o0?ooo`3c0?ooo`030000003oool0oooo0>d0oooo00P0003o0?ooo`3oool0o`000?ooo`1o:RX0 +oooo003o0980oooo001N0?ooo`04003o003oool0oooo0?l000/0oooo00<0ObXZ0000o`3oool0lP3o +ool00`000000oooo0?ooo`3/0?ooo`080000o`3oool0oooo0?l0003oool0ObXZ0?ooo`00o`2C0?oo +o`00G`3oool01000o`00oooo0?ooo`3o000;0?ooo`030000o`3oool0oooo0?40oooo00<000000?oo +o`3oool0j`3oool01P000?l0oooo0?ooo`3oool0o`0007lZ:P80oooo00<00?l00?ooo`3oool0T@3o +ool005l0oooo00@00?l00?ooo`3oool0o`002`3oool00`1o:RX0003o0?ooo`3a0?ooo`030000003o +ool0oooo0>X0oooo00H0003o0?ooo`3oool0oooo0?l0001o:RX30?ooo`03003o003oool0oooo0940 +oooo001O0?ooo`05003o003oool0oooo0?ooo`3o00002`3oool00`000?l0oooo0?ooo`3`0?ooo`03 +0000003oool0oooo0>X0oooo00H0003o0?ooo`3oool0oooo0?l0001o:RX30?ooo`03003o003oool0 +oooo0940oooo001O0?ooo`05003o003oool0oooo0?ooo`3o00002`3oool00`1o:RX0003o0?ooo`3` +0?ooo`030000003oool0oooo0>T0oooo00<0003o0?ooo`3oool00P3o00001@1o:RX0oooo0?ooo`3o +ool00?l009@0oooo001P0?ooo`05003o003oool0oooo0?ooo`3o00002`3oool00`000?l0oooo0?oo +o`3_0?ooo`030000003oool0oooo0>P0oooo00@0003o0?ooo`3oool0o`000P3oool01@1o:RX0oooo +0?ooo`3oool00?l009@0oooo001P0?ooo`03003o003oool0oooo0080oooo0P3o00090?ooo`030000 +o`1o:RX0oooo0>l0oooo00<000000?ooo`3oool0i`3oool01`000?l0oooo0?ooo`3oool0o`000?oo +o`1o:RX00`3oool00`00o`00oooo0?ooo`2C0?ooo`00H03oool00`00o`00oooo0?ooo`030?ooo`03 +0?l0003oool0oooo00P0oooo00<0003o07lZ:P3oool0kP3oool00`000000oooo0?ooo`3W0?ooo`06 +0000o`3oool0oooo0?l0003oool0ObXZ103oool00`00o`00oooo0?ooo`2C0?ooo`00H03oool00`00 +o`00oooo0?ooo`040?ooo`030?l0003oool0oooo00L0oooo00<0003o07lZ:P3oool0kP3oool30000 +0>H0oooo00H0003o0?ooo`3oool0oooo0?l0001o:RX40?ooo`03003o003oool0oooo09@0oooo001Q +0?ooo`03003o003oool0oooo00@0oooo00<0o`000?ooo`3oool01`3oool00`000?l0ObXZ0?ooo`3] +0?ooo`030000003oool0oooo0>D0oooo00L0003o0?ooo`3oool0oooo0?l0003oool0ObXZ00@0oooo +00<00?l00?ooo`3oool0U03oool00640oooo00<00?l00?ooo`3oool01@3oool20?l000L0oooo00<0 +003o07lZ:P3oool0k@3oool00`000000oooo0?ooo`3T0?ooo`070000o`3oool0oooo0?ooo`3o0000 +oooo07lZ:P040?ooo`03003o003oool0oooo09D0oooo001R0?ooo`03003o003oool0oooo00H0oooo +0P3o00060?ooo`030000o`1o:RX0oooo0>`0oooo00<000000?ooo`3oool0i03oool010000?l0oooo +0?ooo`3o00020?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3oool0U@3oool00680oooo +00<00?l00?ooo`3oool0203oool30?l000<0oooo0`000?o/0?ooo`030000003oool0oooo0><0oooo +00L0003o0?ooo`3oool0oooo0?l0003oool0ObXZ00@0oooo00<00?l00?ooo`3oool0UP3oool006<0 +oooo00<00?l00?ooo`3oool02P3oool20?l000D0003oj`3oool00`000000oooo0?ooo`3R0?ooo`07 +0000o`3oool0oooo0?ooo`3o0000oooo07lZ:P050?ooo`03003o003oool0oooo09H0oooo001S0?oo +o`03003o003oool0oooo00`0oooo1@000?l3003o0>P0oooo00<000000?ooo`3oool0h@3oool01`00 +0?l0oooo0?ooo`3oool0o`000?ooo`1o:RX01@3oool00`00o`00oooo0?ooo`2G0?ooo`00I03oool0 +0`00o`00oooo0?ooo`0;0?ooo`D0003o00<0ObXZ0?ooo`3oool00P00o`3V0?ooo`030000003oool0 +oooo0>40oooo00@0003o0?ooo`3oool0o`000P3oool00`1o:RX0oooo0?ooo`030?ooo`03003o003o +ool0oooo09L0oooo001U0?ooo`03003o003oool0oooo00P0oooo0P00o`000`3oool0003o0000o`02 +0000o`030?l0001o:RX0ObXZ0080oooo0P00o`3T0?ooo`030000003oool0oooo0>00oooo00@0003o +0?ooo`3oool0o`000P3oool00`1o:RX0oooo0?ooo`030?ooo`03003o003oool0oooo09P0oooo001V +0?ooo`03003o003oool0oooo00H0oooo00<00?l00?ooo`3oool01@3oool010000?l0oooo07lZ:P3o +00030?ooo`03003o003oool0oooo0>40oooo00<000000?ooo`3oool0g`3oool01`000?l0oooo0?oo +o`3oool0o`000?ooo`1o:RX01@3oool00`00o`00oooo0?ooo`2I0?ooo`00I`3oool2003o00<0oooo +0`00o`090?ooo`040000o`3oool0ObXZ0?l000<0oooo00<00?l00?ooo`3oool0h03oool00`000000 +oooo0?ooo`3N0?ooo`030000o`3oool0oooo0080o`0000<0oooo07lZ:P3oool01@3oool00`00o`00 +oooo0?ooo`2I0?ooo`00J@3oool3003o00d0oooo00<0003o07lZ:P3oool00P3o00020?ooo`800?l0 +h03oool00`000000oooo0?ooo`3N0?ooo`030000o`3oool0o`000080oooo00<0ObXZ0?ooo`3oool0 +103oool00`00o`00oooo0?ooo`2J0?ooo`00NP3oool01@000?l0ObXZ0?ooo`3oool0o`000080oooo +00<00?l00?ooo`3oool0gP3oool00`000000oooo0?ooo`3M0?ooo`040000o`3oool0oooo0?l00080 +oooo00<0ObXZ0?ooo`3oool0103oool00`00o`00oooo0?ooo`2J0?ooo`00N`3oool01@000?l0ObXZ +07lZ:P3oool0o`000080oooo00<00?l00?ooo`3oool0g@3oool300000=`0oooo00D0003o0?ooo`3o +ool0o`000?ooo`0207lZ:PH0oooo00<00?l00?ooo`3oool0V`3oool007`0oooo00@0003o07lZ:P3o +ool0oooo0P3o00000`3oool00?l00?ooo`3M0?ooo`030000003oool0oooo0=/0oooo00H0003o0?oo +o`3oool0oooo0?l0001o:RX70?ooo`03003o003oool0oooo09`0oooo001m0?ooo`030000o`1o:RX0 +oooo0080oooo00<0o`000?ooo`00o`00g@3oool00`000000oooo0?ooo`3K0?ooo`060000o`3oool0 +o`000?l0003oool0ObXZ1P3oool00`00o`00oooo0?ooo`2M0?ooo`00OP3oool01@000?l0oooo0?oo +o`3oool0o`000080oooo00<00?l00?ooo`3oool0fP3oool00`000000oooo0?ooo`3J0?ooo`030000 +o`3oool0o`000080oooo00<0ObXZ0?ooo`3oool01@3oool00`00o`00oooo0?ooo`2M0?ooo`00O`3o +ool01@000?l0oooo0?ooo`3oool0o`000080oooo00<00?l00?ooo`3oool0f@3oool00`000000oooo +0?ooo`3I0?ooo`040000o`3oool0oooo0?l00080oooo00<0ObXZ0?ooo`3oool0103oool00`00o`00 +oooo0?ooo`2N0?ooo`00P03oool010000?l0ObXZ0?ooo`3oool20?l00003003o003oool0oooo0=T0 +oooo00<000000?ooo`3oool0f03oool01@000?l0oooo0?ooo`3o0000oooo0080ObXZ1`3oool00`00 +o`00oooo0?ooo`2N0?ooo`00P@3oool00`000?l0oooo0?ooo`020?ooo`030?l00000o`00oooo0=T0 +oooo00<000000?ooo`3oool0f03oool01@000?l0oooo0?ooo`3o0000ObXZ00P0oooo00<00?l00?oo +o`3oool0W`3oool00880oooo00L0003o0?ooo`3oool0oooo0?l0003oool00?l00=T0oooo00<00000 +0?ooo`3oool0e`3oool01P000?l0oooo0?l0003o0000oooo07lZ:PL0oooo00<00?l00?ooo`3oool0 +X03oool008<0oooo00L0003o0?ooo`3oool0oooo0?l0003oool00?l00=P0oooo00<000000?ooo`3o +ool0eP3oool00`000?l0oooo0?l000020?ooo`0307lZ:P3oool0oooo00D0oooo00<00?l00?ooo`3o +ool0X@3oool008@0oooo00H0003o07lZ:P3oool0oooo0?l00000o`3H0?ooo`030000003oool0oooo +0=D0oooo00@0003o0?ooo`3oool0o`000P1o:RX70?ooo`03003o003oool0oooo0:80oooo00250?oo +o`060000o`3oool0oooo0?ooo`3o00000?l0e`3oool00`000000oooo0?ooo`3E0?ooo`040000o`3o +ool0o`0007lZ:PP0oooo00<00?l00?ooo`3oool0X`3oool008H0oooo00D0003o0?ooo`3oool0oooo +0?l0003G0?ooo`030000003oool0oooo0=@0oooo00D0003o0?ooo`3oool0o`0007lZ:P070?ooo`03 +003o003oool0oooo0:@0oooo00270?ooo`050000o`3oool0oooo0?l00000o`00eP3oool00`000000 +oooo0?ooo`3C0?ooo`050000o`3oool0o`000?l0001o:RX01`3oool00`00o`00oooo0?ooo`2U0?oo +o`00R03oool01@000?l0oooo0?ooo`3o00000?l00=D0oooo00<000000?ooo`3oool0dP3oool01@00 +0?l0oooo0?l0003oool0ObXZ00H0oooo0P00o`2X0?ooo`00R@3oool01@000?l0oooo0?ooo`3o0000 +0?l00=@0oooo0`00003B0?ooo`040000o`3oool0o`0007lZ:PH0oooo00<00?l00?ooo`3oool0Z03o +ool008X0oooo00@0003o0?ooo`3oool0o`00e03oool00`000000oooo0?ooo`3A0?ooo`040000o`3o +ool0o`0007lZ:PL0oooo00<00?l00?ooo`3oool0Z03oool008/0oooo00@0003o0?ooo`3oool0o`00 +d`3oool00`000000oooo0?ooo`3@0?ooo`040000o`3oool0o`0007lZ:PL0oooo00<00?l00?ooo`3o +ool0Z@3oool008`0oooo00@0003o0?ooo`3oool0o`00dP3oool00`000000oooo0?ooo`3?0?ooo`04 +0000o`3oool0o`0007lZ:PD0oooo0`00o`2/0?ooo`00S@3oool010000?l0oooo0?ooo`3o003A0?oo +o`030000003oool0oooo00?ooo`00X`3oool00`3o0000 +0?l00?ooo`060?ooo`0407lZ:P3oool0oooo0?ooo`80003o/03oool00`000000oooo0?ooo`2b0?oo +o`0507lZ:P3oool0003o0?ooo`3o0000d03oool00:@0oooo00<0o`00003o003oool01P3oool307lZ +:P80oooo0P000?n^0?ooo`030000003oool0oooo0:l0oooo0`1o:RX20000o`030?ooo`3o0000oooo +0=00oooo002T0?ooo`040?l0003oool00?l0003o00P0oooo00D0ObXZ0?ooo`3oool0oooo0000o`2] +0?ooo`030000003oool0oooo0:h0oooo00D0ObXZ0?ooo`3oool0003o003o00020?l00=80oooo002U +0?ooo`040?l0003oool0oooo003o00P0oooo00@0ObXZ0?ooo`3oool0oooo0P000?n[0?ooo`030000 +003oool0oooo0:d0oooo00H0ObXZ0?ooo`3oool0003o003o003o003D0?ooo`00YP3oool20?l00003 +0?ooo`00o`00oooo00L0oooo0P1o:RX30?ooo`030000o`3oool0oooo0:P0oooo00<000000?ooo`3o +ool0Z`3oool207lZ:P80oooo00<0003o003o003o0000e@3oool00:P0oooo00@0o`000?ooo`00o`00 +0?l0203oool0101o:RX0oooo0?ooo`3oool20000ojP0oooo00<000000?ooo`3oool0ZP3oool00`1o +:RX0oooo0?ooo`020000o`80o`00eP3oool00:P0oooo00D0o`000?ooo`3oool0oooo003o00080?oo +o`0307lZ:P3oool0oooo0080oooo0P000?nV0?ooo`030000003oool0oooo0:T0oooo00H0ObXZ0?oo +o`3oool0003o003o003o003H0?ooo`00Z@3oool01@3o0000oooo0?ooo`3oool00?l000P0oooo0`1o +:RX30?ooo`030000o`3oool0oooo0:<0oooo00<000000?ooo`3oool0YP3oool307lZ:P80oooo00<0 +003o003o003o0000f@3oool00:X0oooo0P3o00020?ooo`800?l02@3oool207lZ:P80oooo0P000?nS +0?ooo`030000003oool0oooo0:D0oooo00<0ObXZ0?ooo`3oool00P3oool00`000?l0o`000?l0003J +0?ooo`00[03oool01@3o0000oooo0?ooo`3oool00?l000X0oooo00@0ObXZ0?ooo`3oool0oooo0P00 +0?nQ0?ooo`030000003oool0oooo0:<0oooo0P1o:RX50000o`030?l0003oool0oooo0=X0oooo002] +0?ooo`050?l0003oool0oooo0?ooo`00o`002P3oool00`1o:RX0oooo0?ooo`020?ooo`030000o`3o +ool0oooo09h0oooo00<000000?ooo`3oool0XP3oool00`1o:RX0oooo0000o`040000o`030?l0003o +ool0oooo0=/0oooo002^0?ooo`80o`000P3oool3003o00P0oooo0`1o:RX20?ooo`80003oWP3oool3 +000009l0oooo0`1o:RX20?ooo`D0003ogP3oool00;00oooo00<0o`000?ooo`3oool00P3oool00`00 +o`00oooo0?ooo`080?ooo`0407lZ:P3oool0oooo0?ooo`80003oW03oool00`000000oooo0?ooo`2N +0?ooo`0307lZ:P3oool0oooo0080oooo1P000?oN0?ooo`00/@3oool00`3o0000oooo0?ooo`020?oo +o`800?l02@3oool207lZ:P<0oooo00<0003o0?ooo`3oool0V@3oool00`000000oooo0?ooo`2L0?oo +o`80ObXZ0P3oool30000o`80o`000`000?oO0?ooo`00/P3oool20?l000@0oooo0`00o`080?ooo`80 +ObXZ0P3oool20000oiT0oooo00<000000?ooo`3oool0VP3oool207lZ:P80oooo0P000?l20?l00003 +003o003oool0oooo0>80oooo002d0?ooo`030?l0003oool0oooo00@0oooo0P00o`080?ooo`80ObXZ +0P3oool20000oiL0oooo00<000000?ooo`3oool0V03oool207lZ:P80oooo0P000?l20?l000800?l0 +i@3oool00;D0oooo00<0o`000?ooo`3oool01@3oool2003o00P0oooo0P1o:RX20?ooo`030000o`3o +ool0oooo09@0oooo00<000000?ooo`3oool0UP3oool207lZ:P040?ooo`000?l0003o0000o`80o`00 +00<00?l00?ooo`3oool0iP3oool00;H0oooo0P3o00070?ooo`800?l0203oool207lZ:P030?ooo`00 +0?l0003o09@0oooo00<000000?ooo`3oool0U03oool207lZ:P040?ooo`000?l0003o0?ooo`80o`00 +0P00o`3Y0?ooo`00^03oool30?l000H0oooo0`00o`070?ooo`<0ObXZ0P000?nB0?ooo`030000003o +ool0oooo0980oooo0P1o:RX30000o`<0o`0000<00?l00?ooo`3oool0jP3oool00;/0oooo00<0o`00 +0?ooo`3oool01P3oool4003o00H0oooo00<0ObXZ0?ooo`000?l0T@3oool00`000000oooo0?ooo`2@ +0?ooo`80ObXZ0P000?l30?l000<00?l0k@3oool00;`0oooo0`3o00090?ooo`<00?l0103oool207lZ +:P80003oS`3oool00`000000oooo0?ooo`2=0?ooo`80ObXZ0`000?l20?l000<00?l0l03oool00;l0 +oooo103o00080?ooo`<00?l0103oool00`1o:RX0003o0000o`2=0?ooo`030000003oool0oooo08`0 +oooo00<0ObXZ0000o`000?l00`3o0002003o0?<0oooo00330?ooo`@0o`001`3oool4003o00040?oo +o`1o:RX0ObXZ0000oh`0oooo00<000000?ooo`3oool0R@3oool207lZ:P80003o0P3o0003003o0?D0 +oooo00370?ooo`D0o`001P3oool4003o0080003o00@0oooo0000o`000?l0003oQP3oool00`000000 +oooo0?ooo`230?ooo`<0003o0P3oool30000o`030?l00000o`00oooo0?T0oooo003<0?ooo`X0o`00 +00<00?l007lZ:P000?l010000?n50?ooo`030000003oool0oooo0880oooo1P000?l00`3o00000?l0 +003o003l0?ooo`00eP3oool20?l000D0003o1@3o00200?ooo`<00000P@3oool00`00o`00003o0000 +o`030000ool0oooo0@3oool00=P0oooo20000?l20?ooo`L0o`00N@3oool00`000000oooo0?ooo`1m +0?ooo`X0003oo`3oool10?ooo`00f@3oool30000o`<0oooo00@0ObXZ0000o`000?l0003o1P3oool5 +0?l007@0oooo00<000000?ooo`3oool0M`3oool60000o`80o`0000@0ObXZ0?ooo`3oool0oooo0`00 +0?oo0?ooo`80oooo003P0?ooo`<0ObXZ0`000?l00`00o`00oooo0?ooo`050?ooo`@0o`00L03oool0 +0`000000oooo0?ooo`1b0?ooo`D0003o103o0000103oool0ObXZ07lZ:P1o:R[o0?ooo`T0oooo003S +0?ooo`<0ObXZ10000?l80?ooo`@0o`00K03oool00`000000oooo0?ooo`1]0?ooo`D0003o103o0003 +0?ooo`<0ObXZo`3oool<0?ooo`00iP3oool307lZ:P040?ooo`000?l0003o0000o`T0oooo103o001X +0?ooo`030000003oool0oooo06P0oooo1@000?l50?l000@0oooo0`1o:R[o0?ooo`l0oooo003Y0?oo +o`80ObXZ0P3oool40000o`T0oooo0`3o001U0?ooo`030000003oool0oooo06<0oooo1@000?l00`00 +o`00o`000?l000020?l000L0oooo0P1o:R[o0?oooa80oooo003[0?ooo`<0ObXZ0`3oool30000o`T0 +oooo0`3o001R0?ooo`030000003oool0oooo05d0oooo1P000?l60?l000P0oooo0`1o:R[o0?oooa@0 +oooo003^0?ooo`<0ObXZ0P3oool01000o`00003o0000o`000?l90?ooo`80o`00H03oool00`000000 +oooo0?ooo`1H0?ooo`D0003o00<00?l00?l0003o00000`3o000;0?ooo`<0ObXZo`3ooolG0?ooo`00 +l@3oool207lZ:P<0oooo00<00?l00000o`000?l00P000?l70?ooo`<0o`00G@3oool00`000000oooo +0?ooo`1C0?ooo`D0003o00<00?l00?l0003o00000`3o000>0?ooo`80ObXZo`3ooolJ0?ooo`00l`3o +ool507lZ:P80oooo00@00?l00000o`000?l0003o1`3oool30?l005X0oooo00<000000?ooo`3oool0 +CP3oool50000o`H0o`003`3oool407lZ:_l0oooo703oool00?P0oooo0P1o:RX30?ooo`03003o0000 +0?l0003o0080003o1P3oool00`3o0000oooo0?ooo`1G0?ooo`030000003oool0oooo03l0oooo0`00 +0?l60?ooo`H0003o1@3o000B0?ooo`<0ObXZo`3ooolP0?ooo`00nP3oool307lZ:P<0oooo0P00o`03 +0000o`@0oooo0`3o001F0?ooo`030000003oool0oooo03h0oooo2P000?l40?l001H0oooo0`1o:R[o +0?ooob<0oooo003m0?ooo`@0ObXZ0`3oool01000o`00003o0000o`000?l40?ooo`<0o`00D`3oool3 +000003h0oooo1@000?l40?l001L0oooo101o:R[o0?ooobH0oooo003o0?ooo`80oooo101o:RX00`3o +ool00?l0003o00040000o`<0oooo0P3o001A0?ooo`030000003oool0oooo03T0oooo2P000?lG0?oo +o`@0ObXZo`3ooolZ0?ooo`00o`3oool60?ooo`<0ObXZ0P3oool2003o00<0003o0P3oool20?l004l0 +oooo00<000000?ooo`3oool0=03oool00`3o0000003o0000o`020000o`80o`0000@00?l00?ooo`3o +ool0oooo0`000?lE0?ooo`<0ObXZo`3oool^0?ooo`00o`3oool90?ooo`@0ObXZ00<0oooo003o0000 +o`0010000?l20?l004d0oooo00<000000?ooo`3oool0;`3oool00`3o0000003o0000o`030000o`<0 +0?l06`3oool407lZ:_l0oooo<@3oool00?l0oooo3@3oool407lZ:P030?ooo`00o`000?l000<0003o +0P3o001:0?ooo`030000003oool0oooo02/0oooo1@000?l4003o01/0oooo101o:R[o0?ooocD0oooo +003o0?oooa40oooo101o:RX2003o00<0003o103oool30000od80oooo00<000000?ooo`3oool09@3o +ool00`3o0000003o0000o`030000o`D00?l06`3oool407lZ:_l0oooo>@3oool00?l0oooo5@3oool5 +07lZ:PP0003o@@3oool00`000000oooo0?ooo`0P0?ooo`030?l000000?l0003o00<0003o00<0oooo +003o0000o`000P00o`0K0?ooo`D0ObXZo`3ooolm0?ooo`00o`3ooolJ0?ooo`<0ObXZ1`000?lo0?oo +o`030000003oool0oooo01`0oooo00<0o`000000o`000?l00P000?l00`3oool00?l0003o0003003o +01T0oooo1P1o:R[o0?oood80oooo003o0?oooad0oooo1@000?l207lZ:PX0003o=@3oool00`000000 +oooo0?ooo`0H0?ooo`D0003o00<0oooo003o0000o`000P00o`0J0?ooo`@0ObXZo`3ooom80?ooo`00 +o`3ooolN0?ooo`<0003o0P3oool00`3o0000ObXZ07lZ:P0507lZ:P<0oooo2P000?l[0?ooo`030000 +003oool0oooo0180oooo00<0o`000000o`000?l00`000?l20?ooo`@00?l05`3oool707lZ:_l0oooo +C03oool00?l0oooo9@3oool30?l000030?ooo`00o`000?l000H0ObXZ1`3oool90000ob80oooo00<0 +00000?ooo`3oool03P3oool50000o`80oooo1@00o`0E0?ooo`H0ObXZo`3ooomC0?ooo`00o`3ooolX +0?ooo`<0o`000P3oool4003o00T0ObXZ1`3oool:0000oaP0oooo00<000000?ooo`3oool02@3oool5 +0000o`80oooo1@00o`0B0?ooo`P0ObXZo`3ooomI0?ooo`00o`3oool[0?ooo`@0o`001@3oool6003o +00T0ObXZ203oool:0000o`030?ooo`000000000000X0oooo0`000?l60?ooo`@0003o00<0oooo003o +0000o`001000o`0=0?ooo`X0ObXZo`3ooomQ0?ooo`00o`3oool_0?ooo`@0o`001`3oool8003o0003 +0?ooo`1o:RX0ObXZ00`0ObXZ103oool:0000o`80oooo2P000?l5003o00H0oooo3@1o:R[o0?ooof/0 +oooo003o0?oooc<0oooo103o000;0?ooo`l00?l03P1o:RX70000oa00ObXZo`3ooomh0?ooo`00o`3o +oolg0?ooo`D0o`005`3oool5003o00030000003o0000o`0000D0o`0000<0oooo0000o`000?l00`00 +0?oo0?ooohP0oooo003o0?oooc`0oooo7@3o00090?ooo`<0003oo`3ooon90?ooo`00o`3ooomF0?oo +o`8000002`3oool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3o +ool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3o +ool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon8 +0?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000 +oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3o +oomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o +0?ooohP0oooo003o0?ooof<0oooo0`00003o0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3o +ool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3o +ool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon8 +0?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000 +oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3o +oomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o +0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`03 +0000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo +003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`<00000o`3ooon8 +0?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000 +oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3o +oomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o +0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`03 +0000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo +003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0 +oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0 +oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0oooo +R03oool00?l0ooooH`3oool300000?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o +0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`03 +0000003oool0oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo +003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0 +oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0 +oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0oooo +R03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<00000 +0?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0 +ooooH`3oool300000?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo +003o0?ooof<0oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0 +oooo0?l0ooooR03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0 +oooo00<000000?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0oooo +R03oool00?l0ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<00000 +0?ooo`3oool0o`3ooon80?ooo`00o`3ooomS0?ooo`030000003oool0oooo0?l0ooooR03oool00?l0 +ooooH`3oool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?ooof<0oooo00<000000?ooo`3oool0 +o`3ooon80?ooo`00o`3ooomG0?ooo`<000002@3oool00`000000oooo0?ooo`3o0?ooohP0oooo003o +0?oooeP0oooo00<000000?ooo`3oool0203oool00`000000oooo0?ooo`3o0?ooohP0oooo003o0?oo +oeD0oooo1@0000090?ooo`D00000o`3ooon60?ooo`00o`3ooomE0?ooo`040000003oool0oooo0000 +0?l0ooooU@3oool00?l0ooooEP3oool00`000000oooo0000003o0?oooiD0oooo003o0?oooeL0oooo +0P00003o0?oooiD0oooo003o0?ooool0ooookP3oool00?l0ooooo`3oooo^0?ooo`00o`3ooooo0?oo +onh0oooo003o0?ooool0ooookP3oool00?l0ooooo`3oooo^0?ooo`00o`3ooooo0?ooonh0oooo003o +0?ooool0ooookP3oool00?l0ooooo`3oooo^0?ooo`00o`3ooooo0?ooonh0oooo003o0?ooool0oooo +kP3oool00?l0ooooo`3oooo^0?ooo`00o`3ooooo0?ooonh0oooo003o0?ooool0ooookP3oool00?l0 +ooooo`3oooo^0?ooo`00o`3ooooo0?ooonh0oooo003o0?ooofd0oooo0P00003o0?ooogl0oooo003o +0?ooofh0oooo00<000000?ooo`3oool0o`3ooomm0?ooo`00o`3ooom_0?ooo`030000003oool0oooo +0?l0ooooO03oool00?l0ooooKP3oool00`000000oooo0000003o0?ooogd0oooo003o0?ooofd0oooo +00@000000?ooo`3oool00000o`3ooomm0?ooo`00o`3ooom/0?ooo`<0000000<0oooo000000000000 +o`3oooml0?ooo`00o`3ooomQ0?ooo`040000003oool0oooo00000?l0ooooR@3oool00?l0ooooHP3o +ool200000?l0ooooRP3oool00?l0ooooo`3oooo^0?ooo`00o`3ooooo0?ooonh0oooo003o0?ooool0 +ooookP3oool00001\ +\>"], + ImageRangeCache->{{{0, 747}, {373, 0}} -> {-5.22655, -1.06646, 0.0147629, \ +0.0147629}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]3\ +\[InvisibleSpace]" mit "\[InvisibleSpace]13\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 3, " mit ", 13, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.1 0.1 [ +[.1 .0875 -6 -9 ] +[.1 .0875 6 0 ] +[.3 .0875 -6 -9 ] +[.3 .0875 6 0 ] +[.7 .0875 -3 -9 ] +[.7 .0875 3 0 ] +[.9 .0875 -3 -9 ] +[.9 .0875 3 0 ] +[1.025 .1 0 -6.4375 ] +[1.025 .1 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .2 -6 -4.5 ] +[.4875 .2 0 4.5 ] +[.4875 .3 -6 -4.5 ] +[.4875 .3 0 4.5 ] +[.4875 .4 -6 -4.5 ] +[.4875 .4 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .1 m +.1 .10625 L +s +[(-4)] .1 .0875 0 1 Mshowa +.3 .1 m +.3 .10625 L +s +[(-2)] .3 .0875 0 1 Mshowa +.7 .1 m +.7 .10625 L +s +[(2)] .7 .0875 0 1 Mshowa +.9 .1 m +.9 .10625 L +s +[(4)] .9 .0875 0 1 Mshowa +.125 Mabswid +.15 .1 m +.15 .10375 L +s +.2 .1 m +.2 .10375 L +s +.25 .1 m +.25 .10375 L +s +.35 .1 m +.35 .10375 L +s +.4 .1 m +.4 .10375 L +s +.45 .1 m +.45 .10375 L +s +.55 .1 m +.55 .10375 L +s +.6 .1 m +.6 .10375 L +s +.65 .1 m +.65 .10375 L +s +.75 .1 m +.75 .10375 L +s +.8 .1 m +.8 .10375 L +s +.85 .1 m +.85 .10375 L +s +.05 .1 m +.05 .10375 L +s +.95 .1 m +.95 .10375 L +s +.25 Mabswid +0 .1 m +1 .1 L +s +gsave +1.025 .1 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-1)] .4875 0 1 0 Mshowa +.5 .2 m +.50625 .2 L +s +[(1)] .4875 .2 1 0 Mshowa +.5 .3 m +.50625 .3 L +s +[(2)] .4875 .3 1 0 Mshowa +.5 .4 m +.50625 .4 L +s +[(3)] .4875 .4 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .02 m +.50375 .02 L +s +.5 .04 m +.50375 .04 L +s +.5 .06 m +.50375 .06 L +s +.5 .08 m +.50375 .08 L +s +.5 .12 m +.50375 .12 L +s +.5 .14 m +.50375 .14 L +s +.5 .16 m +.50375 .16 L +s +.5 .18 m +.50375 .18 L +s +.5 .22 m +.50375 .22 L +s +.5 .24 m +.50375 .24 L +s +.5 .26 m +.50375 .26 L +s +.5 .28 m +.50375 .28 L +s +.5 .32 m +.50375 .32 L +s +.5 .34 m +.50375 .34 L +s +.5 .36 m +.50375 .36 L +s +.5 .38 m +.50375 .38 L +s +.5 .42 m +.50375 .42 L +s +.5 .44 m +.50375 .44 L +s +.5 .46 m +.50375 .46 L +s +.5 .48 m +.50375 .48 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .1 m +.102 .12138 L +.104 .14118 L +.106 .15788 L +.108 .17093 L +.11 .18077 L +.112 .18786 L +.114 .19269 L +.116 .19573 L +.118 .19745 L +.12 .19834 L +.122 .19886 L +.124 .19949 L +.126 .2007 L +.128 .20268 L +.13 .20534 L +.132 .20861 L +.134 .21238 L +.136 .21657 L +.138 .22109 L +.14 .22585 L +.142 .23075 L +.144 .2357 L +.146 .24062 L +.148 .24542 L +.15 .25 L +.152 .25429 L +.154 .25829 L +.156 .262 L +.158 .26546 L +.16 .26865 L +.162 .27161 L +.164 .27434 L +.166 .27686 L +.168 .27918 L +.17 .28131 L +.172 .28327 L +.174 .28507 L +.176 .28672 L +.178 .28824 L +.18 .28964 L +.182 .29093 L +.184 .29213 L +.186 .29326 L +.188 .29431 L +.19 .29531 L +.192 .29628 L +.194 .29721 L +.196 .29814 L +.198 .29906 L +Mistroke +.2 .3 L +.202 .30096 L +.204 .30195 L +.206 .30297 L +.208 .30401 L +.21 .30507 L +.212 .30615 L +.214 .30726 L +.216 .30838 L +.218 .30953 L +.22 .31069 L +.222 .31187 L +.224 .31306 L +.226 .31427 L +.228 .3155 L +.23 .31674 L +.232 .31798 L +.234 .31924 L +.236 .32051 L +.238 .32179 L +.24 .32307 L +.242 .32436 L +.244 .32566 L +.246 .32696 L +.248 .32827 L +.25 .32957 L +.252 .33088 L +.254 .33219 L +.256 .3335 L +.258 .33481 L +.26 .33611 L +.262 .33741 L +.264 .33871 L +.266 .33999 L +.268 .34128 L +.27 .34255 L +.272 .34382 L +.274 .34507 L +.276 .34631 L +.278 .34755 L +.28 .34877 L +.282 .34997 L +.284 .35116 L +.286 .35233 L +.288 .35349 L +.29 .35463 L +.292 .35574 L +.294 .35684 L +.296 .35792 L +.298 .35897 L +Mistroke +.3 .36 L +.302 .36101 L +.304 .36199 L +.306 .36295 L +.308 .36388 L +.31 .36479 L +.312 .36568 L +.314 .36655 L +.316 .3674 L +.318 .36822 L +.32 .36903 L +.322 .36981 L +.324 .37058 L +.326 .37133 L +.328 .37206 L +.33 .37277 L +.332 .37346 L +.334 .37414 L +.336 .3748 L +.338 .37544 L +.34 .37607 L +.342 .37668 L +.344 .37728 L +.346 .37787 L +.348 .37844 L +.35 .37899 L +.352 .37954 L +.354 .38007 L +.356 .38059 L +.358 .3811 L +.36 .3816 L +.362 .38209 L +.364 .38256 L +.366 .38303 L +.368 .38349 L +.37 .38394 L +.372 .38439 L +.374 .38482 L +.376 .38525 L +.378 .38567 L +.38 .38608 L +.382 .38649 L +.384 .3869 L +.386 .3873 L +.388 .38769 L +.39 .38808 L +.392 .38847 L +.394 .38886 L +.396 .38924 L +.398 .38962 L +Mistroke +.4 .39 L +.402 .39038 L +.404 .39075 L +.406 .39113 L +.408 .3915 L +.41 .39187 L +.412 .39224 L +.414 .39261 L +.416 .39297 L +.418 .39332 L +.42 .39368 L +.422 .39402 L +.424 .39437 L +.426 .3947 L +.428 .39504 L +.43 .39536 L +.432 .39568 L +.434 .39599 L +.436 .3963 L +.438 .39659 L +.44 .39688 L +.442 .39716 L +.444 .39744 L +.446 .3977 L +.448 .39795 L +.45 .3982 L +.452 .39843 L +.454 .39865 L +.456 .39886 L +.458 .39906 L +.46 .39925 L +.462 .39943 L +.464 .39959 L +.466 .39975 L +.468 .39988 L +.47 .40001 L +.472 .40012 L +.474 .40022 L +.476 .4003 L +.478 .40036 L +.48 .40041 L +.482 .40045 L +.484 .40047 L +.486 .40047 L +.488 .40046 L +.49 .40043 L +.492 .40038 L +.494 .40031 L +.496 .40023 L +.498 .40012 L +Mistroke +.5 .4 L +.502 .39986 L +.504 .3997 L +.506 .39952 L +.508 .39932 L +.51 .3991 L +.512 .39887 L +.514 .39862 L +.516 .39836 L +.518 .39808 L +.52 .39779 L +.522 .39748 L +.524 .39716 L +.526 .39682 L +.528 .39648 L +.53 .39612 L +.532 .39575 L +.534 .39536 L +.536 .39497 L +.538 .39457 L +.54 .39416 L +.542 .39373 L +.544 .39331 L +.546 .39287 L +.548 .39242 L +.55 .39197 L +.552 .39151 L +.554 .39105 L +.556 .39058 L +.558 .39011 L +.56 .38963 L +.562 .38915 L +.564 .38866 L +.566 .38818 L +.568 .38769 L +.57 .3872 L +.572 .3867 L +.574 .38621 L +.576 .38572 L +.578 .38523 L +.58 .38474 L +.582 .38425 L +.584 .38376 L +.586 .38327 L +.588 .38279 L +.59 .38232 L +.592 .38184 L +.594 .38137 L +.596 .38091 L +.598 .38045 L +Mistroke +.6 .38 L +.602 .37956 L +.604 .37912 L +.606 .37869 L +.608 .37826 L +.61 .37784 L +.612 .37742 L +.614 .37701 L +.616 .37661 L +.618 .37621 L +.62 .37581 L +.622 .37542 L +.624 .37503 L +.626 .37465 L +.628 .37426 L +.63 .37388 L +.632 .37351 L +.634 .37313 L +.636 .37276 L +.638 .37238 L +.64 .37201 L +.642 .37164 L +.644 .37128 L +.646 .37091 L +.648 .37054 L +.65 .37017 L +.652 .3698 L +.654 .36943 L +.656 .36906 L +.658 .36868 L +.66 .36831 L +.662 .36793 L +.664 .36755 L +.666 .36717 L +.668 .36679 L +.67 .3664 L +.672 .36601 L +.674 .36561 L +.676 .36521 L +.678 .36481 L +.68 .3644 L +.682 .36399 L +.684 .36357 L +.686 .36315 L +.688 .36272 L +.69 .36228 L +.692 .36184 L +.694 .36139 L +.696 .36093 L +.698 .36047 L +Mistroke +.7 .36 L +.702 .35952 L +.704 .35903 L +.706 .35853 L +.708 .35801 L +.71 .35748 L +.712 .35693 L +.714 .35636 L +.716 .35576 L +.718 .35514 L +.72 .35449 L +.722 .35381 L +.724 .3531 L +.726 .35236 L +.728 .35158 L +.73 .35076 L +.732 .3499 L +.734 .349 L +.736 .34806 L +.738 .34706 L +.74 .34602 L +.742 .34493 L +.744 .34378 L +.746 .34258 L +.748 .34132 L +.75 .34 L +.752 .33862 L +.754 .33718 L +.756 .33569 L +.758 .33415 L +.76 .33257 L +.762 .33096 L +.764 .32931 L +.766 .32764 L +.768 .32594 L +.77 .32423 L +.772 .3225 L +.774 .32077 L +.776 .31904 L +.778 .31731 L +.78 .3156 L +.782 .31389 L +.784 .3122 L +.786 .31054 L +.788 .30891 L +.79 .30731 L +.792 .30575 L +.794 .30423 L +.796 .30277 L +.798 .30135 L +Mistroke +.8 .3 L +.802 .29871 L +.804 .29747 L +.806 .29628 L +.808 .29511 L +.81 .29397 L +.812 .29284 L +.814 .29171 L +.816 .29056 L +.818 .28939 L +.82 .28819 L +.822 .28695 L +.824 .28565 L +.826 .28428 L +.828 .28283 L +.83 .2813 L +.832 .27967 L +.834 .27793 L +.836 .27607 L +.838 .27407 L +.84 .27193 L +.842 .26964 L +.844 .26719 L +.846 .26456 L +.848 .26175 L +.85 .25873 L +.852 .25551 L +.854 .25207 L +.856 .2484 L +.858 .24449 L +.86 .24033 L +.862 .23591 L +.864 .23121 L +.866 .22623 L +.868 .22095 L +.87 .21537 L +.872 .20947 L +.874 .20324 L +.876 .19667 L +.878 .18978 L +.88 .18258 L +.882 .17511 L +.884 .16739 L +.886 .15945 L +.888 .15131 L +.89 .14301 L +.892 .13457 L +.894 .12603 L +.896 .1174 L +.898 .10871 L +Mistroke +.9 .1 L +Mfstroke +1 0 0 r +.1 .1 m +.102 .12374 L +.104 .14234 L +.106 .15672 L +.108 .16769 L +.11 .17597 L +.112 .18216 L +.114 .18676 L +.116 .19022 L +.118 .19291 L +.12 .19511 L +.122 .19708 L +.124 .199 L +.126 .20104 L +.128 .2033 L +.13 .20586 L +.132 .20878 L +.134 .21207 L +.136 .21576 L +.138 .21981 L +.14 .22422 L +.142 .22894 L +.144 .23393 L +.146 .23915 L +.148 .24452 L +.15 .25 L +.152 .25553 L +.154 .26104 L +.156 .26648 L +.158 .27179 L +.16 .27692 L +.162 .28182 L +.164 .28645 L +.166 .29076 L +.168 .29471 L +.17 .29828 L +.172 .30145 L +.174 .30418 L +.176 .30646 L +.178 .3083 L +.18 .30966 L +.182 .31057 L +.184 .31102 L +.186 .31103 L +.188 .31059 L +.19 .30974 L +.192 .30849 L +.194 .30686 L +.196 .30489 L +.198 .30259 L +Mistroke +.2 .3 L +.202 .29716 L +.204 .29409 L +.206 .29083 L +.208 .28742 L +.21 .2839 L +.212 .2803 L +.214 .27666 L +.216 .27302 L +.218 .26941 L +.22 .26587 L +.222 .26243 L +.224 .25912 L +.226 .25599 L +.228 .25305 L +.23 .25034 L +.232 .24787 L +.234 .24569 L +.236 .24381 L +.238 .24224 L +.24 .24101 L +.242 .24014 L +.244 .23963 L +.246 .2395 L +.248 .23975 L +.25 .2404 L +.252 .24144 L +.254 .24288 L +.256 .24472 L +.258 .24694 L +.26 .24956 L +.262 .25255 L +.264 .25592 L +.266 .25965 L +.268 .26372 L +.27 .26812 L +.272 .27284 L +.274 .27786 L +.276 .28315 L +.278 .2887 L +.28 .29449 L +.282 .30049 L +.284 .30667 L +.286 .31303 L +.288 .31952 L +.29 .32613 L +.292 .33283 L +.294 .33959 L +.296 .34639 L +.298 .3532 L +Mistroke +.3 .36 L +.302 .36676 L +.304 .37345 L +.306 .38005 L +.308 .38654 L +.31 .3929 L +.312 .39909 L +.314 .40511 L +.316 .41092 L +.318 .41651 L +.32 .42186 L +.322 .42696 L +.324 .43178 L +.326 .43632 L +.328 .44055 L +.33 .44447 L +.332 .44807 L +.334 .45133 L +.336 .45425 L +.338 .45682 L +.34 .45904 L +.342 .4609 L +.344 .4624 L +.346 .46355 L +.348 .46434 L +.35 .46477 L +.352 .46484 L +.354 .46458 L +.356 .46396 L +.358 .46302 L +.36 .46175 L +.362 .46017 L +.364 .45828 L +.366 .4561 L +.368 .45364 L +.37 .45092 L +.372 .44794 L +.374 .44474 L +.376 .44131 L +.378 .43769 L +.38 .43389 L +.382 .42992 L +.384 .4258 L +.386 .42156 L +.388 .41722 L +.39 .41278 L +.392 .40828 L +.394 .40373 L +.396 .39916 L +.398 .39457 L +Mistroke +.4 .39 L +.402 .38546 L +.404 .38097 L +.406 .37654 L +.408 .37221 L +.41 .36797 L +.412 .36386 L +.414 .35988 L +.416 .35606 L +.418 .35241 L +.42 .34894 L +.422 .34566 L +.424 .34259 L +.426 .33974 L +.428 .33712 L +.43 .33474 L +.432 .33261 L +.434 .33073 L +.436 .32912 L +.438 .32777 L +.44 .3267 L +.442 .3259 L +.444 .32537 L +.446 .32513 L +.448 .32516 L +.45 .32546 L +.452 .32605 L +.454 .3269 L +.456 .32802 L +.458 .3294 L +.46 .33103 L +.462 .33291 L +.464 .33503 L +.466 .33738 L +.468 .33995 L +.47 .34272 L +.472 .34569 L +.474 .34885 L +.476 .35218 L +.478 .35566 L +.48 .35929 L +.482 .36305 L +.484 .36692 L +.486 .37088 L +.488 .37493 L +.49 .37904 L +.492 .3832 L +.494 .3874 L +.496 .39161 L +.498 .39581 L +Mistroke +.5 .4 L +.502 .40415 L +.504 .40825 L +.506 .41229 L +.508 .41624 L +.51 .42009 L +.512 .42383 L +.514 .42743 L +.516 .4309 L +.518 .4342 L +.52 .43734 L +.522 .44029 L +.524 .44305 L +.526 .4456 L +.528 .44794 L +.53 .45005 L +.532 .45193 L +.534 .45357 L +.536 .45496 L +.538 .4561 L +.54 .45698 L +.542 .4576 L +.544 .45796 L +.546 .45804 L +.548 .45787 L +.55 .45742 L +.552 .45671 L +.554 .45574 L +.556 .45451 L +.558 .45302 L +.56 .45129 L +.562 .44931 L +.564 .4471 L +.566 .44466 L +.568 .442 L +.57 .43913 L +.572 .43607 L +.574 .43282 L +.576 .4294 L +.578 .42581 L +.58 .42208 L +.582 .41822 L +.584 .41423 L +.586 .41015 L +.588 .40598 L +.59 .40173 L +.592 .39743 L +.594 .39309 L +.596 .38873 L +.598 .38436 L +Mistroke +.6 .38 L +.602 .37567 L +.604 .37138 L +.606 .36715 L +.608 .36299 L +.61 .35893 L +.612 .35497 L +.614 .35113 L +.616 .34743 L +.618 .34387 L +.62 .34048 L +.622 .33725 L +.624 .33421 L +.626 .33137 L +.628 .32873 L +.63 .3263 L +.632 .32409 L +.634 .32211 L +.636 .32036 L +.638 .31884 L +.64 .31756 L +.642 .31653 L +.644 .31574 L +.646 .31519 L +.648 .31488 L +.65 .3148 L +.652 .31496 L +.654 .31535 L +.656 .31596 L +.658 .31678 L +.66 .31781 L +.662 .31904 L +.664 .32045 L +.666 .32203 L +.668 .32377 L +.67 .32566 L +.672 .32768 L +.674 .32981 L +.676 .33204 L +.678 .33436 L +.68 .33674 L +.682 .33917 L +.684 .34162 L +.686 .34409 L +.688 .34654 L +.69 .34897 L +.692 .35134 L +.694 .35365 L +.696 .35588 L +.698 .358 L +Mistroke +.7 .36 L +.702 .36186 L +.704 .36356 L +.706 .36509 L +.708 .36644 L +.71 .36758 L +.712 .36851 L +.714 .36921 L +.716 .36968 L +.718 .3699 L +.72 .36987 L +.722 .36959 L +.724 .36904 L +.726 .36823 L +.728 .36716 L +.73 .36582 L +.732 .36423 L +.734 .36239 L +.736 .3603 L +.738 .35798 L +.74 .35544 L +.742 .3527 L +.744 .34976 L +.746 .34665 L +.748 .34339 L +.75 .34 L +.752 .33651 L +.754 .33293 L +.756 .32931 L +.758 .32567 L +.76 .32203 L +.762 .31843 L +.764 .31491 L +.766 .31149 L +.768 .30821 L +.77 .30511 L +.772 .30221 L +.774 .29956 L +.776 .29718 L +.778 .29511 L +.78 .29338 L +.782 .29202 L +.784 .29105 L +.786 .29051 L +.788 .29041 L +.79 .29078 L +.792 .29162 L +.794 .29296 L +.796 .29481 L +.798 .29715 L +Mistroke +.8 .3 L +.802 .30334 L +.804 .30717 L +.806 .31146 L +.808 .3162 L +.81 .32133 L +.812 .32684 L +.814 .33266 L +.816 .33876 L +.818 .34506 L +.82 .35149 L +.822 .35799 L +.824 .36446 L +.826 .37082 L +.828 .37697 L +.83 .3828 L +.832 .3882 L +.834 .39305 L +.836 .39725 L +.838 .40065 L +.84 .40314 L +.842 .40459 L +.844 .40487 L +.846 .40385 L +.848 .40142 L +.85 .39746 L +.852 .39187 L +.854 .38456 L +.856 .37544 L +.858 .36445 L +.86 .35158 L +.862 .33679 L +.864 .32013 L +.866 .30165 L +.868 .28145 L +.87 .25969 L +.872 .23658 L +.874 .21239 L +.876 .18747 L +.878 .16225 L +.88 .13724 L +.882 .11305 L +.884 .09043 L +.886 .07021 L +.888 .05339 L +.89 .0411 L +.892 .03465 L +.894 .03553 L +.896 .04541 L +.898 .06619 L +Mistroke +.9 .1 L +Mfstroke +.5 .165 .165 r +.1 .1 m +.102 .12996 L +.104 .14232 L +.106 .15177 L +.108 .1597 L +.11 .16666 L +.112 .17293 L +.114 .17867 L +.116 .184 L +.118 .18898 L +.12 .19367 L +.122 .19812 L +.124 .20235 L +.126 .20639 L +.128 .21027 L +.13 .21399 L +.132 .21758 L +.134 .22104 L +.136 .22438 L +.138 .22762 L +.14 .23077 L +.142 .23382 L +.144 .23679 L +.146 .23968 L +.148 .24249 L +.15 .24524 L +.152 .24792 L +.154 .25053 L +.156 .25309 L +.158 .25559 L +.16 .25803 L +.162 .26043 L +.164 .26278 L +.166 .26507 L +.168 .26733 L +.17 .26954 L +.172 .27171 L +.174 .27384 L +.176 .27593 L +.178 .27798 L +.18 .28 L +.182 .28198 L +.184 .28393 L +.186 .28585 L +.188 .28773 L +.19 .28959 L +.192 .29141 L +.194 .29321 L +.196 .29498 L +.198 .29672 L +Mistroke +.2 .29843 L +.202 .30012 L +.204 .30178 L +.206 .30342 L +.208 .30503 L +.21 .30662 L +.212 .30819 L +.214 .30974 L +.216 .31126 L +.218 .31276 L +.22 .31424 L +.222 .3157 L +.224 .31714 L +.226 .31856 L +.228 .31996 L +.23 .32135 L +.232 .32271 L +.234 .32405 L +.236 .32538 L +.238 .32669 L +.24 .32798 L +.242 .32925 L +.244 .33051 L +.246 .33175 L +.248 .33298 L +.25 .33419 L +.252 .33538 L +.254 .33656 L +.256 .33772 L +.258 .33887 L +.26 .34 L +.262 .34112 L +.264 .34222 L +.266 .34331 L +.268 .34438 L +.27 .34545 L +.272 .34649 L +.274 .34753 L +.276 .34855 L +.278 .34956 L +.28 .35055 L +.282 .35153 L +.284 .3525 L +.286 .35346 L +.288 .3544 L +.29 .35533 L +.292 .35625 L +.294 .35716 L +.296 .35805 L +.298 .35894 L +Mistroke +.3 .35981 L +.302 .36067 L +.304 .36152 L +.306 .36235 L +.308 .36318 L +.31 .364 L +.312 .3648 L +.314 .36559 L +.316 .36638 L +.318 .36715 L +.32 .36791 L +.322 .36866 L +.324 .3694 L +.326 .37013 L +.328 .37085 L +.33 .37156 L +.332 .37226 L +.334 .37295 L +.336 .37363 L +.338 .3743 L +.34 .37495 L +.342 .3756 L +.344 .37624 L +.346 .37687 L +.348 .3775 L +.35 .37811 L +.352 .37871 L +.354 .3793 L +.356 .37989 L +.358 .38046 L +.36 .38102 L +.362 .38158 L +.364 .38213 L +.366 .38267 L +.368 .38319 L +.37 .38371 L +.372 .38423 L +.374 .38473 L +.376 .38522 L +.378 .38571 L +.38 .38618 L +.382 .38665 L +.384 .38711 L +.386 .38756 L +.388 .388 L +.39 .38843 L +.392 .38886 L +.394 .38927 L +.396 .38968 L +.398 .39008 L +Mistroke +.4 .39047 L +.402 .39086 L +.404 .39123 L +.406 .3916 L +.408 .39196 L +.41 .39231 L +.412 .39265 L +.414 .39298 L +.416 .39331 L +.418 .39363 L +.42 .39394 L +.422 .39424 L +.424 .39454 L +.426 .39482 L +.428 .3951 L +.43 .39537 L +.432 .39563 L +.434 .39589 L +.436 .39614 L +.438 .39637 L +.44 .39661 L +.442 .39683 L +.444 .39705 L +.446 .39725 L +.448 .39745 L +.45 .39765 L +.452 .39783 L +.454 .39801 L +.456 .39818 L +.458 .39834 L +.46 .3985 L +.462 .39864 L +.464 .39878 L +.466 .39891 L +.468 .39904 L +.47 .39916 L +.472 .39926 L +.474 .39937 L +.476 .39946 L +.478 .39955 L +.48 .39962 L +.482 .3997 L +.484 .39976 L +.486 .39982 L +.488 .39986 L +.49 .39991 L +.492 .39994 L +.494 .39997 L +.496 .39998 L +.498 .4 L +Mistroke +.5 .4 L +.502 .4 L +.504 .39998 L +.506 .39997 L +.508 .39994 L +.51 .39991 L +.512 .39986 L +.514 .39982 L +.516 .39976 L +.518 .3997 L +.52 .39962 L +.522 .39955 L +.524 .39946 L +.526 .39937 L +.528 .39926 L +.53 .39916 L +.532 .39904 L +.534 .39891 L +.536 .39878 L +.538 .39864 L +.54 .3985 L +.542 .39834 L +.544 .39818 L +.546 .39801 L +.548 .39783 L +.55 .39765 L +.552 .39745 L +.554 .39725 L +.556 .39705 L +.558 .39683 L +.56 .39661 L +.562 .39637 L +.564 .39614 L +.566 .39589 L +.568 .39563 L +.57 .39537 L +.572 .3951 L +.574 .39482 L +.576 .39454 L +.578 .39424 L +.58 .39394 L +.582 .39363 L +.584 .39331 L +.586 .39298 L +.588 .39265 L +.59 .39231 L +.592 .39196 L +.594 .3916 L +.596 .39123 L +.598 .39086 L +Mistroke +.6 .39047 L +.602 .39008 L +.604 .38968 L +.606 .38927 L +.608 .38886 L +.61 .38843 L +.612 .388 L +.614 .38756 L +.616 .38711 L +.618 .38665 L +.62 .38618 L +.622 .38571 L +.624 .38522 L +.626 .38473 L +.628 .38423 L +.63 .38371 L +.632 .38319 L +.634 .38267 L +.636 .38213 L +.638 .38158 L +.64 .38102 L +.642 .38046 L +.644 .37989 L +.646 .3793 L +.648 .37871 L +.65 .37811 L +.652 .3775 L +.654 .37687 L +.656 .37624 L +.658 .3756 L +.66 .37495 L +.662 .3743 L +.664 .37363 L +.666 .37295 L +.668 .37226 L +.67 .37156 L +.672 .37085 L +.674 .37013 L +.676 .3694 L +.678 .36866 L +.68 .36791 L +.682 .36715 L +.684 .36638 L +.686 .36559 L +.688 .3648 L +.69 .364 L +.692 .36318 L +.694 .36235 L +.696 .36152 L +.698 .36067 L +Mistroke +.7 .35981 L +.702 .35894 L +.704 .35805 L +.706 .35716 L +.708 .35625 L +.71 .35533 L +.712 .3544 L +.714 .35346 L +.716 .3525 L +.718 .35153 L +.72 .35055 L +.722 .34956 L +.724 .34855 L +.726 .34753 L +.728 .34649 L +.73 .34545 L +.732 .34438 L +.734 .34331 L +.736 .34222 L +.738 .34112 L +.74 .34 L +.742 .33887 L +.744 .33772 L +.746 .33656 L +.748 .33538 L +.75 .33419 L +.752 .33298 L +.754 .33175 L +.756 .33051 L +.758 .32925 L +.76 .32798 L +.762 .32669 L +.764 .32538 L +.766 .32405 L +.768 .32271 L +.77 .32135 L +.772 .31996 L +.774 .31856 L +.776 .31714 L +.778 .3157 L +.78 .31424 L +.782 .31276 L +.784 .31126 L +.786 .30974 L +.788 .30819 L +.79 .30662 L +.792 .30503 L +.794 .30342 L +.796 .30178 L +.798 .30012 L +Mistroke +.8 .29843 L +.802 .29672 L +.804 .29498 L +.806 .29321 L +.808 .29141 L +.81 .28959 L +.812 .28773 L +.814 .28585 L +.816 .28393 L +.818 .28198 L +.82 .28 L +.822 .27798 L +.824 .27593 L +.826 .27384 L +.828 .27171 L +.83 .26954 L +.832 .26733 L +.834 .26507 L +.836 .26278 L +.838 .26043 L +.84 .25803 L +.842 .25559 L +.844 .25309 L +.846 .25053 L +.848 .24792 L +.85 .24524 L +.852 .24249 L +.854 .23968 L +.856 .23679 L +.858 .23382 L +.86 .23077 L +.862 .22762 L +.864 .22438 L +.866 .22104 L +.868 .21758 L +.87 .21399 L +.872 .21027 L +.874 .20639 L +.876 .20235 L +.878 .19812 L +.88 .19367 L +.882 .18898 L +.884 .184 L +.886 .17867 L +.888 .17293 L +.89 .16666 L +.892 .1597 L +.894 .15177 L +.896 .14232 L +.898 .12996 L +Mistroke +.9 .1 L +Mfstroke +0 0 1 r +.1 .1 m +.105 .15 L +.125 .2 L +.15 .25 L +.2 .3 L +.3 .36 L +.4 .39 L +.5 .4 L +.6 .38 L +.7 .36 L +.75 .34 L +.8 .3 L +.875 .2 L +.9 .1 L +s +5 Mabswid +.1 .1 Mdot +.105 .15 Mdot +.125 .2 Mdot +.15 .25 Mdot +.2 .3 Mdot +.3 .36 Mdot +.4 .39 Mdot +.5 .4 Mdot +.6 .38 Mdot +.7 .36 Mdot +.75 .34 Mdot +.8 .3 Mdot +.875 .2 Mdot +.9 .1 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{659, 329.5}, + ImageMargins->{{42, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHgD0oooo0`3o001b0?oo +o`00o`3ooolg0?ooo`030000003oool0oooo0>@0oooo00@0o`000?ooo`3oool0o`00LP3oool00?l0 +oooo=`3oool300000>@0oooo00@0o`000?ooo`3oool0o`00LP3oool00?l0oooo=`3oool00`000000 +oooo0?ooo`3T0?ooo`050?l0003oool0oooo0?ooo`3o0000L@3oool00?l0oooo=`3oool00`000000 +oooo0?ooo`3T0?ooo`050?l0003oool0oooo0?ooo`3o0000L@3oool00?l0oooo=`3oool00`000000 +oooo0?ooo`3T0?ooo`050?l0003oool0oooo0?ooo`3o0000L@3oool00?l0oooo=`3oool00`000000 +oooo0?ooo`3T0?ooo`050?l0003oool0oooo0?ooo`3o0000L@3oool00?l0oooo=`3oool00`000000 +oooo0?ooo`3S0?ooo`030?l0003oool0oooo0080oooo00<0o`000?ooo`3oool0K`3oool00?l0oooo +=`3oool00`000000oooo0?ooo`3S0?ooo`030?l0003oool0oooo0080oooo00<0o`000?ooo`3oool0 +K`3oool00?l0oooo=`3oool00`000000oooo0?ooo`3S0?ooo`030?l0003oool0oooo0080oooo00<0 +o`000?ooo`3oool0K`3oool00?l0oooo=`3oool00`000000oooo0?ooo`3S0?ooo`030?l0003oool0 +oooo0080oooo00<0o`000?ooo`3oool0K`3oool00?l0oooo=`3oool00`000000oooo0?ooo`3S0?oo +o`030?l0003oool0oooo0080oooo00<0o`000?ooo`3oool0K`3oool00?l0oooo=`3oool00`000000 +oooo0?ooo`3S0?ooo`030?l0003oool0oooo00<0oooo00<0o`000?ooo`3oool0KP3oool00?l0oooo +=`3oool00`000000oooo0?ooo`3S0?ooo`030?l0003oool0oooo00<0oooo00<0o`000?ooo`3oool0 +KP3oool00?l0oooo=`3oool300000><0oooo00<0o`000?ooo`3oool00`3oool00`3o0000oooo0?oo +o`1^0?ooo`00o`3ooolg0?ooo`030000003oool0oooo0>80oooo00<0o`000?ooo`3oool0103oool0 +0`3o0000oooo0?ooo`1^0?ooo`00o`3ooolg0?ooo`030000003oool0oooo0>80oooo00<0o`000?oo +o`3oool0103oool00`3o0000oooo0?ooo`1^0?ooo`00o`3ooolg0?ooo`030000003oool0oooo0>80 +oooo00<0o`000?ooo`3oool0103oool00`3o0000oooo0?ooo`1^0?ooo`00o`3ooolg0?ooo`030000 +003oool0oooo0>80oooo00<0o`000?ooo`3oool0103oool00`3o0000oooo0?ooo`1^0?ooo`00o`3o +oolg0?ooo`030000003oool0oooo0>80oooo00<0o`000?ooo`3oool0103oool00`3o0000oooo0?oo +o`1^0?ooo`00o`3ooolg0?ooo`030000003oool0oooo0>80oooo00<0o`000?ooo`3oool0103oool0 +0`3o0000oooo0?ooo`1^0?ooo`00o`3ooolg0?ooo`030000003oool0oooo0>80oooo00<0o`000?oo +o`3oool0103oool00`3o0000oooo0?ooo`1^0?ooo`00C03oool300000780oooo1000001a0?ooo`03 +0000003oool0oooo0780oooo1000001/0?ooo`030?l0003oool0oooo00@0oooo00@0o`0000000000 +00000000K@3oool004d0oooo00<000000?ooo`3oool0L@3oool00`000000oooo0?ooo`1b0?ooo`03 +0000003oool0oooo0780oooo00<000000?ooo`3oool0K@3oool00`3o0000oooo0?ooo`040?ooo`03 +0?l0003oool0000006h0oooo001:0?ooo`D00000L`3oool00`000000oooo0?ooo`1a0?ooo`030000 +003oool0oooo07<0oooo00<000000?ooo`3oool0K03oool00`3o0000oooo0?ooo`030?ooo`030000 +003o0000000000800000K@3oool004@0oooo100000020?ooo`040000003oool0oooo000006d0oooo +100000040?ooo`030000003oool0oooo0700oooo00<000000?ooo`3oool0M03oool00`000000oooo +0?ooo`1[0?ooo`030?l0003oool0oooo00<0oooo00@000000?l0003oool00000KP3oool004/0oooo +00<000000?ooo`000000L`3oool010000000oooo0?ooo`00001a0?ooo`<00000LP3oool010000000 +oooo0?ooo`00001[0?ooo`030?l0003oool0oooo00D0oooo00<0o`000?ooo`000000KP3oool004`0 +oooo0P00001d0?ooo`800000LP3oool00`000000oooo0?ooo`1c0?ooo`800000K03oool00`3o0000 +oooo0?ooo`050?ooo`030?l000000000000006h0oooo003o0?ooocL0oooo00<000000?ooo`3oool0 +h@3oool00`3o0000oooo0?ooo`050?ooo`030?l0003oool0oooo06h0oooo003o0?ooocL0oooo00<0 +00000?ooo`3oool0h@3oool00`3o0000oooo0?ooo`060?ooo`030?l0003oool0oooo06d0oooo003o +0?ooocL0oooo00<000000?ooo`3oool0h@3oool00`3o0000oooo0?ooo`060?ooo`030?l0003oool0 +oooo06d0oooo003o0?ooocL0oooo00<000000?ooo`3oool0h@3oool00`3o0000oooo0?ooo`060?oo +o`030?l0003oool0oooo06d0oooo003o0?ooocL0oooo00<000000?ooo`3oool0h@3oool00`3o0000 +oooo0?ooo`060?ooo`030?l0003oool0oooo06d0oooo003o0?ooocL0oooo00<000000?ooo`3oool0 +h@3oool00`3o0000oooo0?ooo`060?ooo`030?l0003oool0oooo06d0oooo003o0?ooocL0oooo00<0 +00000?ooo`3oool0h@3oool00`3o0000oooo0?ooo`060?ooo`030?l0003oool0oooo06d0oooo003o +0?ooocL0oooo00<000000?ooo`3oool0h@3oool00`3o0000oooo0?ooo`060?ooo`030?l0003oool0 +oooo06d0oooo00180?ooo`<0003oj`3oool00`000000oooo0?ooo`3P0?ooo`030?l0003oool0oooo +00H0oooo0`000?m;0?ooo`030000003oool0oooo00P0oooo0P0000000`3oool000000000000C0?oo +o`00A`3oool50000onX0oooo00<000000?ooo`3oool0h03oool00`3o0000oooo0?ooo`050?ooo`D0 +003oB`3oool00`000000oooo0?ooo`080?ooo`030000003oool0000001@0oooo000>0?ooocT00000 +1@000?oo00000T0oooo00<000000?ooo`3o +ool0gP3oool00`3o0000oooo0?ooo`040?ooo`050000o`3oool0oooo0?ooo`1o:RX0L03oool004X0 +oooo00<0ObXZ0000o`3oool0j@3oool00`000000oooo0?ooo`3N0?ooo`030?l0003oool0oooo00@0 +oooo00D0003o0?ooo`3oool0oooo07lZ:P1`0?ooo`00BP3oool00`1o:RX0003o0?ooo`3Y0?ooo`03 +0000003oool0oooo0=h0oooo00<0o`000?ooo`3oool0103oool01@000?l0oooo0?ooo`3oool0ObXZ +0700oooo001;0?ooo`030000o`3oool0oooo0>P0oooo00<000000?ooo`3oool0gP3oool00`3o0000 +oooo0?ooo`030?ooo`050000o`00o`00oooo0?ooo`1o:RX0L@3oool004/0oooo00<0003o0?ooo`3o +ool0j03oool300000=h0oooo00<0o`000?ooo`3oool00`3oool01@000?l0oooo0?ooo`3oool0ObXZ +0740oooo001;0?ooo`030000o`3oool0oooo0>P0oooo00<000000?ooo`3oool0gP3oool00`3o0000 +oooo0?ooo`030?ooo`050000o`3oool0oooo0?ooo`1o:RX0L@3oool004/0oooo00<0ObXZ0000o`3o +ool0j03oool00`000000oooo0?ooo`3N0?ooo`030?l0003oool0oooo00<0oooo00D0003o0?ooo`3o +ool0oooo07lZ:P1a0?ooo`00B`3oool00`1o:RX0003o0?ooo`3X0?ooo`030000003oool0oooo0=h0 +oooo00<0o`000?ooo`3oool00P3oool00`000?l00?l00?ooo`020?ooo`0307lZ:P3oool0oooo06l0 +oooo001;0?ooo`<0003oj03oool00`000000oooo0?ooo`3N0?ooo`030?l0003oool0oooo0080oooo +00<0003o003o003oool00P3oool00`1o:RX0oooo0?ooo`1_0?ooo`00BP3oool50000onL0oooo00<0 +00000?ooo`3oool0gP3oool00`3o0000oooo0?ooo`020?ooo`050000o`3oool0oooo0?ooo`1o:RX0 +LP3oool004X0oooo1@000?oW0?ooo`030000003oool0oooo0=h0oooo00<0o`000?ooo`3oool00P3o +ool01@000?l0oooo0?ooo`3oool0ObXZ0780oooo001:0?ooo`D0003oi`3oool00`000000oooo0?oo +o`3M0?ooo`030?l0003oool0oooo0080oooo00<0003o003o003oool00P3oool00`1o:RX0oooo0?oo +o`1`0?ooo`00B`3oool30000onP0oooo00<000000?ooo`3oool0g@3oool00`3o0000oooo0?ooo`02 +0?ooo`030000o`00o`00oooo0080oooo00<0ObXZ0?ooo`3oool0L03oool004d0oooo00<0003o0?oo +o`3oool0iP3oool00`000000oooo0?ooo`3M0?ooo`030?l0003oool0oooo0080oooo00D0003o003o +003oool0oooo07lZ:P1c0?ooo`00C@3oool00`3o0000003o0?ooo`3V0?ooo`030000003oool0oooo +0=d0oooo00<0o`000?ooo`3oool00P3oool01@000?l0oooo0?ooo`3oool0ObXZ07<0oooo001=0?oo +o`030?l000000?l0oooo0>H0oooo00<000000?ooo`3oool0g@3oool01P3o0000oooo0?ooo`3oool0 +003o003o0080oooo00<0ObXZ0?ooo`3oool0LP3oool004d0oooo00<0o`000000o`3oool0iP3oool3 +00000=d0oooo00H0o`000?ooo`3oool0oooo0000o`00o`020?ooo`0307lZ:P3oool0oooo0780oooo +001=0?ooo`030?l0001o:RX0003o0>H0oooo00<000000?ooo`3oool0g@3oool01P3o0000oooo0?oo +o`3oool0003o003o0080oooo00<0ObXZ0?ooo`3oool0LP3oool004d0oooo00<00?l007lZ:P000?l0 +iP3oool00`000000oooo0?ooo`3M0?ooo`080?l0003oool0oooo0?ooo`000?l00?l00?ooo`1o:RYe +0?ooo`00C@3oool01000o`00o`0007lZ:P000?oU0?ooo`030000003oool0oooo0=d0oooo00D0o`00 +0?ooo`3oool0003o003o00020?ooo`0307lZ:P3oool0oooo07<0oooo001>0?ooo`030?l0001o:RX0 +003o0>D0oooo00<000000?ooo`3oool0g@3oool01@3o0000oooo0?ooo`000?l00?l00080oooo00<0 +ObXZ0?ooo`3oool0L`3oool004h0oooo00<0o`0007lZ:P000?l0i@3oool00`000000oooo0?ooo`3M +0?ooo`050?l0003oool0oooo0000o`00o`000P3oool00`1o:RX0oooo0?ooo`1c0?ooo`00CP3oool0 +103o0000ObXZ0?ooo`000?oT0?ooo`030000003oool0oooo0=d0oooo00@0o`000?ooo`3oool0003o +0P3oool00`1o:RX0oooo0?ooo`1d0?ooo`00CP3oool0103o0000oooo07lZ:P000?oT0?ooo`030000 +003oool0oooo0=d0oooo00@0o`000?ooo`000?l00?l00P3oool00`1o:RX0oooo0?ooo`1d0?ooo`00 +CP3oool01@00o`00o`0007lZ:P3oool0003o0><0oooo00<000000?ooo`3oool0g@3oool00`3o0000 +oooo0000o`030?ooo`0307lZ:P3oool0oooo07@0oooo001>0?ooo`05003o003o0000ObXZ0?ooo`00 +0?l0h`3oool00`000000oooo0?ooo`3M0?ooo`030?l0003oool0003o00<0oooo00<0ObXZ0?ooo`3o +ool0M03oool004h0oooo00D00?l00?l0003oool0ObXZ0000o`3S0?ooo`030000003oool0oooo0=`0 +oooo00@0o`000?ooo`3oool0003o0P3oool00`1o:RX0oooo0?ooo`1e0?ooo`00C`3oool01@3o0000 +oooo07lZ:P3oool0003o0>80oooo00<000000?ooo`3oool0g03oool0103o0000oooo0000o`00o`02 +0?ooo`0307lZ:P3oool0oooo07D0oooo001?0?ooo`05003o003o0000ObXZ0?ooo`000?l0hP3oool3 +00000=`0oooo00<0o`000?ooo`000?l00`3oool00`1o:RX0oooo0?ooo`1e0?ooo`00C`3oool01P00 +o`00o`000?ooo`1o:RX0oooo0000on40oooo00<000000?ooo`3oool0g03oool00`3o0000oooo0000 +o`020?ooo`0307lZ:P3oool0oooo07H0oooo001?0?ooo`06003o003o0000oooo07lZ:P3oool0003o +h@3oool00`000000oooo0?ooo`3L0?ooo`030?l0003oool0003o0080oooo00<0ObXZ0?ooo`3oool0 +MP3oool004l0oooo00H00?l00?ooo`3o0000oooo07lZ:P000?oQ0?ooo`030000003oool0oooo0=`0 +oooo00<0o`000000o`00o`000P3oool00`1o:RX0oooo0?ooo`1f0?ooo`00D03oool01P00o`00o`00 +0?ooo`1o:RX0oooo0000on00oooo00<000000?ooo`3oool0g03oool01@3o0000003o0?ooo`3oool0 +ObXZ07T0oooo001@0?ooo`06003o003oool0o`000?ooo`1o:RX0003oh03oool00`000000oooo0?oo +o`3L0?ooo`040?l000000?l0oooo07lZ:WX0oooo001@0?ooo`07003o003oool0oooo0?l0001o:RX0 +oooo0000o`3O0?ooo`030000003oool0oooo0=`0oooo00@0o`000000o`3oool0ObXZNP3oool00540 +oooo00H00?l00?ooo`3o0000oooo07lZ:P000?oO0?ooo`030000003oool0oooo0=`0oooo00<0003o +003o001o:RX0N`3oool00540oooo00H00?l00?ooo`3oool0o`0007lZ:P000?oO0?ooo`030000003o +ool0oooo0=`0oooo00<0003o0?ooo`1o:RX0N`3oool00580oooo0P00o`00103oool0ObXZ0?ooo`00 +0?oN0?ooo`030000003oool0oooo0=`0oooo00<0003o0?ooo`1o:RX0N`3oool005<0oooo00@00?l0 +0?ooo`3oool0ObXZ0`000?o@0?ooo`D000001`3oool00`000000oooo0?ooo`3J0?ooo`<0003o00<0 +ObXZ0?ooo`3oool0NP3oool005@0oooo0P00o`050000om40oooo00<000000?ooo`3oool01`3oool0 +0`000000oooo0?ooo`3I0?ooo`D0003oO03oool005H0oooo1@000?oA0?ooo`030000003oool0oooo +00L0oooo1@00003G0?ooo`D0003oO03oool005H0oooo1@000?oA0?ooo`030000003oool0oooo00L0 +oooo00<000000?ooo`3oool0f@3oool50000og`0oooo001G0?ooo`<0003o00<0o`000?ooo`3oool0 +c`3oool00`000000oooo0?ooo`070?ooo`030000003oool0oooo0=X0oooo0`000?mm0?ooo`00F03o +ool0101o:RX0003o0?ooo`3o003?0?ooo`8000002@3oool00`000000oooo0?ooo`3I0?ooo`030000 +o`3oool0ObXZ07h0oooo001H0?ooo`0407lZ:P3oool0003o0?l00=X0oooo00<000000?ooo`3oool0 +f03oool010000?l0oooo003o001o:RYn0?ooo`00F@3oool0101o:RX0003o0?ooo`3o003I0?ooo`03 +0000003oool0oooo0=L0oooo00D0003o0?ooo`3oool0ObXZ0?l0001n0?ooo`00FP3oool00`1o:RX0 +003o0?l0003I0?ooo`030000003oool0oooo0=L0oooo00D0003o0?ooo`3oool0ObXZ0?l0001n0?oo +o`00FP3oool0101o:RX0003o0?ooo`3o003H0?ooo`030000003oool0oooo0=H0oooo00H0003o0?oo +o`3oool0ObXZ0?ooo`3o001n0?ooo`00F`3oool00`1o:RX0003o0?l0003H0?ooo`030000003oool0 +oooo0=D0oooo00L0003o0?ooo`3oool0ObXZ003o003oool0o`0007h0oooo001K0?ooo`0407lZ:P00 +0?l0oooo0?l00=L0oooo00<000000?ooo`3oool0e03oool01@000?l0oooo0?ooo`1o:RX00?l00080 +oooo00<0o`000?ooo`3oool0O03oool005`0oooo00@0ObXZ0000o`00o`00o`00eP3oool00`000000 +oooo0?ooo`3D0?ooo`050000o`3oool0oooo07lZ:P00o`000P3oool00`3o0000oooo0?ooo`1l0?oo +o`00G03oool0101o:RX0003o0?ooo`3o003F0?ooo`030000003oool0oooo0=<0oooo00D0003o0?oo +o`3oool0ObXZ003o00030?ooo`030?l0003oool0oooo07`0oooo001M0?ooo`0407lZ:P000?l00?l0 +0?l00=D0oooo0`00003B0?ooo`060000o`3oool0oooo0?ooo`1o:RX00?l00`3oool00`3o0000oooo +0?ooo`1l0?ooo`00G@3oool0101o:RX0003o0?ooo`3o003E0?ooo`030000003oool0oooo0=40oooo +00L0003o0?ooo`3oool0oooo07lZ:P3oool00?l000<0oooo00<0o`000?ooo`3oool0O03oool005h0 +oooo00@0ObXZ0000o`00o`00o`00e03oool00`000000oooo0?ooo`3A0?ooo`060000o`3oool0oooo +0?ooo`1o:RX00?l0103oool00`3o0000oooo0?ooo`1l0?ooo`00G`3oool00`000?l0oooo0?l0003D +0?ooo`030000003oool0oooo0=00oooo00L0003o0?ooo`3oool0oooo07lZ:P3oool00?l000<0oooo +00<0o`000?ooo`3oool0O@3oool00600oooo00<0003o003o003o0000d`3oool00`000000oooo0?oo +o`3?0?ooo`030000o`3oool0oooo0080oooo00<0ObXZ0?ooo`00o`000`3oool00`3o0000oooo0?oo +o`1m0?ooo`00H03oool00`000?l0oooo0?l0003C0?ooo`030000003oool0oooo00?ooo`030000003oool0oooo00?ooo`030000003oool0 +oooo00?ooo`030?l0 +003oool0oooo03<0oooo00<0o`000?ooo`3oool04@3oool00`3o0000oooo0?ooo`260?ooo`00`@3o +ool01@3o0000oooo0?ooo`3oool00?l000<0ObXZ0`000?lf0?ooo`030?l0003oool0oooo02L0oooo +00<0o`000?ooo`3oool01`3oool00`000000oooo0?ooo`0l0?ooo`030?l0003oool0oooo02@0oooo +1@000?l30?ooo`<0ObXZ2@3oool00`3o0000oooo0?ooo`0;0?ooo`80o`00=P3oool00`3o0000oooo +0?ooo`0A0?ooo`030?l0003oool0oooo08H0oooo00310?ooo`030?l0003oool0oooo00@0oooo00@0 +0?l007lZ:P1o:RX0oooo0`000?lb0?ooo`030?l0003oool0oooo02T0oooo00<0o`000?ooo`3oool0 +1P3oool00`000000oooo0?ooo`0l0?ooo`030?l0003oool0oooo01l0oooo1@000?l60?ooo`80ObXZ +3@3oool30?l000T0oooo00<0o`000?ooo`3oool0=P3oool00`3o0000oooo0?ooo`0A0?ooo`030?l0 +003oool0oooo08H0oooo00310?ooo`030?l0003oool0oooo00H0oooo00<00?l007lZ:P1o:RX00P1o +:RX40000obh0oooo00<0o`000?ooo`3oool0:@3oool00`3o0000oooo0?ooo`060?ooo`030000003o +ool0oooo03`0oooo00<0o`000?ooo`3oool06@3oool00`00o`00003o0000o`030000o`L0oooo101o +:RXB0?ooo`80o`001@3oool20?l003X0oooo00<0o`000?ooo`3oool0403oool00`3o0000oooo0?oo +o`260?ooo`00`@3oool00`3o0000oooo0?ooo`080?ooo`<00?l00P1o:RX20?ooo`<0003o:P3oool0 +0`3o0000oooo0?ooo`0[0?ooo`030?l0003oool0oooo00D0oooo00<000000?ooo`3oool0>`3oool0 +0`3o0000oooo0?ooo`0F0?ooo`D0003o2P3oool207lZ:QP0oooo1@3o000l0?ooo`030?l0003oool0 +oooo00l0oooo00<0o`000?ooo`3oool0Q`3oool00<80oooo00<0o`000?ooo`3oool02P3oool2003o +00<0ObXZ0P3oool30000obL0oooo00<0o`000?ooo`3oool0:`3oool00`3o0000oooo0?ooo`050?oo +o`030000003oool0oooo03/0oooo00<0o`000?ooo`3oool0403oool00`00o`00003o0000o`030000 +o`d0oooo0P1o:RYK0?ooo`030?l0003oool0oooo00l0oooo00<0o`000?ooo`3oool0Q`3oool00<80 +oooo00<0o`000?ooo`3oool03@3oool2003o00<0ObXZ0P3oool30000ob<0oooo00<0o`000?ooo`3o +ool0;@3oool00`3o0000oooo0?ooo`040?ooo`030000003oool0oooo03X0oooo00<0o`000?ooo`3o +ool0303oool00`00o`00003o0000o`030000o`h0oooo101o:RYM0?ooo`030?l0003oool0oooo00l0 +oooo00<0o`000?ooo`3oool0Q`3oool00<80oooo00<0o`000?ooo`3oool0403oool2003o00@0ObXZ +00<0oooo0000o`000?l00P000?lO0?ooo`030?l0003oool0oooo02d0oooo00<0o`000?ooo`3oool0 +103oool00`000000oooo0?ooo`0j0?ooo`030?l0003oool0oooo00H0oooo0P00o`050000oa00oooo +0`1o:RYR0?ooo`030?l0003oool0oooo00h0oooo00<0o`000?ooo`3oool0Q`3oool00<80oooo00<0 +o`000?ooo`3oool04`3oool3003o0080ObXZ0`3oool30000oa/0oooo00<0o`000?ooo`3oool0;P3o +ool00`3o0000oooo0?ooo`040?ooo`030000003oool0oooo03L0oooo0`000?l40?ooo`800?l01@00 +0?lB0?ooo`<0ObXZI@3oool00`3o0000oooo0?ooo`0>0?ooo`030?l0003oool0oooo08L0oooo0033 +0?ooo`030?l0003oool0oooo01H0oooo00<00?l007lZ:P1o:RX00P1o:RX20?ooo`<0003o5`3oool0 +0`3o0000oooo0?ooo`0`0?ooo`030?l0003oool0oooo00<0oooo00<000000?ooo`3oool0=P3oool: +0000oa@0oooo0`1o:RYY0?ooo`030?l0003oool0oooo00d0oooo00<0o`000?ooo`3oool0Q`3oool0 +0<<0oooo00<0o`000?ooo`3oool06@3oool2003o00<0ObXZ0P3oool30000oa@0oooo00<0o`000?oo +o`3oool0<03oool00`3o0000oooo0?ooo`030?ooo`<00000=P3oool50000oaD0oooo101o:RY/0?oo +o`030?l0003oool0oooo00`0oooo00<0o`000?ooo`3oool0R03oool00<<0oooo00<0o`000?ooo`3o +ool07@3oool00`00o`00ObXZ07lZ:P0207lZ:P030?ooo`000?l0003o0080003o403oool00`3o0000 +oooo0?ooo`0a0?ooo`030?l0003oool0oooo0080oooo00<000000?ooo`3oool0<@3oool:0000oa80 +oooo0`1o:RYa0?ooo`030?l0003oool0oooo00/0oooo00<0o`000?ooo`3oool0R03oool00<<0oooo +00<0o`000?ooo`3oool08P3oool407lZ:P040?ooo`000?l0003o0000o``0oooo00<0o`000?ooo`3o +ool00?ooo`030?l0003oool0oooo01l0 +oooo00<0o`000?ooo`3oool0@`3oool00`000000oooo0?ooo`070?ooo`030?l0003oool0oooo01l0 +oooo00<0o`000?ooo`3oool0o`3oool_0?ooo`00cP3oool00`3o0000oooo0?ooo`0N0?ooo`030?l0 +003oool0oooo04@0oooo00<000000?ooo`3oool01`3oool00`3o0000oooo0?ooo`0O0?ooo`030?l0 +003oool0oooo0?l0oooo;`3oool000?ooo`030?l0003oool0oooo0?l0oooo=`3oool00=@0oooo00<0o`000?ooo`3oool04@3oool0 +0`3o0000oooo0?ooo`1;0?ooo`030000003oool0oooo0140oooo00<0o`000?ooo`3oool02`3oool2 +0?l00?l0oooo>P3oool00=D0oooo00<0o`000?ooo`3oool03`3oool00`3o0000oooo0?ooo`1<0?oo +o`030000003oool0oooo0180oooo00<0o`000?ooo`3oool02@3oool00`3o0000oooo0?ooo`3o0?oo +ocX0oooo003F0?ooo`030?l0003oool0oooo00h0oooo00<0o`000?ooo`3oool0C03oool00`000000 +oooo0?ooo`0C0?ooo`<0o`001P3oool20?l00?l0oooo?@3oool00=H0oooo00<0o`000?ooo`3oool0 +303oool20?l004l0oooo00<000000?ooo`3oool05P3oool60?l00?l0oooo?`3oool00=L0oooo00<0 +o`000?ooo`3oool02P3oool00`3o0000oooo0?ooo`1?0?ooo`<00000o`3ooomK0?ooo`00f03oool0 +0`3o0000oooo0?ooo`080?ooo`030?l0003oool0oooo0500oooo00<000000?ooo`3oool0o`3ooomK +0?ooo`00f@3oool30?l000D0oooo0P3o001C0?ooo`030000003oool0oooo0?l0ooooF`3oool00=`0 +oooo1@3o001E0?ooo`030000003oool0oooo0?l0ooooF`3oool00?l0oooo=`3oool00`000000oooo +0?ooo`3o0?oooe/0oooo003o0?ooocL0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`00o`3ooolg +0?ooo`030000003oool0oooo0?l0ooooF`3oool00?l0oooo=`3oool00`000000oooo0?ooo`3o0?oo +oe/0oooo003o0?ooocL0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`00o`3ooolg0?ooo`030000 +003oool0oooo0?l0ooooF`3oool00?l0oooo=`3oool00`000000oooo0?ooo`3o0?oooe/0oooo003o +0?ooocL0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`00o`3ooolg0?ooo`<00000o`3ooomK0?oo +o`00o`3ooolg0?ooo`030000003oool0oooo0?l0ooooF`3oool00?l0oooo=`3oool00`000000oooo +0?ooo`3o0?oooe/0oooo003o0?ooocL0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`00o`3ooolg +0?ooo`030000003oool0oooo0?l0ooooF`3oool00?l0oooo=`3oool00`000000oooo0?ooo`3o0?oo +oe/0oooo003o0?ooocL0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`00o`3ooolg0?ooo`030000 +003oool0oooo0?l0ooooF`3oool00?l0oooo=`3oool00`000000oooo0?ooo`3o0?oooe/0oooo003o +0?ooocL0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`00o`3oool]0?ooo`<000001`3oool00`00 +0000oooo0?ooo`3o0?oooe/0oooo003o0?ooobh0oooo00<000000?ooo`3oool01P3oool00`000000 +oooo0?ooo`3o0?oooe/0oooo003o0?ooob/0oooo1@0000070?ooo`D00000o`3ooomI0?ooo`00o`3o +ool[0?ooo`040000003oool0oooo00000?l0ooooIP3oool00?l0oooo;03oool00`000000oooo0000 +003o0?ooofH0oooo003o0?ooobd0oooo0P00003o0?ooofH0oooo003o0?ooool0ooooU@3oool00?l0 +ooooo`3ooonE0?ooo`00o`3ooooo0?oooiD0oooo003o0?ooool0ooooU@3oool00?l0ooooo`3ooonE +0?ooo`00o`3ooooo0?oooiD0oooo003o0?ooool0ooooU@3oool00?l0ooooo`3ooonE0?ooo`00o`3o +oooo0?oooiD0oooo003o0?ooool0ooooU@3oool00?l0ooooo`3ooonE0?ooo`00o`3ooooo0?oooiD0 +oooo003o0?ooool0ooooU@3oool00?l0oooo@@3oool200000?l0ooooDP3oool00?l0oooo@P3oool0 +0`000000oooo0?ooo`3o0?oooe00oooo003o0?oood<0oooo00<000000?ooo`3oool0o`3ooom?0?oo +o`00o`3ooom20?ooo`030000003oool000000?l0ooooD03oool00?l0oooo@@3oool010000000oooo +0?ooo`00003o0?oooe00oooo003o0?oood00oooo0`0000000`3oool000000000003o0?ooodl0oooo +003o0?ooocD0oooo00@000000?ooo`3oool00000o`3ooomL0?ooo`00o`3ooolf0?ooo`800000o`3o +oomM0?ooo`00o`3ooooo0?oooiD0oooo003o0?ooool0ooooU@3oool00?l0ooooo`3ooonE0?ooo`00 +\ +\>"], + ImageRangeCache->{{{0, 658}, {328.5, 0}} -> {-5.24106, -1.07596, 0.0168744, \ +0.0168744}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"\[IndentingNewLine]", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Numerik\ - \ + Aufgabe\ \ +4\ \ B\ \ \ \ \ \ \ \ \ \ \ Ergebnisse\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ +S\ 2005\ \ \ \ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subtitle", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]"}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]1\ +\[InvisibleSpace]" mit "\[InvisibleSpace]20\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 1, " mit ", 20, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.25 0.0625 [ +[.1 .2375 -6 -9 ] +[.1 .2375 6 0 ] +[.3 .2375 -6 -9 ] +[.3 .2375 6 0 ] +[.7 .2375 -3 -9 ] +[.7 .2375 3 0 ] +[.9 .2375 -3 -9 ] +[.9 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .0625 -12 -4.5 ] +[.4875 .0625 0 4.5 ] +[.4875 .125 -12 -4.5 ] +[.4875 .125 0 4.5 ] +[.4875 .1875 -12 -4.5 ] +[.4875 .1875 0 4.5 ] +[.4875 .3125 -6 -4.5 ] +[.4875 .3125 0 4.5 ] +[.4875 .375 -6 -4.5 ] +[.4875 .375 0 4.5 ] +[.4875 .4375 -6 -4.5 ] +[.4875 .4375 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .25 m +.1 .25625 L +s +[(-4)] .1 .2375 0 1 Mshowa +.3 .25 m +.3 .25625 L +s +[(-2)] .3 .2375 0 1 Mshowa +.7 .25 m +.7 .25625 L +s +[(2)] .7 .2375 0 1 Mshowa +.9 .25 m +.9 .25625 L +s +[(4)] .9 .2375 0 1 Mshowa +.125 Mabswid +.15 .25 m +.15 .25375 L +s +.2 .25 m +.2 .25375 L +s +.25 .25 m +.25 .25375 L +s +.35 .25 m +.35 .25375 L +s +.4 .25 m +.4 .25375 L +s +.45 .25 m +.45 .25375 L +s +.55 .25 m +.55 .25375 L +s +.6 .25 m +.6 .25375 L +s +.65 .25 m +.65 .25375 L +s +.75 .25 m +.75 .25375 L +s +.8 .25 m +.8 .25375 L +s +.85 .25 m +.85 .25375 L +s +.05 .25 m +.05 .25375 L +s +.95 .25 m +.95 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-4)] .4875 0 1 0 Mshowa +.5 .0625 m +.50625 .0625 L +s +[(-3)] .4875 .0625 1 0 Mshowa +.5 .125 m +.50625 .125 L +s +[(-2)] .4875 .125 1 0 Mshowa +.5 .1875 m +.50625 .1875 L +s +[(-1)] .4875 .1875 1 0 Mshowa +.5 .3125 m +.50625 .3125 L +s +[(1)] .4875 .3125 1 0 Mshowa +.5 .375 m +.50625 .375 L +s +[(2)] .4875 .375 1 0 Mshowa +.5 .4375 m +.50625 .4375 L +s +[(3)] .4875 .4375 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .0125 m +.50375 .0125 L +s +.5 .025 m +.50375 .025 L +s +.5 .0375 m +.50375 .0375 L +s +.5 .05 m +.50375 .05 L +s +.5 .075 m +.50375 .075 L +s +.5 .0875 m +.50375 .0875 L +s +.5 .1 m +.50375 .1 L +s +.5 .1125 m +.50375 .1125 L +s +.5 .1375 m +.50375 .1375 L +s +.5 .15 m +.50375 .15 L +s +.5 .1625 m +.50375 .1625 L +s +.5 .175 m +.50375 .175 L +s +.5 .2 m +.50375 .2 L +s +.5 .2125 m +.50375 .2125 L +s +.5 .225 m +.50375 .225 L +s +.5 .2375 m +.50375 .2375 L +s +.5 .2625 m +.50375 .2625 L +s +.5 .275 m +.50375 .275 L +s +.5 .2875 m +.50375 .2875 L +s +.5 .3 m +.50375 .3 L +s +.5 .325 m +.50375 .325 L +s +.5 .3375 m +.50375 .3375 L +s +.5 .35 m +.50375 .35 L +s +.5 .3625 m +.50375 .3625 L +s +.5 .3875 m +.50375 .3875 L +s +.5 .4 m +.50375 .4 L +s +.5 .4125 m +.50375 .4125 L +s +.5 .425 m +.50375 .425 L +s +.5 .45 m +.50375 .45 L +s +.5 .4625 m +.50375 .4625 L +s +.5 .475 m +.50375 .475 L +s +.5 .4875 m +.50375 .4875 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .25 m +.10033 .25344 L +.10068 .25687 L +.10106 .26031 L +.10148 .26374 L +.10197 .26717 L +.10254 .27059 L +.1032 .274 L +.10397 .2774 L +.10487 .2808 L +.10591 .28418 L +.10708 .28755 L +.1084 .29091 L +.10985 .29425 L +.11144 .29757 L +.11316 .30087 L +.11501 .30414 L +.11699 .30739 L +.11909 .31061 L +.12131 .3138 L +.12366 .31696 L +.12612 .32009 L +.1287 .32317 L +.13139 .32622 L +.13419 .32923 L +.1371 .33219 L +.14012 .33511 L +.14324 .33798 L +.14646 .3408 L +.14978 .34357 L +.1532 .34629 L +.15671 .34895 L +.16031 .35156 L +.164 .35413 L +.16777 .35664 L +.17161 .35911 L +.17553 .36153 L +.17952 .3639 L +.18357 .36624 L +.18768 .36853 L +.19186 .37078 L +.19608 .373 L +.20036 .37518 L +.20468 .37732 L +.20905 .37943 L +.21346 .3815 L +.21792 .38354 L +.22242 .38554 L +.22696 .3875 L +.23154 .38943 L +Mistroke +.23616 .39132 L +.24082 .39317 L +.24551 .39498 L +.25025 .39676 L +.25502 .3985 L +.25982 .40019 L +.26466 .40185 L +.26954 .40347 L +.27444 .40505 L +.27938 .40659 L +.28435 .40809 L +.28935 .40955 L +.29437 .41097 L +.29943 .41235 L +.30451 .41368 L +.30961 .41498 L +.31475 .41623 L +.3199 .41745 L +.32508 .41862 L +.33029 .41976 L +.33551 .42085 L +.34075 .42191 L +.34602 .42293 L +.3513 .42392 L +.3566 .42487 L +.36191 .42578 L +.36725 .42665 L +.37259 .4275 L +.37795 .4283 L +.38333 .42907 L +.38871 .42981 L +.39411 .43052 L +.39952 .43119 L +.40493 .43183 L +.41036 .43244 L +.41579 .43302 L +.42123 .43356 L +.42668 .43407 L +.43214 .43454 L +.4376 .43498 L +.44307 .43539 L +.44855 .43576 L +.45403 .4361 L +.45952 .4364 L +.46501 .43667 L +.47051 .4369 L +.47601 .43709 L +.48151 .43725 L +.48702 .43737 L +.49253 .43745 L +Mistroke +.49804 .43749 L +.50355 .4375 L +.50907 .43747 L +.51459 .4374 L +.5201 .43729 L +.52562 .43715 L +.53113 .43696 L +.53665 .43674 L +.54216 .43648 L +.54767 .43619 L +.55317 .43586 L +.55867 .43549 L +.56416 .43508 L +.56965 .43463 L +.57513 .43415 L +.5806 .43363 L +.58607 .43308 L +.59153 .43249 L +.59698 .43186 L +.60241 .43119 L +.60784 .43049 L +.61326 .42975 L +.61866 .42898 L +.62405 .42817 L +.62943 .42732 L +.63479 .42644 L +.64014 .42552 L +.64547 .42457 L +.65079 .42358 L +.65609 .42255 L +.66137 .42149 L +.66664 .42039 L +.67189 .41926 L +.67711 .41809 L +.68232 .41689 L +.6875 .41565 L +.69267 .41438 L +.69781 .41307 L +.70293 .41173 L +.70802 .41035 L +.71309 .40893 L +.71813 .40748 L +.72314 .40599 L +.72812 .40447 L +.73306 .4029 L +.73796 .40129 L +.74283 .39965 L +.74765 .39796 L +.75243 .39623 L +.75717 .39445 L +Mistroke +.76186 .39263 L +.76649 .39077 L +.77108 .38886 L +.77561 .3869 L +.78009 .3849 L +.78451 .38285 L +.78887 .38075 L +.79316 .3786 L +.79739 .3764 L +.80156 .37415 L +.80566 .37184 L +.80969 .36949 L +.81364 .36709 L +.81753 .36464 L +.82134 .36214 L +.82509 .3596 L +.82875 .35701 L +.83235 .35438 L +.83586 .3517 L +.8393 .34899 L +.84266 .34623 L +.84594 .34344 L +.84914 .3406 L +.85226 .33773 L +.8553 .33483 L +.85826 .33189 L +.86113 .32891 L +.86391 .32591 L +.86661 .32287 L +.86923 .3198 L +.87175 .3167 L +.87418 .31358 L +.87653 .31043 L +.87878 .30725 L +.88094 .30405 L +.883 .30082 L +.88495 .29757 L +.88681 .2943 L +.88855 .29101 L +.89018 .2877 L +.8917 .28437 L +.89311 .28102 L +.89439 .27766 L +.89555 .27428 L +.89659 .27088 L +.89749 .26748 L +.89827 .26406 L +.89891 .26062 L +.89941 .25718 L +.89977 .25373 L +Mistroke +.89999 .25027 L +.90006 .2468 L +.89998 .24333 L +.89977 .23986 L +.89941 .23638 L +.8989 .23291 L +.89826 .22944 L +.89749 .22597 L +.89658 .22252 L +.89553 .21907 L +.89436 .21564 L +.89305 .21222 L +.89162 .20882 L +.89006 .20543 L +.88837 .20207 L +.88657 .19873 L +.88464 .19542 L +.88259 .19214 L +.88043 .18889 L +.87815 .18567 L +.87575 .18248 L +.87325 .17933 L +.87063 .17622 L +.86791 .17316 L +.86508 .17013 L +.86214 .16715 L +.8591 .16422 L +.85596 .16135 L +.85272 .15852 L +.84938 .15575 L +.84595 .15303 L +.84242 .15037 L +.83881 .14776 L +.83511 .14521 L +.83132 .1427 L +.82746 .14024 L +.82353 .13784 L +.81953 .13547 L +.81545 .13315 L +.81132 .13088 L +.80713 .12864 L +.80287 .12645 L +.79857 .12429 L +.79422 .12217 L +.78981 .12009 L +.78536 .11804 L +.78087 .11604 L +.77632 .11407 L +.77174 .11213 L +.76711 .11024 L +Mistroke +.76244 .10838 L +.75772 .10656 L +.75297 .10477 L +.74818 .10302 L +.74335 .10131 L +.73849 .09964 L +.73359 .098 L +.72865 .0964 L +.72368 .09484 L +.71868 .09332 L +.71365 .09183 L +.70859 .09038 L +.7035 .08896 L +.69839 .08759 L +.69325 .08625 L +.68808 .08494 L +.68289 .08368 L +.67767 .08245 L +.67244 .08126 L +.66718 .0801 L +.6619 .07898 L +.65661 .0779 L +.65129 .07686 L +.64596 .07585 L +.64062 .07488 L +.63526 .07394 L +.62989 .07305 L +.62451 .07219 L +.61912 .07136 L +.61371 .07058 L +.6083 .06983 L +.60288 .06911 L +.59746 .06844 L +.59203 .0678 L +.58659 .0672 L +.58115 .06663 L +.57571 .0661 L +.57025 .06561 L +.5648 .06515 L +.55933 .06473 L +.55387 .06435 L +.54839 .064 L +.54291 .06369 L +.53743 .06341 L +.53194 .06317 L +.52644 .06297 L +.52094 .0628 L +.51544 .06267 L +.50992 .06258 L +.50441 .06252 L +Mistroke +.49888 .0625 L +.49336 .06251 L +.48783 .06256 L +.48229 .06265 L +.47675 .06277 L +.47122 .06293 L +.46568 .06312 L +.46014 .06335 L +.4546 .06362 L +.44907 .06392 L +.44354 .06427 L +.43802 .06464 L +.4325 .06506 L +.42699 .06551 L +.42149 .066 L +.41599 .06652 L +.4105 .06709 L +.40503 .06769 L +.39957 .06833 L +.39412 .069 L +.38868 .06971 L +.38326 .07047 L +.37786 .07125 L +.37247 .07208 L +.3671 .07294 L +.36174 .07385 L +.35641 .07479 L +.3511 .07577 L +.34581 .07678 L +.34054 .07784 L +.3353 .07893 L +.33008 .08007 L +.32489 .08124 L +.31972 .08245 L +.31458 .0837 L +.30947 .08499 L +.30439 .08631 L +.29934 .08768 L +.29433 .08909 L +.28934 .09053 L +.28438 .09201 L +.27946 .09353 L +.27457 .09509 L +.2697 .09669 L +.26487 .09832 L +.26007 .09999 L +.2553 .1017 L +.25055 .10344 L +.24584 .10522 L +.24116 .10703 L +Mistroke +.2365 .10887 L +.23188 .11076 L +.22728 .11267 L +.22271 .11462 L +.21817 .1166 L +.21366 .11862 L +.20918 .12067 L +.20472 .12275 L +.20029 .12486 L +.19589 .127 L +.19153 .12918 L +.18722 .1314 L +.18298 .13366 L +.17881 .13596 L +.17474 .13832 L +.17076 .14073 L +.1669 .14319 L +.16317 .14571 L +.15957 .1483 L +.15613 .15096 L +.15285 .15368 L +.14975 .15648 L +.14684 .15936 L +.14408 .1623 L +.14147 .1653 L +.13898 .16836 L +.13658 .17145 L +.13425 .17458 L +.13197 .17774 L +.12971 .1809 L +.12746 .18408 L +.12518 .18725 L +.12287 .19041 L +.12053 .19357 L +.11821 .19672 L +.11593 .19988 L +.11373 .20305 L +.11162 .20623 L +.10965 .20943 L +.10784 .21265 L +.10622 .2159 L +.10483 .21919 L +.10367 .22252 L +.10274 .22588 L +.10199 .22927 L +.10141 .23268 L +.10096 .23612 L +.10063 .23957 L +.10037 .24304 L +.10017 .24652 L +Mistroke +.1 .25 L +Mfstroke +1 0 0 r +.1 .25 m +.07847 .23351 L +.06769 .22678 L +.06456 .22697 L +.06665 .23188 L +.07208 .23979 L +.07944 .24939 L +.08767 .25972 L +.09602 .27008 L +.10399 .27998 L +.11123 .28912 L +.11758 .29732 L +.12294 .30449 L +.12734 .31063 L +.13082 .3158 L +.1335 .32006 L +.13548 .32354 L +.13691 .32634 L +.13791 .32859 L +.13863 .3304 L +.13917 .3319 L +.13965 .33318 L +.14017 .33432 L +.14081 .33542 L +.14163 .33652 L +.14269 .3377 L +.14402 .33897 L +.14565 .34037 L +.14759 .34192 L +.14984 .34363 L +.15241 .3455 L +.15528 .34752 L +.15844 .34969 L +.16186 .35198 L +.16552 .35438 L +.16939 .35688 L +.17345 .35944 L +.17768 .36206 L +.18204 .3647 L +.18652 .36736 L +.19108 .37001 L +.19571 .37263 L +.20039 .37521 L +.20511 .37774 L +.20984 .38021 L +.21458 .3826 L +.21933 .38491 L +.22406 .38714 L +.22879 .38928 L +.2335 .39133 L +Mistroke +.23819 .39329 L +.24288 .39516 L +.24755 .39695 L +.25221 .39866 L +.25687 .40028 L +.26153 .40184 L +.26619 .40333 L +.27087 .40476 L +.27556 .40614 L +.28028 .40746 L +.28502 .40874 L +.28979 .40998 L +.2946 .41119 L +.29945 .41237 L +.30434 .41352 L +.30927 .41465 L +.31425 .41576 L +.31928 .41686 L +.32436 .41794 L +.32949 .419 L +.33466 .42005 L +.33988 .42109 L +.34514 .42211 L +.35044 .42311 L +.35578 .4241 L +.36116 .42508 L +.36657 .42603 L +.37201 .42696 L +.37747 .42786 L +.38296 .42874 L +.38846 .42959 L +.39398 .4304 L +.39951 .43118 L +.40504 .43193 L +.41058 .43263 L +.41611 .43329 L +.42165 .43391 L +.42718 .43449 L +.4327 .43502 L +.43822 .4355 L +.44372 .43593 L +.44921 .43631 L +.45469 .43665 L +.46016 .43693 L +.46562 .43716 L +.47106 .43734 L +.47648 .43748 L +.4819 .43756 L +.48731 .4376 L +.4927 .43759 L +Mistroke +.49809 .43753 L +.50346 .43743 L +.50884 .43729 L +.5142 .4371 L +.51957 .43688 L +.52493 .43662 L +.53029 .43632 L +.53566 .43599 L +.54102 .43562 L +.54639 .43522 L +.55177 .43479 L +.55715 .43434 L +.56254 .43385 L +.56794 .43334 L +.57334 .4328 L +.57875 .43224 L +.58417 .43165 L +.5896 .43103 L +.59504 .4304 L +.60048 .42974 L +.60593 .42905 L +.61138 .42834 L +.61684 .42761 L +.6223 .42685 L +.62776 .42606 L +.63322 .42525 L +.63867 .42441 L +.64412 .42354 L +.64956 .42265 L +.655 .42172 L +.66041 .42076 L +.66582 .41977 L +.6712 .41874 L +.67657 .41768 L +.68191 .41657 L +.68722 .41543 L +.69251 .41426 L +.69776 .41303 L +.70299 .41177 L +.70817 .41046 L +.71332 .40911 L +.71843 .40771 L +.7235 .40627 L +.72852 .40478 L +.73349 .40324 L +.73842 .40165 L +.7433 .40001 L +.74812 .39832 L +.75289 .39658 L +.75761 .39479 L +Mistroke +.76227 .39295 L +.76687 .39106 L +.77142 .38912 L +.77591 .38713 L +.78033 .38508 L +.7847 .38299 L +.789 .38085 L +.79325 .37866 L +.79743 .37642 L +.80154 .37413 L +.80559 .3718 L +.80958 .36942 L +.8135 .367 L +.81736 .36453 L +.82114 .36202 L +.82486 .35947 L +.82851 .35687 L +.83209 .35423 L +.8356 .35156 L +.83904 .34884 L +.84241 .34609 L +.8457 .3433 L +.84892 .34048 L +.85206 .33762 L +.85512 .33472 L +.8581 .33179 L +.86099 .32883 L +.86381 .32584 L +.86653 .32282 L +.86917 .31977 L +.87172 .31668 L +.87418 .31357 L +.87654 .31044 L +.8788 .30727 L +.88097 .30408 L +.88303 .30086 L +.88498 .29762 L +.88683 .29436 L +.88857 .29107 L +.8902 .28776 L +.89171 .28444 L +.8931 .28109 L +.89437 .27772 L +.89552 .27434 L +.89655 .27094 L +.89745 .26752 L +.89822 .26409 L +.89886 .26065 L +.89937 .2572 L +.89975 .25374 L +Mistroke +.89999 .25027 L +.90009 .2468 L +.90006 .24332 L +.89989 .23984 L +.89958 .23636 L +.89913 .23289 L +.89854 .22941 L +.89781 .22594 L +.89695 .22249 L +.89595 .21904 L +.89481 .2156 L +.89353 .21218 L +.89211 .20878 L +.89057 .2054 L +.88889 .20204 L +.88708 .1987 L +.88514 .19539 L +.88307 .19211 L +.88088 .18886 L +.87857 .18565 L +.87614 .18247 L +.87359 .17932 L +.87093 .17622 L +.86816 .17316 L +.86528 .17014 L +.8623 .16717 L +.85921 .16424 L +.85603 .16136 L +.85275 .15853 L +.84938 .15574 L +.84592 .15301 L +.84237 .15033 L +.83874 .14771 L +.83503 .14513 L +.83125 .14261 L +.82739 .14014 L +.82347 .13772 L +.81947 .13536 L +.81541 .13305 L +.81129 .13079 L +.80711 .12858 L +.80287 .12642 L +.79857 .12431 L +.79423 .12225 L +.78983 .12023 L +.78538 .11826 L +.78089 .11634 L +.77635 .11446 L +.77177 .11262 L +.76714 .11082 L +Mistroke +.76247 .10906 L +.75777 .10734 L +.75302 .10565 L +.74824 .104 L +.74342 .10238 L +.73857 .1008 L +.73368 .09924 L +.72876 .09772 L +.72381 .09622 L +.71883 .09475 L +.71381 .09331 L +.70876 .09189 L +.70369 .0905 L +.69858 .08913 L +.69345 .08779 L +.68829 .08647 L +.68311 .08517 L +.6779 .08391 L +.67267 .08266 L +.66741 .08144 L +.66213 .08025 L +.65683 .07909 L +.65151 .07795 L +.64617 .07684 L +.64081 .07576 L +.63543 .07472 L +.63004 .0737 L +.62464 .07272 L +.61922 .07178 L +.61379 .07087 L +.60835 .07 L +.6029 .06917 L +.59744 .06839 L +.59198 .06764 L +.58651 .06694 L +.58103 .06629 L +.57555 .06569 L +.57007 .06513 L +.56459 .06462 L +.5591 .06416 L +.55362 .06375 L +.54814 .0634 L +.54266 .0631 L +.53718 .06284 L +.5317 .06265 L +.52622 .0625 L +.52075 .0624 L +.51528 .06236 L +.50982 .06237 L +.50436 .06242 L +Mistroke +.4989 .06252 L +.49344 .06268 L +.48799 .06287 L +.48254 .06311 L +.47709 .06339 L +.47164 .06371 L +.46619 .06407 L +.46075 .06447 L +.4553 .0649 L +.44985 .06536 L +.44441 .06585 L +.43896 .06637 L +.43351 .06692 L +.42807 .06749 L +.42262 .06809 L +.41717 .0687 L +.41172 .06934 L +.40627 .06999 L +.40082 .07066 L +.39537 .07135 L +.38992 .07206 L +.38448 .07279 L +.37905 .07353 L +.37362 .07429 L +.36819 .07506 L +.36278 .07586 L +.35738 .07668 L +.35199 .07752 L +.34662 .07839 L +.34127 .07928 L +.33593 .0802 L +.33062 .08115 L +.32533 .08214 L +.32007 .08316 L +.31484 .08422 L +.30964 .08532 L +.30447 .08647 L +.29933 .08766 L +.29423 .0889 L +.28917 .09019 L +.28415 .09154 L +.27916 .09294 L +.27422 .09439 L +.26931 .0959 L +.26444 .09747 L +.25962 .0991 L +.25483 .10079 L +.25008 .10253 L +.24538 .10432 L +.24071 .10617 L +Mistroke +.23607 .10807 L +.23147 .11002 L +.22691 .11202 L +.22238 .11407 L +.21789 .11615 L +.21344 .11828 L +.20901 .12044 L +.20463 .12263 L +.20029 .12485 L +.19598 .1271 L +.19172 .12938 L +.18752 .13169 L +.18336 .13402 L +.17927 .13638 L +.17525 .13876 L +.1713 .14117 L +.16743 .14362 L +.16367 .1461 L +.16 .14862 L +.15645 .15118 L +.15303 .1538 L +.14974 .15647 L +.14659 .15921 L +.14359 .16201 L +.14075 .16489 L +.13808 .16784 L +.13556 .17088 L +.1332 .174 L +.13099 .1772 L +.12893 .18048 L +.12698 .18383 L +.12514 .18723 L +.12337 .19067 L +.12165 .19414 L +.11992 .1976 L +.11816 .20102 L +.11632 .20438 L +.11435 .20764 L +.11222 .21077 L +.1099 .21373 L +.10737 .21651 L +.10462 .21908 L +.10171 .22147 L +.09871 .22369 L +.09577 .22584 L +.09309 .22802 L +.09099 .23044 L +.08993 .23338 L +.0905 .23723 L +.09351 .24253 L +Mistroke +.1 .25 L +Mfstroke +.5 .165 .165 r +.1 .25 m +.10005 .25295 L +.1002 .25589 L +.10044 .25883 L +.10079 .26177 L +.10123 .26471 L +.10178 .26765 L +.10242 .27058 L +.10315 .2735 L +.10399 .27642 L +.10492 .27933 L +.10596 .28224 L +.10709 .28513 L +.10831 .28802 L +.10963 .2909 L +.11105 .29377 L +.11257 .29663 L +.11418 .29948 L +.11588 .30231 L +.11768 .30513 L +.11958 .30794 L +.12157 .31073 L +.12365 .31351 L +.12582 .31628 L +.12809 .31902 L +.13045 .32175 L +.1329 .32447 L +.13544 .32716 L +.13807 .32983 L +.14079 .33249 L +.1436 .33512 L +.14649 .33774 L +.14948 .34033 L +.15255 .3429 L +.1557 .34545 L +.15894 .34797 L +.16227 .35047 L +.16568 .35294 L +.16917 .35539 L +.17274 .35781 L +.17639 .36021 L +.18013 .36258 L +.18394 .36492 L +.18783 .36723 L +.19179 .36952 L +.19584 .37177 L +.19996 .374 L +.20415 .37619 L +.20841 .37835 L +.21275 .38048 L +Mistroke +.21716 .38258 L +.22163 .38465 L +.22618 .38668 L +.23079 .38868 L +.23548 .39065 L +.24022 .39258 L +.24503 .39447 L +.2499 .39633 L +.25484 .39815 L +.25983 .39994 L +.26489 .40169 L +.27 .4034 L +.27517 .40508 L +.28039 .40671 L +.28567 .40831 L +.291 .40987 L +.29638 .41139 L +.30182 .41287 L +.3073 .41431 L +.31283 .41571 L +.3184 .41706 L +.32402 .41838 L +.32969 .41966 L +.33539 .42089 L +.34114 .42208 L +.34693 .42323 L +.35275 .42433 L +.35861 .4254 L +.3645 .42642 L +.37043 .42739 L +.37639 .42832 L +.38238 .42921 L +.3884 .43006 L +.39445 .43085 L +.40052 .43161 L +.40662 .43232 L +.41274 .43298 L +.41889 .4336 L +.42505 .43418 L +.43123 .43471 L +.43743 .43519 L +.44364 .43563 L +.44987 .43602 L +.45611 .43637 L +.46236 .43667 L +.46862 .43692 L +.47488 .43713 L +.48116 .43729 L +.48744 .43741 L +.49372 .43748 L +Mistroke +.5 .4375 L +.50628 .43748 L +.51256 .43741 L +.51884 .43729 L +.52512 .43713 L +.53138 .43692 L +.53764 .43667 L +.54389 .43637 L +.55013 .43602 L +.55636 .43563 L +.56257 .43519 L +.56877 .43471 L +.57495 .43418 L +.58111 .4336 L +.58726 .43298 L +.59338 .43232 L +.59948 .43161 L +.60555 .43085 L +.6116 .43006 L +.61762 .42921 L +.62361 .42832 L +.62957 .42739 L +.6355 .42642 L +.64139 .4254 L +.64725 .42433 L +.65307 .42323 L +.65886 .42208 L +.66461 .42089 L +.67031 .41966 L +.67598 .41838 L +.6816 .41706 L +.68717 .41571 L +.6927 .41431 L +.69818 .41287 L +.70362 .41139 L +.709 .40987 L +.71433 .40831 L +.71961 .40671 L +.72483 .40508 L +.73 .4034 L +.73511 .40169 L +.74017 .39994 L +.74516 .39815 L +.7501 .39633 L +.75497 .39447 L +.75978 .39258 L +.76452 .39065 L +.76921 .38868 L +.77382 .38668 L +.77837 .38465 L +Mistroke +.78284 .38258 L +.78725 .38048 L +.79159 .37835 L +.79585 .37619 L +.80004 .374 L +.80416 .37177 L +.80821 .36952 L +.81217 .36723 L +.81606 .36492 L +.81987 .36258 L +.82361 .36021 L +.82726 .35781 L +.83083 .35539 L +.83432 .35294 L +.83773 .35047 L +.84106 .34797 L +.8443 .34545 L +.84745 .3429 L +.85052 .34033 L +.85351 .33774 L +.8564 .33512 L +.85921 .33249 L +.86193 .32983 L +.86456 .32716 L +.8671 .32447 L +.86955 .32175 L +.87191 .31902 L +.87418 .31628 L +.87635 .31351 L +.87843 .31073 L +.88042 .30794 L +.88232 .30513 L +.88412 .30231 L +.88582 .29948 L +.88743 .29663 L +.88895 .29377 L +.89037 .2909 L +.89169 .28802 L +.89291 .28513 L +.89404 .28224 L +.89508 .27933 L +.89601 .27642 L +.89685 .2735 L +.89758 .27058 L +.89822 .26765 L +.89877 .26471 L +.89921 .26177 L +.89956 .25883 L +.8998 .25589 L +.89995 .25295 L +Mistroke +.9 .25 L +.89995 .24705 L +.8998 .24411 L +.89956 .24117 L +.89921 .23823 L +.89877 .23529 L +.89822 .23235 L +.89758 .22942 L +.89685 .2265 L +.89601 .22358 L +.89508 .22067 L +.89404 .21776 L +.89291 .21487 L +.89169 .21198 L +.89037 .2091 L +.88895 .20623 L +.88743 .20337 L +.88582 .20052 L +.88412 .19769 L +.88232 .19487 L +.88042 .19206 L +.87843 .18927 L +.87635 .18649 L +.87418 .18372 L +.87191 .18098 L +.86955 .17825 L +.8671 .17553 L +.86456 .17284 L +.86193 .17017 L +.85921 .16751 L +.8564 .16488 L +.85351 .16226 L +.85052 .15967 L +.84745 .1571 L +.8443 .15455 L +.84106 .15203 L +.83773 .14953 L +.83432 .14706 L +.83083 .14461 L +.82726 .14219 L +.82361 .13979 L +.81987 .13742 L +.81606 .13508 L +.81217 .13277 L +.80821 .13048 L +.80416 .12823 L +.80004 .126 L +.79585 .12381 L +.79159 .12165 L +.78725 .11952 L +Mistroke +.78284 .11742 L +.77837 .11535 L +.77382 .11332 L +.76921 .11132 L +.76452 .10935 L +.75978 .10742 L +.75497 .10553 L +.7501 .10367 L +.74516 .10185 L +.74017 .10006 L +.73511 .09831 L +.73 .0966 L +.72483 .09492 L +.71961 .09329 L +.71433 .09169 L +.709 .09013 L +.70362 .08861 L +.69818 .08713 L +.6927 .08569 L +.68717 .08429 L +.6816 .08294 L +.67598 .08162 L +.67031 .08034 L +.66461 .07911 L +.65886 .07792 L +.65307 .07677 L +.64725 .07567 L +.64139 .0746 L +.6355 .07358 L +.62957 .07261 L +.62361 .07168 L +.61762 .07079 L +.6116 .06994 L +.60555 .06915 L +.59948 .06839 L +.59338 .06768 L +.58726 .06702 L +.58111 .0664 L +.57495 .06582 L +.56877 .06529 L +.56257 .06481 L +.55636 .06437 L +.55013 .06398 L +.54389 .06363 L +.53764 .06333 L +.53138 .06308 L +.52512 .06287 L +.51884 .06271 L +.51256 .06259 L +.50628 .06252 L +Mistroke +.5 .0625 L +.49372 .06252 L +.48744 .06259 L +.48116 .06271 L +.47488 .06287 L +.46862 .06308 L +.46236 .06333 L +.45611 .06363 L +.44987 .06398 L +.44364 .06437 L +.43743 .06481 L +.43123 .06529 L +.42505 .06582 L +.41889 .0664 L +.41274 .06702 L +.40662 .06768 L +.40052 .06839 L +.39445 .06915 L +.3884 .06994 L +.38238 .07079 L +.37639 .07168 L +.37043 .07261 L +.3645 .07358 L +.35861 .0746 L +.35275 .07567 L +.34693 .07677 L +.34114 .07792 L +.33539 .07911 L +.32969 .08034 L +.32402 .08162 L +.3184 .08294 L +.31283 .08429 L +.3073 .08569 L +.30182 .08713 L +.29638 .08861 L +.291 .09013 L +.28567 .09169 L +.28039 .09329 L +.27517 .09492 L +.27 .0966 L +.26489 .09831 L +.25983 .10006 L +.25484 .10185 L +.2499 .10367 L +.24503 .10553 L +.24022 .10742 L +.23548 .10935 L +.23079 .11132 L +.22618 .11332 L +.22163 .11535 L +Mistroke +.21716 .11742 L +.21275 .11952 L +.20841 .12165 L +.20415 .12381 L +.19996 .126 L +.19584 .12823 L +.19179 .13048 L +.18783 .13277 L +.18394 .13508 L +.18013 .13742 L +.17639 .13979 L +.17274 .14219 L +.16917 .14461 L +.16568 .14706 L +.16227 .14953 L +.15894 .15203 L +.1557 .15455 L +.15255 .1571 L +.14948 .15967 L +.14649 .16226 L +.1436 .16488 L +.14079 .16751 L +.13807 .17017 L +.13544 .17284 L +.1329 .17553 L +.13045 .17825 L +.12809 .18098 L +.12582 .18372 L +.12365 .18649 L +.12157 .18927 L +.11958 .19206 L +.11768 .19487 L +.11588 .19769 L +.11418 .20052 L +.11257 .20337 L +.11105 .20623 L +.10963 .2091 L +.10831 .21198 L +.10709 .21487 L +.10596 .21776 L +.10492 .22067 L +.10399 .22358 L +.10315 .2265 L +.10242 .22942 L +.10178 .23235 L +.10123 .23529 L +.10079 .23823 L +.10044 .24117 L +.1002 .24411 L +.10005 .24705 L +Mistroke +.1 .25 L +Mfstroke +0 0 1 r +.1 .25 m +.105 .28125 L +.15 .34375 L +.2 .375 L +.3 .4125 L +.4 .43125 L +.5 .4375 L +.7 .4125 L +.8 .375 L +.875 .3125 L +.9 .25 L +.85 .15625 L +.8 .125 L +.6 .06875 L +.5 .0625 L +.3 .0875 L +.2 .125 L +.15 .15625 L +.125 .1875 L +.105 .21875 L +.1 .25 L +s +5 Mabswid +.1 .25 Mdot +.105 .28125 Mdot +.15 .34375 Mdot +.2 .375 Mdot +.3 .4125 Mdot +.4 .43125 Mdot +.5 .4375 Mdot +.7 .4125 Mdot +.8 .375 Mdot +.875 .3125 Mdot +.9 .25 Mdot +.85 .15625 Mdot +.8 .125 Mdot +.6 .06875 Mdot +.5 .0625 Mdot +.3 .0875 Mdot +.2 .125 Mdot +.15 .15625 Mdot +.125 .1875 Mdot +.105 .21875 Mdot +.1 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{760, 380}, + ImageMargins->{{42, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`<0003o +o`3ooom;0?ooo`00o`3ooolZ0?ooo`03003o001o:RX0ObXZ00L0ObXZ0P3oool;0?l000/0oooo2000 +0?l80?ooo`8000002P3oool00`000000oooo0?ooo`0Y0?oooa40003o0P1o:RX40?ooo`D0003oo`3o +oom:0?ooo`00o`3ooolR0?ooo`03003o001o:RX0ObXZ00H0ObXZ0`3oool80?l000h0oooo20000?lL +0?ooo`030000003oool0oooo03X0oooo2`000?oo0?ooodX0oooo003o0?oooaX0oooo2@1o:RX40?oo +o`L0o`003P3oool80000ob@0oooo00<000000?ooo`3oool0@03oool80000o`@0ObXZo`3ooom30?oo +o`00o`3ooolB0?ooo`P0ObXZ00<00?l00?ooo`3oool00P3oool80?l000d0oooo20000?l/0?ooo`03 +0000003oool0oooo0440oooo0`000?l40?ooo`<0003o00<0o`0007lZ:P1o:RX01`1o:R[o0?ooocX0 +oooo003o0?ooo``0oooo0P00o`0407lZ:P03003o003oool0oooo00<0oooo1`3o000=0?ooo`P0003o +=03oool00`000000oooo0?ooo`1;0?ooo`@0003o0P3oool01000o`00o`000?l0003o000407lZ:_l0 +oooo=P3oool00?l0oooo1P3oool807lZ:P80oooo203o000<0?ooo`P0003o?03oool00`000000oooo +0?ooo`1?0?ooo`<0003o0`3oool40?l000P0ObXZo`3oool^0?ooo`00o`3oool10?ooo`03003o001o +:RX0ObXZ0080ObXZ0P00o`000`3oool0o`000?l000050?l000`0oooo20000?m40?ooo`@00000D@3o +ool40000o`L0oooo0`3o00000`00o`00ObXZ07lZ:P0207lZ:_l0oooo:P3oool00?`0oooo00<00?l0 +07lZ:P1o:RX00P1o:RX70?l000/0oooo20000?m<0?ooo`030000003oool0oooo05H0oooo0`000?l7 +0?ooo`@0o`0000<00?l007lZ:P1o:RX00P1o:R[o0?ooobH0oooo003e0?ooo`P0ObXZ0`3o000;0?oo +o`P0003oE03oool00`000000oooo0?ooo`1I0?ooo`@0003o1`3oool50?l000P0ObXZo`3ooolN0?oo +o`00l@3oool407lZ:PP0o`001P3oool80000oe`0oooo00<000000?ooo`3oool0G@3oool40000o`X0 +oooo103o0002003o00@0ObXZo`3ooolJ0?ooo`00k@3oool407lZ:P040?ooo`3o0000o`000?l000H0 +oooo20000?mT0?ooo`030000003oool0oooo0640oooo0`000?l;0?ooo`@0o`000P00o`0407lZ:_l0 +oooo5P3oool00>T0oooo101o:RX50?l000030?ooo`000?l0003o00H0003oK03oool00`000000oooo +0?ooo`1T0?ooo`@0003o2`3oool30?l000<00?l00`1o:R[o0?oooa<0oooo003M0?ooo`<0003o1@3o +ool407lZ:P030?l0003oool0003o00L0003oM03oool00`000000oooo0?ooo`1X0?ooo`<0003o2`3o +ool40?l000800?l0101o:R[o0?ooo`l0oooo003L0?ooo`D0003o00<00?l007lZ:P000?l01`000?ml +0?ooo`030000003oool0oooo06/0oooo10000?l;0?ooo`@0o`000P00o`0407lZ:P03003o003oool0 +oooo0?l0oooo203oool00=`0oooo1`000?n40?ooo`@00000KP3oool30000o``0oooo1P3o000407lZ +:_l0oooo1`3oool00=T0oooo00<0o`0007lZ:P000?l01@000?n60?ooo`030000003oool0oooo0780 +oooo10000?l?0?ooo`<0o`00101o:R[o0?ooo`<0oooo003E0?ooo`030?l0001o:RX0ObXZ00<0003o +0P3oool30000ohL0oooo00<000000?ooo`3oool0MP3oool30000o`l0oooo103o000307lZ:_l0oooo +003B0?ooo`030?l0001o:RX0ObXZ00<0003oS`3oool00`000000oooo0?ooo`1i0?ooo`@0003o3`3o +ool30?l000@0ObXZn`3oool000?ooo`030?l0001o:RX0ObXZ0080ObXZj@3oool0 +0;d0oooo00@0o`0007lZ:P1o:RX0ObXZ0P3oool20000oj80oooo00<000000?ooo`3oool0TP3oool4 +0000o`d0oooo0P3o000307lZ:^H0oooo002j0?ooo`040?l0001o:RX0ObXZ07lZ:P80oooo0`000?nT +0?ooo`030000003oool0oooo09H0oooo0`000?l<0?ooo`80o`0000@00?l007lZ:P1o:RX0ObXZh`3o +ool00;L0oooo0P3o000207lZ:P80oooo0`000?nW0?ooo`030000003oool0oooo09T0oooo10000?l: +0?ooo`<0o`0000@00?l007lZ:P1o:RX00?l0h03oool00;@0oooo0`3o000207lZ:P80oooo0P000?nZ +0?ooo`030000003oool0oooo09d0oooo0`000?l:0?ooo`<0o`000P1o:RX00`00o`00oooo0?ooo`3L +0?ooo`00/P3oool00`3o0000ObXZ07lZ:P0207lZ:P040?ooo`000?l0003o0000oj`0oooo00<00000 +0?ooo`3oool0X03oool40000o`X0oooo00@0o`0007lZ:P1o:RX0ObXZg03oool00;00oooo00D0o`00 +07lZ:P1o:RX00?l00?ooo`030000ojl0oooo00<000000?ooo`3oool0Y03oool30000o`X0oooo00@0 +o`0007lZ:P1o:RX0ObXZf@3oool00:d0oooo0P3o000207lZ:P80oooo0P000?nb0?ooo`030000003o +ool0oooo0:L0oooo10000?l90?ooo`030?l0001o:RX0ObXZ0=L0oooo002[0?ooo`80o`000P1o:RX0 +103oool0003o0000o`000?nd0?ooo`@00000ZP3oool30000o`P0oooo00@0o`0007lZ:P1o:RX00?l0 +e03oool00:T0oooo00@0o`0007lZ:P1o:RX0ObXZ0`000?ng0?ooo`030000003oool0oooo0:h0oooo +10000?l60?ooo`040?l0001o:RX0ObXZ07lZ:]80oooo002W0?ooo`040?l0001o:RX0ObXZ003o0080 +003o^P3oool00`000000oooo0?ooo`2b0?ooo`<0003o1P3oool00`3o0000ObXZ07lZ:P3@0?ooo`00 +Y03oool20?l00080ObXZ0`000?nl0?ooo`030000003oool0oooo0;D0oooo10000?l50?ooo`80ObXZ +00<0o`000?ooo`3oool0b`3oool00:80oooo0P3o0000101o:RX0003o0000o`000?no0?ooo`030000 +003oool0oooo0;T0oooo10000?l30?ooo`80ObXZ00<0o`000?ooo`3oool0b@3oool00:00oooo0P3o +00000`1o:RX0003o0000o`320?ooo`030000003oool0oooo0;d0oooo0`000?l20?ooo`80ObXZ00<0 +o`000?ooo`3oool0a`3oool009h0oooo0P3o00030000ol@0oooo00<000000?ooo`3oool0`03oool4 +0000o`80ObXZ00<0o`000?ooo`3oool0a@3oool009P0oooo0`000?l00`3oool0o`000000o`020000 +okX0oooo100000090?ooo`030000003oool0oooo0<@0oooo0`000?l0101o:RX0o`000?ooo`3oool3 +0000ol00oooo002G0?ooo`H0003o00<0ObXZ0?ooo`3oool0^P3oool00`000000oooo0?ooo`0:0?oo +o`030000003oool0oooo0<0oooo00@0003o07lZ:P3o0000o`00Y`3o +ool007d0oooo0P3o00020000onH0oooo00<000000?ooo`3oool0i03oool20000o`030?ooo`3o0000 +oooo0:D0oooo001l0?ooo`040?l0003oool0003o07lZ:^L0oooo1000003U0?ooo`80003o00<0o`00 +0?ooo`3oool0X`3oool007/0oooo00@0o`000000o`000?l0ObXZj03oool00`000000oooo0?ooo`3W +0?ooo`0407lZ:P000?l0o`000?l00:<0oooo001i0?ooo`040?l000000?l0003o07lZ:^X0oooo00<0 +00000?ooo`3oool0j03oool00`1o:RX0003o0000o`020?l00:40oooo001e0?ooo`<0003o00@0o`00 +0000o`1o:RX0ObXZj`3oool00`000000oooo0?ooo`3Z0?ooo`0307lZ:P000?l0oooo00<0003oWP3o +ool007@0oooo1@000?l00`1o:RX0oooo0?ooo`3[0?ooo`030000003oool0oooo0>`0oooo1@000?nM +0?ooo`00M03oool50000onh0oooo00<000000?ooo`3oool0k03oool50000oid0oooo001d0?ooo`D0 +003okP3oool00`000000oooo0?ooo`3/0?ooo`D0003oW@3oool007@0oooo10000?o_0?ooo`030000 +003oool0oooo0>d0oooo0`000?l00`3oool0o`000?l0002K0?ooo`00L`3oool00`3o0000003o07lZ +:P3a0?ooo`030000003oool0oooo0?00oooo00@0003o0?ooo`3oool0o`00VP3oool00780oooo00<0 +o`000000o`1o:RX0lP3oool400000>l0oooo00D0003o07lZ:P3oool0oooo0?l0002I0?ooo`00L@3o +ool00`3o0000003o07lZ:P3c0?ooo`030000003oool0oooo0?40oooo00D0003o07lZ:P3oool0oooo +0?l0002H0?ooo`00L03oool00`3o0000003o07lZ:P3d0?ooo`030000003oool0oooo0?40oooo00<0 +003o0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`2E0?ooo`00K`3oool00`3o0000003o07lZ:P3e +0?ooo`030000003oool0oooo0?80oooo00H0003o0?ooo`1o:RX0ObXZ0?ooo`3o002F0?ooo`00KP3o +ool00`3o0000ObXZ0000o`3f0?ooo`030000003oool0oooo0?80oooo00L0003o0?ooo`3oool0oooo +07lZ:P3oool0o`0009D0oooo001]0?ooo`030?l0001o:RX0003o0?L0oooo00<000000?ooo`3oool0 +l`3oool01`000?l0oooo0?ooo`3oool0ObXZ0?ooo`3o0000U03oool006`0oooo00<0o`0007lZ:P00 +0?l0n03oool00`000000oooo0?ooo`3c0?ooo`030000o`3oool0oooo0080oooo00<0ObXZ0?ooo`3o +0000T`3oool006/0oooo00<0o`0007lZ:P000?l0n@3oool00`000000oooo0?ooo`3d0?ooo`030000 +o`3oool0oooo0080oooo00<0ObXZ0?ooo`3o0000TP3oool006/0oooo00<0ObXZ0000o`3oool0n@3o +ool00`000000oooo0?ooo`3e0?ooo`050000o`3oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo +0?ooo`2?0?ooo`00JP3oool00`3o0000003o0?ooo`3j0?ooo`@00000m03oool00`000?l0oooo0?oo +o`020?ooo`0407lZ:P3oool0oooo0?l00900oooo001Y0?ooo`030?l0001o:RX0003o0?/0oooo00<0 +00000?ooo`3oool0mP3oool00`000?l0oooo0?ooo`020?ooo`0407lZ:P3oool00?l00?l008l0oooo +001X0?ooo`030?l0001o:RX0003o0?`0oooo00<000000?ooo`3oool0mP3oool00`000?l0oooo0?oo +o`030?ooo`0307lZ:P3oool0o`0008l0oooo001X0?ooo`0307lZ:P000?l0oooo0?`0oooo00<00000 +0?ooo`3oool0m`3oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P00o`00o`0008h0oooo001W0?oo +o`0307lZ:P000?l0oooo0?d0oooo00<000000?ooo`3oool0m`3oool00`000?l0oooo0?ooo`040?oo +o`0307lZ:P3o0000oooo08d0oooo001V0?ooo`0307lZ:P000?l0oooo0?h0oooo00<000000?ooo`3o +ool0n03oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P3oool0o`0008d0oooo001T0?ooo`@0003o +lP3oool5000000P0oooo00<000000?ooo`3oool0n03oool00`000?l0oooo0?ooo`040?ooo`0307lZ +:P3oool0o`0008`0oooo001S0?ooo`D0003om03oool00`000000oooo0?ooo`080?ooo`030000003o +ool0oooo0?T0oooo00<0003o0?ooo`3oool0103oool207lZ:P030?l0003oool0oooo08T0oooo001S +0?ooo`D0003om03oool00`000000oooo0?ooo`080?ooo`H00000mP3oool00`000?l0oooo0?ooo`05 +0?ooo`0307lZ:P00o`00o`0008X0oooo001S0?ooo`D0003ok03oool4000000@0oooo00<000000?oo +o`3oool0203oool00`000000oooo0?ooo`3j0?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ003o +003o0000R@3oool00680oooo00<0ObXZ0?ooo`000?l00P000?oe0?ooo`030000003oool0oooo00P0 +oooo00<000000?ooo`3oool0n`3oool00`000?l0oooo0?ooo`040?ooo`0307lZ:P3oool0o`0008T0 +oooo001Q0?ooo`0407lZ:P3oool0003o0?l00?H0oooo0P00000:0?ooo`030000003oool0oooo0?/0 +oooo00<0003o0?ooo`3oool01@3oool00`1o:RX0oooo0?l000280?ooo`00H03oool0101o:RX0oooo +0000o`3o003o0?ooo`@0oooo00<000000?ooo`3oool0o03oool00`000?l0oooo0?ooo`050?ooo`03 +07lZ:P00o`00o`0008L0oooo001P0?ooo`0407lZ:P00o`00003o0?l00?l0oooo103oool00`000000 +oooo0?ooo`3l0?ooo`030000o`3oool0oooo00H0oooo00<0ObXZ0?l0003oool0QP3oool005l0oooo +00@0ObXZ0?ooo`000?l0o`00o`3oool50?ooo`030000003oool0oooo0?d0oooo00<0003o0?ooo`3o +ool01@3oool00`1o:RX00?l00?l000260?ooo`00G`3oool0101o:RX00?l00000o`3o003o0?ooo`D0 +oooo00<000000?ooo`3oool0o@3oool00`000?l0oooo0?ooo`060?ooo`0307lZ:P3o0000oooo08D0 +oooo001N0?ooo`0407lZ:P00o`00003o0?l00?l0oooo1P3oool00`000000oooo0?ooo`3n0?ooo`03 +0000o`3oool0oooo00D0oooo00<0ObXZ0?ooo`3o0000Q@3oool005h0oooo00<0ObXZ0000o`3o0000 +o`3oool70?ooo`@00000o@3oool00`000?l0oooo0?ooo`060?ooo`0307lZ:P3o0000oooo08@0oooo +001M0?ooo`0407lZ:P00o`00003o0?l00?l0oooo1`3oool00`000000oooo0?ooo`3o0?ooo`030000 +o`3oool0oooo00D0oooo00<0ObXZ0?ooo`3o0000Q03oool005d0oooo00<0ObXZ0000o`3o0000o`3o +ool80?ooo`030000003oool0oooo0?l0oooo00<0003o0?ooo`3oool01P3oool00`1o:RX0o`000?oo +o`230?ooo`00G03oool0101o:RX0003o0?ooo`3o003o0?ooo`P0oooo00<000000?ooo`3oool0o`3o +ool10?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ0?ooo`3o0000P`3oool005/0oooo00@0ObXZ +003o00000?l0o`00o`3oool90?ooo`030000003oool0oooo0?l0oooo0P3oool00`000?l0oooo0?oo +o`050?ooo`0307lZ:P3o0000oooo0880oooo001K0?ooo`0407lZ:P000?l0oooo0?l00?l0oooo2@3o +ool00`000000oooo0?ooo`3o0?ooo`80oooo00<0003o0?ooo`3oool01@3oool00`1o:RX00?l00?l0 +00220?ooo`00F`3oool00`000?l0oooo0?l0003o0?ooo`X0oooo00<000000?ooo`3oool0o`3oool3 +0?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ0?l0003oool0P@3oool005X0oooo00<0ObXZ0000 +o`3o0000o`3oool;0?ooo`030000003oool0oooo0?l0oooo0`3oool00`000?l0oooo0?ooo`050?oo +o`0307lZ:P3o0000oooo0840oooo001I0?ooo`03003o00000?l0o`000?l0oooo303oool400000?l0 +oooo0`3oool00`000?l0oooo0?ooo`050?ooo`0307lZ:P3o0000oooo0800oooo001I0?ooo`0307lZ +:P000?l0o`000?l0oooo303oool00`000000oooo0?ooo`3o0?ooo`@0oooo00<0003o0?ooo`3oool0 +1@3oool00`1o:RX0o`000?ooo`200?ooo`00F03oool00`00o`00003o0?l0003o0?ooo`d0oooo00<0 +00000?ooo`3oool0o`3oool50?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ0?l0003oool0O`3o +ool005H0oooo0`000?l00`3o0000oooo0?ooo`3o0?ooo``0oooo00<000000?ooo`3oool0o`3oool5 +0?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ0?l0003oool0O`3oool005D0oooo1@000?oo0?oo +o`h0oooo00<000000?ooo`3oool0o`3oool60?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ0?oo +o`3oool0OP3oool005D0oooo1@000?oo0?ooo`h0oooo00<000000?ooo`3oool0o`3oool70?ooo`03 +0000o`3oool0oooo00@0oooo00<0ObXZ0?l0003oool0OP3oool005D0oooo1@000?oo0?ooo`h0oooo +00<000000?ooo`3oool0o`3oool70?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ0?ooo`3oool0 +O@3oool005D0oooo00@0o`000000o`000?l0003oo`3oool?0?ooo`030000003oool0oooo0?l0oooo +203oool00`000?l0oooo0?ooo`040?ooo`0307lZ:P3o0000oooo07d0oooo001C0?ooo`80o`0000<0 +oooo003o00000?l0o`3oool@0?ooo`030000003oool0oooo0?l0oooo203oool00`000?l0oooo0?oo +o`040?ooo`0307lZ:P3o0000oooo07d0oooo001B0?ooo`050?l0003oool0oooo0?ooo`000?l0o`3o +oolA0?ooo`@00000o`3oool80?ooo`030000o`3oool0oooo00<0oooo00<0ObXZ0?l0003oool0O@3o +ool003/0oooo103o000B0?ooo`030?l0003oool0oooo0080oooo00@0003o0000000000000000Q@3o +ool4000008@0oooo00<000000?ooo`3oool0Q@3oool4000007l0oooo00<0003o0?ooo`3oool0103o +ool00`1o:RX0oooo00000002000007X0oooo000k0?ooo`040?l0003oool0oooo0?ooo`80o`003P3o +ool20?l000@0oooo00@00?l00000o`3oool00000QP3oool00`000000oooo0?ooo`250?ooo`030000 +003oool0oooo08D0oooo00<000000?ooo`3oool0P@3oool00`000?l0oooo0?ooo`030?ooo`0407lZ +:P3oool0oooo000007/0oooo000l0?ooo`030?l0003oool0oooo0080oooo00<0o`000?ooo`3oool0 +2P3oool00`3o0000oooo0?ooo`040?ooo`03003o00000?l0000000800000QP3oool00`000000oooo +0?ooo`240?ooo`030000003oool0oooo08H0oooo00<000000?ooo`3oool0P03oool00`000?l0oooo +0?ooo`030?ooo`0307lZ:P3o0000000000800000NP3oool003`0oooo00<0o`000?ooo`3oool00`3o +ool00`3o0000oooo0?ooo`090?ooo`030?l0000000000000008000000P3oool0101o:RX0003o0?oo +o`0000200?ooo`@00000103oool00`000000oooo0?ooo`230?ooo`030000003oool0oooo08L0oooo +00<000000?ooo`3oool0P03oool00`000?l0oooo0?ooo`020?ooo`0407lZ:P3o0000oooo000007/0 +oooo000m0?ooo`030?l0003oool0oooo00<0oooo0P3o00080?ooo`030?l0003oool0oooo00D0oooo +00@0ObXZ0000o`3oool00000QP3oool010000000oooo0?ooo`0000240?ooo`030000003oool0oooo +08D0oooo00@000000?ooo`3oool00000P@3oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P3oool0 +000007/0oooo000n0?ooo`030?l0003oool0oooo00@0oooo00<0o`000?ooo`3oool01@3oool00`3o +0000oooo0?ooo`050?ooo`0407lZ:P000?l00000000008L0oooo0P0000250?ooo`030000003oool0 +oooo08H0oooo0P0000230?ooo`030000o`3oool0oooo0080oooo00<0ObXZ000000000000N`3oool0 +03l0oooo00<0o`000?ooo`3oool0103oool20?l000D0oooo00<0o`000?ooo`3oool01@3oool00`00 +0?l0oooo0?ooo`3o0?oooa00oooo00<000000?ooo`3oool0o`3oool=0?ooo`060000o`3oool0oooo +0?ooo`1o:RX0o`00O03oool003l0oooo00<0o`000?ooo`3oool01P3oool00`3o0000oooo0?ooo`02 +0?ooo`030?l0003oool0oooo00@0oooo00<0ObXZ0000o`3oool0o`3ooolA0?ooo`030000003oool0 +oooo0?l0oooo3@3oool01P000?l0oooo0?ooo`3oool0ObXZ0?l007`0oooo00100?ooo`030?l0003o +ool0oooo00H0oooo00D0o`000?ooo`3oool0oooo0?l000060?ooo`0307lZ:P000?l0oooo0?l0oooo +4@3oool400000?l0oooo3@3oool01@000?l0oooo0?ooo`1o:RX0o`0007`0oooo00110?ooo`030?l0 +003oool0oooo00H0oooo0P3o00020?ooo`030?l0003oool0oooo00<0oooo00<0ObXZ0000o`3oool0 +o`3ooolA0?ooo`030000003oool0oooo0?l0oooo3P3oool01@000?l0oooo0?ooo`1o:RX0o`0007`0 +oooo00120?ooo`030?l0003oool0oooo00L0oooo00<0o`000?ooo`3o00001@3oool00`1o:RX0003o +0?ooo`3o0?oooa40oooo00<000000?ooo`3oool0o`3oool?0?ooo`040000o`3oool0oooo07lZ:W`0 +oooo00120?ooo`030?l0003oool0oooo00P0oooo00<0o`000?ooo`3o0000103oool00`1o:RX0003o +0?ooo`3o0?oooa40oooo00<000000?ooo`3oool0o`3oool?0?ooo`040000o`3oool0oooo07lZ:W`0 +oooo00130?ooo`030?l0003oool0oooo00P0oooo0`3o00030?ooo`0307lZ:P000?l0oooo0?l0oooo +4@3oool00`000000oooo0?ooo`3o0?oooa00oooo00<0003o0?ooo`1o:RX0O03oool004@0oooo00<0 +o`000?ooo`3oool02@3oool20?l00080oooo00<0003o0?ooo`3oool0o`3ooolA0?ooo`030000003o +ool0oooo0?l0oooo403oool00`000?l0oooo07lZ:P1l0?ooo`00A@3oool00`3o0000oooo0?ooo`09 +0?ooo`80o`000`000?oo0?oooa80oooo00<000000?ooo`3oool0o`3ooolA0?ooo`<0003oN`3oool0 +04D0oooo00<0o`000?ooo`3oool02P3oool50000ool0oooo4@3oool00`000000oooo0?ooo`3o0?oo +oa00oooo1@000?mF0?ooo`030000003oool0oooo00P0oooo0P0000000`3oool000000000000D0?oo +o`003`3ooolg000000030?l000000000000000T000001@000?oo00000?l00000900000050000od<0 +0000503oool00`000000oooo0?ooo`080?ooo`030000003oool0000001D0oooo000a0?ooo`030000 +003oool0oooo01<0oooo00<0o`000?ooo`3oool0203oool50000oal0oooo00<000000?ooo`3oool0 +803oool00`000000oooo0?ooo`0O0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool0 +7`3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool0 +7`3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool0 +803oool00`000000oooo0?ooo`0O0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool0 +7`3oool00`000000oooo0?ooo`0O0?ooo`030000003oool0oooo01h0oooo1@000?lO0?ooo`030000 +003oool0oooo03H0oooo0P0000090?ooo`030000003oool0oooo01@0oooo000a0?ooo`030000003o +ool0oooo01<0oooo00<0o`000?ooo`3oool02@3oool30000ob00oooo00<000000?ooo`3oool0803o +ool00`000000oooo0?ooo`0O0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool07`3o +ool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3o +ool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool0803o +ool00`000000oooo0?ooo`0O0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool07`3o +ool00`000000oooo0?ooo`0O0?ooo`030000003oool0oooo01l0oooo0`000?lP0?ooo`030000003o +ool0oooo03D0oooo00<000000?ooo`3oool01`3oool2000000030?ooo`000000000001@0oooo000a +0?ooo`030000003oool0oooo01@0oooo00<0o`000?ooo`3oool02@3oool00`000?l0oooo0?ooo`0O +0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0P +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0O +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0O +0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0P +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0O +0?ooo`030000o`1o:RX0oooo0200oooo00<000000?ooo`3oool0=03oool00`000000oooo0?ooo`0Q +0?ooo`00B@3oool00`3o0000oooo0?ooo`080?ooo`0307lZ:P000?l0oooo08L0oooo00<000000?oo +o`3oool0QP3oool00`000000oooo0?ooo`270?ooo`030000003oool0oooo08D0oooo00<0003o0?l0 +001o:RX0O03oool004X0oooo00<0o`000?ooo`3oool01`3oool00`1o:RX0003o0?ooo`270?ooo`03 +0000003oool0oooo08H0oooo00<000000?ooo`3oool0Q`3oool00`000000oooo0?ooo`250?ooo`03 +0000o`3o0000ObXZ07`0oooo001:0?ooo`030?l0003oool0oooo00L0oooo00<0ObXZ0000o`3oool0 +o`3ooolA0?ooo`030000003oool0oooo0?l0oooo403oool00`000?l0o`0007lZ:P1l0?ooo`00B`3o +ool00`3o0000oooo0?ooo`060?ooo`0307lZ:P000?l0oooo0?l0oooo4@3oool00`000000oooo0?oo +o`3o0?ooo`l0oooo00<0003o0?ooo`1o:RX0O@3oool004`0oooo00<0o`000?ooo`3oool01@3oool0 +0`1o:RX0003o0?ooo`3o0?oooa40oooo00<000000?ooo`3oool0o`3oool?0?ooo`030000o`3oool0 +ObXZ07d0oooo001=0?ooo`030?l0003oool0oooo00@0oooo00<0ObXZ0000o`3oool0o`3ooolA0?oo +o`@00000o`3oool=0?ooo`040000o`3oool0oooo07lZ:Wd0oooo001>0?ooo`030?l0003oool0oooo +00@0oooo00<0003o0?ooo`3oool0o`3oool@0?ooo`030000003oool0oooo0?l0oooo3P3oool01000 +0?l0oooo0?ooo`1o:RYm0?ooo`00CP3oool00`3o0000oooo0?ooo`040?ooo`030000o`3oool0oooo +0?l0oooo403oool00`000000oooo0?ooo`3o0?ooo`h0oooo00@0003o0?ooo`3o0000ObXZO@3oool0 +04l0oooo00<0o`000?ooo`3oool00`3oool00`1o:RX0003o0?ooo`3o0?oooa00oooo00<000000?oo +o`3oool0o`3oool=0?ooo`050000o`3oool0oooo0?l0001o:RX0O@3oool00500oooo00<0o`000?oo +o`3oool00P3oool00`1o:RX0003o0?ooo`3o0?oooa00oooo00<000000?ooo`3oool0o`3oool=0?oo +o`040000o`3oool0oooo07lZ:Wh0oooo001A0?ooo`030?l0003oool0oooo0080oooo00<0003o0?oo +o`3oool0o`3oool?0?ooo`030000003oool0oooo0?l0oooo303oool01@000?l0oooo0?ooo`3oool0 +ObXZ07h0oooo001B0?ooo`050?l0003oool0oooo0?ooo`000?l0o`3ooolA0?ooo`030000003oool0 +oooo0?l0oooo303oool01@000?l0oooo0?ooo`3oool0ObXZ07h0oooo001C0?ooo`040?l0003oool0 +oooo0000ool0oooo4@3oool00`000000oooo0?ooo`3o0?ooo``0oooo00D0003o0?ooo`3oool0o`00 +07lZ:P1n0?ooo`00E03oool00`3o0000oooo0000o`3o0?oooa40oooo1000003o0?ooo`X0oooo00D0 +003o0?ooo`3oool0oooo07lZ:P1o0?ooo`00E03oool0103o0000oooo0000o`1o:R[o0?oooa00oooo +00<000000?ooo`3oool0o`3oool;0?ooo`050000o`3oool0oooo0?l0001o:RX0O`3oool005D0oooo +00<0o`000?ooo`000?l0o`3oool@0?ooo`030000003oool0oooo0?l0oooo2P3oool01P000?l0oooo +0?ooo`3oool0o`0007lZ:Wl0oooo001F0?ooo`<0003oo`3oool?0?ooo`030000003oool0oooo0?l0 +oooo2P3oool01P000?l0oooo0?ooo`3oool0o`0007lZ:Wl0oooo001E0?ooo`D0003oo`3oool>0?oo +o`030000003oool0oooo0?l0oooo2P3oool01@000?l0oooo0?ooo`3o0000ObXZ0800oooo001E0?oo +o`D0003oo`3oool>0?ooo`030000003oool0oooo0?l0oooo2@3oool01P000?l0oooo0?ooo`3oool0 +o`0007lZ:X00oooo001E0?ooo`D0003oo`3oool>0?ooo`030000003oool0oooo0?l0oooo2@3oool0 +1@000?l0oooo0?ooo`3o0000ObXZ0840oooo001F0?ooo`<0003o00<0ObXZ0?ooo`3oool0o`3oool< +0?ooo`030000003oool0oooo0?l0oooo2@3oool01@000?l0oooo0?ooo`3o0000ObXZ0840oooo001H +0?ooo`03003o00000?l0o`000?l0oooo3@3oool00`000000oooo0?ooo`3o0?ooo`P0oooo00D0003o +0?ooo`3oool0o`0007lZ:P220?ooo`00F@3oool00`00o`00003o0?l0003o0?ooo``0oooo1000003o +0?ooo`L0oooo00D0003o0?ooo`3oool0o`0007lZ:P220?ooo`00F@3oool01000o`00ObXZ0000o`3o +003o0?ooo`/0oooo00<000000?ooo`3oool0o`3oool70?ooo`050000o`3oool0oooo0?l0001o:RX0 +P`3oool005X0oooo00@00?l00000o`3oool0o`00o`3oool:0?ooo`030000003oool0oooo0?l0oooo +1`3oool01@000?l0oooo0?ooo`3o0000ObXZ08<0oooo001J0?ooo`04003o001o:RX0003o0?l00?l0 +oooo2P3oool00`000000oooo0?ooo`3o0?ooo`L0oooo00@0003o0?ooo`3oool0ObXZQ03oool005/0 +oooo00@0ObXZ0?ooo`000?l0o`00o`3oool90?ooo`030000003oool0oooo0?l0oooo1P3oool01@00 +0?l0oooo0?ooo`3o0000ObXZ08@0oooo001K0?ooo`05003o001o:RX0003o0?ooo`3o0000o`3oool8 +0?ooo`030000003oool0oooo0?l0oooo1P3oool010000?l0oooo0?ooo`1o:RZ50?ooo`00F`3oool0 +1@00o`00oooo07lZ:P000?l0o`000?l0oooo203oool00`000000oooo0?ooo`3o0?ooo`D0oooo00D0 +003o0?ooo`3oool0o`0007lZ:P250?ooo`00G03oool01@00o`00ObXZ0?ooo`000?l0o`000?l0oooo +1`3oool00`000000oooo0?ooo`3o0?ooo`D0oooo00@0003o0?ooo`3oool0ObXZQP3oool005`0oooo +00H00?l00?ooo`1o:RX0oooo0000o`3o003o0?ooo`H0oooo00<000000?ooo`3oool0o`3oool50?oo +o`040000o`3oool0o`0007lZ:XH0oooo001M0?ooo`06003o001o:RX0oooo0000o`3oool0o`00o`3o +ool50?ooo`@00000o`3oool30?ooo`040000o`3oool0o`0007lZ:XL0oooo001M0?ooo`06003o003o +ool0ObXZ0?ooo`000?l0o`00o`3oool50?ooo`030000003oool0oooo0?l0oooo103oool010000?l0 +o`000?ooo`1o:RZ70?ooo`00GP3oool01P00o`00ObXZ0?ooo`3oool0003o0?l00?l0oooo103oool0 +0`000000oooo0?ooo`3o0?ooo`<0oooo00@0003o0?ooo`3o0000ObXZR03oool005l0oooo00H00?l0 +07lZ:P3oool0oooo0000o`3o003o0?ooo`<0oooo00<000000?ooo`3oool0o`3oool30?ooo`040000 +o`3o0000oooo07lZ:XP0oooo001O0?ooo`07003o001o:RX0oooo0?ooo`000?l0oooo0?l0003o0?oo +o`80oooo00<000000?ooo`3oool0o`3oool30?ooo`030000o`3o0000ObXZ08T0oooo001P0?ooo`06 +003o001o:RX0oooo0?ooo`000?l0o`00o`3oool20?ooo`030000003oool0oooo0?l0oooo0P3oool0 +0`000?l0o`0007lZ:P2:0?ooo`00H03oool00`00o`00oooo07lZ:P020?ooo`030000o`3o0000oooo +0?80oooo1@0000080?ooo`030000003oool0oooo0?l0oooo0`000?l00`1o:RX0oooo0?ooo`290?oo +o`00H@3oool01`00o`00oooo07lZ:P3oool0003o0?ooo`3o0000m03oool00`000000oooo0?ooo`08 +0?ooo`030000003oool0oooo0?h0oooo1@000?n;0?ooo`00HP3oool01P00o`00ObXZ0?ooo`3oool0 +003o0?l00?@0oooo00<000000?ooo`3oool0203oool600000?/0oooo1@000?n;0?ooo`00H`3oool0 +1P00o`00ObXZ0?ooo`3oool0003o0?l00?<0oooo00<000000?ooo`3oool0203oool00`000000oooo +0?ooo`3n0?ooo`D0003oR`3oool006<0oooo00<00?l00?ooo`1o:RX00P3oool00`000?l0oooo0?oo +o`3a0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3oool0o@3oool50000oh`0oooo001T +0?ooo`06003o003oool0ObXZ0?ooo`000?l0o`00l@3oool2000000X0oooo00<000000?ooo`3oool0 +o03oool010000?l0o`000?ooo`1o:RZ>0?ooo`00I@3oool01P00o`00ObXZ0?ooo`3oool0003o0?l0 +0?`0oooo00<000000?ooo`3oool0n`3oool010000?l0o`000?ooo`1o:RZ?0?ooo`00IP3oool01P00 +o`00ObXZ0?ooo`3oool0003o0?l00?/0oooo00<000000?ooo`3oool0nP3oool01@000?l0oooo0?l0 +003oool0ObXZ08l0oooo001W0?ooo`05003o001o:RX0oooo0000o`3o0000n`3oool00`000000oooo +0?ooo`3i0?ooo`050000o`3oool0o`000?ooo`1o:RX0T03oool006L0oooo00H00?l00?ooo`1o:RX0 +oooo0000o`3o003j0?ooo`030000003oool0oooo0?L0oooo0P000?l0103oool0o`000?ooo`1o:RZA +0?ooo`00J03oool01@00o`00oooo07lZ:P1o:RX0003o0?X0oooo00<000000?ooo`3oool0mP3oool0 +10000?l0oooo0?ooo`3o000207lZ:Y80oooo001X0?ooo`06003o003oool0oooo07lZ:P3o0000003o +n@3oool400000?@0oooo00D0003o0?ooo`3oool0o`0007lZ:P2D0?ooo`00J@3oool01@00o`00oooo +0?ooo`1o:RX0003o0?T0oooo00<000000?ooo`3oool0m03oool01P000?l0oooo0?ooo`3o0000oooo +07lZ:Y@0oooo001Z0?ooo`05003o003oool0oooo07lZ:P000?l0n03oool00`000000oooo0?ooo`3c +0?ooo`060000o`3oool0oooo0?l00000o`00ObXZU@3oool006/0oooo00D00?l00?ooo`3oool0ObXZ +0000o`3g0?ooo`030000003oool0oooo0?40oooo0P000?l20?ooo`030?l00000o`00ObXZ09H0oooo +001/0?ooo`05003o003oool0o`0007lZ:P000?l0mP3oool00`000000oooo0?ooo`3`0?ooo`030000 +o`3oool0oooo0080oooo00<0o`0007lZ:P3oool0UP3oool006d0oooo00@00?l00?ooo`3o0000003o +mP3oool00`000000oooo0?ooo`3_0?ooo`030000o`3oool0oooo0080oooo00<0o`0007lZ:P3oool0 +U`3oool006h0oooo0P00o`000`3o0000003o0?ooo`3d0?ooo`030000003oool0oooo0>h0oooo00<0 +003o0?ooo`3oool00P3oool00`3o0000ObXZ0?ooo`2H0?ooo`00L03oool00`3o0000oooo0000o`3d +0?ooo`030000003oool0oooo0>d0oooo00<0003o0?ooo`3oool00P3oool00`3o0000ObXZ0?ooo`2I +0?ooo`00L@3oool00`3o0000003o07lZ:P3c0?ooo`@00000jP3oool20000o`@0oooo00<0o`0007lZ +:P3oool0VP3oool00740oooo0P3o00000`000?l0ObXZ0?ooo`3a0?ooo`030000003oool0oooo0>X0 +oooo00<0003o0?ooo`3oool00`3oool00`3o0000ObXZ0?ooo`2K0?ooo`00L`3oool0103o0000003o +07lZ:P1o:R[`0?ooo`030000003oool0oooo0>T0oooo00<0003o0?ooo`3oool00`3oool207lZ:Yd0 +oooo001d0?ooo`040?l000000?l0003o0000onl0oooo00<000000?ooo`3oool0j03oool00`000?l0 +oooo0?ooo`030?ooo`0307lZ:P3oool0oooo09d0oooo001d0?ooo`D0003okP3oool00`000000oooo +0?ooo`3W0?ooo`030000o`3oool0oooo0080oooo00<0o`0007lZ:P3oool0W`3oool007@0oooo1@00 +0?l00`1o:RX0oooo0?ooo`3[0?ooo`030000003oool0oooo0>D0oooo0P000?l30?ooo`80o`0000<0 +ObXZ0?ooo`3oool0W`3oool007@0oooo1@000?l00`3oool0ObXZ0?ooo`3[0?ooo`030000003oool0 +oooo0>@0oooo00<0003o0?ooo`3oool00P3oool00`3o00000?l007lZ:P2R0?ooo`00M@3oool30000 +o`040?ooo`000?l0003o07lZ:^/0oooo00<000000?ooo`3oool0h`3oool00`000?l0oooo0?ooo`02 +0?ooo`030?l0001o:RX0ObXZ0:<0oooo001j0?ooo`04003o00000?l0ObXZ07lZ:^T0oooo00<00000 +0?ooo`3oool0hP3oool00`000?l0oooo0?ooo`020?ooo`030?l0001o:RX0oooo0:@0oooo001l0?oo +o`80003o0P1o:R[W0?ooo`@00000g`3oool20000o`@0oooo0P1o:RZV0?ooo`00O@3oool0103o0000 +003o0000o`1o:R[V0?ooo`030000003oool0oooo0=l0oooo00<0003o0?ooo`3oool00`3oool00`1o +:RX0oooo0?ooo`2V0?ooo`00OP3oool01000o`00o`000000o`1o:R[U0?ooo`030000003oool0oooo +0=h0oooo00<0003o0?ooo`3oool00P3oool00`3o0000ObXZ0?ooo`2X0?ooo`00P03oool01000o`00 +003o0000o`1o:R[S0?ooo`030000003oool0oooo0=d0oooo00<0003o0?ooo`3oool00P3oool207lZ +:ZX0oooo00210?ooo`04003o003o0000003o0000on80oooo00<000000?ooo`3oool0g03oool00`00 +0?l0oooo0?ooo`020?ooo`0307lZ:P3oool0oooo0:X0oooo00230?ooo`04003o003o0000003o07lZ +:^00oooo00<000000?ooo`3oool0fP3oool20000o`<0oooo0P1o:RZ]0?ooo`00Q03oool01000o`00 +o`000000o`000?oO0?ooo`030000003oool0oooo0=T0oooo00@0003o0?ooo`3oool0oooo0P1o:RX0 +0`3o0000oooo0?ooo`2/0?ooo`00QP3oool20?l00080003og@3oool00`000000oooo0?ooo`3H0?oo +o`060000o`3oool0oooo0?ooo`1o:RX0o`00/03oool008P0oooo00<0o`0007lZ:P000?l0g03oool0 +0`000000oooo0?ooo`3G0?ooo`060000o`3oool0oooo0?ooo`1o:RX0o`00/@3oool008T0oooo00@0 +0?l00?l000000?l0003ofP3oool400000=D0oooo00<0003o0?ooo`3oool00P1o:RZc0?ooo`00R`3o +ool01000o`00o`000000o`000?oH0?ooo`030000003oool0oooo0=@0oooo0P000?l00`3oool0ObXZ +07lZ:P2e0?ooo`00S03oool01000o`00o`000?l000000?oG0?ooo`030000003oool0oooo0=<0oooo +00D0003o0?ooo`1o:RX0ObXZ0?l0002f0?ooo`00SP3oool01000o`00o`000000o`000?oE0?ooo`03 +0000003oool0oooo0=80oooo00@0003o0?ooo`1o:RX0o`00^03oool00900oooo00@0o`0007lZ:P00 +0?l0003od`3oool00`000000oooo0?ooo`3A0?ooo`040000o`3oool0ObXZ0?l00;T0oooo002B0?oo +o`030?l0001o:RX0003o0=80oooo00<000000?ooo`3oool0d03oool010000?l0ObXZ07lZ:P00o`2j +0?ooo`00U03oool0103o0000003o0000o`3oool30000okl0oooo100000090?ooo`030000003oool0 +oooo00?ooo`00Y`3oool20?l00004003o001o:RX0ObXZ0?ooo`<0003o]`3oool00`000000oooo0?oo +o`2f0?ooo`<0003o00<0oooo07lZ:P1o:RX00P3o003@0?ooo`00Z@3oool20?l00003003o001o:RX0 +ObXZ0080oooo0`000?nd0?ooo`@00000/P3oool30000o`80oooo0P1o:RX20?l00=80oooo002[0?oo +o`<0o`000P1o:RX30?ooo`80003o/P3oool00`000000oooo0?ooo`2a0?ooo`80003o0`3oool207lZ +:P80o`00e03oool00:h0oooo0P3o000307lZ:P80oooo0`000?n_0?ooo`030000003oool0oooo0:h0 +oooo0`000?l20?ooo`<0ObXZ00<0o`000?ooo`3oool0e@3oool00;00oooo0P3o00000`00o`00ObXZ +07lZ:P030?ooo`<0003o[03oool00`000000oooo0?ooo`2[0?ooo`<0003o0P3oool307lZ:P80o`00 +f@3oool00;80oooo0`3o000207lZ:P@0oooo0P000?nZ0?ooo`030000003oool0oooo0:T0oooo0P00 +0?l30?ooo`80ObXZ00<00?l00?l0003o0000f`3oool00;D0oooo0P3o000307lZ:P<0oooo0`000?nW +0?ooo`030000003oool0oooo0:H0oooo0`000?l30?ooo`80ObXZ0`3o003M0?ooo`00^03oool20?l0 +00<0ObXZ0`3oool30000oj@0oooo00<000000?ooo`3oool0X`3oool30000o`<0oooo0`1o:RX20?l0 +0>00oooo002k0?ooo`80o`00101o:RX20?ooo`80003oXP3oool00`000000oooo0?ooo`2Q0?ooo`80 +003o0P3oool407lZ:P80o`00h`3oool00;d0oooo0P3o0000103oool00?l007lZ:P1o:RX20?ooo`<0 +003oW`3oool00`000000oooo0?ooo`2N0?ooo`<0003o0P3oool207lZ:P03003o003o0000o`000>H0 +oooo002o0?ooo`<0o`0000<00?l007lZ:P1o:RX00`3oool30000oi`0oooo1000002J0?ooo`<0003o +0`3oool207lZ:P03003o003o0000o`000>P0oooo00320?ooo`<0o`000P1o:RX40?ooo`80003oVP3o +ool00`000000oooo0?ooo`2I0?ooo`80003o0`3oool307lZ:P<0o`00jP3oool00@3oool90000oa40oooo203o00000`3oool0 +0?l007lZ:P0307lZ:_l0oooo;@3oool00?l0oooo2@3oool807lZ:P030?l000000?l0003o00<0003o +D@3oool00`000000oooo0?ooo`0b0?ooo`P0003o5`3oool30?l00080oooo201o:R[o0?oooc40oooo +003o0?oooa40oooo101o:RX20?l000H0003o1P3oool30000od80oooo00<000000?ooo`3oool0:P3o +ool80000oaL0oooo203o000507lZ:_l0oooo>@3oool00?l0oooo5@3oool807lZ:PX0003o@@3oool0 +0`000000oooo0?ooo`0R0?ooo`P0003o503oool;0?l000P0ObXZo`3oooln0?ooo`00o`3ooolN0?oo +o`@0ObXZ2`000?lk0?ooo`030000003oool0oooo01X0oooo20000?lD0?ooo`P0o`0000<0oooo003o +0000o`00201o:RX00`00o`00oooo0?ooo`3o0?oood<0oooo003o0?ooob80oooo1@000?l607lZ:Q40 +003o:P3oool00`000000oooo0?ooo`0B0?ooo`P0003o4@3oool;0?l00080oooo2@1o:R[o0?ooodh0 +oooo003o0?ooob<0oooo0`000?l90?ooo``0ObXZ00<00?l00?ooo`3oool04@000?l=0?ooo`800000 +2@3oool30000o`/0oooo20000?l>0?ooo`/0o`003@1o:R[o0?oooeL0oooo003o0?ooocP0oooo0`3o +000=07lZ:P<00?l0103ooolA0000o`H0oooo1@000?l20?ooo`P0003o2`3oool:0?l000`0ObXZ00<0 +0?l00?ooo`3oool0o`3ooomQ0?ooo`00o`3ooom40?ooo`@0o`00601o:RX=0000oad0ObXZo`3ooom` +0?ooo`00o`3ooomN0?ooo`030000003oool0oooo00D0oooo1@000?oo0?ooohl0oooo003o0?oooe/0 +oooo00@000000?ooo`3oool00000203oool30000ool0ooooT03oool00?l0ooooG03oool2000000X0 +oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0oooo0?l0oooo +S`3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo003o0?ooofP0oooo00<00000 +0?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0oooo0?l0ooooS`3oool00?l0 +ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo003o0?ooofP0oooo1000003o0?ooohh0oooo +003o0?ooofP0oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0 +oooo0?l0ooooS`3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo003o0?ooofP0 +oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0oooo0?l0oooo +S`3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo003o0?ooofP0oooo00<00000 +0?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0oooo0?l0ooooS`3oool00?l0 +ooooJ03oool400000?l0ooooSP3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo +003o0?ooofP0oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0 +oooo0?l0ooooS`3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo003o0?ooofP0 +oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0oooo0?l0oooo +S`3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo003o0?ooofP0oooo1000003o +0?ooohh0oooo003o0?ooofP0oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`03 +0000003oool0oooo0?l0ooooS`3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo +003o0?ooofP0oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0 +oooo0?l0ooooS`3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo003o0?ooofP0 +oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`030000003oool0oooo0?l0oooo +S`3oool00?l0ooooJ03oool400000?l0ooooSP3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o +0?ooohl0oooo003o0?ooofP0oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomX0?ooo`03 +0000003oool0oooo0?l0ooooS`3oool00?l0ooooJ03oool00`000000oooo0?ooo`3o0?ooohl0oooo +003o0?ooofP0oooo00<000000?ooo`3oool0o`3ooon?0?ooo`00o`3ooomM0?ooo`<00000203oool0 +0`000000oooo0?ooo`3o0?ooohl0oooo003o0?oooeh0oooo00<000000?ooo`3oool01`3oool00`00 +0000oooo0?ooo`3o0?ooohl0oooo003o0?oooe/0oooo1@0000080?ooo`H00000o`3ooon<0?ooo`00 +o`3ooomK0?ooo`040000003oool0oooo00000?l0ooooV`3oool00?l0ooooG03oool00`000000oooo +0000003o0?oooi/0oooo003o0?oooed0oooo0P00003o0?oooi/0oooo003o0?ooool0oooonP3oool0 +0?l0ooooo`3ooooj0?ooo`00o`3ooooo0?ooooX0oooo003o0?ooool0oooonP3oool00?l0ooooo`3o +oooj0?ooo`00o`3ooooo0?ooooX0oooo003o0?ooool0oooonP3oool00?l0ooooo`3ooooj0?ooo`00 +o`3ooooo0?ooooX0oooo003o0?ooool0oooonP3oool00?l0ooooo`3ooooj0?ooo`00o`3ooooo0?oo +ooX0oooo003o0?ooool0oooonP3oool00?l0ooooo`3ooooj0?ooo`00o`3ooooo0?ooooX0oooo003o +0?ooool0oooonP3oool00?l0ooooLP3oool200000?l0ooooQP3oool00?l0ooooL`3oool00`000000 +oooo0?ooo`3o0?oooh@0oooo003o0?ooog@0oooo00<000000?ooo`3oool0o`3ooon30?ooo`00o`3o +oomc0?ooo`030000003oool000000?l0ooooQ03oool00?l0ooooLP3oool010000000oooo0?ooo`00 +003o0?oooh@0oooo003o0?ooog40oooo0`0000000`3oool000000000003o0?oooh<0oooo003o0?oo +ofH0oooo00@000000?ooo`3oool00000o`3ooon@0?ooo`00o`3ooomW0?ooo`800000o`3ooonA0?oo +o`00o`3ooooo0?ooooX0oooo003o0?ooool0oooonP3oool00?l0ooooo`3ooooj0?ooo`00\ +\>"], + ImageRangeCache->{{{0, 759}, {379, 0}} -> {-5.22486, -4.10457, 0.0145179, \ +0.0232287}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]2\ +\[InvisibleSpace]" mit "\[InvisibleSpace]19\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 2, " mit ", 19, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.25 0.0625 [ +[.1 .2375 -6 -9 ] +[.1 .2375 6 0 ] +[.3 .2375 -6 -9 ] +[.3 .2375 6 0 ] +[.7 .2375 -3 -9 ] +[.7 .2375 3 0 ] +[.9 .2375 -3 -9 ] +[.9 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .0625 -12 -4.5 ] +[.4875 .0625 0 4.5 ] +[.4875 .125 -12 -4.5 ] +[.4875 .125 0 4.5 ] +[.4875 .1875 -12 -4.5 ] +[.4875 .1875 0 4.5 ] +[.4875 .3125 -6 -4.5 ] +[.4875 .3125 0 4.5 ] +[.4875 .375 -6 -4.5 ] +[.4875 .375 0 4.5 ] +[.4875 .4375 -6 -4.5 ] +[.4875 .4375 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .25 m +.1 .25625 L +s +[(-4)] .1 .2375 0 1 Mshowa +.3 .25 m +.3 .25625 L +s +[(-2)] .3 .2375 0 1 Mshowa +.7 .25 m +.7 .25625 L +s +[(2)] .7 .2375 0 1 Mshowa +.9 .25 m +.9 .25625 L +s +[(4)] .9 .2375 0 1 Mshowa +.125 Mabswid +.15 .25 m +.15 .25375 L +s +.2 .25 m +.2 .25375 L +s +.25 .25 m +.25 .25375 L +s +.35 .25 m +.35 .25375 L +s +.4 .25 m +.4 .25375 L +s +.45 .25 m +.45 .25375 L +s +.55 .25 m +.55 .25375 L +s +.6 .25 m +.6 .25375 L +s +.65 .25 m +.65 .25375 L +s +.75 .25 m +.75 .25375 L +s +.8 .25 m +.8 .25375 L +s +.85 .25 m +.85 .25375 L +s +.05 .25 m +.05 .25375 L +s +.95 .25 m +.95 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-4)] .4875 0 1 0 Mshowa +.5 .0625 m +.50625 .0625 L +s +[(-3)] .4875 .0625 1 0 Mshowa +.5 .125 m +.50625 .125 L +s +[(-2)] .4875 .125 1 0 Mshowa +.5 .1875 m +.50625 .1875 L +s +[(-1)] .4875 .1875 1 0 Mshowa +.5 .3125 m +.50625 .3125 L +s +[(1)] .4875 .3125 1 0 Mshowa +.5 .375 m +.50625 .375 L +s +[(2)] .4875 .375 1 0 Mshowa +.5 .4375 m +.50625 .4375 L +s +[(3)] .4875 .4375 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .0125 m +.50375 .0125 L +s +.5 .025 m +.50375 .025 L +s +.5 .0375 m +.50375 .0375 L +s +.5 .05 m +.50375 .05 L +s +.5 .075 m +.50375 .075 L +s +.5 .0875 m +.50375 .0875 L +s +.5 .1 m +.50375 .1 L +s +.5 .1125 m +.50375 .1125 L +s +.5 .1375 m +.50375 .1375 L +s +.5 .15 m +.50375 .15 L +s +.5 .1625 m +.50375 .1625 L +s +.5 .175 m +.50375 .175 L +s +.5 .2 m +.50375 .2 L +s +.5 .2125 m +.50375 .2125 L +s +.5 .225 m +.50375 .225 L +s +.5 .2375 m +.50375 .2375 L +s +.5 .2625 m +.50375 .2625 L +s +.5 .275 m +.50375 .275 L +s +.5 .2875 m +.50375 .2875 L +s +.5 .3 m +.50375 .3 L +s +.5 .325 m +.50375 .325 L +s +.5 .3375 m +.50375 .3375 L +s +.5 .35 m +.50375 .35 L +s +.5 .3625 m +.50375 .3625 L +s +.5 .3875 m +.50375 .3875 L +s +.5 .4 m +.50375 .4 L +s +.5 .4125 m +.50375 .4125 L +s +.5 .425 m +.50375 .425 L +s +.5 .45 m +.50375 .45 L +s +.5 .4625 m +.50375 .4625 L +s +.5 .475 m +.50375 .475 L +s +.5 .4875 m +.50375 .4875 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .25 m +.10033 .25344 L +.10068 .25687 L +.10106 .2603 L +.10148 .26373 L +.10197 .26716 L +.10254 .27058 L +.1032 .27399 L +.10397 .27739 L +.10487 .28078 L +.1059 .28417 L +.10708 .28754 L +.10839 .29089 L +.10984 .29423 L +.11143 .29755 L +.11315 .30085 L +.115 .30412 L +.11697 .30737 L +.11907 .31059 L +.12129 .31378 L +.12363 .31693 L +.12609 .32006 L +.12867 .32314 L +.13136 .32619 L +.13416 .3292 L +.13707 .33216 L +.14008 .33508 L +.1432 .33795 L +.14642 .34077 L +.14974 .34354 L +.15315 .34625 L +.15666 .34891 L +.16026 .35153 L +.16394 .35409 L +.16771 .3566 L +.17155 .35907 L +.17546 .36149 L +.17945 .36386 L +.1835 .3662 L +.18761 .36849 L +.19178 .37074 L +.196 .37296 L +.20027 .37514 L +.20459 .37728 L +.20896 .37939 L +.21337 .38146 L +.21782 .3835 L +.22232 .3855 L +.22685 .38746 L +.23143 .38939 L +Mistroke +.23605 .39128 L +.2407 .39313 L +.2454 .39494 L +.25013 .39672 L +.2549 .39845 L +.2597 .40015 L +.26454 .40181 L +.26941 .40343 L +.27431 .40501 L +.27924 .40655 L +.28421 .40805 L +.2892 .40951 L +.29423 .41093 L +.29928 .41231 L +.30436 .41364 L +.30946 .41494 L +.31459 .41619 L +.31974 .41741 L +.32492 .41858 L +.33012 .41972 L +.33534 .42082 L +.34058 .42188 L +.34584 .4229 L +.35112 .42389 L +.35641 .42483 L +.36173 .42575 L +.36706 .42662 L +.3724 .42747 L +.37776 .42827 L +.38313 .42905 L +.38851 .42979 L +.39391 .43049 L +.39931 .43117 L +.40472 .43181 L +.41015 .43242 L +.41558 .43299 L +.42102 .43354 L +.42646 .43405 L +.43192 .43452 L +.43738 .43497 L +.44284 .43537 L +.44832 .43575 L +.4538 .43609 L +.45928 .43639 L +.46477 .43666 L +.47026 .43689 L +.47576 .43708 L +.48126 .43724 L +.48677 .43736 L +.49227 .43745 L +Mistroke +.49778 .43749 L +.50329 .4375 L +.50881 .43747 L +.51432 .4374 L +.51984 .4373 L +.52535 .43715 L +.53086 .43697 L +.53637 .43675 L +.54188 .4365 L +.54739 .4362 L +.55289 .43587 L +.55838 .43551 L +.56388 .4351 L +.56936 .43466 L +.57484 .43418 L +.58031 .43366 L +.58578 .43311 L +.59123 .43252 L +.59668 .43189 L +.60211 .43123 L +.60754 .43053 L +.61295 .4298 L +.61835 .42902 L +.62374 .42822 L +.62912 .42737 L +.63448 .42649 L +.63983 .42557 L +.64516 .42462 L +.65048 .42363 L +.65577 .42261 L +.66106 .42155 L +.66632 .42046 L +.67156 .41933 L +.67679 .41816 L +.682 .41696 L +.68718 .41573 L +.69234 .41446 L +.69748 .41315 L +.7026 .41181 L +.7077 .41044 L +.71276 .40903 L +.7178 .40758 L +.72281 .40609 L +.72779 .40457 L +.73273 .40301 L +.73763 .4014 L +.7425 .39976 L +.74732 .39808 L +.75211 .39635 L +.75684 .39458 L +Mistroke +.76153 .39276 L +.76617 .3909 L +.77076 .389 L +.77529 .38704 L +.77977 .38505 L +.78419 .383 L +.78855 .3809 L +.79285 .37876 L +.79709 .37656 L +.80125 .37431 L +.80535 .37202 L +.80939 .36967 L +.81335 .36727 L +.81724 .36482 L +.82106 .36233 L +.8248 .35979 L +.82847 .35721 L +.83207 .35458 L +.83559 .35191 L +.83903 .3492 L +.8424 .34645 L +.84568 .34366 L +.84889 .34083 L +.85202 .33796 L +.85506 .33506 L +.85802 .33213 L +.8609 .32916 L +.86369 .32616 L +.86639 .32312 L +.86901 .32006 L +.87154 .31696 L +.87398 .31384 L +.87633 .31069 L +.87859 .30752 L +.88076 .30432 L +.88282 .3011 L +.88479 .29785 L +.88665 .29459 L +.8884 .2913 L +.89005 .28799 L +.89157 .28466 L +.89299 .28132 L +.89428 .27796 L +.89545 .27458 L +.8965 .27119 L +.89742 .26779 L +.8982 .26437 L +.89886 .26094 L +.89937 .2575 L +.89974 .25405 L +Mistroke +.89998 .25059 L +.90006 .24713 L +.9 .24366 L +.89979 .24019 L +.89945 .23671 L +.89896 .23324 L +.89833 .22977 L +.89757 .22631 L +.89667 .22285 L +.89564 .2194 L +.89448 .21597 L +.89319 .21255 L +.89176 .20915 L +.89022 .20577 L +.88855 .20241 L +.88675 .19907 L +.88484 .19575 L +.8828 .19247 L +.88065 .18922 L +.87839 .18599 L +.876 .18281 L +.87351 .17965 L +.87091 .17654 L +.8682 .17347 L +.86538 .17045 L +.86245 .16746 L +.85943 .16453 L +.8563 .16165 L +.85307 .15882 L +.84974 .15604 L +.84632 .15332 L +.8428 .15065 L +.8392 .14804 L +.83551 .14548 L +.83174 .14297 L +.82789 .14051 L +.82397 .1381 L +.81997 .13573 L +.81591 .13341 L +.81178 .13113 L +.8076 .12889 L +.80335 .12669 L +.79906 .12453 L +.79471 .12241 L +.79032 .12032 L +.78587 .11827 L +.78138 .11626 L +.77685 .11429 L +.77227 .11235 L +.76765 .11045 L +Mistroke +.76298 .10859 L +.75828 .10677 L +.75353 .10498 L +.74875 .10323 L +.74393 .10151 L +.73907 .09984 L +.73417 .0982 L +.72925 .09659 L +.72429 .09503 L +.71929 .0935 L +.71427 .09201 L +.70921 .09055 L +.70413 .08913 L +.69902 .08775 L +.69388 .08641 L +.68872 .0851 L +.68354 .08383 L +.67833 .0826 L +.67309 .0814 L +.66784 .08024 L +.66257 .07912 L +.65728 .07804 L +.65197 .07699 L +.64665 .07598 L +.64131 .075 L +.63595 .07406 L +.63058 .07316 L +.62521 .0723 L +.61982 .07147 L +.61442 .07068 L +.60901 .06992 L +.60359 .06921 L +.59817 .06852 L +.59274 .06788 L +.58731 .06727 L +.58187 .0667 L +.57643 .06617 L +.57098 .06567 L +.56552 .06521 L +.56006 .06478 L +.5546 .06439 L +.54913 .06404 L +.54365 .06372 L +.53817 .06345 L +.53268 .0632 L +.52719 .06299 L +.52169 .06282 L +.51619 .06269 L +.51068 .06259 L +.50517 .06253 L +Mistroke +.49966 .0625 L +.49413 .06251 L +.48861 .06255 L +.48308 .06263 L +.47755 .06275 L +.47202 .06291 L +.46649 .0631 L +.46096 .06332 L +.45543 .06359 L +.4499 .06389 L +.44438 .06422 L +.43886 .06459 L +.43335 .065 L +.42784 .06545 L +.42235 .06594 L +.41686 .06646 L +.41138 .06701 L +.40591 .06761 L +.40045 .06824 L +.395 .06891 L +.38957 .06962 L +.38415 .07037 L +.37874 .07115 L +.37336 .07197 L +.36798 .07283 L +.36263 .07372 L +.3573 .07466 L +.35198 .07563 L +.34669 .07664 L +.34142 .07769 L +.33617 .07878 L +.33094 .0799 L +.32574 .08107 L +.32056 .08227 L +.31541 .08351 L +.31029 .08479 L +.3052 .08611 L +.30013 .08746 L +.2951 .08886 L +.29009 .09029 L +.28512 .09177 L +.28018 .09328 L +.27527 .09483 L +.27039 .09641 L +.26554 .09804 L +.26072 .0997 L +.25593 .10139 L +.25118 .10313 L +.24645 .1049 L +.24176 .1067 L +Mistroke +.23711 .10854 L +.23248 .11042 L +.22789 .11233 L +.22332 .11427 L +.2188 .11625 L +.2143 .11826 L +.20984 .12031 L +.20541 .12239 L +.20102 .1245 L +.19666 .12665 L +.19234 .12883 L +.18807 .13105 L +.18386 .13331 L +.17972 .13561 L +.17566 .13796 L +.1717 .14037 L +.16782 .14282 L +.16406 .14533 L +.16042 .1479 L +.1569 .15053 L +.15352 .15323 L +.15029 .156 L +.14721 .15883 L +.14428 .16173 L +.14149 .1647 L +.13885 .16771 L +.13633 .17078 L +.13394 .17389 L +.13167 .17704 L +.12951 .18023 L +.12745 .18344 L +.12549 .18667 L +.12362 .18992 L +.12183 .19318 L +.12013 .19645 L +.1185 .19974 L +.11695 .20304 L +.11546 .20635 L +.11403 .20967 L +.11266 .213 L +.11134 .21633 L +.11007 .21968 L +.10885 .22303 L +.10766 .22639 L +.1065 .22975 L +.10537 .23312 L +.10427 .23649 L +.10319 .23987 L +.10212 .24324 L +.10106 .24662 L +Mistroke +.1 .25 L +Mfstroke +1 0 0 r +.1 .25 m +.08962 .24352 L +.08447 .24184 L +.08307 .24358 L +.08427 .24769 L +.08716 .25331 L +.09106 .25981 L +.09546 .2667 L +.09999 .27363 L +.10441 .28035 L +.10855 .2867 L +.11231 .29258 L +.11567 .29794 L +.1186 .30278 L +.12116 .3071 L +.12337 .31096 L +.1253 .31438 L +.12701 .31744 L +.12857 .32019 L +.13004 .32269 L +.13149 .325 L +.13296 .32716 L +.1345 .32922 L +.13615 .33123 L +.13795 .33322 L +.13992 .33521 L +.14208 .33723 L +.14444 .33929 L +.147 .3414 L +.14977 .34358 L +.15275 .34581 L +.15593 .34811 L +.15929 .35047 L +.16283 .35287 L +.16654 .35531 L +.17039 .35779 L +.17438 .36029 L +.17848 .3628 L +.18269 .36531 L +.18699 .36781 L +.19136 .37029 L +.1958 .37274 L +.20029 .37515 L +.20482 .37752 L +.20939 .37984 L +.21398 .3821 L +.21859 .3843 L +.22323 .38643 L +.22787 .3885 L +.23253 .39051 L +Mistroke +.23719 .39244 L +.24187 .39431 L +.24655 .39611 L +.25125 .39785 L +.25596 .39953 L +.26068 .40115 L +.26542 .40271 L +.27018 .40421 L +.27496 .40567 L +.27977 .40708 L +.2846 .40845 L +.28947 .40978 L +.29436 .41107 L +.29929 .41232 L +.30426 .41355 L +.30926 .41474 L +.3143 .41591 L +.31937 .41705 L +.32449 .41816 L +.32964 .41925 L +.33483 .42032 L +.34005 .42136 L +.34531 .42238 L +.35059 .42338 L +.35591 .42435 L +.36126 .4253 L +.36664 .42623 L +.37204 .42712 L +.37746 .42799 L +.3829 .42883 L +.38835 .42964 L +.39382 .43042 L +.3993 .43116 L +.40479 .43187 L +.41028 .43254 L +.41578 .43317 L +.42128 .43376 L +.42679 .43431 L +.43229 .43483 L +.43778 .43529 L +.44327 .43572 L +.44876 .4361 L +.45424 .43644 L +.45971 .43673 L +.46518 .43698 L +.47064 .43718 L +.47609 .43733 L +.48153 .43745 L +.48697 .43751 L +.4924 .43754 L +Mistroke +.49782 .43752 L +.50324 .43746 L +.50865 .43736 L +.51406 .43721 L +.51946 .43703 L +.52487 .43681 L +.53027 .43655 L +.53567 .43626 L +.54107 .43593 L +.54648 .43556 L +.55188 .43516 L +.55729 .43473 L +.5627 .43427 L +.56811 .43378 L +.57353 .43326 L +.57895 .43271 L +.58438 .43213 L +.58981 .43152 L +.59524 .43088 L +.60067 .43021 L +.60611 .42952 L +.61155 .4288 L +.61698 .42805 L +.62242 .42728 L +.62785 .42647 L +.63328 .42564 L +.63871 .42478 L +.64412 .42388 L +.64953 .42296 L +.65493 .42201 L +.66031 .42102 L +.66568 .42 L +.67103 .41895 L +.67636 .41786 L +.68167 .41673 L +.68695 .41557 L +.69221 .41436 L +.69744 .41312 L +.70264 .41184 L +.70781 .41052 L +.71294 .40916 L +.71803 .40775 L +.72308 .40629 L +.72809 .4048 L +.73306 .40325 L +.73798 .40166 L +.74286 .40002 L +.74768 .39834 L +.75246 .39661 L +.75718 .39482 L +Mistroke +.76185 .39299 L +.76646 .39111 L +.77102 .38918 L +.77552 .38721 L +.77996 .38518 L +.78434 .3831 L +.78866 .38097 L +.79292 .3788 L +.79711 .37658 L +.80124 .37431 L +.80531 .37199 L +.80931 .36963 L +.81325 .36722 L +.81711 .36476 L +.82091 .36226 L +.82464 .35972 L +.8283 .35713 L +.83189 .35451 L +.83541 .35184 L +.83885 .34913 L +.84222 .34638 L +.84552 .34359 L +.84873 .34077 L +.85187 .33791 L +.85493 .33501 L +.85791 .33208 L +.86081 .32912 L +.86362 .32613 L +.86634 .3231 L +.86898 .32004 L +.87153 .31696 L +.87398 .31384 L +.87634 .3107 L +.8786 .30753 L +.88076 .30433 L +.88282 .30112 L +.88478 .29787 L +.88663 .29461 L +.88838 .29132 L +.89001 .28801 L +.89153 .28468 L +.89293 .28134 L +.89421 .27798 L +.89537 .2746 L +.89642 .2712 L +.89733 .26779 L +.89812 .26437 L +.89878 .26094 L +.89931 .2575 L +.89971 .25405 L +Mistroke +.89997 .25059 L +.9001 .24713 L +.90009 .24367 L +.89994 .2402 L +.89966 .23673 L +.89923 .23327 L +.89867 .2298 L +.89797 .22635 L +.89713 .2229 L +.89615 .21946 L +.89503 .21603 L +.89377 .21262 L +.89238 .20922 L +.89085 .20584 L +.88919 .20248 L +.88739 .19914 L +.88546 .19583 L +.88341 .19255 L +.88123 .1893 L +.87893 .18607 L +.8765 .18288 L +.87396 .17973 L +.8713 .17662 L +.86853 .17354 L +.86565 .17051 L +.86267 .16752 L +.85958 .16458 L +.85639 .16168 L +.85311 .15883 L +.84974 .15604 L +.84628 .15329 L +.84273 .1506 L +.8391 .14796 L +.8354 .14537 L +.83162 .14284 L +.82777 .14036 L +.82385 .13794 L +.81986 .13557 L +.81581 .13326 L +.81171 .131 L +.80755 .12879 L +.80333 .12664 L +.79906 .12455 L +.79475 .1225 L +.79038 .1205 L +.78597 .11856 L +.78152 .11666 L +.77702 .11481 L +.77249 .113 L +.76791 .11124 L +Mistroke +.7633 .10951 L +.75864 .10783 L +.75395 .10618 L +.74923 .10457 L +.74447 .103 L +.73967 .10145 L +.73484 .09994 L +.72997 .09845 L +.72507 .09699 L +.72013 .09556 L +.71516 .09414 L +.71015 .09276 L +.70511 .09139 L +.70004 .09004 L +.69493 .08871 L +.68979 .0874 L +.68462 .08611 L +.67941 .08484 L +.67417 .08358 L +.6689 .08234 L +.6636 .08112 L +.65827 .07992 L +.65291 .07875 L +.64752 .07759 L +.64211 .07646 L +.63668 .07535 L +.63122 .07427 L +.62574 .07321 L +.62025 .07219 L +.61474 .0712 L +.60921 .07025 L +.60367 .06933 L +.59813 .06846 L +.59258 .06763 L +.58702 .06685 L +.58147 .06612 L +.57592 .06543 L +.57037 .06481 L +.56483 .06424 L +.5593 .06373 L +.55378 .06328 L +.54828 .0629 L +.54279 .06259 L +.53732 .06234 L +.53187 .06215 L +.52645 .06204 L +.52104 .062 L +.51566 .06202 L +.51031 .06212 L +.50498 .06228 L +Mistroke +.49967 .06252 L +.49439 .06281 L +.48913 .06317 L +.48389 .0636 L +.47867 .06408 L +.47347 .06461 L +.46828 .0652 L +.46311 .06583 L +.45794 .06651 L +.45278 .06722 L +.44763 .06797 L +.44247 .06874 L +.43731 .06954 L +.43214 .07036 L +.42696 .07118 L +.42176 .07202 L +.41655 .07286 L +.4113 .07369 L +.40603 .07452 L +.40074 .07534 L +.3954 .07615 L +.39004 .07693 L +.38463 .0777 L +.37919 .07844 L +.37371 .07916 L +.36819 .07986 L +.36263 .08053 L +.35704 .08119 L +.35141 .08182 L +.34576 .08244 L +.34008 .08304 L +.33438 .08364 L +.32866 .08424 L +.32294 .08484 L +.31722 .08546 L +.31151 .0861 L +.30582 .08677 L +.30015 .08748 L +.29452 .08824 L +.28893 .08906 L +.28341 .08995 L +.27795 .09092 L +.27256 .09197 L +.26727 .09313 L +.26207 .09439 L +.25697 .09576 L +.25197 .09726 L +.2471 .09888 L +.24234 .10062 L +.23771 .1025 L +Mistroke +.23319 .1045 L +.2288 .10663 L +.22452 .10888 L +.22036 .11124 L +.2163 .11371 L +.21233 .11627 L +.20845 .11891 L +.20463 .12161 L +.20087 .12436 L +.19714 .12713 L +.19344 .1299 L +.18974 .13267 L +.18602 .13539 L +.18228 .13806 L +.17848 .14066 L +.17463 .14316 L +.17072 .14557 L +.16674 .14787 L +.16271 .15006 L +.15861 .15214 L +.15449 .15414 L +.15037 .15608 L +.14629 .15798 L +.14231 .15991 L +.13849 .16191 L +.13491 .16407 L +.13166 .16646 L +.12887 .1692 L +.12664 .17239 L +.12512 .17616 L +.12443 .18064 L +.12474 .18598 L +.12619 .19231 L +.12892 .19977 L +.13304 .20848 L +.13867 .21854 L +.14585 .22999 L +.15458 .24285 L +.16478 .25705 L +.17626 .2724 L +.1887 .28862 L +.20159 .30523 L +.21422 .32158 L +.22562 .33676 L +.23447 .34953 L +.23908 .35831 L +.23726 .36106 L +.22627 .3552 L +.2027 .33752 L +.16233 .30406 L +Mistroke +.1 .25 L +Mfstroke +.5 .165 .165 r +.1 .25 m +.10005 .25295 L +.1002 .25589 L +.10044 .25883 L +.10079 .26177 L +.10123 .26471 L +.10178 .26765 L +.10242 .27058 L +.10315 .2735 L +.10399 .27642 L +.10492 .27933 L +.10596 .28224 L +.10709 .28513 L +.10831 .28802 L +.10963 .2909 L +.11105 .29377 L +.11257 .29663 L +.11418 .29948 L +.11588 .30231 L +.11768 .30513 L +.11958 .30794 L +.12157 .31073 L +.12365 .31351 L +.12582 .31628 L +.12809 .31902 L +.13045 .32175 L +.1329 .32447 L +.13544 .32716 L +.13807 .32983 L +.14079 .33249 L +.1436 .33512 L +.14649 .33774 L +.14948 .34033 L +.15255 .3429 L +.1557 .34545 L +.15894 .34797 L +.16227 .35047 L +.16568 .35294 L +.16917 .35539 L +.17274 .35781 L +.17639 .36021 L +.18013 .36258 L +.18394 .36492 L +.18783 .36723 L +.19179 .36952 L +.19584 .37177 L +.19996 .374 L +.20415 .37619 L +.20841 .37835 L +.21275 .38048 L +Mistroke +.21716 .38258 L +.22163 .38465 L +.22618 .38668 L +.23079 .38868 L +.23548 .39065 L +.24022 .39258 L +.24503 .39447 L +.2499 .39633 L +.25484 .39815 L +.25983 .39994 L +.26489 .40169 L +.27 .4034 L +.27517 .40508 L +.28039 .40671 L +.28567 .40831 L +.291 .40987 L +.29638 .41139 L +.30182 .41287 L +.3073 .41431 L +.31283 .41571 L +.3184 .41706 L +.32402 .41838 L +.32969 .41966 L +.33539 .42089 L +.34114 .42208 L +.34693 .42323 L +.35275 .42433 L +.35861 .4254 L +.3645 .42642 L +.37043 .42739 L +.37639 .42832 L +.38238 .42921 L +.3884 .43006 L +.39445 .43085 L +.40052 .43161 L +.40662 .43232 L +.41274 .43298 L +.41889 .4336 L +.42505 .43418 L +.43123 .43471 L +.43743 .43519 L +.44364 .43563 L +.44987 .43602 L +.45611 .43637 L +.46236 .43667 L +.46862 .43692 L +.47488 .43713 L +.48116 .43729 L +.48744 .43741 L +.49372 .43748 L +Mistroke +.5 .4375 L +.50628 .43748 L +.51256 .43741 L +.51884 .43729 L +.52512 .43713 L +.53138 .43692 L +.53764 .43667 L +.54389 .43637 L +.55013 .43602 L +.55636 .43563 L +.56257 .43519 L +.56877 .43471 L +.57495 .43418 L +.58111 .4336 L +.58726 .43298 L +.59338 .43232 L +.59948 .43161 L +.60555 .43085 L +.6116 .43006 L +.61762 .42921 L +.62361 .42832 L +.62957 .42739 L +.6355 .42642 L +.64139 .4254 L +.64725 .42433 L +.65307 .42323 L +.65886 .42208 L +.66461 .42089 L +.67031 .41966 L +.67598 .41838 L +.6816 .41706 L +.68717 .41571 L +.6927 .41431 L +.69818 .41287 L +.70362 .41139 L +.709 .40987 L +.71433 .40831 L +.71961 .40671 L +.72483 .40508 L +.73 .4034 L +.73511 .40169 L +.74017 .39994 L +.74516 .39815 L +.7501 .39633 L +.75497 .39447 L +.75978 .39258 L +.76452 .39065 L +.76921 .38868 L +.77382 .38668 L +.77837 .38465 L +Mistroke +.78284 .38258 L +.78725 .38048 L +.79159 .37835 L +.79585 .37619 L +.80004 .374 L +.80416 .37177 L +.80821 .36952 L +.81217 .36723 L +.81606 .36492 L +.81987 .36258 L +.82361 .36021 L +.82726 .35781 L +.83083 .35539 L +.83432 .35294 L +.83773 .35047 L +.84106 .34797 L +.8443 .34545 L +.84745 .3429 L +.85052 .34033 L +.85351 .33774 L +.8564 .33512 L +.85921 .33249 L +.86193 .32983 L +.86456 .32716 L +.8671 .32447 L +.86955 .32175 L +.87191 .31902 L +.87418 .31628 L +.87635 .31351 L +.87843 .31073 L +.88042 .30794 L +.88232 .30513 L +.88412 .30231 L +.88582 .29948 L +.88743 .29663 L +.88895 .29377 L +.89037 .2909 L +.89169 .28802 L +.89291 .28513 L +.89404 .28224 L +.89508 .27933 L +.89601 .27642 L +.89685 .2735 L +.89758 .27058 L +.89822 .26765 L +.89877 .26471 L +.89921 .26177 L +.89956 .25883 L +.8998 .25589 L +.89995 .25295 L +Mistroke +.9 .25 L +.89995 .24705 L +.8998 .24411 L +.89956 .24117 L +.89921 .23823 L +.89877 .23529 L +.89822 .23235 L +.89758 .22942 L +.89685 .2265 L +.89601 .22358 L +.89508 .22067 L +.89404 .21776 L +.89291 .21487 L +.89169 .21198 L +.89037 .2091 L +.88895 .20623 L +.88743 .20337 L +.88582 .20052 L +.88412 .19769 L +.88232 .19487 L +.88042 .19206 L +.87843 .18927 L +.87635 .18649 L +.87418 .18372 L +.87191 .18098 L +.86955 .17825 L +.8671 .17553 L +.86456 .17284 L +.86193 .17017 L +.85921 .16751 L +.8564 .16488 L +.85351 .16226 L +.85052 .15967 L +.84745 .1571 L +.8443 .15455 L +.84106 .15203 L +.83773 .14953 L +.83432 .14706 L +.83083 .14461 L +.82726 .14219 L +.82361 .13979 L +.81987 .13742 L +.81606 .13508 L +.81217 .13277 L +.80821 .13048 L +.80416 .12823 L +.80004 .126 L +.79585 .12381 L +.79159 .12165 L +.78725 .11952 L +Mistroke +.78284 .11742 L +.77837 .11535 L +.77382 .11332 L +.76921 .11132 L +.76452 .10935 L +.75978 .10742 L +.75497 .10553 L +.7501 .10367 L +.74516 .10185 L +.74017 .10006 L +.73511 .09831 L +.73 .0966 L +.72483 .09492 L +.71961 .09329 L +.71433 .09169 L +.709 .09013 L +.70362 .08861 L +.69818 .08713 L +.6927 .08569 L +.68717 .08429 L +.6816 .08294 L +.67598 .08162 L +.67031 .08034 L +.66461 .07911 L +.65886 .07792 L +.65307 .07677 L +.64725 .07567 L +.64139 .0746 L +.6355 .07358 L +.62957 .07261 L +.62361 .07168 L +.61762 .07079 L +.6116 .06994 L +.60555 .06915 L +.59948 .06839 L +.59338 .06768 L +.58726 .06702 L +.58111 .0664 L +.57495 .06582 L +.56877 .06529 L +.56257 .06481 L +.55636 .06437 L +.55013 .06398 L +.54389 .06363 L +.53764 .06333 L +.53138 .06308 L +.52512 .06287 L +.51884 .06271 L +.51256 .06259 L +.50628 .06252 L +Mistroke +.5 .0625 L +.49372 .06252 L +.48744 .06259 L +.48116 .06271 L +.47488 .06287 L +.46862 .06308 L +.46236 .06333 L +.45611 .06363 L +.44987 .06398 L +.44364 .06437 L +.43743 .06481 L +.43123 .06529 L +.42505 .06582 L +.41889 .0664 L +.41274 .06702 L +.40662 .06768 L +.40052 .06839 L +.39445 .06915 L +.3884 .06994 L +.38238 .07079 L +.37639 .07168 L +.37043 .07261 L +.3645 .07358 L +.35861 .0746 L +.35275 .07567 L +.34693 .07677 L +.34114 .07792 L +.33539 .07911 L +.32969 .08034 L +.32402 .08162 L +.3184 .08294 L +.31283 .08429 L +.3073 .08569 L +.30182 .08713 L +.29638 .08861 L +.291 .09013 L +.28567 .09169 L +.28039 .09329 L +.27517 .09492 L +.27 .0966 L +.26489 .09831 L +.25983 .10006 L +.25484 .10185 L +.2499 .10367 L +.24503 .10553 L +.24022 .10742 L +.23548 .10935 L +.23079 .11132 L +.22618 .11332 L +.22163 .11535 L +Mistroke +.21716 .11742 L +.21275 .11952 L +.20841 .12165 L +.20415 .12381 L +.19996 .126 L +.19584 .12823 L +.19179 .13048 L +.18783 .13277 L +.18394 .13508 L +.18013 .13742 L +.17639 .13979 L +.17274 .14219 L +.16917 .14461 L +.16568 .14706 L +.16227 .14953 L +.15894 .15203 L +.1557 .15455 L +.15255 .1571 L +.14948 .15967 L +.14649 .16226 L +.1436 .16488 L +.14079 .16751 L +.13807 .17017 L +.13544 .17284 L +.1329 .17553 L +.13045 .17825 L +.12809 .18098 L +.12582 .18372 L +.12365 .18649 L +.12157 .18927 L +.11958 .19206 L +.11768 .19487 L +.11588 .19769 L +.11418 .20052 L +.11257 .20337 L +.11105 .20623 L +.10963 .2091 L +.10831 .21198 L +.10709 .21487 L +.10596 .21776 L +.10492 .22067 L +.10399 .22358 L +.10315 .2265 L +.10242 .22942 L +.10178 .23235 L +.10123 .23529 L +.10079 .23823 L +.10044 .24117 L +.1002 .24411 L +.10005 .24705 L +Mistroke +.1 .25 L +Mfstroke +0 0 1 r +.1 .25 m +.105 .28125 L +.15 .34375 L +.2 .375 L +.3 .4125 L +.4 .43125 L +.5 .4375 L +.7 .4125 L +.8 .375 L +.875 .3125 L +.9 .25 L +.85 .15625 L +.8 .125 L +.6 .06875 L +.5 .0625 L +.3 .0875 L +.2 .125 L +.15 .15625 L +.125 .1875 L +.1 .25 L +s +5 Mabswid +.1 .25 Mdot +.105 .28125 Mdot +.15 .34375 Mdot +.2 .375 Mdot +.3 .4125 Mdot +.4 .43125 Mdot +.5 .4375 Mdot +.7 .4125 Mdot +.8 .375 Mdot +.875 .3125 Mdot +.9 .25 Mdot +.85 .15625 Mdot +.8 .125 Mdot +.6 .06875 Mdot +.5 .0625 Mdot +.3 .0875 Mdot +.2 .125 Mdot +.15 .15625 Mdot +.125 .1875 Mdot +.1 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{780, 390}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`@0o`0020000?l00`000000oooo0?ooo`070?ooo`<0003o503o +ool>0000o`030?ooo`00o`00ObXZ00`0ObXZ1@3o003o0?ooof@0oooo003o0?oooc80oooo00<00?l0 +07lZ:P1o:RX02`1o:RXC0?ooo`@0o`0020000?l60?ooo`8000002`3oool00`000000oooo0?ooo`0Q +0?ooo`h0003o00<0oooo07lZ:P1o:RX02`1o:RX60?ooo`<0003oo`3ooomC0?ooo`00o`3ooolZ0?oo +o`T0ObXZ6@3oool30?l000P0003o6`3oool00`000000oooo0?ooo`0_0?ooo`h0003o1@1o:RX50000 +ool0ooooDP3oool00?l0oooo8`3oool3003o00@0ObXZ00<00?l00?ooo`3oool0603oool20?l000P0 +003o8`3oool00`000000oooo0?ooo`0m0?ooo`X0003o0`1o:RX2003o0?l0ooooC@3oool00?l0oooo +6`3oool3003o00P0ObXZ5`3oool30?l000L0003o:`3oool00`000000oooo0?ooo`120?ooo`P0003o +2@1o:R[o0?ooodH0oooo003o0?oooaD0oooo2@1o:RXJ0?ooo`P0003o03oool00`000000oooo0?ooo`1> +0?ooo`<0003o0`3oool40?l000<00?l0101o:R[o0?ooocX0oooo003o0?ooo``0oooo00<00?l007lZ +:P1o:RX00P1o:RXG0?ooo`P0003o0P3o00100?ooo`@00000D03oool40000o`<0oooo1`3o000407lZ +:_l0oooo=P3oool00?l0oooo1@3oool807lZ:Q<0oooo20000?l30?l004L0oooo00<000000?ooo`3o +ool0E@3oool40000o`L0oooo0`3o000907lZ:_l0oooo;@3oool00?l0oooo0@3oool407lZ:Q<0oooo +20000?l30?l004l0oooo00<000000?ooo`3oool0F@3oool30000o`P0oooo103o00030?ooo`03003o +001o:RX0ObXZ0080ObXZo`3ooolY0?ooo`00o03oool407lZ:Q00oooo1`000?l70?l005<0oooo00<0 +00000?ooo`3oool0G03oool40000o`P0oooo0`3o00030?ooo`800?l0101o:R[o0?ooobD0oooo003e +0?ooo`<00?l0101o:RX<0?ooo`P0003o1`3o001J0?ooo`030000003oool0oooo0600oooo0`000?l8 +0?ooo`P0o`0000<00?l007lZ:P1o:RX00P1o:R[o0?ooob40oooo003a0?ooo`<00?l0101o:RX80?oo +o`P0003o0`3o001V0?ooo`030000003oool0oooo06<0oooo10000?l<0?ooo`@0o`0000<00?l007lZ +:P1o:RX00P1o:RX00`00o`00oooo0?ooo`3o0?oooaX0oooo003]0?ooo`<00?l0101o:RX40?ooo`P0 +003o0`3o001^0?ooo`030000003oool0oooo06L0oooo10000?l<0?ooo`<0o`000P3oool407lZ:P03 +003o003oool0oooo0?l0oooo5P3oool00><0oooo0`000?l40?ooo`800?l0101o:RX80000o`<0o`00 +MP3oool00`000000oooo0?ooo`1[0?ooo`<0003o303oool40?l00080oooo101o:RX00`00o`00oooo +0?ooo`3o0?oooa80oooo003R0?ooo`D0003o00<0o`000000o`000?l01P000?n10?ooo`030000003o +ool0oooo06h0oooo10000?l<0?ooo`@0o`000P3oool407lZ:_l0oooo4@3oool00=l0oooo0`3o0006 +0000ohT0oooo1000001a0?ooo`@0003o303oool30?l000<0oooo0`1o:RX00`00o`00oooo0?ooo`3o +0?ooo`/0oooo003K0?ooo`@0o`0000<00?l00000o`000?l01@000?n:0?ooo`030000003oool0oooo +07H0oooo0`000?l<0?ooo`@0o`000P3oool407lZ:P03003o003oool0oooo0?l0oooo1`3oool00=<0 +oooo203o00000`3oool0ObXZ07lZ:P020000o`<0oooo0`000?n;0?ooo`030000003oool0oooo07T0 +oooo10000?l<0?ooo`@0o`000P3oool407lZ:_l0oooo1P3oool00T0oooo002c0?ooo`<0o`00203oool207lZ:P80oooo +0`000?n/0?ooo`030000003oool0oooo09h0oooo0`000?l;0?ooo`<0o`000P1o:RX00`00o`00oooo +0?ooo`3T0?ooo`00/@3oool20?l000T0oooo0P1o:RX20?ooo`80003o[`3oool00`000000oooo0?oo +o`2Q0?ooo`@0003o2`3oool0103o0000ObXZ07lZ:P1o:R[T0?ooo`00[`3oool20?l000L0oooo101o +:RX0103oool0003o0000o`000?na0?ooo`030000003oool0oooo0:D0oooo10000?l:0?ooo`040?l0 +001o:RX0ObXZ07lZ:^40oooo002^0?ooo`030?l0003oool0oooo00D0oooo0P1o:RX00`00o`00oooo +0000o`020000ok@0oooo00<000000?ooo`3oool0Z@3oool30000o`T0oooo0P3o000207lZ:]l0oooo +002/0?ooo`80o`001P3oool207lZ:P040?ooo`000?l0003o0000okL0oooo00<000000?ooo`3oool0 +[03oool40000o`L0oooo0P3o000207lZ:P03003o003oool0oooo0=X0oooo002Z0?ooo`80o`001P3o +ool207lZ:P030?ooo`000?l0003o0;X0oooo00<000000?ooo`3oool0/03oool40000o`H0oooo00@0 +o`0007lZ:P1o:RX0ObXZfP3oool00:P0oooo0P3o00050?ooo`<0ObXZ0`000?nl0?ooo`@00000/`3o +ool30000o`H0oooo00<0o`0007lZ:P1o:RX0f03oool00:L0oooo00<0o`000?ooo`3oool00P3oool0 +0`00o`00ObXZ07lZ:P030000okl0oooo00<000000?ooo`3oool0]`3oool40000o`D0oooo0P1o:RX0 +0`00o`00oooo0?ooo`3C0?ooo`00YP3oool01@3o0000oooo0?ooo`3oool00?l00080ObXZ0P000?o2 +0?ooo`030000003oool0oooo0;/0oooo0`000?l40?ooo`80ObXZ00<00?l00?ooo`3oool0d@3oool0 +0:@0oooo0P3o00020?ooo`03003o001o:RX0003o0080003oa03oool00`000000oooo0?ooo`2n0?oo +o`@0003o0P3oool207lZ:P03003o003oool0oooo0@0oooo00<000000?ooo`3oool0i@3oool0101o:RX0003o0?oo +o`3o002_0?ooo`00Q03oool2003o00030?ooo`000?l0ObXZ0080o`00iP3oool00`000000oooo0?oo +o`3V0?ooo`0307lZ:P000?l0003o0080o`00[@3oool008<0oooo00H00?l00?ooo`000?l0003o0?oo +o`3o003X0?ooo`030000003oool0oooo0>P0oooo00@0ObXZ0000o`3oool0o`00[03oool00880oooo +00@00?l00?ooo`000?l0ObXZ0P3o003Y0?ooo`030000003oool0oooo0>X0oooo0P000?l00`3o0000 +oooo0?ooo`2Y0?ooo`00P@3oool01@00o`00003o0000o`1o:RX0o`000>/0oooo00<000000?ooo`3o +ool0j`3oool00`1o:RX0003o0?l0002Z0?ooo`00O`3oool2003o00030000o`1o:RX0o`000>d0oooo +1000003[0?ooo`0407lZ:P000?l0003o0?l00:P0oooo001n0?ooo`04003o00000?l0003o07lZ:^l0 +oooo00<000000?ooo`3oool0k@3oool207lZ:P030000o`3o0000oooo0:H0oooo001l0?ooo`03003o +00000?l0003o0080ObXZl03oool00`000000oooo0?ooo`3_0?ooo`0307lZ:P000?l0003o0:H0oooo +001h0?ooo`<0003o00@00?l00000o`1o:RX0ObXZlP3oool00`000000oooo0?ooo`3`0?ooo`80ObXZ +00<0003o0?l000000?l00P000?nQ0?ooo`00M`3oool50000o`0307lZ:P3oool0oooo0?80oooo00<0 +00000?ooo`3oool0lP3oool00`1o:RX0003o0000o`030000oj00oooo001g0?ooo`D0003om@3oool0 +0`000000oooo0?ooo`3c0?ooo`D0003oX03oool007H0oooo00<0o`000000o`000?l00`000?oe0?oo +o`030000003oool0oooo0?<0oooo1@000?nP0?ooo`00M03oool20?l00003003o00000?l0003o0080 +003omP3oool00`000000oooo0?ooo`3d0?ooo`<0003o00<0oooo0?l0003oool0WP3oool00780oooo +0P3o00001@3oool00?l00?ooo`000?l0ObXZ0?P0oooo00<000000?ooo`3oool0mP3oool0101o:RX0 +003o0?ooo`3o002N0?ooo`00L@3oool01`3o0000oooo0?ooo`00o`00oooo0000o`1o:RX0n@3oool4 +00000?H0oooo00<0003o0?ooo`3oool00P3o002L0?ooo`00K`3oool20?l000<0oooo00<00?l00000 +o`1o:RX0nP3oool00`000000oooo0?ooo`3h0?ooo`050000o`3oool0oooo0?ooo`3o0000V`3oool0 +06d0oooo0P3o00040?ooo`03003o00000?l0ObXZ0?/0oooo00<000000?ooo`3oool0n03oool00`00 +0?l0ObXZ0?ooo`020?ooo`030?l0003oool0oooo09P0oooo001/0?ooo`030?l0003oool0oooo00<0 +oooo00<00?l00?ooo`000?l0o03oool00`000000oooo0?ooo`3i0?ooo`050000o`1o:RX0oooo0?oo +o`3o0000VP3oool006/0oooo00<0o`000?ooo`3oool0103oool00`00o`00003o0?ooo`3l0?ooo`03 +0000003oool0oooo0?T0oooo00<0003o0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`2G0?ooo`00 +JP3oool00`3o0000oooo0?ooo`040?ooo`0307lZ:P000?l0oooo0?d0oooo00<000000?ooo`3oool0 +nP3oool01P000?l0oooo07lZ:P1o:RX0oooo0?l009P0oooo001Y0?ooo`030?l0003oool0oooo00@0 +oooo00<0ObXZ0000o`3oool0oP3oool00`000000oooo0?ooo`3j0?ooo`070000o`3oool0oooo0?oo +o`1o:RX0oooo0?l0002G0?ooo`00J@3oool00`3o0000oooo0?ooo`030?ooo`0307lZ:P000?l0oooo +0?l0oooo00<000000?ooo`3oool0n`3oool01`000?l0oooo0?ooo`3oool0ObXZ0?ooo`3o0000UP3o +ool006T0oooo00<0o`000?ooo`3oool00P3oool00`1o:RX0oooo0000o`3o0?ooo`40oooo00<00000 +0?ooo`3oool0n`3oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3oool0o`0009D0oooo001X0?oo +o`030?l0003oool0oooo0080oooo00<0ObXZ0?ooo`000?l0o`3oool20?ooo`@00000n`3oool00`00 +0?l0oooo0?ooo`020?ooo`0307lZ:P3oool0o`0009@0oooo001X0?ooo`070?l0003oool0oooo0?oo +o`1o:RX0oooo0000o`3o0?ooo`<0oooo00<000000?ooo`3oool0o03oool00`000?l0oooo0?ooo`03 +0?ooo`0307lZ:P3oool0o`0009<0oooo001X0?ooo`060?l0003oool0oooo0?ooo`1o:RX0003oo`3o +ool40?ooo`030000003oool0oooo0?d0oooo00<0003o0?ooo`3oool00`3oool00`1o:RX0oooo0?l0 +002B0?ooo`00I`3oool01`3o0000oooo0?ooo`3oool0ObXZ0?ooo`000?l0o`3oool40?ooo`030000 +003oool0oooo0?d0oooo00<0003o0?ooo`3oool00`3oool0101o:RX0oooo0?ooo`3o002A0?ooo`00 +I`3oool01P3o0000oooo0?ooo`1o:RX00?l00000ool0oooo1@3oool00`000000oooo0?ooo`3n0?oo +o`030000o`3oool0oooo00<0oooo00@0ObXZ0?ooo`00o`00o`00T03oool006L0oooo00D0o`000?oo +o`1o:RX00?l00000o`3o0?ooo`H0oooo00<000000?ooo`3oool0o`3oool00`000?l0oooo0?ooo`03 +0?ooo`0407lZ:P3oool00?l00?l008l0oooo001W0?ooo`040?l0001o:RX00?l00000ool0oooo1`3o +ool00`000000oooo0?ooo`3o0?ooo`030000o`3oool0oooo00@0oooo00<0ObXZ0?ooo`3o0000S`3o +ool006L0oooo10000?oh0?ooo`D000002@3oool00`000000oooo0?ooo`3o0?ooo`40oooo00<0003o +0?ooo`3oool0103oool00`1o:RX00?l00?l0002>0?ooo`00IP3oool50000ooX0oooo00<000000?oo +o`3oool02@3oool00`000000oooo0?ooo`3o0?ooo`40oooo00<0003o0?ooo`3oool01@3oool00`1o +:RX0o`000?ooo`2=0?ooo`00IP3oool50000ooX0oooo00<000000?ooo`3oool02@3oool600000?h0 +oooo00<0003o0?ooo`3oool0103oool00`1o:RX0oooo0?l0002=0?ooo`00I@3oool00`1o:RX0003o +0000o`030000oo80oooo100000040?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool0 +o`3oool20?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ0?ooo`3o0000S03oool006@0oooo00<0 +ObXZ0?ooo`00o`000`000?ok0?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool0o`3o +ool30?ooo`030000o`3oool0oooo00@0oooo00@0ObXZ0?ooo`00o`00o`00R`3oool006@0oooo00H0 +ObXZ0?ooo`00o`00003o0?ooo`3o003j0?ooo`8000002`3oool00`000000oooo0?ooo`3o0?ooo`<0 +oooo00<0003o0?ooo`3oool01@3oool0101o:RX0oooo003o003o002:0?ooo`00H`3oool0101o:RX0 +oooo003o00000?l20?ooo`030?l0003oool0oooo0?l0oooo1P3oool00`000000oooo0?ooo`3o0?oo +o`@0oooo00<0003o0?ooo`3oool01@3oool00`1o:RX0oooo0?l0002:0?ooo`00H`3oool0101o:RX0 +0?l00?ooo`000?l20?ooo`030?l0003oool0oooo0?l0oooo1P3oool00`000000oooo0?ooo`3o0?oo +o`@0oooo00<0003o0?ooo`3oool01P3oool00`1o:RX00?l00?l000290?ooo`00HP3oool01@1o:RX0 +oooo003o003oool0003o00<0oooo00<0o`000?ooo`3oool0o`3oool50?ooo`030000003oool0oooo +0?l0oooo1@3oool00`000?l0oooo0?ooo`050?ooo`0307lZ:P3oool0o`0008T0oooo001Q0?ooo`05 +07lZ:P3oool00?l00?ooo`000?l0103oool00`3o0000oooo0?ooo`3o0?ooo`D0oooo00<000000?oo +o`3oool0o`3oool50?ooo`030000o`3oool0oooo00H0oooo00<0ObXZ0?l0003oool0R03oool00600 +oooo00H0ObXZ0?ooo`3oool00?l00?ooo`000?l40?ooo`030?l0003oool0oooo0?l0oooo1@3oool0 +0`000000oooo0?ooo`3o0?ooo`H0oooo00<0003o0?ooo`3oool01@3oool00`1o:RX0oooo0?l00028 +0?ooo`00H03oool01@1o:RX0oooo0?ooo`00o`00003o00D0oooo00<0o`000?ooo`3oool0o`3oool5 +0?ooo`@00000o`3oool50?ooo`030000o`3oool0oooo00H0oooo00<0ObXZ003o003o0000Q`3oool0 +05l0oooo00H0ObXZ0?ooo`3oool00?l00?ooo`000?l60?ooo`030?l0003oool0oooo0?l0oooo103o +ool00`000000oooo0?ooo`3o0?ooo`L0oooo00<0003o0?ooo`3oool01@3oool0101o:RX0oooo003o +003o00260?ooo`00G`3oool01@1o:RX0oooo0?ooo`00o`00003o00L0oooo00<0o`000?ooo`3oool0 +o`3oool40?ooo`030000003oool0oooo0?l0oooo1`3oool00`000?l0oooo0?ooo`060?ooo`0307lZ +:P00o`00o`0008H0oooo001N0?ooo`0607lZ:P3oool0oooo003o003oool0003o203oool00`3o0000 +oooo0?ooo`3o0?ooo`<0oooo00<000000?ooo`3oool0o`3oool80?ooo`030000o`3oool0oooo00D0 +oooo00@0ObXZ0?ooo`00o`00o`00Q@3oool005h0oooo00H0ObXZ0?ooo`3oool00?l00?ooo`000?l8 +0?ooo`030?l0003oool0oooo0?l0oooo0`3oool00`000000oooo0?ooo`3o0?ooo`T0oooo00<0003o +0?ooo`3oool01@3oool00`1o:RX00?l00?l000250?ooo`00G@3oool01P1o:RX0oooo0?ooo`00o`00 +oooo0000o`X0oooo00<0o`000?ooo`3oool0o`3oool20?ooo`030000003oool0oooo0?l0oooo2@3o +ool00`000?l0oooo0?ooo`050?ooo`0307lZ:P00o`00o`0008D0oooo001M0?ooo`0607lZ:P3oool0 +oooo003o003oool0003o2P3oool00`3o0000oooo0?ooo`3o0?ooo`80oooo00<000000?ooo`3oool0 +o`3oool:0?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ003o003o0000Q03oool005`0oooo00H0 +ObXZ0?ooo`3oool0oooo003o00000?l<0?ooo`030?l0003oool0oooo0?l0oooo0@3oool00`000000 +oooo0?ooo`3o0?ooo`X0oooo00<0003o0?ooo`3oool01@3oool00`1o:RX00?l00?l000240?ooo`00 +G03oool01P1o:RX0oooo0?ooo`00o`00oooo0000o``0oooo00<0o`000?ooo`3oool0o`3oool10?oo +o`@00000o`3oool:0?ooo`030000o`3oool0oooo00D0oooo00<0ObXZ003o003o0000P`3oool005/0 +oooo00L0ObXZ0?ooo`3oool0oooo003o003oool0003o00d0oooo00<0o`000?ooo`3oool0o`3oool0 +0`000000oooo0?ooo`3o0?ooo`/0oooo00<0003o0?ooo`3oool01@3oool00`1o:RX00?l00?l00023 +0?ooo`00F`3oool01P1o:RX0oooo0?ooo`00o`00oooo0000o`h0oooo00<0o`000?ooo`3oool0o`3o +ool00`000000oooo0?ooo`3o0?ooo``0oooo00<0003o0?ooo`3oool01@3oool00`1o:RX0o`000?oo +o`220?ooo`00FP3oool01`1o:RX0oooo0?ooo`3oool00?l00?ooo`000?l03`3oool00`3o0000oooo +0?ooo`3n0?ooo`030000003oool0oooo0?l0oooo303oool00`000?l0oooo0?ooo`050?ooo`0307lZ +:P00o`00o`000880oooo001J0?ooo`0607lZ:P3oool0oooo0?ooo`00o`00003o403oool00`3o0000 +oooo0?ooo`3n0?ooo`030000003oool0oooo0?l0oooo3@3oool00`000?l0oooo0?ooo`050?ooo`03 +07lZ:P3o0000oooo0840oooo001I0?ooo`0707lZ:P3oool0oooo0?ooo`00o`00oooo0000o`0A0?oo +o`030?l0003oool0oooo0?d0oooo00<000000?ooo`3oool0o`3oool=0?ooo`030000o`3oool0oooo +00D0oooo00<0ObXZ003o003o0000P@3oool005T0oooo00L0ObXZ0?ooo`3oool0oooo003o003oool0 +003o0180oooo00<0o`000?ooo`3oool0o03oool00`000000oooo0?ooo`3o0?ooo`h0oooo00<0003o +0?ooo`3oool01@3oool00`1o:RX0o`000?ooo`200?ooo`00F@3oool01P1o:RX0oooo0?ooo`00o`00 +oooo0000oa<0oooo00<0o`000?ooo`3oool0o03oool00`000000oooo0?ooo`3o0?ooo`h0oooo00<0 +003o0?ooo`3oool01@3oool00`1o:RX0o`000?ooo`200?ooo`00F@3oool01P1o:RX0oooo0?ooo`00 +o`00oooo0000oa@0oooo00<0o`000?ooo`3oool0n`3oool00`000000oooo0?ooo`3o0?ooo`l0oooo +00<0003o0?ooo`3oool0103oool00`1o:RX0o`000?ooo`200?ooo`00F03oool01P1o:RX0oooo0?oo +o`00o`00oooo0000oaD0oooo00<0o`000?ooo`3oool0n`3oool400000?l0oooo3P3oool00`000?l0 +oooo0?ooo`040?ooo`0307lZ:P3o0000oooo0800oooo001H0?ooo`0607lZ:P0000000000003o003o +ool0003o5P3oool00`3o0000oooo0?ooo`1^0?ooo`@00000R03oool00`000000oooo0?ooo`290?oo +o`@00000PP3oool00`000?l0oooo0?ooo`040?ooo`0307lZ:P3o0000000000800000O@3oool005P0 +oooo00H0ObXZ0?ooo`0000000?l00?ooo`000?lG0?ooo`030?l0003oool0oooo06d0oooo00<00000 +0?ooo`3oool0R@3oool00`000000oooo0?ooo`290?ooo`030000003oool0oooo08@0oooo00<0003o +0?ooo`3oool00`3oool0101o:RX0o`000?ooo`00001n0?ooo`00E`3oool01P000000ObXZ00000000 +00000?l00000oaP0oooo00<0o`000?ooo`3oool0KP3oool00`000000oooo0?ooo`280?ooo`030000 +003oool0oooo08X0oooo00<000000?ooo`3oool0P`3oool00`000?l0oooo0?ooo`030?ooo`030000 +001o:RX0000000800000O@3oool00540oooo100000020?ooo`0607lZ:P3oool0oooo00000000o`00 +003o6@3oool00`3o0000oooo0?ooo`1V0?ooo`@00000103oool00`000000oooo0?ooo`270?ooo`03 +0000003oool0oooo08/0oooo00<000000?ooo`3oool0P`3oool00`000?l0oooo0?ooo`020?ooo`04 +0000001o:RX0oooo000007h0oooo001G0?ooo`0507lZ:P000000oooo003o00000?l06`3oool00`3o +0000oooo0?ooo`1[0?ooo`040000003oool0oooo000008P0oooo00<000000?ooo`3oool0R@3oool0 +10000000oooo0?ooo`0000240?ooo`030000o`3oool0oooo00<0oooo00<0ObXZ0?ooo`000000OP3o +ool005L0oooo00D0ObXZ0?ooo`0000000?l00000o`0L0?ooo`030?l0003oool0oooo06/0oooo0P00 +00290?ooo`030000003oool0oooo08X0oooo0P0000260?ooo`030000o`3oool0oooo0080oooo00<0 +ObXZ0?l000000000OP3oool005L0oooo00@0ObXZ0?ooo`00o`00003o7@3oool00`3o0000oooo0?oo +o`3f0?ooo`030000003oool0oooo0?l0oooo4`3oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3o +0000oooo07h0oooo001G0?ooo`0407lZ:P3oool00?l00000oah0oooo00<0o`000?ooo`3oool0m@3o +ool00`000000oooo0?ooo`3o0?oooa@0oooo00H0003o0?ooo`3oool0oooo07lZ:P3o001o0?ooo`00 +E`3oool0101o:RX0oooo003o00000?lO0?ooo`030?l0003oool0oooo0?@0oooo1000003o0?oooa<0 +oooo00H0003o0?ooo`3oool0oooo07lZ:P3o001o0?ooo`00E`3oool00`1o:RX00?l00000o`0Q0?oo +o`030?l0003oool0oooo0?<0oooo00<000000?ooo`3oool0o`3ooolE0?ooo`050000o`3oool0oooo +0?ooo`1o:RX0O`3oool005H0oooo00@0ObXZ0?ooo`00o`00003o8@3oool00`3o0000oooo0?ooo`3c +0?ooo`030000003oool0oooo0?l0oooo5@3oool01@000?l0oooo0?ooo`3oool0ObXZ07l0oooo001; +0?ooo`80o`002@3oool00`1o:RX0oooo0000o`0S0?ooo`030?l0003oool0oooo0?80oooo00<00000 +0?ooo`3oool0o`3ooolF0?ooo`040000o`3oool0oooo07lZ:Wl0oooo001:0?ooo`030?l0003oool0 +oooo00<0o`001P3oool00`1o:RX0oooo0000o`0T0?ooo`030?l0003oool0oooo0?40oooo00<00000 +0?ooo`3oool0o`3ooolF0?ooo`040000o`3oool0oooo07lZ:Wl0oooo001:0?ooo`030?l0003oool0 +oooo00<0oooo0P3o00040?ooo`0307lZ:P3oool0003o02D0oooo00<0o`000?ooo`3oool0l03oool0 +0`000000oooo0?ooo`3o0?oooaL0oooo00<0003o0?ooo`1o:RX0O`3oool004/0oooo00<0o`000?oo +o`3oool0103oool01P3o0000oooo0?ooo`3oool0ObXZ0000obH0oooo00<0o`000?ooo`3oool0l03o +ool00`000000oooo0?ooo`3o0?oooaL0oooo00<0003o0?ooo`1o:RX0O`3oool004/0oooo00<0o`00 +0?ooo`3oool01@3oool00`3o0000oooo0000o`020000obL0oooo00<0o`000?ooo`3oool0k`3oool0 +0`000000oooo0?ooo`3o0?oooaP0oooo0`000?mJ0?ooo`030000003oool0oooo00P0oooo0P000000 +0`3oool000000000000D0?ooo`00B`3oool00`3o0000oooo0?ooo`060?ooo`D0003o9`3oool00`3o +0000oooo0?ooo`3^0?ooo`030000003oool0oooo0?l0oooo5`3oool50000oeX0oooo00<000000?oo +o`3oool0203oool00`000000oooo0000000E0?ooo`003`3ooolm000000030?l000000000000000D0 +00001@000?lW000000030?l00000000000000?l00000o`000009000000D0003oA@00000F0?ooo`80 +00002@3oool00`000000oooo0?ooo`0D0?ooo`00<`3oool00`000000oooo0?ooo`0F0?ooo`030?l0 +003oool0oooo00D0oooo1@000?lP0?ooo`030000003oool0oooo00D0oooo00<0o`000?ooo`3oool0 +6@3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo0240oooo00<000000?ooo`3oool0 +803oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo0240oooo00<000000?ooo`3oool0 +803oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool0 +803oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool0 +8@3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo01h0oooo1@000?lQ0?ooo`030000 +003oool0oooo03H0oooo00<000000?ooo`3oool01`3oool2000000030?ooo`000000000001@0oooo +000c0?ooo`030000003oool0oooo01L0oooo00<0o`000?ooo`3oool01@3oool30000o`030?l0003o +ool0oooo01h0oooo00<000000?ooo`3oool01P3oool00`3o0000oooo0?ooo`0H0?ooo`030000003o +ool0oooo0200oooo00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0P0?ooo`030000003o +ool0oooo0200oooo00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0P0?ooo`030000003o +ool0oooo0240oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003o +ool0oooo0240oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0Q0?ooo`030000003o +ool0oooo0200oooo00<000000?ooo`3oool07`3oool30000ob80oooo00<000000?ooo`3oool0=@3o +ool00`000000oooo0?ooo`0Q0?ooo`00<`3oool00`000000oooo0?ooo`0H0?ooo`030?l0003oool0 +oooo00D0oooo00<0ObXZ0000o`3oool00P3o000N0?ooo`030000003oool0oooo00L0oooo00<0o`00 +0?ooo`3oool05`3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo0240oooo00<00000 +0?ooo`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo0240oooo00<00000 +0?ooo`3oool0803oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0200oooo00<00000 +0?ooo`3oool0803oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0200oooo00<00000 +0?ooo`3oool08@3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo01l0oooo00<0003o +07lZ:P3oool08P3oool00`000000oooo0?ooo`1I0?ooo`00CP3oool00`3o0000oooo0?ooo`050?oo +o`0307lZ:P000?l0oooo0080oooo00<0o`000?ooo`3oool09@3oool00`3o0000oooo0?ooo`1N0?oo +o`030000003oool0oooo08X0oooo00<000000?ooo`3oool0R`3oool00`000000oooo0?ooo`280?oo +o`030000o`3oool0ObXZ07l0oooo001?0?ooo`030?l0003oool0oooo00@0oooo00<0ObXZ0000o`3o +ool00`3oool00`3o0000oooo0?ooo`0U0?ooo`030?l0003oool0oooo0>X0oooo00<000000?ooo`3o +ool0o`3ooolG0?ooo`030000o`3oool0ObXZ07l0oooo001?0?ooo`030?l0003oool0oooo00@0oooo +00<0ObXZ0000o`3oool0103oool00`3o0000oooo0?ooo`0U0?ooo`030?l0003oool0oooo0>T0oooo +00<000000?ooo`3oool0o`3ooolG0?ooo`030000o`3oool0ObXZ07l0oooo001@0?ooo`030?l0003o +ool0oooo00<0oooo00<0ObXZ0000o`3oool01@3oool00`3o0000oooo0?ooo`0T0?ooo`030?l0003o +ool0oooo0>T0oooo00<000000?ooo`3oool0o`3ooolF0?ooo`040000o`3oool0o`0007lZ:Wl0oooo +001A0?ooo`030?l0003oool0oooo00<0oooo00<0003o0?ooo`3oool01@3oool00`3o0000oooo0?oo +o`0T0?ooo`030?l0003oool0oooo0>P0oooo00<000000?ooo`3oool0o`3ooolF0?ooo`040000o`3o +ool0o`0007lZ:Wl0oooo001A0?ooo`030?l0003oool0oooo00<0oooo00<0ObXZ0000o`3oool01P3o +ool00`3o0000oooo0?ooo`0T0?ooo`030?l0003oool0oooo0>L0oooo1000003o0?oooaD0oooo00<0 +003o0?ooo`1o:RX0P03oool00580oooo00<0o`000?ooo`3oool00P3oool00`1o:RX0003o0?ooo`07 +0?ooo`80o`009@3oool00`3o0000oooo0?ooo`3V0?ooo`030000003oool0oooo0?l0oooo5@3oool0 +10000?l0oooo0?ooo`1o:RZ00?ooo`00DP3oool00`3o0000oooo0?ooo`020?ooo`0307lZ:P000?l0 +oooo00T0oooo00<0o`000?ooo`3oool08P3oool00`3o0000oooo0?ooo`3V0?ooo`030000003oool0 +oooo0?l0oooo5@3oool010000?l0oooo0?ooo`1o:RZ00?ooo`00D`3oool01P3o0000oooo0?ooo`3o +ool0ObXZ0000o`/0oooo00<0o`000?ooo`3oool08P3oool00`3o0000oooo0?ooo`3U0?ooo`030000 +003oool0oooo0?l0oooo503oool01@000?l0oooo0?ooo`3o0000ObXZ0800oooo001D0?ooo`050?l0 +003oool0oooo07lZ:P000?l0303oool00`3o0000oooo0?ooo`0R0?ooo`030?l0003oool0oooo0>@0 +oooo00<000000?ooo`3oool0o`3ooolD0?ooo`050000o`3oool0oooo0?l0001o:RX0P03oool005@0 +oooo00H0o`000?ooo`3oool0oooo07lZ:P000?l<0?ooo`030?l0003oool0oooo0280oooo00<0o`00 +0?ooo`3oool0h`3oool00`000000oooo0?ooo`3o0?oooa@0oooo00D0003o0?ooo`3oool0o`0007lZ +:P200?ooo`00E@3oool01@3o0000oooo0?ooo`1o:RX0003o00d0oooo00<0o`000?ooo`3oool08@3o +ool00`3o0000oooo0?ooo`3S0?ooo`030000003oool0oooo0?l0oooo4`3oool01P000?l0oooo0?oo +o`3oool0o`0007lZ:X00oooo001E0?ooo`050?l0003oool0oooo07lZ:P000?l03P3oool20?l00280 +oooo00<0o`000?ooo`3oool0hP3oool00`000000oooo0?ooo`3o0?oooa<0oooo00D0003o0?ooo`3o +ool0o`0007lZ:P210?ooo`00EP3oool0103o0000oooo07lZ:P000?l@0?ooo`030?l0003oool0oooo +0200oooo00<0o`000?ooo`3oool0h@3oool00`000000oooo0?ooo`3o0?oooa80oooo00H0003o0?oo +o`3oool0oooo0?l0001o:RZ10?ooo`00E`3oool00`3o0000ObXZ0000o`0A0?ooo`030?l0003oool0 +oooo0200oooo00<0o`000?ooo`3oool0h03oool400000?l0oooo4@3oool01@000?l0oooo0?ooo`3o +ool0ObXZ0880oooo001G0?ooo`030?l0003oool0003o0180oooo00<0o`000?ooo`3oool07`3oool0 +0`3o0000oooo0?ooo`3P0?ooo`030000003oool0oooo0?l0oooo4P3oool01@000?l0oooo0?ooo`3o +0000ObXZ0880oooo001H0?ooo`040?l000000?l0003o0000oa40oooo00<0o`000?ooo`3oool07`3o +ool00`3o0000oooo0?ooo`3O0?ooo`030000003oool0oooo0?l0oooo4@3oool01P000?l0oooo0?oo +o`3oool0o`0007lZ:X80oooo001H0?ooo`D0003o4@3oool00`3o0000oooo0?ooo`0O0?ooo`030?l0 +003oool0oooo0=h0oooo00<000000?ooo`3oool0o`3ooolA0?ooo`060000o`3oool0oooo0?l0003o +ool0ObXZPP3oool005P0oooo1@000?lB0?ooo`80o`00803oool00`3o0000oooo0?ooo`3M0?ooo`03 +0000003oool0oooo0?l0oooo403oool01P000?l0oooo0?ooo`3oool0o`0007lZ:X<0oooo001H0?oo +o`D0003o503oool00`3o0000oooo0?ooo`0N0?ooo`030?l0003oool0oooo0=`0oooo00<000000?oo +o`3oool0o`3oool@0?ooo`060000o`3oool0oooo003o003o0000ObXZP`3oool005T0oooo0`000?lF +0?ooo`030?l0003oool0oooo01h0oooo00<0o`000?ooo`3oool0f`3oool00`000000oooo0?ooo`3o +0?oooa00oooo00D0003o0?ooo`3oool0o`0007lZ:P240?ooo`00FP3oool00`00o`00ObXZ0000o`0F +0?ooo`030?l0003oool0oooo01d0oooo00<0o`000?ooo`3oool0f`3oool00`000000oooo0?ooo`3o +0?ooo`l0oooo00H0003o0?ooo`3oool0oooo0?l0001o:RZ40?ooo`00F`3oool00`1o:RX0o`000000 +o`0F0?ooo`030?l0003oool0oooo01d0oooo00<0o`000?ooo`3oool0fP3oool00`000000oooo0?oo +o`3o0?ooo`l0oooo00D0003o0?ooo`3oool0o`0007lZ:P250?ooo`00F`3oool01000o`00ObXZ0?l0 +00000?lF0?ooo`030?l0003oool0oooo01d0oooo00<0o`000?ooo`3oool0f@3oool400000?l0oooo +3P3oool01@000?l0oooo0?ooo`3o0000ObXZ08D0oooo001K0?ooo`04003o001o:RX0o`000000oaL0 +oooo00<0o`000?ooo`3oool07@3oool00`3o0000oooo0?ooo`3H0?ooo`030000003oool0oooo0?l0 +oooo3P3oool01@000?l0oooo0?ooo`3o0000ObXZ08H0oooo001L0?ooo`04003o001o:RX0o`000000 +oaL0oooo0P3o000M0?ooo`030?l0003oool0oooo0=P0oooo00<000000?ooo`3oool0o`3oool>0?oo +o`050000o`3oool0oooo0?l0001o:RX0QP3oool005`0oooo00D00?l007lZ:P3oool0o`000000o`0H +0?ooo`030?l0003oool0oooo01/0oooo00<0o`000?ooo`3oool0e`3oool00`000000oooo0?ooo`3o +0?ooo`d0oooo00D0003o0?ooo`3oool0oooo07lZ:P270?ooo`00G@3oool01000o`00ObXZ0?l00000 +0?lI0?ooo`030?l0003oool0oooo01/0oooo00<0o`000?ooo`3oool0eP3oool00`000000oooo0?oo +o`3o0?ooo`d0oooo00D0003o0?ooo`3oool0o`0007lZ:P270?ooo`00G@3oool01@00o`00ObXZ0?oo +o`3o0000003o01T0oooo00<0o`000?ooo`3oool06`3oool00`3o0000oooo0?ooo`3E0?ooo`030000 +003oool0oooo0?l0oooo3@3oool010000?l0oooo0?ooo`1o:RZ80?ooo`00GP3oool01@00o`00ObXZ +0?l0003oool0003o01T0oooo00<0o`000?ooo`3oool06P3oool00`3o0000oooo0?ooo`3E0?ooo`03 +0000003oool0oooo0?l0oooo303oool01@000?l0oooo0?ooo`3o0000ObXZ08P0oooo001N0?ooo`05 +003o001o:RX0oooo0?l000000?l06P3oool00`3o0000oooo0?ooo`0J0?ooo`030?l0003oool0oooo +0=@0oooo00<000000?ooo`3oool0o`3oool<0?ooo`040000o`3oool0oooo07lZ:XT0oooo001N0?oo +o`06003o003oool0ObXZ0?ooo`3o0000003o6P3oool20?l001/0oooo00<0o`000?ooo`3oool0d`3o +ool400000?l0oooo2P3oool01@000?l0oooo0?ooo`3o0000ObXZ08T0oooo001O0?ooo`06003o001o +:RX0oooo0?l0003oool0003o6`3oool00`3o0000oooo0?ooo`0I0?ooo`030?l0003oool0oooo0=80 +oooo00<000000?ooo`3oool0o`3oool;0?ooo`040000o`3oool0o`0007lZ:XX0oooo001P0?ooo`06 +003o001o:RX0oooo0?l0003oool0003o6`3oool00`3o0000oooo0?ooo`0H0?ooo`030?l0003oool0 +oooo0=80oooo00<000000?ooo`3oool0o`3oool;0?ooo`040000o`3o0000oooo07lZ:XX0oooo001Q +0?ooo`05003o001o:RX0oooo0?l000000?l0703oool00`3o0000oooo0?ooo`0H0?ooo`030?l0003o +ool0oooo0=40oooo00<000000?ooo`3oool0o`3oool:0?ooo`040000o`3oool0o`0007lZ:X/0oooo +001Q0?ooo`06003o003oool0ObXZ0?l0003oool0003o703oool00`3o0000oooo0?ooo`0H0?ooo`03 +0?l0003oool0oooo0=00oooo00<000000?ooo`3oool0o`3oool:0?ooo`040000o`3o0000oooo07lZ +:X/0oooo001R0?ooo`06003o001o:RX0oooo0?l0003oool0003o703oool20?l001T0oooo00<0o`00 +0?ooo`3oool0c`3oool00`000000oooo0?ooo`3o0?ooo`X0oooo00<0003o0?l0001o:RX0S03oool0 +0680oooo00H00?l00?ooo`1o:RX0oooo0?l000000?lN0?ooo`030?l0003oool0oooo01H0oooo00<0 +o`000?ooo`3oool0c`3oool00`000000oooo0?ooo`3o0?ooo`T0oooo00<0003o0?l0001o:RX0S@3o +ool006<0oooo00H00?l007lZ:P3oool0o`000?ooo`000?lN0?ooo`030?l0003oool0oooo01H0oooo +00<0o`000?ooo`3oool0`03oool5000000T0oooo00<000000?ooo`3oool0o`3oool70?ooo`<0003o +00<0ObXZ0?ooo`3oool0S03oool006@0oooo00H00?l007lZ:P3oool0o`000?ooo`000?lN0?ooo`03 +0?l0003oool0oooo01H0oooo00<0o`000?ooo`3oool0`@3oool00`000000oooo0?ooo`090?ooo`03 +0000003oool0oooo0?l0oooo1P3oool50000ohh0oooo001T0?ooo`06003o003oool0ObXZ0?l0003o +ool0003o7`3oool00`3o0000oooo0?ooo`0F0?ooo`030?l0003oool0oooo0<00oooo00<000000?oo +o`3oool02@3oool600000?l0oooo0`3oool50000ohh0oooo001U0?ooo`06003o003oool0ObXZ0?l0 +003oool0003o7`3oool20?l001H0oooo00<0o`000?ooo`3oool0`03oool00`000000oooo0?ooo`09 +0?ooo`030000003oool0oooo0?l0oooo1P3oool50000ohh0oooo001V0?ooo`03003o001o:RX0o`00 +0080oooo00<0003o0?ooo`3oool07P3oool00`3o0000oooo0?ooo`0D0?ooo`030?l0003oool0oooo +0;l0oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`3o0?ooo`D0oooo1@000?n?0?oo +o`00I`3oool00`00o`00ObXZ0?ooo`020?ooo`030000o`3oool0oooo01h0oooo00<0o`000?ooo`3o +ool0503oool00`3o0000oooo0?ooo`2m0?ooo`8000002`3oool00`000000oooo0?ooo`3o0?ooo`@0 +oooo00@0003o0?l0003oool0ObXZT@3oool006L0oooo00<00?l00?ooo`1o:RX00P3oool00`000?l0 +oooo0?ooo`0O0?ooo`030?l0003oool0oooo01@0oooo00<0o`000?ooo`3oool0b@3oool00`000000 +oooo0?ooo`3o0?ooo`<0oooo00@0003o0?l0003oool0ObXZTP3oool006P0oooo00<00?l00?l0001o +:RX00P3oool00`000?l0oooo0?ooo`0O0?ooo`030?l0003oool0oooo01<0oooo00<0o`000?ooo`3o +ool0b@3oool00`000000oooo0?ooo`3o0?ooo`80oooo00@0003o0?ooo`3o0000ObXZT`3oool006P0 +oooo00@00?l00?ooo`3o0000ObXZ0P3oool00`000?l0oooo0?ooo`0O0?ooo`80o`00503oool00`3o +0000oooo0?ooo`380?ooo`030000003oool0oooo0?l0oooo0@3oool010000?l0oooo0?l0001o:RZD +0?ooo`00J@3oool01P00o`00oooo0?l0001o:RX0oooo0000ob<0oooo00<0o`000?ooo`3oool04P3o +ool00`3o0000oooo0?ooo`370?ooo`030000003oool0oooo0?h0oooo0P000?l0103oool0o`000?oo +o`1o:RZD0?ooo`00JP3oool00`00o`00o`0007lZ:P020?ooo`030000o`3oool0oooo0240oooo00<0 +o`000?ooo`3oool04P3oool00`3o0000oooo0?ooo`360?ooo`030000003oool0oooo0?d0oooo00H0 +003o0?ooo`3oool0o`00003o001o:RZE0?ooo`00J`3oool00`00o`00o`0007lZ:P020?ooo`030000 +o`3oool0oooo0240oooo00<0o`000?ooo`3oool04P3oool00`3o0000oooo0?ooo`350?ooo`@00000 +n`3oool01P000?l0oooo0?ooo`3o00000?l007lZ:YH0oooo001/0?ooo`030?l0003oool0ObXZ0080 +oooo00<0003o0?ooo`3oool08@3oool00`3o0000oooo0?ooo`0A0?ooo`030?l0003oool0oooo00?ooo`030?l0003oool0 +oooo0;l0oooo00<000000?ooo`3oool0lP3oool20000o`<0oooo00<0o`0007lZ:P3oool0WP3oool0 +07@0oooo00@0o`00003o00000?l0ObXZ9`3oool00`3o0000oooo0?ooo`0>0?ooo`030?l0003oool0 +oooo0;h0oooo1000003`0?ooo`030000o`3oool0oooo0080oooo00<0o`0007lZ:P3oool0W`3oool0 +07D0oooo00@0o`00003o00000?l0ObXZ9`3oool00`3o0000oooo0?ooo`0=0?ooo`030?l0003oool0 +oooo0;h0oooo00<000000?ooo`3oool0l03oool00`000?l0oooo0?ooo`020?ooo`030?l0001o:RX0 +oooo0:00oooo001f0?ooo`030?l00000o`00003o0080003o9P3oool20?l000h0oooo00<0o`000?oo +o`3oool0_@3oool00`000000oooo0?ooo`3_0?ooo`030000o`3oool0oooo0080oooo00<0o`0007lZ +:P3oool0X@3oool007L0oooo1@000?lW0?ooo`030?l0003oool0oooo00`0oooo00<0o`000?ooo`3o +ool0_03oool00`000000oooo0?ooo`3^0?ooo`030000o`3oool0oooo0080oooo00<0o`0007lZ:P3o +ool0XP3oool007L0oooo1@000?lX0?ooo`030?l0003oool0oooo00/0oooo00<0o`000?ooo`3oool0 +_03oool00`000000oooo0?ooo`3/0?ooo`80003o103oool00`3o0000ObXZ0?ooo`2S0?ooo`00M`3o +ool50000o`0307lZ:P3oool0oooo02H0oooo0P3o000<0?ooo`030?l0003oool0oooo0;/0oooo00<0 +00000?ooo`3oool0j`3oool00`000?l0oooo0?ooo`020?ooo`80o`0000<0ObXZ0?ooo`3oool0X`3o +ool007P0oooo0`000?l0103o0000003o0000o`1o:RXX0?ooo`030?l0003oool0oooo00X0oooo00<0 +o`000?ooo`3oool0^P3oool00`000000oooo0?ooo`3Z0?ooo`030000o`3oool0oooo0080oooo00<0 +o`00003o001o:RX0YP3oool007d0oooo00@0o`000000o`1o:RX0ObXZ9`3oool00`3o0000oooo0?oo +o`090?ooo`030?l0003oool0oooo0;X0oooo00<000000?ooo`3oool0j@3oool00`000?l0oooo0?oo +o`020?ooo`030?l0001o:RX0ObXZ0:L0oooo001n0?ooo`04003o00000?l0003o07lZ:RL0oooo0P3o +000:0?ooo`030?l0003oool0oooo0;T0oooo00<000000?ooo`3oool0j03oool00`000?l0oooo0?oo +o`020?ooo`80ObXZZ@3oool007l0oooo00@00?l00?l000000?l0ObXZ:03oool00`3o0000oooo0?oo +o`070?ooo`030?l0003oool0oooo0;T0oooo1000003U0?ooo`80003o103oool00`1o:RX0oooo0?oo +o`2Y0?ooo`00P@3oool0103o0000003o0000o`1o:RXW0?ooo`030?l0003oool0oooo00L0oooo00<0 +o`000?ooo`3oool0^03oool00`000000oooo0?ooo`3U0?ooo`030000o`3oool0oooo00<0oooo00<0 +ObXZ0?ooo`3oool0ZP3oool00880oooo00@0o`000?ooo`000?l0003o9`3oool20?l000L0oooo00<0 +o`000?ooo`3oool0^03oool00`000000oooo0?ooo`3T0?ooo`030000o`3oool0oooo0080oooo00<0 +o`0007lZ:P3oool0[03oool008<0oooo0P3o00000`3oool0003o0?ooo`0W0?ooo`030?l0003oool0 +oooo00D0oooo00<0o`000?ooo`3oool0]`3oool00`000000oooo0?ooo`3S0?ooo`030000o`3oool0 +oooo0080oooo0P1o:RZ^0?ooo`00Q@3oool20?l00080003o9`3oool20?l000D0oooo00<0o`000?oo +o`3oool0]`3oool00`000000oooo0?ooo`3R0?ooo`030000o`3oool0oooo0080oooo00<0ObXZ0?oo +o`3oool0[P3oool008L0oooo0P3o00020000obL0oooo00<0o`000?ooo`3oool00`3oool00`3o0000 +oooo0?ooo`2f0?ooo`030000003oool0oooo0>00oooo0P000?l30?ooo`80ObXZ/@3oool008T0oooo +0P3o00000`000?l0oooo0?ooo`0U0?ooo`80o`000`3oool00`3o0000oooo0?ooo`2f0?ooo`030000 +003oool0oooo0=l0oooo00@0003o0?ooo`3oool0oooo0P1o:RX00`3o0000oooo0?ooo`2`0?ooo`00 +RP3oool01000o`00o`000000o`000?lW0?ooo`<0o`00^@3oool00`000000oooo0?ooo`3N0?ooo`06 +0000o`3oool0oooo0?ooo`1o:RX0o`00]03oool008/0oooo00<00?l00?l0001o:RX00P000?lW0?oo +o`030?l0003oool0oooo0;L0oooo00<000000?ooo`3oool0g@3oool01@000?l0oooo0?ooo`3o0000 +ObXZ0;H0oooo002<0?ooo`800?l000<0o`0007lZ:P000?l0h03oool400000=/0oooo00<0003o0?oo +o`3oool00P1o:RZg0?ooo`00SP3oool00`00o`00o`0007lZ:P020000omh0oooo00<000000?ooo`3o +ool0fP3oool20000o`030?ooo`1o:RX0ObXZ0;T0oooo002@0?ooo`04003o003o0000ObXZ0000omd0 +oooo00<000000?ooo`3oool0f@3oool01@000?l0oooo07lZ:P1o:RX0o`000;X0oooo002B0?ooo`04 +003o003o0000003o0000om/0oooo00<000000?ooo`3oool0f03oool010000?l0oooo07lZ:P3o002l +0?ooo`00U03oool01000o`00ObXZ0000o`000?oI0?ooo`030000003oool0oooo0=L0oooo00@0003o +07lZ:P1o:RX0o`00_@3oool009H0oooo00<00?l007lZ:P000?l0f03oool00`000000oooo0?ooo`3F +0?ooo`030000o`1o:RX0o`000;l0oooo002H0?ooo`040?l000000?l0003o0?ooo`<0003oa03oool4 +000000X0oooo00<000000?ooo`3oool0d@3oool50000o`030?l0003oool0oooo0;l0oooo002J0?oo +o`030?l000000?l0003o00<0003o``3oool00`000000oooo0?ooo`0;0?ooo`030000003oool0oooo +0=00oooo1@000?o30?ooo`00V`3oool50000ol@0oooo00<000000?ooo`3oool02P3oool600000/0oooo00360?ooo`<0o`000`1o:RX20?ooo`<0003oX03oool00`000000oooo0?ooo`2O0?ooo`<0 +003o0P3oool207lZ:P80o`00l03oool000?ooo`<0o`00101o:RX00`00o`00oooo0?ooo`3o0?ooob40oooo003o0?ooo`@0 +ObXZ0`3o00000`3oool0003o0000o`040000of@0oooo00<000000?ooo`3oool0D03oool80000o`h0 +oooo1`3o000407lZ:_l0oooo:03oool00?l0oooo103oool807lZ:P80o`001@000?mO0?ooo`030000 +003oool0oooo04P0oooo20000?lB0?ooo`80o`002@1o:R[o0?ooob`0oooo003o0?ooo`/0oooo00<0 +0?l007lZ:P1o:RX00P1o:RX20?l000030?ooo`000?l0003o00@0003oF@3oool400000400oooo1`00 +0?lB0?ooo`H0o`00101o:RX3003o0?l0oooo0000oc40oooo00<000000?ooo`3oool06@3oool80000oa<0oooo1P3o +000=07lZ:_l0ooooDP3oool00?l0oooo:P3oool30000o`P0oooo0P3o000807lZ:P030?l0003oool0 +003o00d0003o8`3oool00`000000oooo0?ooo`0A0?ooo`P0003o403oool80?l000T0ObXZ0`00o`3o +0?oooe`0oooo003o0?ooocl0oooo3P1o:RX2003o00h0003o203oool2000000X0oooo0`000?l:0?oo +o`P0003o303oool70?l000d0ObXZo`3ooomX0?ooo`00o`3ooom<0?ooo`030?l0001o:RX0ObXZ00h0 +ObXZ3P000?l50?ooo`D0003o00<0oooo0000o`000?l01P000?l40?l001L0ObXZ00<00?l00?ooo`3o +ool0o`3ooomb0?ooo`00o`3ooomO0?ooo`@0o`00201o:RX;0000o``0ObXZ00<00?l00?ooo`3oool0 +o`3ooon90?ooo`00o`3ooomW0?ooo`030000003oool0oooo00H0oooo1@000?oo0?oooiT0oooo003o +0?ooof@0oooo00@000000?ooo`3oool000002@3oool30000ool0ooooVP3oool00?l0ooooI@3oool2 +000000/0oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000003oool0oooo +0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oooiT0oooo003o0?ooog80oooo +00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000003oool0oooo0?l0ooooV@3o +ool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oooiT0oooo003o0?ooog80oooo1000003o0?oo +oiP0oooo003o0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000 +003oool0oooo0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oooiT0oooo003o +0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000003oool0oooo +0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oooiT0oooo003o0?ooog80oooo +00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`@00000o`3ooonH0?ooo`00o`3ooomb +0?ooo`030000003oool0oooo0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oo +oiT0oooo003o0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000 +003oool0oooo0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oooiT0oooo003o +0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000003oool0oooo +0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oooiT0oooo003o0?ooog80oooo +1000003o0?oooiP0oooo003o0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb +0?ooo`030000003oool0oooo0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oo +oiT0oooo003o0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000 +003oool0oooo0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oooiT0oooo003o +0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000003oool0oooo +0?l0ooooV@3oool00?l0ooooLP3oool400000?l0ooooV03oool00?l0ooooLP3oool00`000000oooo +0?ooo`3o0?oooiT0oooo003o0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb +0?ooo`030000003oool0oooo0?l0ooooV@3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oo +oiT0oooo003o0?ooog80oooo00<000000?ooo`3oool0o`3ooonI0?ooo`00o`3ooomb0?ooo`030000 +003oool0oooo0?l0ooooV@3oool00?l0ooooIP3oool3000000T0oooo00<000000?ooo`3oool0o`3o +oonI0?ooo`00o`3ooomW0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3oool0o`3ooonI +0?ooo`00o`3ooomT0?ooo`D000002@3oool600000?l0ooooUP3oool00?l0ooooI03oool010000000 +oooo0?ooo`00003o0?ooojH0oooo003o0?ooofD0oooo00<000000?ooo`000000o`3ooonV0?ooo`00 +o`3ooomV0?ooo`800000o`3ooonV0?ooo`00o`3ooooo0?ooool0oooo3`3oool00?l0ooooo`3ooooo +0?ooo`l0oooo003o0?ooool0ooooo`3oool?0?ooo`00o`3ooooo0?ooool0oooo3`3oool00?l0oooo +o`3ooooo0?ooo`l0oooo003o0?ooool0ooooo`3oool?0?ooo`00o`3ooooo0?ooool0oooo3`3oool0 +0?l0ooooo`3ooooo0?ooo`l0oooo003o0?ooool0ooooo`3oool?0?ooo`00o`3ooooo0?ooool0oooo +3`3oool00?l0ooooo`3ooooo0?ooo`l0oooo003o0?ooool0ooooo`3oool?0?ooo`00o`3ooooo0?oo +ool0oooo3`3oool00?l0ooooo`3ooooo0?ooo`l0oooo003o0?ooool0ooooo`3oool?0?ooo`00o`3o +oooo0?ooool0oooo3`3oool00?l0ooooO03oool200000?l0ooooT03oool00?l0ooooO@3oool00`00 +0000oooo0?ooo`3o0?ooohh0oooo003o0?ooogh0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00 +o`3ooomm0?ooo`030000003oool000000?l0ooooSP3oool00?l0ooooO03oool010000000oooo0?oo +o`00003o0?ooohh0oooo003o0?ooog/0oooo0`0000000`3oool000000000003o0?ooohd0oooo003o +0?ooog00oooo00@000000?ooo`3oool00000o`3ooonJ0?ooo`00o`3oooma0?ooo`800000o`3ooonK +0?ooo`00o`3ooooo0?ooool0oooo3`3oool00?l0ooooo`3ooooo0?ooo`l0oooo003o0?ooool0oooo +o`3oool?0?ooo`00\ +\>"], + ImageRangeCache->{{{0, 779}, {389, 0}} -> {-5.22218, -4.10176, 0.0141273, \ +0.0226037}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]3\ +\[InvisibleSpace]" mit "\[InvisibleSpace]18\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 3, " mit ", 18, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.25 0.0625 [ +[.1 .2375 -6 -9 ] +[.1 .2375 6 0 ] +[.3 .2375 -6 -9 ] +[.3 .2375 6 0 ] +[.7 .2375 -3 -9 ] +[.7 .2375 3 0 ] +[.9 .2375 -3 -9 ] +[.9 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .0625 -12 -4.5 ] +[.4875 .0625 0 4.5 ] +[.4875 .125 -12 -4.5 ] +[.4875 .125 0 4.5 ] +[.4875 .1875 -12 -4.5 ] +[.4875 .1875 0 4.5 ] +[.4875 .3125 -6 -4.5 ] +[.4875 .3125 0 4.5 ] +[.4875 .375 -6 -4.5 ] +[.4875 .375 0 4.5 ] +[.4875 .4375 -6 -4.5 ] +[.4875 .4375 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .25 m +.1 .25625 L +s +[(-4)] .1 .2375 0 1 Mshowa +.3 .25 m +.3 .25625 L +s +[(-2)] .3 .2375 0 1 Mshowa +.7 .25 m +.7 .25625 L +s +[(2)] .7 .2375 0 1 Mshowa +.9 .25 m +.9 .25625 L +s +[(4)] .9 .2375 0 1 Mshowa +.125 Mabswid +.15 .25 m +.15 .25375 L +s +.2 .25 m +.2 .25375 L +s +.25 .25 m +.25 .25375 L +s +.35 .25 m +.35 .25375 L +s +.4 .25 m +.4 .25375 L +s +.45 .25 m +.45 .25375 L +s +.55 .25 m +.55 .25375 L +s +.6 .25 m +.6 .25375 L +s +.65 .25 m +.65 .25375 L +s +.75 .25 m +.75 .25375 L +s +.8 .25 m +.8 .25375 L +s +.85 .25 m +.85 .25375 L +s +.05 .25 m +.05 .25375 L +s +.95 .25 m +.95 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-4)] .4875 0 1 0 Mshowa +.5 .0625 m +.50625 .0625 L +s +[(-3)] .4875 .0625 1 0 Mshowa +.5 .125 m +.50625 .125 L +s +[(-2)] .4875 .125 1 0 Mshowa +.5 .1875 m +.50625 .1875 L +s +[(-1)] .4875 .1875 1 0 Mshowa +.5 .3125 m +.50625 .3125 L +s +[(1)] .4875 .3125 1 0 Mshowa +.5 .375 m +.50625 .375 L +s +[(2)] .4875 .375 1 0 Mshowa +.5 .4375 m +.50625 .4375 L +s +[(3)] .4875 .4375 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .0125 m +.50375 .0125 L +s +.5 .025 m +.50375 .025 L +s +.5 .0375 m +.50375 .0375 L +s +.5 .05 m +.50375 .05 L +s +.5 .075 m +.50375 .075 L +s +.5 .0875 m +.50375 .0875 L +s +.5 .1 m +.50375 .1 L +s +.5 .1125 m +.50375 .1125 L +s +.5 .1375 m +.50375 .1375 L +s +.5 .15 m +.50375 .15 L +s +.5 .1625 m +.50375 .1625 L +s +.5 .175 m +.50375 .175 L +s +.5 .2 m +.50375 .2 L +s +.5 .2125 m +.50375 .2125 L +s +.5 .225 m +.50375 .225 L +s +.5 .2375 m +.50375 .2375 L +s +.5 .2625 m +.50375 .2625 L +s +.5 .275 m +.50375 .275 L +s +.5 .2875 m +.50375 .2875 L +s +.5 .3 m +.50375 .3 L +s +.5 .325 m +.50375 .325 L +s +.5 .3375 m +.50375 .3375 L +s +.5 .35 m +.50375 .35 L +s +.5 .3625 m +.50375 .3625 L +s +.5 .3875 m +.50375 .3875 L +s +.5 .4 m +.50375 .4 L +s +.5 .4125 m +.50375 .4125 L +s +.5 .425 m +.50375 .425 L +s +.5 .45 m +.50375 .45 L +s +.5 .4625 m +.50375 .4625 L +s +.5 .475 m +.50375 .475 L +s +.5 .4875 m +.50375 .4875 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .25 m +.10033 .25343 L +.10068 .25686 L +.10105 .26028 L +.10148 .2637 L +.10197 .26712 L +.10253 .27053 L +.10319 .27393 L +.10395 .27733 L +.10485 .28071 L +.10588 .28409 L +.10705 .28745 L +.10835 .2908 L +.1098 .29413 L +.11138 .29744 L +.11309 .30073 L +.11492 .30399 L +.11689 .30724 L +.11898 .31045 L +.12119 .31363 L +.12352 .31678 L +.12597 .3199 L +.12853 .32298 L +.13121 .32602 L +.134 .32903 L +.13689 .33198 L +.13989 .3349 L +.143 .33776 L +.1462 .34058 L +.14951 .34335 L +.15291 .34606 L +.1564 .34872 L +.15998 .35133 L +.16365 .35389 L +.1674 .3564 L +.17123 .35886 L +.17512 .36128 L +.17909 .36366 L +.18313 .36599 L +.18723 .36828 L +.19138 .37053 L +.19559 .37275 L +.19985 .37492 L +.20415 .37706 L +.2085 .37917 L +.2129 .38124 L +.21733 .38328 L +.22181 .38528 L +.22633 .38724 L +.2309 .38916 L +Mistroke +.2355 .39105 L +.24014 .39291 L +.24482 .39472 L +.24953 .39649 L +.25429 .39823 L +.25907 .39993 L +.26389 .40159 L +.26875 .40321 L +.27363 .4048 L +.27855 .40634 L +.2835 .40784 L +.28848 .4093 L +.29349 .41072 L +.29852 .4121 L +.30358 .41344 L +.30867 .41474 L +.31378 .416 L +.31892 .41722 L +.32408 .4184 L +.32927 .41954 L +.33447 .42064 L +.33969 .4217 L +.34494 .42273 L +.3502 .42372 L +.35548 .42467 L +.36078 .42559 L +.36609 .42647 L +.37142 .42732 L +.37677 .42813 L +.38212 .4289 L +.38749 .42965 L +.39287 .43036 L +.39826 .43104 L +.40366 .43168 L +.40907 .4323 L +.41448 .43288 L +.41991 .43343 L +.42534 .43394 L +.43078 .43443 L +.43622 .43488 L +.44168 .43529 L +.44714 .43567 L +.4526 .43601 L +.45807 .43632 L +.46355 .4366 L +.46903 .43684 L +.47451 .43704 L +.48 .43721 L +.48549 .43734 L +.49098 .43743 L +Mistroke +.49648 .43748 L +.50197 .4375 L +.50747 .43748 L +.51297 .43742 L +.51847 .43733 L +.52397 .43719 L +.52947 .43702 L +.53497 .43682 L +.54047 .43657 L +.54596 .43629 L +.55145 .43597 L +.55693 .43561 L +.56241 .43521 L +.56789 .43478 L +.57335 .43432 L +.57881 .43381 L +.58427 .43327 L +.58971 .43269 L +.59514 .43208 L +.60057 .43143 L +.60598 .43074 L +.61139 .43001 L +.61678 .42926 L +.62216 .42846 L +.62753 .42763 L +.63288 .42676 L +.63822 .42586 L +.64354 .42492 L +.64885 .42394 L +.65415 .42293 L +.65942 .42189 L +.66468 .42081 L +.66992 .41969 L +.67514 .41854 L +.68034 .41735 L +.68552 .41613 L +.69068 .41487 L +.69581 .41358 L +.70093 .41226 L +.70602 .41089 L +.71109 .4095 L +.71613 .40807 L +.72114 .40659 L +.72611 .40509 L +.73106 .40354 L +.73596 .40195 L +.74083 .40033 L +.74566 .39866 L +.75045 .39695 L +.75519 .3952 L +Mistroke +.75989 .3934 L +.76453 .39156 L +.76913 .38968 L +.77367 .38775 L +.77816 .38577 L +.78259 .38375 L +.78696 .38168 L +.79127 .37956 L +.79551 .37739 L +.79969 .37517 L +.8038 .3729 L +.80784 .37058 L +.81182 .36821 L +.81572 .36579 L +.81955 .36332 L +.82331 .36081 L +.82699 .35825 L +.8306 .35565 L +.83414 .35301 L +.8376 .35032 L +.84098 .3476 L +.84429 .34483 L +.84752 .34203 L +.85067 .33918 L +.85374 .3363 L +.85673 .33339 L +.85964 .33044 L +.86246 .32745 L +.86521 .32443 L +.86787 .32138 L +.87044 .3183 L +.87293 .31519 L +.87533 .31206 L +.87765 .30889 L +.87987 .3057 L +.882 .30248 L +.88403 .29924 L +.88596 .29598 L +.88778 .29269 L +.88949 .28939 L +.89108 .28607 L +.89256 .28274 L +.89392 .27939 L +.89515 .27602 L +.89625 .27265 L +.89722 .26926 L +.89805 .26586 L +.89874 .26246 L +.89928 .25905 L +.89968 .25563 L +Mistroke +.89992 .25221 L +.90001 .24879 L +.89994 .24537 L +.89972 .24195 L +.89934 .23853 L +.89882 .23512 L +.89814 .23171 L +.89732 .2283 L +.89636 .22491 L +.89526 .22152 L +.89403 .21814 L +.89265 .21477 L +.89115 .21142 L +.88952 .20808 L +.88776 .20476 L +.88587 .20145 L +.88387 .19817 L +.88174 .1949 L +.8795 .19165 L +.87714 .18843 L +.87468 .18523 L +.8721 .18205 L +.86942 .1789 L +.86664 .17578 L +.86375 .17269 L +.86077 .16963 L +.85769 .1666 L +.85451 .16361 L +.85125 .16065 L +.84789 .15772 L +.84446 .15484 L +.84093 .15199 L +.83733 .14918 L +.83365 .14642 L +.8299 .14369 L +.82607 .14101 L +.82217 .13838 L +.81821 .1358 L +.81418 .13326 L +.81008 .13077 L +.80593 .12833 L +.80172 .12595 L +.79746 .12362 L +.79314 .12135 L +.78877 .11912 L +.78435 .11695 L +.77988 .11484 L +.77537 .11277 L +.7708 .11076 L +.76619 .10879 L +Mistroke +.76154 .10688 L +.75684 .10501 L +.7521 .1032 L +.74733 .10143 L +.74251 .09971 L +.73765 .09803 L +.73276 .09641 L +.72783 .09483 L +.72287 .09329 L +.71787 .0918 L +.71284 .09035 L +.70778 .08894 L +.70269 .08758 L +.69758 .08626 L +.69243 .08498 L +.68727 .08374 L +.68207 .08254 L +.67685 .08139 L +.67162 .08027 L +.66636 .07919 L +.66108 .07814 L +.65578 .07714 L +.65046 .07617 L +.64513 .07524 L +.63979 .07434 L +.63443 .07348 L +.62906 .07265 L +.62368 .07185 L +.61829 .07109 L +.61289 .07036 L +.60748 .06966 L +.60207 .069 L +.59665 .06836 L +.59123 .06775 L +.5858 .06718 L +.58037 .06664 L +.57493 .06613 L +.56949 .06565 L +.56405 .0652 L +.5586 .06479 L +.55315 .06441 L +.54769 .06406 L +.54223 .06374 L +.53676 .06346 L +.53129 .06322 L +.52581 .06301 L +.52033 .06283 L +.51484 .0627 L +.50935 .06259 L +.50385 .06253 L +Mistroke +.49835 .06249 L +.49284 .0625 L +.48733 .06255 L +.48182 .06263 L +.4763 .06274 L +.47078 .0629 L +.46527 .06309 L +.45975 .06332 L +.45424 .06359 L +.44872 .06389 L +.44322 .06423 L +.43771 .06461 L +.43222 .06502 L +.42672 .06548 L +.42124 .06597 L +.41577 .0665 L +.4103 .06706 L +.40484 .06766 L +.3994 .0683 L +.39397 .06898 L +.38855 .0697 L +.38315 .07045 L +.37776 .07124 L +.37238 .07207 L +.36703 .07294 L +.36169 .07384 L +.35637 .07479 L +.35107 .07577 L +.34579 .07679 L +.34054 .07784 L +.3353 .07894 L +.33009 .08007 L +.32491 .08124 L +.31975 .08245 L +.31461 .0837 L +.30951 .08498 L +.30443 .08631 L +.29938 .08767 L +.29436 .08907 L +.28937 .09051 L +.28441 .09199 L +.27949 .0935 L +.27459 .09505 L +.26973 .09664 L +.26489 .09826 L +.26009 .09993 L +.25532 .10162 L +.25058 .10336 L +.24587 .10512 L +.2412 .10693 L +Mistroke +.23655 .10877 L +.23194 .11064 L +.22736 .11255 L +.22282 .1145 L +.2183 .11647 L +.21382 .11848 L +.20938 .12053 L +.20496 .12261 L +.20058 .12472 L +.19624 .12686 L +.19193 .12904 L +.18768 .13126 L +.18349 .13351 L +.17936 .13582 L +.17532 .13817 L +.17137 .14057 L +.16752 .14302 L +.16377 .14553 L +.16015 .1481 L +.15665 .15073 L +.15328 .15342 L +.15007 .15619 L +.14701 .15902 L +.1441 .16192 L +.14133 .16488 L +.1387 .1679 L +.13619 .17096 L +.13381 .17407 L +.13155 .17721 L +.1294 .18039 L +.12735 .18359 L +.1254 .18682 L +.12354 .19006 L +.12176 .19331 L +.12007 .19658 L +.11845 .19986 L +.1169 .20315 L +.11541 .20645 L +.11399 .20976 L +.11263 .21308 L +.11131 .21641 L +.11005 .21975 L +.10882 .22309 L +.10764 .22644 L +.10649 .2298 L +.10536 .23316 L +.10426 .23652 L +.10318 .23989 L +.10211 .24326 L +.10105 .24663 L +Mistroke +.1 .25 L +Mfstroke +1 0 0 r +.1 .25 m +.09815 .25092 L +.09736 .25301 L +.09736 .25595 L +.09793 .25951 L +.09889 .26346 L +.10014 .26765 L +.10157 .27195 L +.10312 .27629 L +.10474 .28057 L +.1064 .28477 L +.10809 .28885 L +.1098 .29278 L +.11153 .29657 L +.11328 .30021 L +.11508 .3037 L +.11692 .30705 L +.11882 .31027 L +.12079 .31339 L +.12285 .3164 L +.125 .31932 L +.12725 .32217 L +.12962 .32495 L +.13209 .32768 L +.13469 .33037 L +.13741 .33302 L +.14026 .33564 L +.14322 .33824 L +.14631 .34081 L +.14952 .34337 L +.15284 .34592 L +.15627 .34845 L +.15981 .35097 L +.16346 .35347 L +.16719 .35595 L +.17102 .35841 L +.17493 .36085 L +.17892 .36327 L +.18298 .36567 L +.1871 .36803 L +.1913 .37036 L +.19554 .37266 L +.19984 .37492 L +.20419 .37714 L +.20859 .37932 L +.21303 .38146 L +.21751 .38356 L +.22203 .38561 L +.22658 .38761 L +.23116 .38956 L +Mistroke +.23578 .39147 L +.24043 .39333 L +.24511 .39515 L +.24982 .39691 L +.25456 .39863 L +.25933 .4003 L +.26413 .40193 L +.26896 .40351 L +.27381 .40505 L +.2787 .40654 L +.28361 .408 L +.28856 .40941 L +.29353 .41078 L +.29853 .41212 L +.30356 .41341 L +.30862 .41467 L +.31371 .4159 L +.31882 .41709 L +.32396 .41824 L +.32913 .41937 L +.33432 .42046 L +.33954 .42151 L +.34478 .42254 L +.35004 .42353 L +.35533 .42449 L +.36064 .42542 L +.36596 .42632 L +.37131 .42718 L +.37667 .42802 L +.38204 .42882 L +.38743 .42959 L +.39284 .43033 L +.39825 .43103 L +.40368 .4317 L +.40911 .43234 L +.41455 .43294 L +.42 .4335 L +.42545 .43403 L +.43091 .43453 L +.43637 .43498 L +.44184 .4354 L +.44731 .43578 L +.45277 .43613 L +.45824 .43644 L +.46371 .4367 L +.46918 .43693 L +.47465 .43713 L +.48011 .43728 L +.48558 .43739 L +.49104 .43746 L +Mistroke +.4965 .4375 L +.50196 .43749 L +.50742 .43745 L +.51287 .43737 L +.51832 .43725 L +.52377 .43709 L +.52922 .43689 L +.53467 .43666 L +.54011 .43639 L +.54556 .43608 L +.551 .43574 L +.55644 .43536 L +.56188 .43494 L +.56731 .43449 L +.57275 .434 L +.57818 .43348 L +.58361 .43293 L +.58904 .43234 L +.59446 .43171 L +.59988 .43106 L +.6053 .43037 L +.61071 .42965 L +.61611 .42889 L +.62151 .4281 L +.6269 .42728 L +.63229 .42643 L +.63766 .42554 L +.64302 .42463 L +.64837 .42367 L +.65371 .42269 L +.65904 .42167 L +.66435 .42062 L +.66964 .41953 L +.67491 .41841 L +.68016 .41725 L +.68539 .41606 L +.6906 .41483 L +.69578 .41356 L +.70094 .41226 L +.70606 .41092 L +.71115 .40954 L +.71622 .40812 L +.72124 .40666 L +.72623 .40516 L +.73118 .40362 L +.7361 .40204 L +.74097 .40041 L +.74579 .39874 L +.75057 .39703 L +.75531 .39527 L +Mistroke +.75999 .39347 L +.76463 .39162 L +.76921 .38973 L +.77374 .38779 L +.77821 .38581 L +.78263 .38377 L +.78698 .38169 L +.79128 .37956 L +.79552 .37739 L +.79969 .37517 L +.8038 .3729 L +.80784 .37058 L +.81182 .36822 L +.81573 .36581 L +.81957 .36335 L +.82333 .36085 L +.82703 .3583 L +.83065 .35571 L +.8342 .35307 L +.83767 .35039 L +.84107 .34767 L +.84439 .34491 L +.84762 .3421 L +.85078 .33926 L +.85386 .33637 L +.85685 .33345 L +.85975 .33049 L +.86257 .3275 L +.86531 .32447 L +.86795 .32141 L +.8705 .31832 L +.87296 .3152 L +.87533 .31205 L +.8776 .30888 L +.87977 .30568 L +.88185 .30245 L +.88382 .2992 L +.88569 .29593 L +.88746 .29265 L +.88912 .28934 L +.89067 .28602 L +.89212 .28268 L +.89345 .27933 L +.89466 .27596 L +.89577 .27259 L +.89675 .26921 L +.89761 .26582 L +.89835 .26242 L +.89897 .25902 L +.89947 .25561 L +Mistroke +.89983 .25221 L +.90007 .2488 L +.90018 .24539 L +.90015 .24199 L +.89999 .23859 L +.8997 .23519 L +.89927 .2318 L +.8987 .22842 L +.89799 .22504 L +.89715 .22168 L +.89617 .21832 L +.89504 .21498 L +.89378 .21165 L +.89237 .20833 L +.89083 .20504 L +.88914 .20175 L +.88731 .19849 L +.88535 .19524 L +.88324 .19202 L +.881 .18881 L +.87862 .18563 L +.87611 .18247 L +.87347 .17933 L +.87069 .17622 L +.86779 .17314 L +.86476 .17009 L +.86161 .16706 L +.85833 .16407 L +.85494 .16111 L +.85144 .15818 L +.84782 .15528 L +.8441 .15242 L +.84027 .14959 L +.83635 .14681 L +.83233 .14406 L +.82822 .14135 L +.82402 .13868 L +.81973 .13605 L +.81537 .13347 L +.81094 .13092 L +.80644 .12843 L +.80187 .12598 L +.79724 .12358 L +.79256 .12122 L +.78782 .11892 L +.78304 .11666 L +.77822 .11445 L +.77335 .1123 L +.76846 .11019 L +.76353 .10814 L +Mistroke +.75858 .10614 L +.7536 .1042 L +.74861 .1023 L +.7436 .10046 L +.73857 .09868 L +.73354 .09695 L +.72849 .09527 L +.72345 .09364 L +.71839 .09207 L +.71334 .09056 L +.70829 .08909 L +.70323 .08768 L +.69818 .08632 L +.69314 .08501 L +.68809 .08375 L +.68305 .08254 L +.67801 .08138 L +.67297 .08026 L +.66793 .0792 L +.6629 .07817 L +.65786 .0772 L +.65282 .07626 L +.64778 .07537 L +.64274 .07451 L +.63769 .0737 L +.63263 .07292 L +.62756 .07218 L +.62247 .07147 L +.61738 .0708 L +.61226 .07016 L +.60713 .06955 L +.60197 .06896 L +.59679 .06841 L +.59159 .06788 L +.58636 .06738 L +.5811 .06691 L +.57581 .06646 L +.57049 .06603 L +.56513 .06562 L +.55975 .06524 L +.55432 .06488 L +.54887 .06453 L +.54337 .06422 L +.53785 .06392 L +.53229 .06364 L +.52669 .06339 L +.52107 .06315 L +.51541 .06294 L +.50972 .06276 L +.50401 .0626 L +Mistroke +.49827 .06246 L +.49252 .06235 L +.48674 .06227 L +.48095 .06222 L +.47515 .0622 L +.46933 .06222 L +.46352 .06226 L +.45771 .06235 L +.45189 .06247 L +.44609 .06263 L +.44031 .06284 L +.43454 .06308 L +.42879 .06337 L +.42306 .06371 L +.41737 .0641 L +.41172 .06454 L +.4061 .06503 L +.40052 .06557 L +.39499 .06617 L +.3895 .06682 L +.38407 .06753 L +.37868 .06829 L +.37335 .06911 L +.36808 .06999 L +.36286 .07092 L +.3577 .07191 L +.35259 .07296 L +.34754 .07406 L +.34254 .07521 L +.33759 .07642 L +.33269 .07767 L +.32783 .07898 L +.32302 .08033 L +.31824 .08172 L +.3135 .08316 L +.30878 .08463 L +.30409 .08615 L +.29942 .08769 L +.29477 .08927 L +.29012 .09087 L +.28548 .0925 L +.28084 .09416 L +.2762 .09583 L +.27154 .09752 L +.26688 .09923 L +.2622 .10095 L +.2575 .10268 L +.25279 .10443 L +.24806 .10619 L +.24331 .10796 L +Mistroke +.23855 .10974 L +.23378 .11154 L +.22901 .11335 L +.22423 .11518 L +.21946 .11704 L +.2147 .11891 L +.20997 .12082 L +.20527 .12276 L +.20062 .12473 L +.19602 .12675 L +.1915 .12882 L +.18707 .13095 L +.18273 .13313 L +.17851 .13538 L +.17441 .1377 L +.17045 .14009 L +.16664 .14257 L +.16299 .14513 L +.15951 .14777 L +.15619 .15049 L +.15304 .1533 L +.15006 .15619 L +.14725 .15915 L +.14458 .16217 L +.14204 .16525 L +.13962 .16837 L +.13728 .17152 L +.135 .17467 L +.13272 .17781 L +.13042 .18091 L +.12805 .18395 L +.12555 .18689 L +.12288 .18972 L +.11998 .1924 L +.11681 .19491 L +.11333 .19724 L +.1095 .19935 L +.10533 .20126 L +.10081 .20296 L +.09598 .20447 L +.09092 .20584 L +.08577 .20714 L +.0807 .20847 L +.07598 .20996 L +.07197 .21181 L +.06914 .21426 L +.06809 .21764 L +.06958 .22234 L +.07457 .22886 L +.08423 .23783 L +Mistroke +.1 .25 L +Mfstroke +.5 .165 .165 r +.1 .25 m +.10005 .25295 L +.1002 .25589 L +.10044 .25883 L +.10079 .26177 L +.10123 .26471 L +.10178 .26765 L +.10242 .27058 L +.10315 .2735 L +.10399 .27642 L +.10492 .27933 L +.10596 .28224 L +.10709 .28513 L +.10831 .28802 L +.10963 .2909 L +.11105 .29377 L +.11257 .29663 L +.11418 .29948 L +.11588 .30231 L +.11768 .30513 L +.11958 .30794 L +.12157 .31073 L +.12365 .31351 L +.12582 .31628 L +.12809 .31902 L +.13045 .32175 L +.1329 .32447 L +.13544 .32716 L +.13807 .32983 L +.14079 .33249 L +.1436 .33512 L +.14649 .33774 L +.14948 .34033 L +.15255 .3429 L +.1557 .34545 L +.15894 .34797 L +.16227 .35047 L +.16568 .35294 L +.16917 .35539 L +.17274 .35781 L +.17639 .36021 L +.18013 .36258 L +.18394 .36492 L +.18783 .36723 L +.19179 .36952 L +.19584 .37177 L +.19996 .374 L +.20415 .37619 L +.20841 .37835 L +.21275 .38048 L +Mistroke +.21716 .38258 L +.22163 .38465 L +.22618 .38668 L +.23079 .38868 L +.23548 .39065 L +.24022 .39258 L +.24503 .39447 L +.2499 .39633 L +.25484 .39815 L +.25983 .39994 L +.26489 .40169 L +.27 .4034 L +.27517 .40508 L +.28039 .40671 L +.28567 .40831 L +.291 .40987 L +.29638 .41139 L +.30182 .41287 L +.3073 .41431 L +.31283 .41571 L +.3184 .41706 L +.32402 .41838 L +.32969 .41966 L +.33539 .42089 L +.34114 .42208 L +.34693 .42323 L +.35275 .42433 L +.35861 .4254 L +.3645 .42642 L +.37043 .42739 L +.37639 .42832 L +.38238 .42921 L +.3884 .43006 L +.39445 .43085 L +.40052 .43161 L +.40662 .43232 L +.41274 .43298 L +.41889 .4336 L +.42505 .43418 L +.43123 .43471 L +.43743 .43519 L +.44364 .43563 L +.44987 .43602 L +.45611 .43637 L +.46236 .43667 L +.46862 .43692 L +.47488 .43713 L +.48116 .43729 L +.48744 .43741 L +.49372 .43748 L +Mistroke +.5 .4375 L +.50628 .43748 L +.51256 .43741 L +.51884 .43729 L +.52512 .43713 L +.53138 .43692 L +.53764 .43667 L +.54389 .43637 L +.55013 .43602 L +.55636 .43563 L +.56257 .43519 L +.56877 .43471 L +.57495 .43418 L +.58111 .4336 L +.58726 .43298 L +.59338 .43232 L +.59948 .43161 L +.60555 .43085 L +.6116 .43006 L +.61762 .42921 L +.62361 .42832 L +.62957 .42739 L +.6355 .42642 L +.64139 .4254 L +.64725 .42433 L +.65307 .42323 L +.65886 .42208 L +.66461 .42089 L +.67031 .41966 L +.67598 .41838 L +.6816 .41706 L +.68717 .41571 L +.6927 .41431 L +.69818 .41287 L +.70362 .41139 L +.709 .40987 L +.71433 .40831 L +.71961 .40671 L +.72483 .40508 L +.73 .4034 L +.73511 .40169 L +.74017 .39994 L +.74516 .39815 L +.7501 .39633 L +.75497 .39447 L +.75978 .39258 L +.76452 .39065 L +.76921 .38868 L +.77382 .38668 L +.77837 .38465 L +Mistroke +.78284 .38258 L +.78725 .38048 L +.79159 .37835 L +.79585 .37619 L +.80004 .374 L +.80416 .37177 L +.80821 .36952 L +.81217 .36723 L +.81606 .36492 L +.81987 .36258 L +.82361 .36021 L +.82726 .35781 L +.83083 .35539 L +.83432 .35294 L +.83773 .35047 L +.84106 .34797 L +.8443 .34545 L +.84745 .3429 L +.85052 .34033 L +.85351 .33774 L +.8564 .33512 L +.85921 .33249 L +.86193 .32983 L +.86456 .32716 L +.8671 .32447 L +.86955 .32175 L +.87191 .31902 L +.87418 .31628 L +.87635 .31351 L +.87843 .31073 L +.88042 .30794 L +.88232 .30513 L +.88412 .30231 L +.88582 .29948 L +.88743 .29663 L +.88895 .29377 L +.89037 .2909 L +.89169 .28802 L +.89291 .28513 L +.89404 .28224 L +.89508 .27933 L +.89601 .27642 L +.89685 .2735 L +.89758 .27058 L +.89822 .26765 L +.89877 .26471 L +.89921 .26177 L +.89956 .25883 L +.8998 .25589 L +.89995 .25295 L +Mistroke +.9 .25 L +.89995 .24705 L +.8998 .24411 L +.89956 .24117 L +.89921 .23823 L +.89877 .23529 L +.89822 .23235 L +.89758 .22942 L +.89685 .2265 L +.89601 .22358 L +.89508 .22067 L +.89404 .21776 L +.89291 .21487 L +.89169 .21198 L +.89037 .2091 L +.88895 .20623 L +.88743 .20337 L +.88582 .20052 L +.88412 .19769 L +.88232 .19487 L +.88042 .19206 L +.87843 .18927 L +.87635 .18649 L +.87418 .18372 L +.87191 .18098 L +.86955 .17825 L +.8671 .17553 L +.86456 .17284 L +.86193 .17017 L +.85921 .16751 L +.8564 .16488 L +.85351 .16226 L +.85052 .15967 L +.84745 .1571 L +.8443 .15455 L +.84106 .15203 L +.83773 .14953 L +.83432 .14706 L +.83083 .14461 L +.82726 .14219 L +.82361 .13979 L +.81987 .13742 L +.81606 .13508 L +.81217 .13277 L +.80821 .13048 L +.80416 .12823 L +.80004 .126 L +.79585 .12381 L +.79159 .12165 L +.78725 .11952 L +Mistroke +.78284 .11742 L +.77837 .11535 L +.77382 .11332 L +.76921 .11132 L +.76452 .10935 L +.75978 .10742 L +.75497 .10553 L +.7501 .10367 L +.74516 .10185 L +.74017 .10006 L +.73511 .09831 L +.73 .0966 L +.72483 .09492 L +.71961 .09329 L +.71433 .09169 L +.709 .09013 L +.70362 .08861 L +.69818 .08713 L +.6927 .08569 L +.68717 .08429 L +.6816 .08294 L +.67598 .08162 L +.67031 .08034 L +.66461 .07911 L +.65886 .07792 L +.65307 .07677 L +.64725 .07567 L +.64139 .0746 L +.6355 .07358 L +.62957 .07261 L +.62361 .07168 L +.61762 .07079 L +.6116 .06994 L +.60555 .06915 L +.59948 .06839 L +.59338 .06768 L +.58726 .06702 L +.58111 .0664 L +.57495 .06582 L +.56877 .06529 L +.56257 .06481 L +.55636 .06437 L +.55013 .06398 L +.54389 .06363 L +.53764 .06333 L +.53138 .06308 L +.52512 .06287 L +.51884 .06271 L +.51256 .06259 L +.50628 .06252 L +Mistroke +.5 .0625 L +.49372 .06252 L +.48744 .06259 L +.48116 .06271 L +.47488 .06287 L +.46862 .06308 L +.46236 .06333 L +.45611 .06363 L +.44987 .06398 L +.44364 .06437 L +.43743 .06481 L +.43123 .06529 L +.42505 .06582 L +.41889 .0664 L +.41274 .06702 L +.40662 .06768 L +.40052 .06839 L +.39445 .06915 L +.3884 .06994 L +.38238 .07079 L +.37639 .07168 L +.37043 .07261 L +.3645 .07358 L +.35861 .0746 L +.35275 .07567 L +.34693 .07677 L +.34114 .07792 L +.33539 .07911 L +.32969 .08034 L +.32402 .08162 L +.3184 .08294 L +.31283 .08429 L +.3073 .08569 L +.30182 .08713 L +.29638 .08861 L +.291 .09013 L +.28567 .09169 L +.28039 .09329 L +.27517 .09492 L +.27 .0966 L +.26489 .09831 L +.25983 .10006 L +.25484 .10185 L +.2499 .10367 L +.24503 .10553 L +.24022 .10742 L +.23548 .10935 L +.23079 .11132 L +.22618 .11332 L +.22163 .11535 L +Mistroke +.21716 .11742 L +.21275 .11952 L +.20841 .12165 L +.20415 .12381 L +.19996 .126 L +.19584 .12823 L +.19179 .13048 L +.18783 .13277 L +.18394 .13508 L +.18013 .13742 L +.17639 .13979 L +.17274 .14219 L +.16917 .14461 L +.16568 .14706 L +.16227 .14953 L +.15894 .15203 L +.1557 .15455 L +.15255 .1571 L +.14948 .15967 L +.14649 .16226 L +.1436 .16488 L +.14079 .16751 L +.13807 .17017 L +.13544 .17284 L +.1329 .17553 L +.13045 .17825 L +.12809 .18098 L +.12582 .18372 L +.12365 .18649 L +.12157 .18927 L +.11958 .19206 L +.11768 .19487 L +.11588 .19769 L +.11418 .20052 L +.11257 .20337 L +.11105 .20623 L +.10963 .2091 L +.10831 .21198 L +.10709 .21487 L +.10596 .21776 L +.10492 .22067 L +.10399 .22358 L +.10315 .2265 L +.10242 .22942 L +.10178 .23235 L +.10123 .23529 L +.10079 .23823 L +.10044 .24117 L +.1002 .24411 L +.10005 .24705 L +Mistroke +.1 .25 L +Mfstroke +0 0 1 r +.1 .25 m +.105 .28125 L +.15 .34375 L +.2 .375 L +.3 .4125 L +.4 .43125 L +.5 .4375 L +.7 .4125 L +.8 .375 L +.875 .3125 L +.9 .25 L +.8 .125 L +.6 .06875 L +.5 .0625 L +.3 .0875 L +.2 .125 L +.15 .15625 L +.125 .1875 L +.1 .25 L +s +5 Mabswid +.1 .25 Mdot +.105 .28125 Mdot +.15 .34375 Mdot +.2 .375 Mdot +.3 .4125 Mdot +.4 .43125 Mdot +.5 .4375 Mdot +.7 .4125 Mdot +.8 .375 Mdot +.875 .3125 Mdot +.9 .25 Mdot +.8 .125 Mdot +.6 .06875 Mdot +.5 .0625 Mdot +.3 .0875 Mdot +.2 .125 Mdot +.15 .15625 Mdot +.125 .1875 Mdot +.1 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{821, 410.5}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg03oool00?l0ooooo`3ooooo0?ooocP0oooo003o0?ooool0ooooo`3ooolh0?ooo`00 +o`3ooomj0?ooo`<00000o`3ooonj0?ooo`00o`3ooomk0?ooo`030000003oool0oooo0?l0oooo^@3o +ool00?l0ooooN03oool5000000T0oooo1P00003o0?oooj/0oooo003o0?ooog80oooo100000020?oo +o`040000003oool0oooo000000X0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00o`3ooomi0?oo +o`030000003oool0000000X0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00o`3ooomj0?ooo`80 +00002P3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0 +o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool0 +0`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?oo +o`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool400000?l0oooo +[@3oool00?l0ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<00000 +0?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0 +ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0 +o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool0 +0`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?oo +o`00o`3ooon60?ooo`@00000o`3ooon]0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo +[P3oool00?l0ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<00000 +0?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0 +ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0 +o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool0 +0`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?oo +o`00o`3ooon60?ooo`@00000o`3ooon]0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo +[P3oool00?l0ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<00000 +0?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0 +ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0 +o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool0 +0`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo1000003o0?ooojd0oooo003o0?ooohH0 +oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo +[P3oool00?l0ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<00000 +0?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0 +ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooogT0oooo0P00000:0?ooo`<0003o +o`3ooon_0?ooo`00o`3ooomh0?ooo`040000003oool0oooo000000P0oooo1@000?oo0?ooojh0oooo +003o0?oooeP0oooo6P3o000A07lZ:P/0003o3P1o:R[o0?oooi/0oooo003o0?ooodL0oooo4@3o0003 +0?ooo`@00?l04`1o:RX4000000D0oooo20000?l00`3oool0003o0000o`030000o`D0oooo3`000?lA +07lZ:_l0ooooR@3oool00?l0oooo>`3oool<0?l000L0oooo0`00o`0>07lZ:Q@0oooo20000?l00`00 +0000oooo0?ooo`070?ooo`<0003o5@3oool?0000o`80o`003P1o:R[o0?ooog/0oooo003o0?oooc<0 +oooo203o000;0?ooo`800?l02@1o:RXJ0?ooo`P0003o1P3oool2000000/0oooo00<000000?ooo`3o +ool08`3oool?0000o`030?l0001o:RX0ObXZ00L0ObXZ2`3oool30000ool0ooooI03oool00?l0oooo +;`3oool40?l000/0oooo00<00?l007lZ:P1o:RX01`1o:RXK0?ooo`P0003o6`3oool00`000000oooo +0?ooo`0b0?ooo`l0003o101o:RX00`3oool0003o0000o`030000ool0ooooH`3oool00?l0oooo9`3o +ool80?l000L0oooo2@1o:RXL0?ooo`P0003o8`3oool00`000000oooo0?ooo`110?ooo`X0003o101o +:R[o0?oooel0oooo003o0?oooal0oooo203o00060?ooo`T0ObXZ7P3oool70000ob/0oooo00<00000 +0?ooo`3oool0AP3oool80000o`03003o001o:RX0ObXZ00H0ObXZo`3ooomG0?ooo`00o`3ooolK0?oo +o`@0o`001`3oool2003o00D0ObXZ00<00?l00?ooo`3oool0703oool80000oc80oooo00<000000?oo +o`3oool0A`3oool30000o`@0oooo0`000?l30?ooo`<00?l01@1o:RX20?l00?l0ooooD03oool00?l0 +oooo5`3oool40?l000D0oooo201o:RXL0?ooo`P0003o>P3oool00`000000oooo0?ooo`1A0?ooo`@0 +003o1`3oool907lZ:_l0ooooB@3oool00?l0oooo4`3oool40?l000<0oooo00<00?l007lZ:P1o:RX0 +0`1o:RX2003o01X0oooo20000?m20?ooo`030000003oool0oooo05D0oooo0`000?l:0?ooo`<0o`00 +101o:RX00`3o0000oooo0?ooo`3o0?oood80oooo003o0?oooa00oooo0`3o00030?ooo`03003o001o +:RX0ObXZ0080ObXZ6@3oool80000odX0oooo1000001G0?ooo`@0003o303oool00`00o`00ObXZ07lZ +:P0207lZ:P@0o`00o`3ooolm0?ooo`00o`3oool<0?ooo`@0o`000P3oool00`00o`00ObXZ07lZ:P02 +07lZ:QD0oooo20000?mB0?ooo`030000003oool0oooo05`0oooo10000?l=0?ooo`D0ObXZ0`3o003o +0?ooocT0oooo003o0?ooo`D0oooo1`3o0002003o00D0ObXZ4@3oool80000oeX0oooo00<000000?oo +o`3oool0H03oool30000o`l0oooo101o:RX30?l00?l0oooo=@3oool00?l0oooo0P3oool30?l00003 +0?ooo`00o`000?l000800?l0101o:RX?0?ooo`L0003oHP3oool00`000000oooo0?ooo`1S0?ooo`@0 +003o3`3oool407lZ:PH0o`00o`3oool^0?ooo`00o`3oool20?l000P0ObXZ2`3oool80000ofT0oooo +00<000000?ooo`3oool0I`3oool30000oa00oooo2@1o:RX00`3o0000oooo0?ooo`3o0?ooobP0oooo +003l0?ooo`D0ObXZ2`3oool80000og40oooo00<000000?ooo`3oool0JP3oool40000oaD0oooo101o +:RX00`3o0000oooo0?ooo`3o0?ooob@0oooo003i0?ooo`<0ObXZ0P00o`060?ooo`P0003oN@3oool0 +0`000000oooo0?ooo`1^0?ooo`<0003o5P3oool307lZ:P80o`00o`3ooolR0?ooo`00k`3oool30000 +o`<0oooo0P3o000207lZ:P03003o003oool0oooo00P0003oP@3oool00`000000oooo0?ooo`1a0?oo +o`@0003o5@3oool207lZ:P<0o`00o`3ooolO0?ooo`00kP3oool50000o`030?l000000?l0003o00H0 +003oR@3oool00`000000oooo0?ooo`1e0?ooo`<0003o503oool307lZ:P@0o`00o`3ooolK0?ooo`00 +kP3oool60000oi40oooo1000001g0?ooo`@0003o4`3oool407lZ:P@0o`00o`3ooolG0?ooo`00j`3o +ool00`3o0000003o0000o`050000oi80oooo00<000000?ooo`3oool0O03oool30000oa@0oooo101o +:RX40?l00?l0oooo4`3oool00>L0oooo00<00?l007lZ:P1o:RX00P000?l30?ooo`<0003oT`3oool0 +0`000000oooo0?ooo`1o0?ooo`@0003o503oool407lZ:P@0o`00o`3oool?0?ooo`00h`3oool01000 +o`00ObXZ07lZ:P1o:RX30000oi/0oooo00<000000?ooo`3oool0P`3oool40000oa@0oooo101o:RX3 +0?l00?l0oooo303oool00=l0oooo00<00?l007lZ:P1o:RX00P1o:RX30000oih0oooo00<000000?oo +o`3oool0Q`3oool30000oaD0oooo101o:RX20?l00003003o003oool0oooo0?l0oooo1P3oool00=d0 +oooo0`1o:RX20?l00080003oX@3oool00`000000oooo0?ooo`2:0?ooo`@0003o5@3oool307lZ:P03 +0?l00000o`00oooo0?l0oooo1@3oool00=/0oooo0P1o:RX20?l000<0003oX`3oool00`000000oooo +0?ooo`2>0?ooo`<0003o5@3oool207lZ:P80o`00o`3oool40?ooo`00f03oool307lZ:P040?l00000 +0?l0003o0000ojH0oooo00<000000?ooo`3oool0T@3oool40000oa<0oooo0`1o:RX30?l00?l0oooo +003E0?ooo`<0ObXZ00@0oooo0?l000000?l0003oZ@3oool00`000000oooo0?ooo`2E0?ooo`<0003o +4`3oool407lZ:P030?l00000o`00oooo0?/0oooo003A0?ooo`06003o001o:RX0ObXZ07lZ:P3oool0 +o`000`000?n[0?ooo`@00000U`3oool40000oa<0oooo0`1o:RX2003o0?T0oooo003>0?ooo`800?l0 +0P1o:RX00`3oool0o`000000o`020000ojh0oooo00<000000?ooo`3oool0W03oool30000oa<0oooo +0P1o:RX00`3o00000?l0003o003f0?ooo`00c03oool01000o`00ObXZ07lZ:P1o:RX20?l00080003o +/@3oool00`000000oooo0?ooo`2O0?ooo`@0003o4@3oool207lZ:P<0o`00m03oool00/0oooo00320?ooo`<0ObXZ0P3o00030000ok/0oooo00<000000?ooo`3oool0[P3o +ool30000o`h0oooo0P1o:RX20?l00003003o003oool0oooo0>L0oooo002o0?ooo`03003o001o:RX0 +ObXZ0080o`000`000?nn0?ooo`030000003oool0oooo0;40oooo10000?l<0?ooo`<0ObXZ00<0o`00 +003o003oool0iP3oool00;d0oooo00<00?l007lZ:P1o:RX00P3o00020000ol40oooo00<000000?oo +o`3oool0]@3oool30000o``0oooo0P1o:RX20?l00>D0oooo002k0?ooo`<0ObXZ00@0o`000000o`00 +0?l0003o``3oool00`000000oooo0?ooo`2h0?ooo`@0003o2P3oool207lZ:P80o`00h`3oool00;T0 +oooo0P1o:RX0103o0000003o0000o`000?o60?ooo`@00000^`3oool30000o`T0oooo0`1o:RX00`3o +00000?l00?ooo`3O0?ooo`00]@3oool2003o0080ObXZ00<0o`000000o`000?l0b@3oool00`000000 +oooo0?ooo`2o0?ooo`@0003o203oool207lZ:P030?l00000o`00oooo0=d0oooo002c0?ooo`04003o +001o:RX0ObXZ07lZ:P<0003ob`3oool00`000000oooo0?ooo`330?ooo`<0003o1`3oool207lZ:P03 +0?l00000o`00oooo0=/0oooo002a0?ooo`03003o001o:RX0ObXZ00<0003ocP3oool00`000000oooo +0?ooo`360?ooo`@0003o1@3oool207lZ:P80o`0000<00?l00?ooo`3oool0e`3oool00:l0oooo00<0 +0?l007lZ:P1o:RX00P000?oA0?ooo`030000003oool0oooo00?ooo`00X`3oool70000 +old0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`3H0?ooo`P0003oc@3oool00:<0 +oooo1@000?o@0?ooo`030000003oool0oooo00X0oooo1P00003H0?ooo`D0003oc@3oool00:80oooo +00<0o`000000o`000?l00`000?o90?ooo`@00000103oool00`000000oooo0?ooo`090?ooo`030000 +003oool0oooo0=/0oooo1@000?l00`3o0000oooo0?ooo`3:0?ooo`00X03oool0103o0000003o0000 +o`1o:RX30000om00oooo00@000000?ooo`3oool000002P3oool00`000000oooo0?ooo`3L0?ooo`@0 +003o00<0ObXZ0?l0003o0000bP3oool009h0oooo0P3o00000`000?l0ObXZ0?ooo`3E0?ooo`800000 +2`3oool00`000000oooo0?ooo`3O0?ooo`040000o`3oool0ObXZ07lZ:P80o`00b03oool009/0oooo +0`3o00020000onD0oooo00<000000?ooo`3oool0h03oool01P000?l0oooo0?ooo`1o:RX0oooo0?l0 +040 +oooo00<0003o0?ooo`3oool00P1o:RX20?l00X0oooo00<000000?ooo`3oool0h`3oool00`000?l0oooo +0?ooo`020?ooo`80ObXZ0P3o00310?ooo`00U03oool20?l00003003o001o:RX0003o0>`0oooo00<0 +00000?ooo`3oool0h`3oool00`000?l0oooo0?ooo`040?ooo`80ObXZ00<0o`000?ooo`3oool0_P3o +ool00980oooo0P3o0002003o0080003ok@3oool400000><0oooo00<0003o0?ooo`3oool01@3oool0 +0`1o:RX0o`000?l0002n0?ooo`00T03oool20?l000800?l000<0ObXZ0000o`3oool0kP3oool00`00 +0000oooo0?ooo`3U0?ooo`030000o`3oool0oooo00D0oooo0P1o:RX00`3o0000oooo0?ooo`2k0?oo +o`00S`3oool0103o00000?l0003o003oool20000oo00oooo00<000000?ooo`3oool0iP3oool00`00 +0?l0oooo0?ooo`060?ooo`0307lZ:P3o0000o`000;/0oooo002=0?ooo`80o`0000@00?l00?ooo`00 +0?l0003olP3oool00`000000oooo0?ooo`3W0?ooo`030000o`3oool0oooo00H0oooo0P1o:RX00`3o +0000oooo0?ooo`2h0?ooo`00S03oool01P3o00000?l00?ooo`3oool0003o07lZ:_<0oooo00<00000 +0?ooo`3oool0i`3oool00`000?l0oooo0?ooo`080?ooo`0307lZ:P3o0000o`000;P0oooo002:0?oo +o`80o`0000D00?l00?ooo`000?l0003o07lZ:P3d0?ooo`030000003oool0oooo0>P0oooo00<0003o +0?ooo`3oool0203oool00`1o:RX00?l00?l0002g0?ooo`00R@3oool01P3o00000?l00?ooo`3oool0 +003o07lZ:_H0oooo00<000000?ooo`3oool0j@3oool00`000?l0oooo0?ooo`080?ooo`80ObXZ0P3o +002e0?ooo`00R03oool00`3o00000?l00?ooo`020000ooP0oooo00<000000?ooo`3oool0jP3oool0 +0`000?l0oooo0?ooo`090?ooo`80ObXZ00<0o`000?ooo`3oool0/P3oool008L0oooo00@0o`000?oo +o`000?l0003onP3oool00`000000oooo0?ooo`3[0?ooo`030000o`3oool0oooo00T0oooo00@00?l0 +07lZ:P3o0000o`00/P3oool008D0oooo0P3o00000`3oool0003o07lZ:P3k0?ooo`030000003oool0 +oooo0>`0oooo00<0003o0?ooo`3oool02P3oool00`1o:RX0oooo0?l0002a0?ooo`00Q03oool01@3o +00000?l00000o`000?l0ObXZ0?`0oooo1000003[0?ooo`030000o`3oool0oooo00/0oooo0P1o:RX2 +0?l00:l0oooo00230?ooo`040?l00000o`00003o07lZ:_h0oooo00<000000?ooo`3oool0k@3oool0 +0`000?l0oooo0?ooo`0<0?ooo`0307lZ:P3oool0o`000:h0oooo001o0?ooo`<0003o00@0o`000000 +o`000?l0ObXZo`3oool00`000000oooo0?ooo`3^0?ooo`030000o`3oool0oooo00`0oooo00@0ObXZ +0?ooo`3o0000o`00[03oool007h0oooo1@000?l00`3oool0ObXZ0?ooo`3o0?ooo`030000003oool0 +oooo0>l0oooo00<0003o0?ooo`3oool0303oool0101o:RX0oooo0?ooo`3o002[0?ooo`00OP3oool5 +0000o`0307lZ:P3oool0oooo0?l0oooo00<000000?ooo`3oool0l03oool00`000?l0oooo0?ooo`0< +0?ooo`80ObXZ00<0oooo0?l0003oool0Z@3oool007h0oooo1@000?oo0?ooo`<0oooo00<000000?oo +o`3oool0l03oool00`000?l0oooo0?ooo`0>0?ooo`0307lZ:P3oool0o`000:T0oooo001n0?ooo`@0 +003oo`3oool40?ooo`030000003oool0oooo0?40oooo00<0003o0?ooo`3oool03P3oool00`1o:RX0 +0?l00?l0002X0?ooo`00O03oool01000o`00o`000000o`1o:R[o0?ooo`H0oooo00<000000?ooo`3o +ool0lP3oool00`000?l0oooo0?ooo`0>0?ooo`0307lZ:P00o`00o`000:L0oooo001k0?ooo`04003o +003oool0003o07lZ:_l0oooo1`3oool00`000000oooo0?ooo`3c0?ooo`030000o`3oool0oooo00h0 +oooo00<0ObXZ003o003o0000YP3oool007X0oooo00@00?l00?ooo`000?l0ObXZo`3oool80?ooo`@0 +0000l`3oool00`000?l0oooo0?ooo`0>0?ooo`0407lZ:P3oool0o`000?l00:@0oooo001j0?ooo`03 +003o00000?l0ObXZ0?l0oooo2@3oool00`000000oooo0?ooo`3d0?ooo`030000o`3oool0oooo00l0 +oooo00@0ObXZ0?ooo`3oool0o`00X`3oool007T0oooo00<00?l00000o`1o:RX0o`3oool:0?ooo`03 +0000003oool0oooo0?D0oooo00<0003o0?ooo`3oool03`3oool0101o:RX0oooo0?ooo`3o002R0?oo +o`00N03oool00`00o`00o`000000o`3o0?ooo`/0oooo00<000000?ooo`3oool0mP3oool00`000?l0 +oooo0?ooo`0?0?ooo`0407lZ:P3oool0oooo0?l00:40oooo001g0?ooo`03003o003o0000003o0?l0 +oooo303oool00`000000oooo0?ooo`3g0?ooo`030000o`3oool0oooo00l0oooo00@0ObXZ003o003o +ool0o`00X03oool007H0oooo00<00?l00?l000000?l0o`3oool=0?ooo`030000003oool0oooo0?P0 +oooo00<0003o0?ooo`3oool03`3oool0101o:RX00?l00?ooo`3o002O0?ooo`00M@3oool00`00o`00 +oooo0000o`3o0?ooo`h0oooo00<000000?ooo`3oool0n03oool00`000?l0oooo0?ooo`0@0?ooo`04 +07lZ:P00o`00oooo0?l009h0oooo001e0?ooo`03003o00000?l0oooo0?l0oooo3P3oool00`000000 +oooo0?ooo`3i0?ooo`030000o`3oool0oooo0100oooo00@0ObXZ003o003oool0o`00W@3oool007@0 +oooo00<00?l007lZ:P000?l0o`3oool?0?ooo`030000003oool0oooo0?X0oooo00<0003o0?ooo`3o +ool0403oool0101o:RX00?l00?ooo`3o002L0?ooo`00M03oool00`1o:RX0003o0?ooo`3o0?ooo`l0 +oooo1000003j0?ooo`030000o`3oool0oooo0100oooo00@0ObXZ0?ooo`3oool0o`00V`3oool007<0 +oooo00<0ObXZ0000o`3oool0o`3oool@0?ooo`030000003oool0oooo0?`0oooo00<0003o0?ooo`3o +ool0403oool0101o:RX0oooo0?ooo`3o002J0?ooo`00LP3oool00`1o:RX0003o0?ooo`3o0?oooa40 +oooo00<000000?ooo`3oool0o03oool00`000?l0oooo0?ooo`0A0?ooo`0407lZ:P3oool0oooo0?l0 +09T0oooo001a0?ooo`0307lZ:P3o0000003o0?l0oooo4P3oool00`000000oooo0?ooo`3m0?ooo`03 +0000o`3oool0oooo0140oooo00@0ObXZ0?ooo`3oool0o`00V03oool00700oooo00<0ObXZ0?ooo`00 +0?l0o`3ooolC0?ooo`030000003oool0oooo0?h0oooo00<0003o0?ooo`3oool04@3oool0101o:RX0 +oooo0?ooo`3o002G0?ooo`00K`3oool00`1o:RX00?l00000o`3o0?oooa@0oooo00<000000?ooo`3o +ool0o`3oool00`000?l0oooo0?ooo`0A0?ooo`0307lZ:P3oool0o`0009L0oooo001^0?ooo`0307lZ +:P00o`00003o0?l0oooo5@3oool00`000000oooo0?ooo`3o0?ooo`40oooo00<0003o0?ooo`3oool0 +4@3oool00`1o:RX0oooo0?l0002F0?ooo`00KP3oool00`1o:RX0003o0?ooo`3o0?oooaD0oooo00<0 +00000?ooo`3oool0o`3oool10?ooo`030000o`3oool0oooo0140oooo00@00?l007lZ:P3oool0o`00 +U@3oool006`0oooo10000?oo0?ooo`P0oooo1@0000090?ooo`030000003oool0oooo0?l0oooo0P3o +ool00`000?l0oooo0?ooo`0A0?ooo`0407lZ:P3oool0oooo0?l009@0oooo001[0?ooo`D0003oo`3o +ool:0?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool0o`3oool30?ooo`030000o`3o +ool0oooo0140oooo00@0ObXZ0?ooo`3oool0o`00T`3oool006/0oooo1@000?oo0?ooo`X0oooo00<0 +00000?ooo`3oool02@3oool600000?l0oooo0@3oool00`000?l0oooo0?ooo`0A0?ooo`0307lZ:P3o +ool0o`0009<0oooo001[0?ooo`D0003oo`3oool20?ooo`@00000103oool00`000000oooo0?ooo`09 +0?ooo`030000003oool0oooo0?l0oooo1@3oool00`000?l0oooo0?ooo`0A0?ooo`0307lZ:P3oool0 +o`000980oooo001Z0?ooo`0307lZ:P3oool0003o0080003oo`3oool;0?ooo`030000003oool0oooo +00T0oooo00<000000?ooo`3oool0o`3oool60?ooo`030000o`3oool0oooo0100oooo00<0ObXZ0?oo +o`3o0000TP3oool006T0oooo00@0ObXZ0?ooo`00o`00003oo`3oool<0?ooo`8000002`3oool00`00 +0000oooo0?ooo`3o0?ooo`H0oooo00<0003o0?ooo`3oool04@3oool00`1o:RX0oooo0?l0002A0?oo +o`00J03oool0101o:RX0oooo0?ooo`000?oo0?oooaX0oooo00<000000?ooo`3oool0o`3oool70?oo +o`030000o`3oool0oooo0100oooo00@00?l007lZ:P3oool0o`00T03oool006L0oooo00D0o`0007lZ +:P3oool00?l00000o`3o0?oooaX0oooo00<000000?ooo`3oool0o`3oool80?ooo`030000o`3oool0 +oooo0100oooo00@00?l007lZ:P3oool0o`00S`3oool006D0oooo0P3o00001@1o:RX0oooo003o003o +ool0003o0?l0oooo6P3oool00`000000oooo0?ooo`3o0?ooo`T0oooo00<0003o0?ooo`3oool0403o +ool00`1o:RX0oooo0?l0002?0?ooo`00I03oool00`3o0000oooo07lZ:P020?ooo`03003o00000?l0 +oooo0?l0oooo6P3oool00`000000oooo0?ooo`3o0?ooo`X0oooo00<0003o0?ooo`3oool03`3oool0 +1000o`00ObXZ0?ooo`3o002>0?ooo`00HP3oool20?l000070?ooo`1o:RX0oooo0?ooo`00o`00oooo +0000o`3o0?oooa/0oooo00<000000?ooo`3oool0o`3oool:0?ooo`030000o`3oool0oooo0100oooo +00<0ObXZ0?ooo`3o0000SP3oool00600oooo0P3o00030?ooo`0507lZ:P3oool0oooo003o00000?l0 +o`3ooolL0?ooo`@00000o`3oool:0?ooo`030000o`3oool0oooo00l0oooo00@00?l007lZ:P3oool0 +o`00S@3oool005d0oooo0`3o00040?ooo`0607lZ:P3oool0oooo003o003oool0003oo`3ooolL0?oo +o`030000003oool0oooo0?l0oooo303oool00`000?l0oooo0?ooo`0?0?ooo`04003o001o:RX0oooo +0?l008`0oooo001J0?ooo`<0o`001`3oool01@1o:RX0oooo0?ooo`00o`00003o0?l0oooo7@3oool0 +0`000000oooo0?ooo`3o0?ooo`d0oooo00<0003o0?ooo`3oool03`3oool00`00o`00ObXZ0?l0002< +0?ooo`00EP3oool40?l000X0oooo00D0ObXZ0?ooo`3oool00?l00000o`3o0?oooad0oooo00<00000 +0?ooo`3oool0o`3oool>0?ooo`030000o`3oool0oooo00l0oooo00<0ObXZ0?ooo`3o0000R`3oool0 +05<0oooo0`3o000=0?ooo`0607lZ:P3oool0oooo003o003oool0003oo`3ooolM0?ooo`030000003o +ool0oooo0?l0oooo3P3oool00`000?l0oooo0?ooo`0?0?ooo`03003o001o:RX0o`0008/0oooo001? +0?ooo`@0o`00403oool01@1o:RX0oooo0?ooo`00o`00003o0?l0oooo7P3oool00`000000oooo0?oo +o`3o0?ooo`l0oooo00<0003o0?ooo`3oool03`3oool00`1o:RX0o`000?ooo`2:0?ooo`00B`3oool4 +0?l001<0oooo00H0ObXZ0?ooo`3oool00?l00?ooo`000?oo0?oooah0oooo00<000000?ooo`3oool0 +o`3oool@0?ooo`030000o`3oool0oooo00h0oooo00<0ObXZ0?ooo`3o0000RP3oool004P0oooo0`3o +000G0?ooo`0507lZ:P3oool0oooo003o00000?l0o`3ooolO0?ooo`030000003oool0oooo0?l0oooo +4@3oool00`000?l0oooo0?ooo`0=0?ooo`03003o001o:RX0o`0008X0oooo00160?ooo`80o`006@3o +ool01P1o:RX0oooo0?ooo`3oool00?l00000ool0oooo7`3oool00`000000oooo0?ooo`3o0?oooa80 +oooo00<0003o0?ooo`3oool03@3oool00`1o:RX0oooo0?l000290?ooo`00A@3oool00`3o0000oooo +0?ooo`0I0?ooo`0607lZ:P3oool0oooo003o003oool0003oo`3ooolO0?ooo`@00000o`3ooolA0?oo +o`030000o`3oool0oooo00d0oooo00<00?l007lZ:P3o0000R@3oool004@0oooo00<0o`000?ooo`3o +ool06@3oool01P1o:RX0oooo0?ooo`3oool00?l00000ool0oooo803oool00`000000oooo0?ooo`3o +0?oooa<0oooo00<0003o0?ooo`3oool03@3oool00`1o:RX0o`000?ooo`280?ooo`00@`3oool00`3o +0000oooo0?ooo`0J0?ooo`0607lZ:P3oool0oooo003o003oool0003oo`3ooolP0?ooo`030000003o +ool0oooo0?l0oooo503oool00`000?l0oooo0?ooo`0<0?ooo`03003o001o:RX0o`0008P0oooo0013 +0?ooo`030?l0003oool0oooo01T0oooo00H0ObXZ0?ooo`3oool0oooo003o00000?oo0?ooob40oooo +00<000000?ooo`3oool0o`3ooolE0?ooo`030000o`3oool0oooo00/0oooo00<00?l007lZ:P3o0000 +R03oool004<0oooo00<0o`000?ooo`3oool06@3oool01P1o:RX0oooo0?ooo`3oool00?l00000ool0 +oooo8@3oool00`000000oooo0?ooo`3o0?oooaH0oooo00<0003o0?ooo`3oool02`3oool00`1o:RX0 +oooo0?l000270?ooo`00@`3oool00`3o0000oooo0?ooo`0H0?ooo`0607lZ:P3oool0oooo0?ooo`00 +o`00003oo`3ooolR0?ooo`030000003oool0oooo0?l0oooo5P3oool00`000?l0oooo0?ooo`0;0?oo +o`0307lZ:P3oool0o`0008L0oooo00130?ooo`030?l0003oool0oooo01P0oooo00H0ObXZ0?ooo`3o +ool0oooo003o00000?oo0?ooob80oooo00<000000?ooo`3oool0o`3ooolG0?ooo`030000o`3oool0 +oooo00/0oooo00<0ObXZ0?l0003oool0QP3oool004@0oooo00<0o`000?ooo`3oool05P3oool01`1o +:RX0oooo0?ooo`3oool00?l00?ooo`000?l0o`3ooolR0?ooo`030000003oool0oooo0?l0oooo603o +ool00`000?l0oooo0?ooo`0:0?ooo`0307lZ:P3oool0o`0008H0oooo00140?ooo`030?l0003oool0 +oooo01H0oooo00H0ObXZ0?ooo`3oool0oooo003o00000?oo0?ooob<0oooo00<000000?ooo`3oool0 +o`3ooolI0?ooo`030000o`3oool0oooo00T0oooo00<00?l007lZ:P3o0000QP3oool004D0oooo00<0 +o`000?ooo`3oool05@3oool01P1o:RX0oooo0?ooo`3oool00?l00000ool0oooo8`3oool00`000000 +oooo0?ooo`3o0?oooaX0oooo00<0003o0?ooo`3oool02@3oool00`1o:RX0o`000?ooo`250?ooo`00 +A@3oool00`3o0000oooo0?ooo`0E0?ooo`0507lZ:P3oool0oooo003o00000?l0o`3ooolT0?ooo`@0 +0000o`3ooolI0?ooo`030000o`3oool0oooo00T0oooo00<00?l007lZ:P3oool0Q@3oool004H0oooo +00<0o`000?ooo`3oool0503oool01@1o:RX0000000000000o`00003o08l0oooo1000002@0?ooo`03 +0000003oool0oooo0940oooo100000250?ooo`030000o`3oool0oooo00T0oooo00<0ObXZ0?ooo`00 +00000P0000220?ooo`00A`3oool00`3o0000oooo0?ooo`0B0?ooo`0607lZ:P3oool00000003o003o +ool0003oS`3oool00`000000oooo0?ooo`2A0?ooo`030000003oool0oooo0940oooo00<000000?oo +o`3oool0Q`3oool00`000?l0oooo0?ooo`080?ooo`0407lZ:P3o0000oooo000008<0oooo00180?oo +o`030?l0003oool0oooo0100oooo00H0000007lZ:P0000000000003o00000?nA0?ooo`030000003o +ool0oooo0900oooo00<000000?ooo`3oool0TP3oool00`000000oooo0?ooo`270?ooo`030000o`3o +ool0oooo00L0oooo00<0ObXZ0?l0000000000P0000220?ooo`00B@3oool00`3o0000oooo0?ooo`09 +0?ooo`@000000P3oool01P000000ObXZ0?ooo`0000000?l00000ohX0oooo100000040?ooo`030000 +003oool0oooo08l0oooo00<000000?ooo`3oool0T`3oool00`000000oooo0?ooo`270?ooo`030000 +o`3oool0oooo00H0oooo00@0ObXZ0?l0003oool00000P`3oool004X0oooo00<0o`000?ooo`3oool0 +3`3oool0101o:RX0oooo003o00000?nA0?ooo`040000003oool0oooo00000900oooo00<000000?oo +o`3oool0T@3oool010000000oooo0?ooo`0000290?ooo`030000o`3oool0oooo00H0oooo00<0ObXZ +0?ooo`000000P`3oool004/0oooo0P3o000>0?ooo`0507lZ:P3oool00000003o00000?l0TP3oool2 +00000940oooo00<000000?ooo`3oool0TP3oool2000008X0oooo00<0003o0?ooo`3oool01P3oool0 +0`1o:RX00000000000230?ooo`00C@3oool00`3o0000oooo0?ooo`0;0?ooo`0507lZ:P3oool0oooo +003o00000?l0o`3ooolV0?ooo`030000003oool0oooo0?l0oooo803oool00`000?l0oooo0?ooo`05 +0?ooo`0307lZ:P3o0000oooo08<0oooo001>0?ooo`030?l0003oool0oooo00X0oooo00@0ObXZ0?oo +o`3oool0003oo`3ooolW0?ooo`030000003oool0oooo0?l0oooo8@3oool00`000?l0oooo0?ooo`04 +0?ooo`0307lZ:P3o0000oooo08<0oooo001?0?ooo`030?l0003oool0oooo00T0oooo00@0ObXZ0?oo +o`3oool0003oo`3ooolW0?ooo`@00000o`3ooolQ0?ooo`030000o`3oool0oooo00<0oooo00<0ObXZ +0?l0003oool0P`3oool00500oooo00<0o`000?ooo`3oool0203oool00`1o:RX0oooo0000o`3o0?oo +obP0oooo00<000000?ooo`3oool0o`3ooolS0?ooo`030000o`3oool0oooo0080oooo00<0ObXZ0?l0 +003oool0P`3oool00540oooo0P3o00080?ooo`0307lZ:P3oool0003o0?l0oooo:03oool00`000000 +oooo0?ooo`3o0?ooob<0oooo00<0003o0?ooo`3oool00P3oool00`00o`00ObXZ0?ooo`230?ooo`00 +D`3oool00`3o0000oooo0?ooo`050?ooo`0307lZ:P000?l0oooo0?l0oooo:03oool00`000000oooo +0?ooo`3o0?ooob@0oooo00<0003o0?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`220?ooo`00E03o +ool00`3o0000oooo0?ooo`040?ooo`0307lZ:P000?l0oooo0?l0oooo:03oool00`000000oooo0?oo +o`3o0?ooobD0oooo00D0003o0?ooo`3oool0oooo07lZ:P240?ooo`00E@3oool00`3o0000oooo0?oo +o`030?ooo`0307lZ:P000?l0oooo0?l0oooo:03oool00`000000oooo0?ooo`3o0?ooobH0oooo00@0 +003o0?ooo`3oool0ObXZQ03oool005H0oooo00H0o`000?ooo`3oool0oooo07lZ:P000?oo0?ooobX0 +oooo00<000000?ooo`3oool0o`3ooolW0?ooo`030000o`3oool0ObXZ08@0oooo001G0?ooo`80o`00 +0`000?oo0?ooobX0oooo00<000000?ooo`3oool0o`3ooolW0?ooo`@0003oP`3oool005P0oooo1@00 +0?oo0?ooobT0oooo00<000000?ooo`3oool0o`3ooolW0?ooo`D0003oG@3oool00`000000oooo0?oo +o`080?ooo`80000000<0oooo0000000000005@3oool00100ooooB00000050000ool00000o`00001C +000000D0003oB@00000E0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`0000005P3oool0 +03D0oooo00<000000?ooo`3oool0803oool50000ob<0oooo00<000000?ooo`3oool08P3oool00`00 +0000oooo0?ooo`0R0?ooo`030000003oool0oooo02<0oooo00<000000?ooo`3oool08P3oool00`00 +0000oooo0?ooo`0R0?ooo`030000003oool0oooo02<0oooo00<000000?ooo`3oool08P3oool00`00 +0000oooo0?ooo`0S0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool08P3oool00`00 +0000oooo0?ooo`0S0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool08P3oool00`00 +0000oooo0?ooo`0S0?ooo`030000003oool0oooo0200oooo1@000?lR0?ooo`030000003oool0oooo +03X0oooo0P0000090?ooo`030000003oool0oooo01D0oooo000e0?ooo`030000003oool0oooo0200 +oooo00@0o`000000o`000?l0003o903oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo +0280oooo00<000000?ooo`3oool08`3oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo +0280oooo00<000000?ooo`3oool08`3oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo +02<0oooo00<000000?ooo`3oool08P3oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo +02<0oooo00<000000?ooo`3oool08P3oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo +02<0oooo00<000000?ooo`3oool08@3oool30000ob<0oooo00<000000?ooo`3oool0>@3oool00`00 +0000oooo0?ooo`070?ooo`80000000<0oooo0000000000005@3oool003D0oooo00<000000?ooo`3o +ool0803oool0103o0000oooo0000o`00o`0T0?ooo`030000003oool0oooo0280oooo00<000000?oo +o`3oool08P3oool00`000000oooo0?ooo`0S0?ooo`030000003oool0oooo0280oooo00<000000?oo +o`3oool08P3oool00`000000oooo0?ooo`0S0?ooo`030000003oool0oooo0280oooo00<000000?oo +o`3oool08`3oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<000000?oo +o`3oool08`3oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<000000?oo +o`3oool08`3oool00`000000oooo0?ooo`0Q0?ooo`030000o`1o:RX0oooo02<0oooo00<000000?oo +o`3oool0>03oool00`000000oooo0?ooo`0R0?ooo`00F03oool0103o0000oooo000000000?nD0?oo +o`030000003oool0oooo0980oooo00<000000?ooo`3oool0T`3oool00`000000oooo0?ooo`2@0?oo +o`030000o`3oool0ObXZ08@0oooo001H0?ooo`040?l0003oool000000000oi@0oooo00<000000?oo +o`3oool0TP3oool00`000000oooo0?ooo`2C0?ooo`030000003oool0oooo0900oooo00<0003o0?oo +o`1o:RX0Q03oool005P0oooo00@0o`000?ooo`3oool0003oo`3ooolZ0?ooo`030000003oool0oooo +0?l0oooo9`3oool00`000?l0o`0007lZ:P240?ooo`00F@3oool00`3o0000oooo0000o`3o0?ooobX0 +oooo00<000000?ooo`3oool0o`3ooolV0?ooo`040000o`3oool0o`0007lZ:X@0oooo001I0?ooo`03 +0?l0003oool0003o0?l0oooo:P3oool00`000000oooo0?ooo`3o0?ooobH0oooo00<0003o0?ooo`1o +:RX0Q@3oool005X0oooo00<0o`000000o`3oool0o`3ooolY0?ooo`030000003oool0oooo0?l0oooo +9@3oool010000?l0oooo0?ooo`1o:RZ50?ooo`00FP3oool00`3o0000ObXZ0000o`3o0?ooobT0oooo +1000003o0?ooob@0oooo00@0003o0?ooo`3oool0ObXZQ@3oool005X0oooo00<0o`0007lZ:P000?l0 +o`3ooolY0?ooo`030000003oool0oooo0?l0oooo9@3oool010000?l0oooo0?l0001o:RZ50?ooo`00 +F`3oool00`1o:RX0003o0?ooo`3o0?ooobP0oooo00<000000?ooo`3oool0o`3ooolT0?ooo`050000 +o`3oool0oooo0?l0001o:RX0Q@3oool005/0oooo00<0o`000000o`3oool0o`3ooolX0?ooo`030000 +003oool0oooo0?l0oooo903oool01@000?l0oooo0?ooo`3o0000ObXZ08D0oooo001K0?ooo`030?l0 +00000?l0oooo0?l0oooo:03oool00`000000oooo0?ooo`3o0?ooob<0oooo00H0003o0?ooo`3oool0 +o`00003o001o:RZ50?ooo`00F`3oool00`3o0000003o0?ooo`3o0?ooobP0oooo00<000000?ooo`3o +ool0o`3ooolS0?ooo`050000o`3oool0oooo0?l0001o:RX0QP3oool005`0oooo00<0ObXZ0000o`3o +ool0o`3ooolW0?ooo`030000003oool0oooo0?l0oooo8`3oool01@000?l0oooo0?ooo`3o0000ObXZ +08H0oooo001L0?ooo`0307lZ:P000?l0oooo0?l0oooo9`3oool00`000000oooo0?ooo`3o0?ooob80 +oooo00H0003o0?ooo`3oool0oooo0?l0001o:RZ60?ooo`00G03oool00`3o0000003o0?ooo`3o0?oo +obL0oooo00<000000?ooo`3oool0o`3ooolR0?ooo`060000o`3oool0oooo0?ooo`3o0000ObXZQP3o +ool005d0oooo00<0003o0?ooo`3oool0o`3ooolV0?ooo`@00000o`3ooolP0?ooo`060000o`3oool0 +oooo0?ooo`3o0000ObXZQ`3oool005d0oooo00<0003o0?ooo`3oool0o`3ooolV0?ooo`030000003o +ool0oooo0?l0oooo8@3oool01P000?l0oooo0?ooo`3oool0o`0007lZ:XL0oooo001M0?ooo`030000 +o`3oool0oooo0?l0oooo9P3oool00`000000oooo0?ooo`3o0?ooob40oooo00D0003o0?ooo`3oool0 +o`0007lZ:P280?ooo`00G@3oool30000ool0oooo9P3oool00`000000oooo0?ooo`3o0?ooob00oooo +00H0003o0?ooo`3oool0oooo0?l0001o:RZ80?ooo`00G03oool50000ool0oooo9@3oool00`000000 +oooo0?ooo`3o0?ooob00oooo00D0003o0?ooo`3oool0oooo07lZ:P290?ooo`00G03oool50000ool0 +oooo9@3oool00`000000oooo0?ooo`3o0?oooal0oooo00H0003o0?ooo`3oool0oooo0?l0001o:RZ9 +0?ooo`00G03oool50000ool0oooo9@3oool00`000000oooo0?ooo`3o0?oooal0oooo00H0003o0?oo +o`3oool0oooo0?l0001o:RZ90?ooo`00G@3oool30000o`0307lZ:P3oool0oooo0?l0oooo8`3oool0 +0`000000oooo0?ooo`3o0?oooah0oooo00L0003o0?ooo`3oool0oooo0?l0003oool0ObXZ08T0oooo +001O0?ooo`030?l000000?l0oooo0?l0oooo903oool00`000000oooo0?ooo`3o0?oooah0oooo00L0 +003o0?ooo`3oool0oooo0?l0003oool0ObXZ08T0oooo001P0?ooo`030?l000000?l0oooo0?l0oooo +8`3oool400000?l0oooo7@3oool01P000?l0oooo0?ooo`3oool0o`0007lZ:XX0oooo001P0?ooo`03 +0?l0001o:RX0003o0?l0oooo8`3oool00`000000oooo0?ooo`3o0?oooad0oooo00L0003o0?ooo`3o +ool0oooo0?l0003oool0ObXZ08X0oooo001Q0?ooo`0307lZ:P000?l0oooo0?l0oooo8P3oool00`00 +0000oooo0?ooo`3o0?oooad0oooo00H0003o0?ooo`3oool0oooo0?l0001o:RZ;0?ooo`00H@3oool0 +0`3o0000ObXZ0000o`3o0?ooob80oooo00<000000?ooo`3oool0o`3ooolL0?ooo`070000o`3oool0 +oooo0?ooo`3o0000oooo07lZ:P2;0?ooo`00H@3oool01000o`00ObXZ0?ooo`000?oo0?ooob40oooo +00<000000?ooo`3oool0o`3ooolL0?ooo`060000o`3oool0oooo0?ooo`3o0000ObXZS03oool00680 +oooo00@0o`0007lZ:P3oool0003oo`3ooolP0?ooo`030000003oool0oooo0?l0oooo703oool01P00 +0?l0oooo0?ooo`3o0000oooo07lZ:X`0oooo001R0?ooo`04003o001o:RX0oooo0000ool0oooo803o +ool00`000000oooo0?ooo`3o0?oooa/0oooo00H0003o0?ooo`3oool0oooo0?l0001o:RZ=0?ooo`00 +H`3oool0103o0000ObXZ0?ooo`000?oo0?oooal0oooo00<000000?ooo`3oool0o`3ooolK0?ooo`06 +0000o`3oool0oooo0?l0003oool0ObXZS@3oool006<0oooo00D0o`0007lZ:P3oool0oooo0000o`3o +0?oooah0oooo00<000000?ooo`3oool0o`3ooolJ0?ooo`060000o`3oool0oooo0?l0003oool0ObXZ +SP3oool006<0oooo00<00?l00?l0001o:RX00P3oool00`000?l0oooo0?ooo`3o0?oooa/0oooo00<0 +00000?ooo`3oool0o`3ooolJ0?ooo`050000o`3oool0oooo0?l0001o:RX0S`3oool006@0oooo00D0 +o`0007lZ:P3oool0oooo0000o`3o0?oooad0oooo1000003o0?oooaT0oooo00@0003o0?ooo`3o0000 +ObXZT03oool006D0oooo00D0o`0007lZ:P3oool0oooo0000o`3o0?oooa`0oooo00<000000?ooo`3o +ool0o`3ooolI0?ooo`050000o`3oool0o`000?ooo`1o:RX0T03oool006D0oooo00<00?l00?l0001o +:RX00P3oool00`000?l0oooo0?ooo`3o0?oooaT0oooo00<000000?ooo`3oool0o`3ooolI0?ooo`04 +0000o`3oool0o`0007lZ:Y40oooo001V0?ooo`030?l0003oool0ObXZ0080oooo00<0003o0?ooo`3o +ool0o`3ooolH0?ooo`030000003oool0oooo0?l0oooo603oool01@000?l0oooo0?l0003oool0ObXZ +0940oooo001V0?ooo`03003o003o0000ObXZ0080oooo00<0003o0?ooo`3oool0o`3ooolH0?ooo`03 +0000003oool0oooo0?l0oooo603oool010000?l0oooo0?l0001o:RZB0?ooo`00I`3oool00`3o0000 +oooo07lZ:P020?ooo`030000o`3oool0oooo0?l0oooo5`3oool00`000000oooo0?ooo`3o0?oooaP0 +oooo00<0003o0?l0001o:RX0T`3oool006L0oooo00@0o`00003o003oool0ObXZ0P3oool00`000?l0 +oooo0?ooo`3o0?oooaH0oooo00<000000?ooo`3oool0o`3ooolG0?ooo`040000o`3o0000oooo07lZ +:Y<0oooo001X0?ooo`030?l00000o`00ObXZ00<0oooo00<0003o0?ooo`3oool0o`3oool70?ooo`D0 +00002@3oool00`000000oooo0?ooo`3o0?oooaD0oooo0`000?l00`3oool0ObXZ0?ooo`2C0?ooo`00 +J@3oool00`3o0000oooo07lZ:P020?ooo`030000o`3oool0oooo0?l0oooo2@3oool00`000000oooo +0?ooo`090?ooo`030000003oool0oooo0?l0oooo503oool50000o`0307lZ:P3oool0oooo0980oooo +001Y0?ooo`030?l00000o`00ObXZ00<0oooo00<0003o0?ooo`3oool0o`3oool80?ooo`030000003o +ool0oooo00T0oooo1P00003o0?oooa40oooo1@000?nE0?ooo`00JP3oool00`3o0000oooo07lZ:P03 +0?ooo`030000o`3oool0oooo0?l0oooo1`3oool00`000000oooo0?ooo`090?ooo`030000003oool0 +oooo0?l0oooo503oool50000oiD0oooo001Z0?ooo`040?l00000o`00oooo07lZ:P80oooo00<0003o +0?ooo`3oool0o`3oool70?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool0o`3ooolD +0?ooo`@0003oUP3oool006/0oooo00@0o`00003o003oool0ObXZ0P3oool00`000?l0oooo0?ooo`3o +0?ooo`D0oooo0P00000;0?ooo`030000003oool0oooo0?l0oooo4P3oool20000o`030?l0003oool0 +ObXZ09L0oooo001/0?ooo`030?l00000o`00ObXZ00<0oooo00<0003o0?ooo`3oool0o`3ooolA0?oo +o`030000003oool0oooo0?l0oooo4@3oool01@000?l0oooo0?l0003oool0ObXZ09P0oooo001]0?oo +o`030?l00000o`00ObXZ00<0oooo00<0003o0?ooo`3oool0o`3oool@0?ooo`030000003oool0oooo +0?l0oooo403oool01@000?l0oooo0?l0003oool0ObXZ09T0oooo001^0?ooo`030?l00000o`00ObXZ +0080oooo00<0003o0?ooo`3oool0o`3oool@0?ooo`030000003oool0oooo0?l0oooo3`3oool01@00 +0?l0oooo0?ooo`3o0000ObXZ09X0oooo001_0?ooo`030?l0003oool0ObXZ0080oooo00<0003o0?oo +o`3oool0o`3oool?0?ooo`030000003oool0oooo0?l0oooo3P3oool01@000?l0oooo0?ooo`3o0000 +ObXZ09/0oooo001`0?ooo`030?l0003oool0ObXZ0080oooo00<0003o0?ooo`3oool0o`3oool>0?oo +o`030000003oool0oooo0?l0oooo303oool20000o`80oooo00<0o`0007lZ:P3oool0V`3oool00740 +oooo00<0o`000?ooo`1o:RX00P3oool00`000?l0oooo0?ooo`3o0?ooo`d0oooo1000003o0?ooo`X0 +oooo00H0003o0?ooo`3oool0oooo0?l0001o:RZM0?ooo`00L@3oool01P3o00000?l00?ooo`1o:RX0 +oooo0000ool0oooo3`3oool00`000000oooo0?ooo`3o0?ooo`X0oooo00H0003o0?ooo`3oool0oooo +0?l0001o:RZN0?ooo`00LP3oool01P3o00000?l00?ooo`1o:RX0oooo0000ool0oooo3P3oool00`00 +0000oooo0?ooo`3o0?ooo`T0oooo00H0003o0?ooo`3oool0oooo0?l0001o:RZO0?ooo`00L`3oool0 +1P3o00000?l00?ooo`1o:RX0oooo0000ool0oooo3@3oool00`000000oooo0?ooo`3o0?ooo`P0oooo +00H0003o0?ooo`3oool0oooo0?l0001o:RZP0?ooo`00M03oool01P3o00000?l00?ooo`1o:RX0oooo +0000ool0oooo303oool00`000000oooo0?ooo`3o0?ooo`H0oooo0P000?l30?ooo`030?l0001o:RX0 +oooo0:00oooo001e0?ooo`050?l00000o`00oooo07lZ:P000?l0o`3oool<0?ooo`030000003oool0 +oooo0?l0oooo1@3oool00`000?l0oooo0?ooo`020?ooo`030?l0001o:RX0oooo0:40oooo001f0?oo +o`050?l00000o`00oooo07lZ:P000?l0o`3oool;0?ooo`030000003oool0oooo0?l0oooo103oool0 +0`000?l0oooo0?ooo`030?ooo`0307lZ:P3oool0oooo0:40oooo001g0?ooo`050?l0003oool0oooo +07lZ:P000?l0o`3oool:0?ooo`030000003oool0oooo0?l0oooo0`3oool00`000?l0oooo0?ooo`03 +0?ooo`0307lZ:P3oool0oooo0:80oooo001h0?ooo`050?l0003oool0oooo07lZ:P000?l0o`3oool9 +0?ooo`030000003oool0oooo0?l0oooo0P3oool00`000?l0oooo0?ooo`020?ooo`030?l0001o:RX0 +oooo0:@0oooo001i0?ooo`80o`0000<0oooo0000o`3oool0o`3oool80?ooo`030000003oool0oooo +0?l0oooo0P000?l40?ooo`030?l0001o:RX0oooo0:D0oooo001k0?ooo`030?l0003oool0003o0?l0 +oooo203oool400000?d0oooo00<0003o0?ooo`3oool00`3oool00`3o0000ObXZ0?ooo`2V0?ooo`00 +O03oool00`3o0000oooo0000o`3o0?ooo`L0oooo00<000000?ooo`3oool0o@3oool00`000?l0oooo +0?ooo`030?ooo`030?l0001o:RX0oooo0:L0oooo001m0?ooo`030?l0003oool0003o0080003oo`3o +ool40?ooo`030000003oool0oooo0?`0oooo00<0003o0?ooo`3oool00`3oool00`3o0000ObXZ0?oo +o`2X0?ooo`00OP3oool50000ool0oooo0`3oool00`000000oooo0?ooo`3k0?ooo`030000o`3oool0 +oooo00<0oooo00<0o`0007lZ:P3oool0Z@3oool007h0oooo1@000?oo0?ooo`<0oooo00<000000?oo +o`3oool0nP3oool00`000?l0oooo0?ooo`020?ooo`80o`0000<0ObXZ0?ooo`3oool0Z@3oool007h0 +oooo1@000?l00`1o:RX0oooo0?ooo`3o0?ooo`030000003oool0oooo0?P0oooo0P000?l40?ooo`03 +0?l0001o:RX0ObXZ0:`0oooo001o0?ooo`<0003o00<0o`000000o`1o:RX0o`3oool10?ooo`030000 +003oool0oooo0?L0oooo00<0003o0?ooo`3oool00`3oool00`3o0000ObXZ0?ooo`2]0?ooo`00P`3o +ool0103o0000003o0000o`1o:R[n0?ooo`030000003oool0oooo0?H0oooo00<0003o0?ooo`3oool0 +0`3oool207lZ:Zl0oooo00240?ooo`030?l00000o`00003o0080ObXZo03oool00`000000oooo0?oo +o`3e0?ooo`030000o`3oool0oooo0080oooo0P1o:RZa0?ooo`00Q@3oool20?l00080003o00<0ObXZ +0?ooo`3oool0n@3oool400000?<0oooo00<0003o0?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`2a +0?ooo`00Q`3oool0103o0000oooo0000o`000?oj0?ooo`030000003oool0oooo0?80oooo0P000?l4 +0?ooo`0307lZ:P3oool0oooo0;80oooo00280?ooo`80o`0000<0oooo0000o`3oool0n03oool00`00 +0000oooo0?ooo`3a0?ooo`030000o`3oool0oooo00<0oooo00<0ObXZ0?ooo`3oool0/`3oool008X0 +oooo0P3o00020000ooL0oooo00<000000?ooo`3oool0l03oool00`000?l0oooo0?ooo`020?ooo`80 +ObXZ]P3oool008/0oooo00@00?l00?l0003o0000003omP3oool00`000000oooo0?ooo`3_0?ooo`03 +0000o`3oool0oooo0080oooo00<0ObXZ0?ooo`3oool0]P3oool008d0oooo00@00?l00?l000000?l0 +003om03oool00`000000oooo0?ooo`3^0?ooo`060000o`3oool0oooo0?ooo`3o0000ObXZ^@3oool0 +08h0oooo00@00?l00?l0003oool0003ol`3oool00`000000oooo0?ooo`3/0?ooo`80003o0`3oool0 +0`3o0000ObXZ0?ooo`2i0?ooo`00T03oool20?l00080003ol@3oool00`000000oooo0?ooo`3[0?oo +o`030000o`3oool0oooo0080oooo0P1o:RZk0?ooo`00TP3oool00`3o0000ObXZ0000o`3`0?ooo`03 +0000003oool0oooo0>X0oooo00@0003o0?ooo`3oool0oooo0P1o:RZm0?ooo`00T`3oool20?l00080 +003okP3oool400000>P0oooo00<0003o0?ooo`3oool00P1o:RX00`3o0000oooo0?ooo`2l0?ooo`00 +U@3oool0103o0000oooo0000o`1o:R[/0?ooo`030000003oool0oooo0>P0oooo00D0003o0?ooo`1o +:RX0ObXZ0?l000300?ooo`00UP3oool20?l00080003oj`3oool00`000000oooo0?ooo`3V0?ooo`80 +003o00@0oooo07lZ:P3o0000o`00`@3oool009P0oooo0P3o00000`000?l0ObXZ0?ooo`3X0?ooo`03 +0000003oool0oooo0>D0oooo00D0003o0?ooo`1o:RX0ObXZ0?l000330?ooo`00V@3oool01@00o`00 +o`000000o`000?l0ObXZ0>L0oooo00<000000?ooo`3oool0i03oool00`000?l0ObXZ07lZ:P020?l0 +0<@0oooo002K0?ooo`05003o003o0000003o0000o`1o:RX0i@3oool00`000000oooo0?ooo`3S0?oo +o`040000o`1o:RX0o`000?l0000oooo00<000000?ooo`3oool0h03oool20000o`030?l0003oool0oooo00?ooo`030000003oool0oooo0<`0oooo0`000?l0101o +:RX0o`000?l0003o003J0?ooo`00/`3oool20?l00080ObXZ0`000?o;0?ooo`030000003oool0oooo +0P0 +oooo00320?ooo`030?l0001o:RX0ObXZ0080oooo0`000?nk0?ooo`030000003oool0oooo0;X0oooo +0P000?l20?ooo`<0ObXZ00<0o`000?ooo`3oool0j@3oool00<@0oooo00@0o`0007lZ:P1o:RX0ObXZ +0P3oool20000okT0oooo00<000000?ooo`3oool0]`3oool30000o`80oooo0P1o:RX00`3o0000oooo +0?ooo`3/0?ooo`00aP3oool20?l00080ObXZ0P3oool30000okH0oooo00<000000?ooo`3oool0]@3o +ool20000o`<0oooo0P1o:RX00`3o0000oooo0?ooo`3^0?ooo`00b@3oool00`3o0000ObXZ07lZ:P03 +0?ooo`<0003o/`3oool00`000000oooo0?ooo`2b0?ooo`<0003o0P3oool307lZ:P030?l0003oool0 +oooo0?00oooo003<0?ooo`@0ObXZ0P3oool20000ok40oooo00<000000?ooo`3oool0[`3oool30000 +o`030?ooo`1o:RX0ObXZ0080ObXZmP3oool00=00oooo0`1o:RX0103oool0003o0000o`000?n^0?oo +o`@00000[03oool20000o`80oooo0P1o:RX20?l00?P0oooo003B0?ooo`050?l0001o:RX0ObXZ003o +003oool00`000?n[0?ooo`030000003oool0oooo0:X0oooo0`000?l20?ooo`80ObXZ0P3o003j0?oo +o`00e03oool0103o0000ObXZ07lZ:P1o:RX20?ooo`80003oZ@3oool00`000000oooo0?ooo`2W0?oo +o`<0003o0P3oool307lZ:P030?l0003oool0oooo0?/0oooo003G0?ooo`050?l0001o:RX0ObXZ07lZ +:P3oool00`000?nV0?ooo`030000003oool0oooo0:D0oooo0P000?l00`3oool0ObXZ07lZ:P0207lZ +:P030?l0003oool0oooo0?h0oooo003J0?ooo`03003o001o:RX0ObXZ0080ObXZ0`000?nS0?ooo`03 +0000003oool0oooo0:80oooo0`000?l307lZ:P030?l0003oool0oooo0?l0oooo0`3oool00=h0oooo +00@0o`0007lZ:P1o:RX0ObXZ0P000?nQ0?ooo`030000003oool0oooo09l0oooo0`000?l207lZ:P03 +0?l0003oool0oooo0?l0oooo1`3oool00>80oooo00<0o`0007lZ:P000?l00P000?nN0?ooo`030000 +003oool0oooo09d0oooo0P000?l00`1o:RX0o`000?ooo`3o0?ooo``0oooo003U0?ooo`03003o001o +:RX0003o0080003oV`3oool00`000000oooo0?ooo`2J0?ooo`<0003o00<0o`000?ooo`3oool0o`3o +ool>0?ooo`00j03oool207lZ:P80003o00<0o`000?ooo`3oool00`000?nC0?ooo`030000003oool0 +oooo0980oooo0`000?l00`3oool0o`000000o`020000o`0307lZ:P3oool0oooo0?l0oooo4@3oool0 +0>/0oooo00<0ObXZ0000o`000?l01@000?nB0?ooo`030000003oool0oooo0940oooo1P000?l00`1o +:RX0oooo0?ooo`3o0?oooa@0oooo003^0?ooo`D0003o00<0o`000?ooo`3oool0S`3oool4000008d0 +oooo00<0o`000000o`000?l01@000?oo0?oooaP0oooo003^0?ooo`X0003oS@3oool00`000000oooo +0?ooo`270?ooo`P0003o00<0ObXZ0?ooo`000?l010000?oo0?oooaP0oooo003_0?ooo`<0003o1@3o +ool00`1o:RX0003o0000o`040000ohL0oooo00<000000?ooo`3oool0O`3oool80000o`030?l0001o +:RX0ObXZ0080ObXZ1P3oool30000ool0oooo6@3oool00?`0oooo0P1o:RX50000oh80oooo00<00000 +0?ooo`3oool0MP3oool90000o`@0oooo00<0o`0007lZ:P1o:RX00P1o:R[o0?ooobH0oooo003o0?oo +o`40oooo0`1o:RX50000ogd0oooo00<000000?ooo`3oool0KP3oool80000o`T0oooo1@1o:R[o0?oo +obX0oooo003o0?ooo`D0oooo101o:RX60000ogL0oooo00<000000?ooo`3oool0IP3oool80000o`d0 +oooo101o:R[o0?ooobl0oooo003o0?ooo`T0oooo1@1o:RX00`3o0000003o0000o`030000og80oooo +00<000000?ooo`3oool0G@3oool90000o`d0oooo103o000407lZ:_l0oooo<`3oool00?l0oooo3P3o +ool407lZ:P80o`001@000?m]0?ooo`030000003oool0oooo05D0oooo20000?lB0?ooo`<0o`001@1o +:R[o0?ooocL0oooo003o0?oooa80oooo1`1o:RX50000ofP0oooo00<000000?ooo`3oool0C@3oool8 +0000oaD0oooo201o:R[o0?oooc`0oooo003o0?oooaP0oooo0`3o000307lZ:PH0003oHP3oool40000 +04<0oooo2@000?lF0?ooo`80o`001@1o:RX00`3o0000oooo0?ooo`3o0?oood40oooo003o0?oooal0 +oooo101o:RX00`3o0000003o0000o`030000oed0oooo00<000000?ooo`3oool0?03oool80000oa/0 +oooo0P3o000407lZ:P800?l0o`3ooom70?ooo`00o`3ooolS0?ooo`H0ObXZ1@000?mH0?ooo`030000 +003oool0oooo03@0oooo20000?lK0?ooo`030?l0001o:RX0ObXZ00L0ObXZo`3ooom=0?ooo`00o`3o +ool/0?ooo`80ObXZ1P000?l60?ooo`<0003oB@3oool00`000000oooo0?ooo`0[0?ooo`T0003o6`3o +ool50?l000@0ObXZ0`00o`3o0?oooe<0oooo003o0?oooc40oooo0`1o:RX:0000odP0oooo00<00000 +0?ooo`3oool08`3oool80000oa`0oooo0`3o000:07lZ:_l0ooooFP3oool00?l0oooo>@3oool<0000 +od40oooo00<000000?ooo`3oool06`3oool80000oa`0oooo0P3o000907lZ:P03003o003oool0oooo +0?l0ooooH@3oool00?l0oooo>@3oool50000o`D0oooo0P1o:RXC0000obh0oooo00<000000?ooo`3o +ool04P3oool90000oa`0oooo00<0o`0007lZ:P1o:RX01`1o:RX2003o0?l0ooooJ`3oool00?l0oooo +>P3oool30000o`l0oooo2@1o:RX30?l00180003o3`3oool2000000X0oooo0`000?l;0?ooo`P0003o +603oool50?l000T0ObXZ0`00o`3o0?ooog<0oooo003o0?oooeD0oooo4`1o:RX00`3o0000oooo0000 +o`0B0000o`L0oooo1@000?l20?ooo`P0003o403oool20?l001<0ObXZo`3ooomo0?ooo`00o`3ooomX +0?oooaD0ObXZ3P000?lJ07lZ:P800?l0o`3ooon@0?ooo`00o`3ooomk0?ooo`030000003oool0oooo +00H0oooo1@000?oo0?ooojh0oooo003o0?ooogP0oooo00@000000?ooo`3oool000002@3oool30000 +ool0oooo[`3oool00?l0ooooN@3oool2000000/0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00 +o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`000000oooo0?oo +o`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?oo +o`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0 +oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?ooo`@00000o`3o +oon]0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`00 +0000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00 +o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`000000oooo0?oo +o`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?oo +o`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`000000oooo0?ooo`3o0?ooojh0 +oooo003o0?ooohH0oooo1000003o0?ooojd0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3o +oon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`00 +0000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00 +o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`000000oooo0?oo +o`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?oo +o`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool400000?l0oooo[@3oool00?l0oooo +QP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3o +oon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`00 +0000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00 +o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`000000oooo0?oo +o`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00o`3ooon60?oo +o`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool400000?l0oooo[@3oool00?l0oooo +QP3oool00`000000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3o +oon^0?ooo`00o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooQP3oool00`00 +0000oooo0?ooo`3o0?ooojh0oooo003o0?ooohH0oooo00<000000?ooo`3oool0o`3ooon^0?ooo`00 +o`3ooon60?ooo`030000003oool0oooo0?l0oooo[P3oool00?l0ooooNP3oool3000000T0oooo00<0 +00000?ooo`3oool0o`3ooon^0?ooo`00o`3ooomk0?ooo`030000003oool0oooo00P0oooo00<00000 +0?ooo`3oool0o`3ooon^0?ooo`00o`3ooomh0?ooo`D000002@3oool600000?l0ooooZ`3oool00?l0 +ooooN03oool010000000oooo0?ooo`00003o0?oook/0oooo003o0?ooogT0oooo00<000000?ooo`00 +0000o`3ooonk0?ooo`00o`3ooomj0?ooo`800000o`3ooonk0?ooo`00o`3ooooo0?ooool0oooo>03o +ool00?l0ooooo`3ooooo0?ooocP0oooo003o0?ooool0ooooo`3ooolh0?ooo`00o`3ooooo0?ooool0 +oooo>03oool00?l0ooooo`3ooooo0?ooocP0oooo003o0?ooool0ooooo`3ooolh0?ooo`00o`3ooooo +0?ooool0oooo>03oool00?l0ooooo`3ooooo0?ooocP0oooo003o0?ooool0ooooo`3ooolh0?ooo`00 +o`3ooooo0?ooool0oooo>03oool00?l0ooooo`3ooooo0?ooocP0oooo003o0?ooool0ooooo`3ooolh +0?ooo`00o`3ooooo0?ooool0oooo>03oool00?l0ooooo`3ooooo0?ooocP0oooo003o0?ooool0oooo +o`3ooolh0?ooo`00o`3ooooo0?ooool0oooo>03oool00?l0ooooo`3ooooo0?ooocP0oooo003o0?oo +oi00oooo0P00003o0?ooojD0oooo003o0?oooi40oooo00<000000?ooo`3oool0o`3ooonS0?ooo`00 +o`3ooonB0?ooo`030000003oool0oooo0?l0ooooXP3oool00?l0ooooT@3oool00`000000oooo0000 +003o0?oooj<0oooo003o0?oooi00oooo00@000000?ooo`3oool00000o`3ooonS0?ooo`00o`3ooon? +0?ooo`<0000000<0oooo000000000000o`3ooonR0?ooo`00o`3ooon40?ooo`040000003oool0oooo +00000?l0oooo[`3oool00?l0ooooQ@3oool200000?l0oooo/03oool00?l0ooooo`3ooooo0?ooocP0 +oooo003o0?ooool0ooooo`3ooolh0?ooo`00o`3ooooo0?ooool0oooo>03oool00001\ +\>"], + ImageRangeCache->{{{0, 820}, {409.5, 0}} -> {-5.2171, -4.09644, 0.0133887, \ +0.021422}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]4\ +\[InvisibleSpace]" mit "\[InvisibleSpace]17\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 4, " mit ", 17, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.25 0.0625 [ +[.1 .2375 -6 -9 ] +[.1 .2375 6 0 ] +[.3 .2375 -6 -9 ] +[.3 .2375 6 0 ] +[.7 .2375 -3 -9 ] +[.7 .2375 3 0 ] +[.9 .2375 -3 -9 ] +[.9 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .0625 -12 -4.5 ] +[.4875 .0625 0 4.5 ] +[.4875 .125 -12 -4.5 ] +[.4875 .125 0 4.5 ] +[.4875 .1875 -12 -4.5 ] +[.4875 .1875 0 4.5 ] +[.4875 .3125 -6 -4.5 ] +[.4875 .3125 0 4.5 ] +[.4875 .375 -6 -4.5 ] +[.4875 .375 0 4.5 ] +[.4875 .4375 -6 -4.5 ] +[.4875 .4375 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .25 m +.1 .25625 L +s +[(-4)] .1 .2375 0 1 Mshowa +.3 .25 m +.3 .25625 L +s +[(-2)] .3 .2375 0 1 Mshowa +.7 .25 m +.7 .25625 L +s +[(2)] .7 .2375 0 1 Mshowa +.9 .25 m +.9 .25625 L +s +[(4)] .9 .2375 0 1 Mshowa +.125 Mabswid +.15 .25 m +.15 .25375 L +s +.2 .25 m +.2 .25375 L +s +.25 .25 m +.25 .25375 L +s +.35 .25 m +.35 .25375 L +s +.4 .25 m +.4 .25375 L +s +.45 .25 m +.45 .25375 L +s +.55 .25 m +.55 .25375 L +s +.6 .25 m +.6 .25375 L +s +.65 .25 m +.65 .25375 L +s +.75 .25 m +.75 .25375 L +s +.8 .25 m +.8 .25375 L +s +.85 .25 m +.85 .25375 L +s +.05 .25 m +.05 .25375 L +s +.95 .25 m +.95 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-4)] .4875 0 1 0 Mshowa +.5 .0625 m +.50625 .0625 L +s +[(-3)] .4875 .0625 1 0 Mshowa +.5 .125 m +.50625 .125 L +s +[(-2)] .4875 .125 1 0 Mshowa +.5 .1875 m +.50625 .1875 L +s +[(-1)] .4875 .1875 1 0 Mshowa +.5 .3125 m +.50625 .3125 L +s +[(1)] .4875 .3125 1 0 Mshowa +.5 .375 m +.50625 .375 L +s +[(2)] .4875 .375 1 0 Mshowa +.5 .4375 m +.50625 .4375 L +s +[(3)] .4875 .4375 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .0125 m +.50375 .0125 L +s +.5 .025 m +.50375 .025 L +s +.5 .0375 m +.50375 .0375 L +s +.5 .05 m +.50375 .05 L +s +.5 .075 m +.50375 .075 L +s +.5 .0875 m +.50375 .0875 L +s +.5 .1 m +.50375 .1 L +s +.5 .1125 m +.50375 .1125 L +s +.5 .1375 m +.50375 .1375 L +s +.5 .15 m +.50375 .15 L +s +.5 .1625 m +.50375 .1625 L +s +.5 .175 m +.50375 .175 L +s +.5 .2 m +.50375 .2 L +s +.5 .2125 m +.50375 .2125 L +s +.5 .225 m +.50375 .225 L +s +.5 .2375 m +.50375 .2375 L +s +.5 .2625 m +.50375 .2625 L +s +.5 .275 m +.50375 .275 L +s +.5 .2875 m +.50375 .2875 L +s +.5 .3 m +.50375 .3 L +s +.5 .325 m +.50375 .325 L +s +.5 .3375 m +.50375 .3375 L +s +.5 .35 m +.50375 .35 L +s +.5 .3625 m +.50375 .3625 L +s +.5 .3875 m +.50375 .3875 L +s +.5 .4 m +.50375 .4 L +s +.5 .4125 m +.50375 .4125 L +s +.5 .425 m +.50375 .425 L +s +.5 .45 m +.50375 .45 L +s +.5 .4625 m +.50375 .4625 L +s +.5 .475 m +.50375 .475 L +s +.5 .4875 m +.50375 .4875 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .25 m +.10033 .25342 L +.10068 .25684 L +.10105 .26026 L +.10148 .26367 L +.10196 .26708 L +.10252 .27049 L +.10318 .27388 L +.10394 .27727 L +.10483 .28065 L +.10585 .28402 L +.10702 .28737 L +.10832 .29071 L +.10976 .29404 L +.11133 .29734 L +.11303 .30063 L +.11486 .30389 L +.11682 .30712 L +.1189 .31033 L +.1211 .31351 L +.12342 .31666 L +.12586 .31977 L +.12841 .32284 L +.13108 .32588 L +.13386 .32888 L +.13674 .33183 L +.13973 .33474 L +.14282 .33761 L +.14602 .34042 L +.14931 .34319 L +.1527 .3459 L +.15618 .34855 L +.15975 .35116 L +.1634 .35372 L +.16714 .35623 L +.17095 .35869 L +.17484 .3611 L +.17879 .36348 L +.18281 .36581 L +.1869 .3681 L +.19104 .37035 L +.19523 .37256 L +.19948 .37474 L +.20377 .37688 L +.20811 .37898 L +.21249 .38105 L +.21691 .38309 L +.22138 .38509 L +.22589 .38705 L +.23044 .38897 L +Mistroke +.23503 .39086 L +.23965 .39272 L +.24432 .39453 L +.24902 .39631 L +.25376 .39804 L +.25853 .39974 L +.26334 .40141 L +.26818 .40303 L +.27305 .40461 L +.27796 .40615 L +.28289 .40766 L +.28786 .40912 L +.29285 .41055 L +.29787 .41193 L +.30292 .41327 L +.308 .41457 L +.3131 .41583 L +.31822 .41705 L +.32337 .41824 L +.32854 .41938 L +.33373 .42048 L +.33894 .42155 L +.34417 .42258 L +.34942 .42357 L +.35469 .42453 L +.35998 .42545 L +.36528 .42633 L +.37059 .42718 L +.37592 .428 L +.38126 .42878 L +.38662 .42953 L +.39198 .43024 L +.39736 .43093 L +.40274 .43158 L +.40814 .4322 L +.41354 .43278 L +.41895 .43334 L +.42437 .43386 L +.42979 .43435 L +.43522 .4348 L +.44066 .43522 L +.44611 .43561 L +.45156 .43596 L +.45702 .43628 L +.46248 .43656 L +.46795 .4368 L +.47342 .43701 L +.4789 .43718 L +.48438 .43732 L +.48986 .43742 L +Mistroke +.49535 .43748 L +.50084 .4375 L +.50634 .43749 L +.51183 .43743 L +.51733 .43734 L +.52283 .43721 L +.52833 .43705 L +.53382 .43684 L +.53932 .4366 L +.54481 .43632 L +.5503 .43601 L +.55578 .43565 L +.56126 .43526 L +.56673 .43484 L +.5722 .43437 L +.57766 .43387 L +.58311 .43334 L +.58856 .43277 L +.59399 .43216 L +.59941 .43151 L +.60483 .43083 L +.61023 .43012 L +.61562 .42937 L +.62099 .42858 L +.62635 .42776 L +.6317 .4269 L +.63703 .42601 L +.64234 .42508 L +.64764 .42412 L +.65292 .42313 L +.65818 .4221 L +.66342 .42103 L +.66864 .41993 L +.67384 .4188 L +.67902 .41763 L +.68417 .41643 L +.68931 .4152 L +.69441 .41393 L +.6995 .41263 L +.70455 .4113 L +.70959 .40993 L +.71459 .40852 L +.71956 .40708 L +.7245 .40561 L +.72941 .40409 L +.73429 .40253 L +.73913 .40093 L +.74394 .39929 L +.74871 .39761 L +.75344 .39588 L +Mistroke +.75813 .39411 L +.76277 .39229 L +.76738 .39042 L +.77194 .3885 L +.77646 .38654 L +.78093 .38452 L +.78535 .38245 L +.78972 .38032 L +.79404 .37814 L +.79831 .37591 L +.80253 .37362 L +.80669 .37127 L +.81079 .36887 L +.81483 .36641 L +.81881 .3639 L +.82273 .36134 L +.82657 .35873 L +.83035 .35607 L +.83406 .35337 L +.83769 .35062 L +.84124 .34783 L +.84471 .34499 L +.84811 .34212 L +.85141 .3392 L +.85463 .33625 L +.85777 .33326 L +.86081 .33024 L +.86375 .32718 L +.8666 .32409 L +.86935 .32097 L +.872 .31781 L +.87455 .31464 L +.87699 .31143 L +.87932 .3082 L +.88154 .30495 L +.88364 .30167 L +.88564 .29837 L +.88751 .29506 L +.88926 .29172 L +.89089 .28837 L +.89239 .28501 L +.89377 .28163 L +.89501 .27823 L +.89613 .27483 L +.8971 .27142 L +.89794 .268 L +.89864 .26457 L +.8992 .26114 L +.89961 .2577 L +.89988 .25427 L +Mistroke +.89999 .25083 L +.89996 .24739 L +.89977 .24395 L +.89944 .24052 L +.89896 .23709 L +.89833 .23367 L +.89756 .23025 L +.89666 .22685 L +.89562 .22345 L +.89444 .22006 L +.89313 .21669 L +.8917 .21333 L +.89013 .20998 L +.88845 .20665 L +.88664 .20334 L +.88471 .20004 L +.88266 .19677 L +.8805 .19352 L +.87822 .19029 L +.87584 .18708 L +.87334 .1839 L +.87075 .18074 L +.86804 .17762 L +.86524 .17452 L +.86234 .17145 L +.85935 .16842 L +.85626 .16541 L +.85308 .16244 L +.84981 .15951 L +.84646 .15661 L +.84302 .15375 L +.8395 .15094 L +.8359 .14816 L +.83222 .14542 L +.82847 .14273 L +.82465 .14008 L +.82076 .13747 L +.8168 .13492 L +.81278 .13241 L +.80869 .12995 L +.80455 .12754 L +.80035 .12519 L +.79609 .12289 L +.79178 .12064 L +.78741 .11844 L +.783 .1163 L +.77853 .11421 L +.77402 .11217 L +.76946 .11017 L +.76485 .10823 L +Mistroke +.7602 .10634 L +.7555 .10449 L +.75077 .1027 L +.74599 .10095 L +.74117 .09925 L +.73631 .09759 L +.73142 .09598 L +.72649 .09441 L +.72153 .09289 L +.71653 .09142 L +.7115 .08998 L +.70644 .08859 L +.70135 .08724 L +.69623 .08593 L +.69109 .08467 L +.68592 .08344 L +.68072 .08225 L +.67551 .08111 L +.67027 .08 L +.66501 .07893 L +.65973 .07789 L +.65443 .0769 L +.64912 .07594 L +.64379 .07501 L +.63844 .07413 L +.63309 .07327 L +.62772 .07245 L +.62234 .07166 L +.61696 .07091 L +.61156 .07019 L +.60616 .0695 L +.60075 .06884 L +.59534 .06821 L +.58993 .06761 L +.58451 .06705 L +.57909 .06651 L +.57366 .06601 L +.56823 .06554 L +.5628 .0651 L +.55736 .06469 L +.55191 .06432 L +.54647 .06398 L +.54102 .06368 L +.53556 .06341 L +.5301 .06317 L +.52463 .06297 L +.51916 .0628 L +.51368 .06267 L +.5082 .06257 L +.50272 .06252 L +Mistroke +.49723 .06249 L +.49173 .06251 L +.48623 .06256 L +.48073 .06265 L +.47522 .06277 L +.46972 .06293 L +.46421 .06313 L +.45871 .06337 L +.45321 .06364 L +.44771 .06395 L +.44221 .0643 L +.43672 .06468 L +.43124 .0651 L +.42576 .06556 L +.42029 .06606 L +.41482 .06659 L +.40937 .06716 L +.40393 .06777 L +.3985 .06842 L +.39308 .0691 L +.38767 .06982 L +.38228 .07058 L +.37691 .07137 L +.37155 .07221 L +.3662 .07308 L +.36088 .07399 L +.35557 .07493 L +.35029 .07592 L +.34502 .07694 L +.33978 .078 L +.33456 .0791 L +.32936 .08023 L +.32419 .08141 L +.31904 .08262 L +.31392 .08387 L +.30883 .08516 L +.30377 .08648 L +.29873 .08785 L +.29373 .08925 L +.28875 .09069 L +.28381 .09217 L +.2789 .09368 L +.27401 .09524 L +.26916 .09683 L +.26434 .09845 L +.25955 .10011 L +.2548 .10181 L +.25007 .10354 L +.24538 .10531 L +.24071 .10712 L +Mistroke +.23608 .10896 L +.23148 .11083 L +.22692 .11274 L +.22238 .11468 L +.21788 .11666 L +.21341 .11867 L +.20898 .12071 L +.20458 .12279 L +.20021 .1249 L +.19587 .12704 L +.19158 .12922 L +.18734 .13143 L +.18316 .13369 L +.17906 .13599 L +.17503 .13834 L +.17109 .14074 L +.16725 .14319 L +.16352 .1457 L +.15991 .14827 L +.15643 .1509 L +.15308 .15359 L +.14988 .15635 L +.14684 .15919 L +.14394 .16208 L +.14118 .16504 L +.13856 .16805 L +.13607 .17111 L +.13371 .17421 L +.13145 .17735 L +.12931 .18052 L +.12727 .18372 L +.12533 .18694 L +.12347 .19018 L +.1217 .19342 L +.12001 .19668 L +.1184 .19996 L +.11685 .20324 L +.11538 .20654 L +.11396 .20984 L +.1126 .21316 L +.11129 .21648 L +.11003 .21981 L +.1088 .22315 L +.10762 .22649 L +.10647 .22984 L +.10535 .23319 L +.10425 .23655 L +.10317 .23991 L +.10211 .24327 L +.10105 .24664 L +Mistroke +.1 .25 L +Mfstroke +1 0 0 r +.1 .25 m +.10099 .2524 L +.10167 .25526 L +.10217 .25847 L +.10255 .26191 L +.1029 .26553 L +.10327 .26925 L +.1037 .27302 L +.10422 .27681 L +.10487 .28058 L +.10566 .28432 L +.10661 .288 L +.10771 .29162 L +.10899 .29517 L +.11044 .29865 L +.11205 .30204 L +.11383 .30536 L +.11577 .30861 L +.11787 .31179 L +.12011 .3149 L +.1225 .31795 L +.12502 .32094 L +.12767 .32388 L +.13045 .32676 L +.13334 .3296 L +.13633 .3324 L +.13943 .33515 L +.14263 .33787 L +.14592 .34056 L +.14929 .34321 L +.15275 .34582 L +.15628 .34841 L +.15989 .35096 L +.16357 .35349 L +.16732 .35598 L +.17114 .35844 L +.17501 .36087 L +.17895 .36326 L +.18295 .36563 L +.187 .36796 L +.19111 .37025 L +.19527 .37251 L +.19948 .37473 L +.20375 .37692 L +.20806 .37906 L +.21242 .38117 L +.21683 .38323 L +.22129 .38526 L +.22579 .38724 L +.23033 .38918 L +Mistroke +.23491 .39108 L +.23954 .39294 L +.24421 .39475 L +.24891 .39652 L +.25366 .39825 L +.25844 .39994 L +.26325 .40158 L +.26811 .40318 L +.27299 .40475 L +.27791 .40626 L +.28285 .40774 L +.28783 .40918 L +.29284 .41058 L +.29787 .41194 L +.30293 .41326 L +.30801 .41454 L +.31312 .41579 L +.31825 .41699 L +.32341 .41816 L +.32858 .4193 L +.33378 .4204 L +.33899 .42146 L +.34422 .42249 L +.34947 .42349 L +.35473 .42445 L +.36002 .42537 L +.36531 .42627 L +.37062 .42713 L +.37595 .42795 L +.38128 .42874 L +.38663 .4295 L +.39199 .43023 L +.39736 .43092 L +.40274 .43158 L +.40813 .43221 L +.41353 .4328 L +.41894 .43336 L +.42436 .43388 L +.42979 .43437 L +.43522 .43482 L +.44066 .43524 L +.44611 .43563 L +.45156 .43598 L +.45702 .43629 L +.46248 .43657 L +.46795 .43681 L +.47343 .43702 L +.4789 .43719 L +.48438 .43732 L +.48987 .43742 L +Mistroke +.49535 .43748 L +.50084 .4375 L +.50633 .43749 L +.51182 .43743 L +.51732 .43734 L +.52281 .43722 L +.5283 .43705 L +.53379 .43685 L +.53927 .43661 L +.54476 .43634 L +.55024 .43602 L +.55572 .43567 L +.56119 .43528 L +.56666 .43486 L +.57213 .4344 L +.57758 .4339 L +.58303 .43336 L +.58847 .43279 L +.59391 .43219 L +.59933 .43154 L +.60474 .43087 L +.61014 .43015 L +.61553 .4294 L +.62091 .42862 L +.62628 .4278 L +.63163 .42694 L +.63696 .42605 L +.64228 .42513 L +.64758 .42417 L +.65287 .42317 L +.65813 .42214 L +.66338 .42108 L +.66861 .41998 L +.67381 .41884 L +.679 .41767 L +.68416 .41647 L +.6893 .41522 L +.69441 .41395 L +.6995 .41263 L +.70456 .41128 L +.70959 .40989 L +.71459 .40847 L +.71957 .40701 L +.72451 .4055 L +.72942 .40396 L +.73429 .40239 L +.73914 .40077 L +.74394 .39911 L +.74871 .39741 L +.75344 .39567 L +Mistroke +.75813 .39389 L +.76278 .39206 L +.76739 .39019 L +.77195 .38828 L +.77647 .38633 L +.78094 .38433 L +.78536 .38229 L +.78973 .3802 L +.79405 .37806 L +.79831 .37588 L +.80252 .37366 L +.80667 .37138 L +.81076 .36906 L +.81479 .3667 L +.81875 .36428 L +.82265 .36182 L +.82648 .35931 L +.83024 .35675 L +.83393 .35415 L +.83754 .3515 L +.84107 .3488 L +.84453 .34606 L +.84791 .34327 L +.8512 .34043 L +.8544 .33755 L +.85752 .33463 L +.86054 .33166 L +.86347 .32865 L +.86631 .3256 L +.86904 .32251 L +.87168 .31938 L +.87421 .31621 L +.87664 .313 L +.87896 .30976 L +.88117 .30648 L +.88327 .30317 L +.88525 .29983 L +.88712 .29646 L +.88887 .29306 L +.89049 .28964 L +.892 .28619 L +.89338 .28273 L +.89464 .27924 L +.89576 .27573 L +.89676 .27221 L +.89763 .26867 L +.89837 .26512 L +.89897 .26157 L +.89944 .258 L +.89977 .25443 L +Mistroke +.89997 .25086 L +.90003 .24729 L +.89996 .24372 L +.89975 .24015 L +.89939 .23659 L +.89891 .23303 L +.89828 .22949 L +.89751 .22596 L +.89661 .22245 L +.89557 .21895 L +.8944 .21547 L +.89309 .21202 L +.89165 .20858 L +.89007 .20517 L +.88836 .20179 L +.88652 .19844 L +.88455 .19511 L +.88245 .19182 L +.88023 .18856 L +.87789 .18534 L +.87542 .18215 L +.87284 .179 L +.87013 .17589 L +.86732 .17282 L +.86439 .16979 L +.86135 .1668 L +.85821 .16385 L +.85496 .16095 L +.85161 .15809 L +.84817 .15528 L +.84463 .15252 L +.841 .1498 L +.83728 .14712 L +.83348 .1445 L +.82959 .14192 L +.82562 .13938 L +.82158 .1369 L +.81747 .13446 L +.81329 .13207 L +.80904 .12973 L +.80473 .12743 L +.80036 .12518 L +.79593 .12298 L +.79145 .12082 L +.78692 .11871 L +.78234 .11665 L +.77771 .11463 L +.77304 .11265 L +.76833 .11072 L +.76359 .10883 L +Mistroke +.75881 .10699 L +.75399 .10518 L +.74915 .10342 L +.74427 .10171 L +.73937 .10003 L +.73445 .09839 L +.7295 .0968 L +.72453 .09524 L +.71954 .09372 L +.71453 .09224 L +.7095 .0908 L +.70445 .0894 L +.69939 .08803 L +.69432 .0867 L +.68923 .08541 L +.68412 .08415 L +.67901 .08293 L +.67388 .08175 L +.66874 .0806 L +.66358 .07949 L +.65841 .07841 L +.65323 .07736 L +.64804 .07635 L +.64284 .07538 L +.63762 .07444 L +.63239 .07354 L +.62715 .07267 L +.6219 .07183 L +.61663 .07103 L +.61135 .07027 L +.60605 .06954 L +.60074 .06884 L +.59542 .06818 L +.59008 .06756 L +.58472 .06697 L +.57936 .06642 L +.57397 .0659 L +.56858 .06542 L +.56316 .06498 L +.55774 .06457 L +.5523 .0642 L +.54684 .06386 L +.54137 .06356 L +.53589 .0633 L +.53039 .06308 L +.52489 .06289 L +.51937 .06274 L +.51384 .06262 L +.5083 .06255 L +.50275 .06251 L +Mistroke +.49719 .0625 L +.49163 .06254 L +.48606 .06261 L +.48049 .06272 L +.47492 .06286 L +.46934 .06304 L +.46377 .06326 L +.45819 .06352 L +.45262 .06381 L +.44706 .06414 L +.4415 .0645 L +.43595 .0649 L +.43041 .06534 L +.42488 .06581 L +.41937 .06632 L +.41387 .06686 L +.40839 .06744 L +.40292 .06806 L +.39747 .06871 L +.39205 .06939 L +.38664 .07011 L +.38126 .07087 L +.37591 .07166 L +.37057 .07249 L +.36527 .07335 L +.35999 .07424 L +.35473 .07518 L +.34951 .07615 L +.34431 .07715 L +.33914 .07819 L +.334 .07927 L +.32888 .08038 L +.32379 .08153 L +.31873 .08272 L +.3137 .08394 L +.30869 .0852 L +.30371 .0865 L +.29875 .08784 L +.29382 .08922 L +.28891 .09063 L +.28403 .09208 L +.27917 .09358 L +.27433 .09511 L +.26951 .09668 L +.26471 .09829 L +.25994 .09994 L +.25519 .10162 L +.25046 .10335 L +.24575 .10512 L +.24106 .10692 L +Mistroke +.2364 .10877 L +.23176 .11065 L +.22715 .11257 L +.22257 .11453 L +.21802 .11653 L +.21351 .11857 L +.20903 .12064 L +.2046 .12275 L +.20021 .1249 L +.19587 .12708 L +.19159 .1293 L +.18736 .13156 L +.18321 .13385 L +.17912 .13619 L +.17512 .13856 L +.1712 .14097 L +.16737 .14342 L +.16365 .14591 L +.16003 .14845 L +.15652 .15103 L +.15314 .15367 L +.14988 .15635 L +.14676 .15909 L +.14377 .16189 L +.14093 .16475 L +.13824 .16767 L +.1357 .17067 L +.13331 .17375 L +.13108 .1769 L +.129 .18014 L +.12707 .18347 L +.12529 .1869 L +.12365 .19042 L +.12215 .19403 L +.12077 .19775 L +.11949 .20155 L +.11832 .20545 L +.11722 .20943 L +.11618 .21347 L +.11519 .21755 L +.1142 .22166 L +.11322 .22575 L +.11219 .22979 L +.11111 .23371 L +.10995 .23745 L +.10867 .24093 L +.10727 .24404 L +.10571 .24667 L +.10398 .24866 L +.10208 .24984 L +Mistroke +.1 .25 L +Mfstroke +.5 .165 .165 r +.1 .25 m +.10005 .25295 L +.1002 .25589 L +.10044 .25883 L +.10079 .26177 L +.10123 .26471 L +.10178 .26765 L +.10242 .27058 L +.10315 .2735 L +.10399 .27642 L +.10492 .27933 L +.10596 .28224 L +.10709 .28513 L +.10831 .28802 L +.10963 .2909 L +.11105 .29377 L +.11257 .29663 L +.11418 .29948 L +.11588 .30231 L +.11768 .30513 L +.11958 .30794 L +.12157 .31073 L +.12365 .31351 L +.12582 .31628 L +.12809 .31902 L +.13045 .32175 L +.1329 .32447 L +.13544 .32716 L +.13807 .32983 L +.14079 .33249 L +.1436 .33512 L +.14649 .33774 L +.14948 .34033 L +.15255 .3429 L +.1557 .34545 L +.15894 .34797 L +.16227 .35047 L +.16568 .35294 L +.16917 .35539 L +.17274 .35781 L +.17639 .36021 L +.18013 .36258 L +.18394 .36492 L +.18783 .36723 L +.19179 .36952 L +.19584 .37177 L +.19996 .374 L +.20415 .37619 L +.20841 .37835 L +.21275 .38048 L +Mistroke +.21716 .38258 L +.22163 .38465 L +.22618 .38668 L +.23079 .38868 L +.23548 .39065 L +.24022 .39258 L +.24503 .39447 L +.2499 .39633 L +.25484 .39815 L +.25983 .39994 L +.26489 .40169 L +.27 .4034 L +.27517 .40508 L +.28039 .40671 L +.28567 .40831 L +.291 .40987 L +.29638 .41139 L +.30182 .41287 L +.3073 .41431 L +.31283 .41571 L +.3184 .41706 L +.32402 .41838 L +.32969 .41966 L +.33539 .42089 L +.34114 .42208 L +.34693 .42323 L +.35275 .42433 L +.35861 .4254 L +.3645 .42642 L +.37043 .42739 L +.37639 .42832 L +.38238 .42921 L +.3884 .43006 L +.39445 .43085 L +.40052 .43161 L +.40662 .43232 L +.41274 .43298 L +.41889 .4336 L +.42505 .43418 L +.43123 .43471 L +.43743 .43519 L +.44364 .43563 L +.44987 .43602 L +.45611 .43637 L +.46236 .43667 L +.46862 .43692 L +.47488 .43713 L +.48116 .43729 L +.48744 .43741 L +.49372 .43748 L +Mistroke +.5 .4375 L +.50628 .43748 L +.51256 .43741 L +.51884 .43729 L +.52512 .43713 L +.53138 .43692 L +.53764 .43667 L +.54389 .43637 L +.55013 .43602 L +.55636 .43563 L +.56257 .43519 L +.56877 .43471 L +.57495 .43418 L +.58111 .4336 L +.58726 .43298 L +.59338 .43232 L +.59948 .43161 L +.60555 .43085 L +.6116 .43006 L +.61762 .42921 L +.62361 .42832 L +.62957 .42739 L +.6355 .42642 L +.64139 .4254 L +.64725 .42433 L +.65307 .42323 L +.65886 .42208 L +.66461 .42089 L +.67031 .41966 L +.67598 .41838 L +.6816 .41706 L +.68717 .41571 L +.6927 .41431 L +.69818 .41287 L +.70362 .41139 L +.709 .40987 L +.71433 .40831 L +.71961 .40671 L +.72483 .40508 L +.73 .4034 L +.73511 .40169 L +.74017 .39994 L +.74516 .39815 L +.7501 .39633 L +.75497 .39447 L +.75978 .39258 L +.76452 .39065 L +.76921 .38868 L +.77382 .38668 L +.77837 .38465 L +Mistroke +.78284 .38258 L +.78725 .38048 L +.79159 .37835 L +.79585 .37619 L +.80004 .374 L +.80416 .37177 L +.80821 .36952 L +.81217 .36723 L +.81606 .36492 L +.81987 .36258 L +.82361 .36021 L +.82726 .35781 L +.83083 .35539 L +.83432 .35294 L +.83773 .35047 L +.84106 .34797 L +.8443 .34545 L +.84745 .3429 L +.85052 .34033 L +.85351 .33774 L +.8564 .33512 L +.85921 .33249 L +.86193 .32983 L +.86456 .32716 L +.8671 .32447 L +.86955 .32175 L +.87191 .31902 L +.87418 .31628 L +.87635 .31351 L +.87843 .31073 L +.88042 .30794 L +.88232 .30513 L +.88412 .30231 L +.88582 .29948 L +.88743 .29663 L +.88895 .29377 L +.89037 .2909 L +.89169 .28802 L +.89291 .28513 L +.89404 .28224 L +.89508 .27933 L +.89601 .27642 L +.89685 .2735 L +.89758 .27058 L +.89822 .26765 L +.89877 .26471 L +.89921 .26177 L +.89956 .25883 L +.8998 .25589 L +.89995 .25295 L +Mistroke +.9 .25 L +.89995 .24705 L +.8998 .24411 L +.89956 .24117 L +.89921 .23823 L +.89877 .23529 L +.89822 .23235 L +.89758 .22942 L +.89685 .2265 L +.89601 .22358 L +.89508 .22067 L +.89404 .21776 L +.89291 .21487 L +.89169 .21198 L +.89037 .2091 L +.88895 .20623 L +.88743 .20337 L +.88582 .20052 L +.88412 .19769 L +.88232 .19487 L +.88042 .19206 L +.87843 .18927 L +.87635 .18649 L +.87418 .18372 L +.87191 .18098 L +.86955 .17825 L +.8671 .17553 L +.86456 .17284 L +.86193 .17017 L +.85921 .16751 L +.8564 .16488 L +.85351 .16226 L +.85052 .15967 L +.84745 .1571 L +.8443 .15455 L +.84106 .15203 L +.83773 .14953 L +.83432 .14706 L +.83083 .14461 L +.82726 .14219 L +.82361 .13979 L +.81987 .13742 L +.81606 .13508 L +.81217 .13277 L +.80821 .13048 L +.80416 .12823 L +.80004 .126 L +.79585 .12381 L +.79159 .12165 L +.78725 .11952 L +Mistroke +.78284 .11742 L +.77837 .11535 L +.77382 .11332 L +.76921 .11132 L +.76452 .10935 L +.75978 .10742 L +.75497 .10553 L +.7501 .10367 L +.74516 .10185 L +.74017 .10006 L +.73511 .09831 L +.73 .0966 L +.72483 .09492 L +.71961 .09329 L +.71433 .09169 L +.709 .09013 L +.70362 .08861 L +.69818 .08713 L +.6927 .08569 L +.68717 .08429 L +.6816 .08294 L +.67598 .08162 L +.67031 .08034 L +.66461 .07911 L +.65886 .07792 L +.65307 .07677 L +.64725 .07567 L +.64139 .0746 L +.6355 .07358 L +.62957 .07261 L +.62361 .07168 L +.61762 .07079 L +.6116 .06994 L +.60555 .06915 L +.59948 .06839 L +.59338 .06768 L +.58726 .06702 L +.58111 .0664 L +.57495 .06582 L +.56877 .06529 L +.56257 .06481 L +.55636 .06437 L +.55013 .06398 L +.54389 .06363 L +.53764 .06333 L +.53138 .06308 L +.52512 .06287 L +.51884 .06271 L +.51256 .06259 L +.50628 .06252 L +Mistroke +.5 .0625 L +.49372 .06252 L +.48744 .06259 L +.48116 .06271 L +.47488 .06287 L +.46862 .06308 L +.46236 .06333 L +.45611 .06363 L +.44987 .06398 L +.44364 .06437 L +.43743 .06481 L +.43123 .06529 L +.42505 .06582 L +.41889 .0664 L +.41274 .06702 L +.40662 .06768 L +.40052 .06839 L +.39445 .06915 L +.3884 .06994 L +.38238 .07079 L +.37639 .07168 L +.37043 .07261 L +.3645 .07358 L +.35861 .0746 L +.35275 .07567 L +.34693 .07677 L +.34114 .07792 L +.33539 .07911 L +.32969 .08034 L +.32402 .08162 L +.3184 .08294 L +.31283 .08429 L +.3073 .08569 L +.30182 .08713 L +.29638 .08861 L +.291 .09013 L +.28567 .09169 L +.28039 .09329 L +.27517 .09492 L +.27 .0966 L +.26489 .09831 L +.25983 .10006 L +.25484 .10185 L +.2499 .10367 L +.24503 .10553 L +.24022 .10742 L +.23548 .10935 L +.23079 .11132 L +.22618 .11332 L +.22163 .11535 L +Mistroke +.21716 .11742 L +.21275 .11952 L +.20841 .12165 L +.20415 .12381 L +.19996 .126 L +.19584 .12823 L +.19179 .13048 L +.18783 .13277 L +.18394 .13508 L +.18013 .13742 L +.17639 .13979 L +.17274 .14219 L +.16917 .14461 L +.16568 .14706 L +.16227 .14953 L +.15894 .15203 L +.1557 .15455 L +.15255 .1571 L +.14948 .15967 L +.14649 .16226 L +.1436 .16488 L +.14079 .16751 L +.13807 .17017 L +.13544 .17284 L +.1329 .17553 L +.13045 .17825 L +.12809 .18098 L +.12582 .18372 L +.12365 .18649 L +.12157 .18927 L +.11958 .19206 L +.11768 .19487 L +.11588 .19769 L +.11418 .20052 L +.11257 .20337 L +.11105 .20623 L +.10963 .2091 L +.10831 .21198 L +.10709 .21487 L +.10596 .21776 L +.10492 .22067 L +.10399 .22358 L +.10315 .2265 L +.10242 .22942 L +.10178 .23235 L +.10123 .23529 L +.10079 .23823 L +.10044 .24117 L +.1002 .24411 L +.10005 .24705 L +Mistroke +.1 .25 L +Mfstroke +0 0 1 r +.1 .25 m +.105 .28125 L +.15 .34375 L +.2 .375 L +.3 .4125 L +.4 .43125 L +.5 .4375 L +.7 .4125 L +.8 .375 L +.9 .25 L +.8 .125 L +.6 .06875 L +.5 .0625 L +.3 .0875 L +.2 .125 L +.15 .15625 L +.125 .1875 L +.1 .25 L +s +5 Mabswid +.1 .25 Mdot +.105 .28125 Mdot +.15 .34375 Mdot +.2 .375 Mdot +.3 .4125 Mdot +.4 .43125 Mdot +.5 .4375 Mdot +.7 .4125 Mdot +.8 .375 Mdot +.9 .25 Mdot +.8 .125 Mdot +.6 .06875 Mdot +.5 .0625 Mdot +.3 .0875 Mdot +.2 .125 Mdot +.15 .15625 Mdot +.125 .1875 Mdot +.1 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{873, 436.5}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg07lZ:P/0003o2P1o:R[o0?oookT0oooo003o0?ooogD0oooo00<00?l007lZ:P1o:RX0 +5`1o:RX50?ooo`03000000000?l0003o00H0003o00<0oooo0000o`000?l00`000?l50?oooa00003o +4P1o:R[o0?oooj40oooo003o0?ooofL0oooo3`1o:RX20?l001D0oooo20000?l:0?ooo`<0003o5P3o +ool@0000o`80o`003`1o:R[o0?oooi80oooo003o0?oooed0oooo2P1o:RX40?l001X0oooo20000?l5 +0?ooo`800000303oool00`000000oooo0?ooo`0U0?oooa00003o00<0o`0007lZ:P1o:RX0201o:RX; +0?ooo`<0003oo`3ooomj0?ooo`00o`3ooomB0?ooo`03003o001o:RX0ObXZ00P0ObXZ00<0o`00003o +003oool07@3oool80000oa/0oooo00<000000?ooo`3oool0=@3oool@0000o`D0ObXZ1@000?oo0?oo +ogT0oooo003o0?ooodd0oooo00<0o`0007lZ:P1o:RX00`1o:RX20?l00200oooo20000?lS0?ooo`03 +0000003oool0oooo04D0oooo2P000?oo0?ooogT0oooo003o0?oood@0oooo00<0o`0007lZ:P1o:RX0 +1`1o:RXO0?ooo`P0003o:`3oool00`000000oooo0?ooo`1:0?ooo`P0003o1P1o:R[o0?ooog00oooo +003o0?oooc`0oooo1000o`0507lZ:R00oooo20000?lc0?ooo`030000003oool0oooo04/0oooo0`00 +0?l40?ooo`<0003o0P3oool00`3o0000ObXZ07lZ:P0307lZ:_l0ooooJ`3oool00?l0oooo=`3oool9 +07lZ:Qd0oooo20000?lk0?ooo`030000003oool0oooo05D0oooo10000?l30?ooo`030?l0001o:RX0 +ObXZ00L0ObXZo`3ooomR0?ooo`00o`3oool`0?ooo`800?l01@1o:RX00`00o`00oooo0?ooo`0K0?oo +o`P0003o@`3oool00`000000oooo0?ooo`1I0?ooo`<0003o203oool20?l000D0ObXZo`3ooomM0?oo +o`00o`3oool[0?ooo`80o`001@1o:RX00`3o0000oooo0?ooo`0H0?ooo`P0003oB`3oool4000005/0 +oooo10000?l80?ooo`<0o`001@1o:RX00`00o`00oooo0?ooo`3o0?oooeD0oooo003o0?ooobL0oooo +0P3o000407lZ:QP0oooo20000?mC0?ooo`030000003oool0oooo0600oooo0`000?l90?ooo`@0o`00 +101o:RX00`3o00000?l00?ooo`3o0?oooe40oooo003o0?ooob80oooo0P3o000507lZ:Q@0oooo2000 +0?mK0?ooo`030000003oool0oooo06<0oooo10000?l=0?ooo`D0ObXZ00<00?l00?ooo`3oool0o`3o +oom<0?ooo`00o`3ooolK0?ooo`<00?l000<0o`0007lZ:P1o:RX00`1o:RXA0?ooo`P0003oH`3oool0 +0`000000oooo0?ooo`1W0?ooo`@0003o3P3oool507lZ:P@00?l0o`3ooom60?ooo`00o`3ooolG0?oo +o`P0ObXZ3P3oool80000of/0oooo00<000000?ooo`3oool0J`3oool30000o`l0oooo00<0o`0007lZ +:P1o:RX01P1o:R[o0?oood80oooo003o0?oooa80oooo0`3o000207lZ:P<0o`002`3oool80000og<0 +oooo00<000000?ooo`3oool0KP3oool40000o`l0oooo103o00000`3oool0ObXZ07lZ:P02003o0?l0 +oooo?P3oool00?l0oooo3P3oool40?l000<0ObXZ203oool80000og/0oooo00<000000?ooo`3oool0 +LP3oool30000oa00oooo0`3o000307lZ:P@00?l0o`3oooli0?ooo`00o`3oool:0?ooo`<0o`001@1o +:RX30?ooo`P0003oP`3oool00`000000oooo0?ooo`1e0?ooo`@0003o403oool20?l000D0ObXZ0`00 +o`3o0?ooocD0oooo003n0?ooo`<0003o103oool30?l000@0ObXZ20000?n;0?ooo`030000003oool0 +oooo07T0oooo0`000?lA0?ooo`<0o`00101o:RX3003o0?l0oooo<@3oool00?d0oooo1@000?l20?l0 +00P0003oT`3oool00`000000oooo0?ooo`1l0?ooo`@0003o4@3oool30?l000@0ObXZ0`00o`3o0?oo +obd0oooo003m0?ooo`L0003oV`3oool4000007l0oooo0`000?lB0?ooo`<0o`001@1o:RX2003o0?l0 +oooo:@3oool00?/0oooo00<0ObXZ0000o`000?l010000?nM0?ooo`030000003oool0oooo08<0oooo +10000?lB0?ooo`@0o`00101o:RX2003o0?l0oooo9@3oool00?P0oooo00@0ObXZ0000o`000?l0003o +0P3oool30000oih0oooo00<000000?ooo`3oool0Q`3oool30000oa<0oooo103o000307lZ:P<00?l0 +o`3ooolQ0?ooo`00m@3oool0103o0000003o0000o`000?nV0?ooo`030000003oool0oooo08X0oooo +10000?lC0?ooo`<0o`000P1o:RX00`3oool00?l0003o0002003o0?l0oooo7@3oool00?40oooo00<0 +0?l00?l0001o:RX00P000?nY0?ooo`030000003oool0oooo08h0oooo0`000?lD0?ooo`040?l0001o +:RX0ObXZ07lZ:P80oooo0`00o`3o0?oooaX0oooo003]0?ooo`04003o001o:RX0ObXZ07lZ:P<0003o +Z`3oool00`000000oooo0?ooo`2A0?ooo`@0003o503oool507lZ:P800?l0o`3ooolH0?ooo`00jP3o +ool407lZ:P<0003o[P3oool00`000000oooo0?ooo`2E0?ooo`<0003o5@3oool00`3o0000ObXZ07lZ +:P0207lZ:P03003o003oool0oooo0?l0oooo4`3oool00>L0oooo0`1o:RX01000o`00oooo0000o`00 +0?na0?ooo`030000003oool0oooo09P0oooo10000?lD0?ooo`80o`000`1o:RX2003o0?l0oooo4@3o +ool00>D0oooo0P1o:RX2003o00<0003o/`3oool00`000000oooo0?ooo`2L0?ooo`@0003o4P3oool3 +0?l00080ObXZ0`00o`3o0?ooo`h0oooo003R0?ooo`<0ObXZ00@00?l00000o`000?l0003o]P3oool0 +0`000000oooo0?ooo`2P0?ooo`<0003o4P3oool20?l000<0ObXZ0P00o`3o0?ooo``0oooo003N0?oo +o`040?l0001o:RX0ObXZ07lZ:P80oooo0P000?ni0?ooo`@00000XP3oool40000oa80oooo00@0o`00 +07lZ:P1o:RX0ObXZ0P00o`3o0?ooo`T0oooo003L0?ooo`030?l0001o:RX0ObXZ0080oooo0`000?nk +0?ooo`030000003oool0oooo0:L0oooo0`000?lB0?ooo`030?l0001o:RX0ObXZ00<00?l0o`3oool6 +0?ooo`00fP3oool307lZ:P80oooo0P000?nn0?ooo`030000003oool0oooo0:X0oooo10000?l@0?oo +o`040?l0001o:RX0ObXZ07lZ:P<00?l0o`3oool30?ooo`00eP3oool01000o`00ObXZ07lZ:P1o:RX2 +0?ooo`<0003o`03oool00`000000oooo0?ooo`2^0?ooo`<0003o403oool0103o0000ObXZ07lZ:P1o +:RX2003o0?l0oooo0@3oool00=@0oooo00<0o`0007lZ:P1o:RX00P3oool30000ol<0oooo00<00000 +0?ooo`3oool0/@3oool40000oa00oooo0P1o:RX00`3o00000?l0003o003m0?ooo`00dP3oool307lZ +:P80oooo0P000?o60?ooo`030000003oool0oooo0;D0oooo0`000?l?0?ooo`<0ObXZ0`00o`3j0?oo +o`00c`3oool00`3o0000ObXZ07lZ:P020?ooo`<0003ob03oool00`000000oooo0?ooo`2h0?ooo`@0 +003o3P3oool207lZ:P030?l00000o`000?l00?P0oooo003<0?ooo`05003o003o0000ObXZ07lZ:P3o +ool00`000?o;0?ooo`030000003oool0oooo0;`0oooo0`000?l=0?ooo`80ObXZ00<0o`00003o0000 +o`00mP3oool00h0oooo00330?ooo`<0ObXZ00@0oooo0000o`000?l0003oe@3oool00`000000oooo +0?ooo`3:0?ooo`<0003o2@3oool307lZ:P800?l0k03oool00<00oooo00@00?l007lZ:P1o:RX0oooo +0`000?oH0?ooo`030000003oool0oooo040oooo002f0?oo +o`0407lZ:P000?l0003o0000onD0oooo00<000000?ooo`3oool0g`3oool40000o`<0ObXZ00<0o`00 +0?ooo`3oool0gP3oool00:l0oooo0`000?l00`3oool0o`000000o`020000omT0oooo1000000;0?oo +o`030000003oool0oooo0><0oooo0`000?l207lZ:P030?l0003oool0003o0080003ofP3oool00:h0 +oooo1P000?oL0?ooo`030000003oool0oooo00`0oooo00<000000?ooo`3oool0iP3oool80000omT0 +oooo002^0?ooo`D0003ogP3oool00`000000oooo0?ooo`0;0?ooo`H00000iP3oool50000omT0oooo +002^0?ooo`D0003oe`3oool4000000@0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?oo +o`3Y0?ooo`D0003o00<0o`000?ooo`3oool0eP3oool00:/0oooo0P3o00000`000?l0ObXZ0000o`02 +0000omh0oooo00@000000?ooo`3oool000002`3oool00`000000oooo0?ooo`3Z0?ooo`@0003o00<0 +ObXZ0?l0003oool0eP3oool00:T0oooo0P3o00020000o`0307lZ:P3oool0oooo0>40oooo0P00000< +0?ooo`030000003oool0oooo0>d0oooo00D0003o0?ooo`1o:RX0ObXZ0?l0003E0?ooo`00Y`3oool2 +0?l00080003om03oool00`000000oooo0?ooo`3^0?ooo`030000o`3oool0oooo0080ObXZ00<0o`00 +0?ooo`3oool0d@3oool00:H0oooo00<0o`0007lZ:P000?l0mP3oool00`000000oooo0?ooo`3_0?oo +o`040000o`3oool0oooo0?ooo`80ObXZ00<0o`000?ooo`3oool0c`3oool00:@0oooo0P3o00020000 +ooL0oooo00<000000?ooo`3oool0l03oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3o0000oooo +00?ooo`80ObXZ0P3oool00`3o0000oooo0?ooo`2^0?ooo`00 +Q03oool0103o0000oooo0000o`1o:R[o0?oooaP0oooo00<000000?ooo`3oool0o`3oool20?ooo`03 +0000o`3oool0oooo00l0oooo00@00?l007lZ:P3oool0o`00/03oool008<0oooo00@0o`00003o0000 +0?l0ObXZo`3ooolI0?ooo`030000003oool0oooo0?l0oooo0`3oool00`000?l0oooo0?ooo`0?0?oo +o`04003o001o:RX0oooo0?l00:l0oooo00220?ooo`040?l00000o`00003o07lZ:_l0oooo6P3oool4 +00000?l0oooo0`3oool00`000?l0oooo0?ooo`0@0?ooo`0407lZ:P3oool0o`000?l00:d0oooo0022 +0?ooo`030?l000000?l0ObXZ0?l0oooo6`3oool00`000000oooo0?ooo`3o0?ooo`D0oooo00<0003o +0?ooo`3oool0403oool0101o:RX0oooo0?ooo`3o002/0?ooo`00P@3oool00`3o0000003o07lZ:P3o +0?oooa`0oooo00<000000?ooo`3oool0o`3oool60?ooo`030000o`3oool0oooo0100oooo00@0ObXZ +0?ooo`3oool0o`00Z`3oool007l0oooo0P3o00000`1o:RX0003o0?ooo`3o0?oooa`0oooo00<00000 +0?ooo`3oool0o`3oool60?ooo`030000o`3oool0oooo0140oooo0P1o:RX00`3oool0o`000?ooo`2Y +0?ooo`00OP3oool0103o00000?l007lZ:P000?oo0?oooah0oooo00<000000?ooo`3oool0o`3oool7 +0?ooo`030000o`3oool0oooo0140oooo00@00?l007lZ:P3oool0o`00Z@3oool007d0oooo00@0o`00 +003o001o:RX0003oo`3ooolO0?ooo`030000003oool0oooo0?l0oooo203oool00`000?l0oooo0?oo +o`0A0?ooo`04003o001o:RX0oooo0?l00:P0oooo001l0?ooo`040?l0003oool0ObXZ0000ool0oooo +803oool00`000000oooo0?ooo`3o0?ooo`T0oooo00<0003o0?ooo`3oool04@3oool01000o`00ObXZ +0?ooo`3o002W0?ooo`00O03oool00`3o0000ObXZ0000o`3o0?ooob40oooo00<000000?ooo`3oool0 +o`3oool:0?ooo`030000o`3oool0oooo0140oooo00@00?l007lZ:P3oool0o`00YP3oool007/0oooo +00@0o`0007lZ:P3oool0003oo`3ooolQ0?ooo`030000003oool0oooo0?l0oooo2P3oool00`000?l0 +oooo0?ooo`0B0?ooo`04003o001o:RX0oooo0?l00:D0oooo001k0?ooo`0307lZ:P3oool0003o0?l0 +oooo8P3oool00`000000oooo0?ooo`3o0?ooo`/0oooo00<0003o0?ooo`3oool04P3oool01000o`00 +ObXZ0?ooo`3o002T0?ooo`00NP3oool00`1o:RX0oooo0000o`3o0?ooob<0oooo1000003o0?ooo`/0 +oooo00<0003o0?ooo`3oool04P3oool00`00o`00ObXZ0?l0002T0?ooo`00N@3oool00`1o:RX00?l0 +0000o`3o0?ooob@0oooo00<000000?ooo`3oool0o`3oool=0?ooo`030000o`3oool0oooo0180oooo +00<00?l007lZ:P3o0000X`3oool007P0oooo00<0ObXZ003o00000?l0o`3ooolU0?ooo`030000003o +ool0oooo0?l0oooo3P3oool00`000?l0oooo0?ooo`0B0?ooo`03003o001o:RX0o`000:80oooo001g +0?ooo`0407lZ:P3o0000oooo0000ool0oooo9@3oool00`000000oooo0?ooo`3o0?ooo`h0oooo00<0 +003o0?ooo`3oool04`3oool00`00o`00ObXZ0?l0002Q0?ooo`00M`3oool00`1o:RX0oooo0000o`3o +0?ooobH0oooo00<000000?ooo`3oool0o`3oool?0?ooo`030000o`3oool0oooo01<0oooo00<0ObXZ +0?ooo`3o0000X03oool007H0oooo00<0ObXZ0?l000000?l0o`3ooolW0?ooo`030000003oool0oooo +0?l0oooo403oool00`000?l0oooo0?ooo`0C0?ooo`0307lZ:P3oool0o`0009l0oooo001e0?ooo`03 +07lZ:P3o0000003o0?l0oooo:03oool00`000000oooo0?ooo`3o0?oooa40oooo00<0003o0?ooo`3o +ool04P3oool01000o`00ObXZ0?ooo`3o002N0?ooo`00M@3oool00`1o:RX0003o0?ooo`3o0?ooobP0 +oooo00<000000?ooo`3oool0o`3ooolB0?ooo`030000o`3oool0oooo0180oooo00@00?l007lZ:P3o +ool0o`00W@3oool007<0oooo10000?oo0?oooaX0oooo1@00000:0?ooo`030000003oool0oooo0?l0 +oooo4P3oool00`000?l0oooo0?ooo`0C0?ooo`0407lZ:P3oool0oooo0?l009`0oooo001b0?ooo`D0 +003oo`3ooolL0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0o`3ooolC0?ooo`03 +0000o`3oool0oooo01<0oooo00<0ObXZ0?ooo`3o0000W03oool00780oooo1@000?oo0?oooa`0oooo +00<000000?ooo`3oool02P3oool600000?l0oooo4@3oool00`000?l0oooo0?ooo`0C0?ooo`0307lZ +:P3oool0o`0009/0oooo001a0?ooo`0307lZ:P000?l0003o00<0003oo`3ooolD0?ooo`@00000103o +ool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo0?l0oooo5@3oool00`000?l0oooo0?oo +o`0B0?ooo`03003o001o:RX0o`0009/0oooo001`0?ooo`0307lZ:P3oool0oooo00<0003oo`3ooolM +0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0o`3ooolF0?ooo`030000o`3oool0 +oooo0180oooo00<00?l007lZ:P3o0000VP3oool00700oooo00@0ObXZ0?ooo`00o`00003oo`3ooolN +0?ooo`800000303oool00`000000oooo0?ooo`3o0?oooaH0oooo00<0003o0?ooo`3oool04`3oool0 +0`00o`00ObXZ0?l0002I0?ooo`00K`3oool0101o:RX0oooo0?ooo`000?oo0?ooobd0oooo00<00000 +0?ooo`3oool0o`3ooolG0?ooo`030000o`3oool0oooo0180oooo00@00?l007lZ:P3oool0o`00V03o +ool006l0oooo00@0ObXZ0?ooo`00o`00003oo`3oool]0?ooo`030000003oool0oooo0?l0oooo603o +ool00`000?l0oooo0?ooo`0B0?ooo`03003o001o:RX0o`0009P0oooo001^0?ooo`0507lZ:P3oool0 +0?l00?ooo`000?l0o`3oool]0?ooo`030000003oool0oooo0?l0oooo6@3oool00`000?l0oooo0?oo +o`0A0?ooo`04003o001o:RX0oooo0?l009L0oooo001]0?ooo`0507lZ:P3oool0oooo003o00000?l0 +o`3oool^0?ooo`030000003oool0oooo0?l0oooo6P3oool00`000?l0oooo0?ooo`0A0?ooo`0307lZ +:P3oool0o`0009L0oooo001]0?ooo`0507lZ:P3oool0oooo003o00000?l0o`3oool^0?ooo`030000 +003oool0oooo0?l0oooo6P3oool00`000?l0oooo0?ooo`0B0?ooo`0307lZ:P3oool0o`0009H0oooo +001/0?ooo`0607lZ:P3oool0oooo003o00000?l0o`00o`3oool^0?ooo`030000003oool0oooo0?l0 +oooo6`3oool00`000?l0oooo0?ooo`0A0?ooo`03003o001o:RX0o`0009H0oooo001[0?ooo`0607lZ +:P3oool0oooo0?ooo`00o`00003oo`3oool_0?ooo`@00000o`3ooolK0?ooo`030000o`3oool0oooo +0140oooo00<00?l007lZ:P3o0000U@3oool006X0oooo00L0ObXZ0?ooo`3oool0oooo003o003oool0 +003o0?l0oooo;`3oool00`000000oooo0?ooo`3o0?oooad0oooo00<0003o0?ooo`3oool0403oool0 +1000o`00ObXZ0?ooo`3o002D0?ooo`00JP3oool01`1o:RX0oooo0?ooo`00o`00oooo0000o`3o0000 +o`3oool_0?ooo`030000003oool0oooo0?l0oooo7P3oool00`000?l0oooo0?ooo`0@0?ooo`03003o +001o:RX0o`0009@0oooo001Z0?ooo`0607lZ:P3oool0oooo003o003oool0003oo`3oool`0?ooo`03 +0000003oool0oooo0?l0oooo7P3oool00`000?l0oooo0?ooo`0A0?ooo`0307lZ:P3oool0o`0009<0 +oooo001Y0?ooo`0707lZ:P3oool0oooo003o003oool0003o0?l0003o0?oooc00oooo00<000000?oo +o`3oool0o`3ooolO0?ooo`030000o`3oool0oooo0100oooo00<00?l007lZ:P3o0000T`3oool006T0 +oooo00L0ObXZ0?ooo`3oool00?l00?ooo`000?l0o`000?l0oooo<03oool00`000000oooo0?ooo`3o +0?ooob00oooo00<0003o0?ooo`3oool0403oool00`1o:RX0o`000?ooo`2B0?ooo`00J03oool01`1o +:RX0oooo0?ooo`3oool00?l00?ooo`000?l0o`3ooola0?ooo`030000003oool0oooo0?l0oooo8@3o +ool00`000?l0oooo0?ooo`0?0?ooo`0307lZ:P3oool0o`000980oooo001X0?ooo`0707lZ:P3oool0 +oooo003o003oool0003o0?l0003o0?oooc40oooo00<000000?ooo`3oool0o`3ooolR0?ooo`030000 +o`3oool0oooo00l0oooo00<0ObXZ0?l0003oool0T@3oool006L0oooo00P0ObXZ0?ooo`3oool0oooo +003o003oool0003o0?l00?l0oooo<@3oool00`000000oooo0?ooo`3o0?ooob80oooo00<0003o0?oo +o`3oool03`3oool00`1o:RX0oooo0?l0002A0?ooo`00I`3oool01`1o:RX0oooo0?ooo`00o`00oooo +0000o`3o0000o`3ooolb0?ooo`030000003oool0oooo0?l0oooo8`3oool00`000?l0oooo0?ooo`0? +0?ooo`0307lZ:P3oool0o`000900oooo001W0?ooo`0707lZ:P3oool0oooo003o003oool0003o0?l0 +003o0?oooc80oooo1000003o0?ooob<0oooo00<0003o0?ooo`3oool03P3oool00`1o:RX00?l00?l0 +002@0?ooo`00IP3oool0201o:RX0oooo0?ooo`3oool00?l00?ooo`000?l0o`00o`3ooolb0?ooo`03 +0000003oool0oooo0?l0oooo9@3oool00`000?l0oooo0?ooo`0>0?ooo`0307lZ:P3oool0o`0008l0 +oooo001V0?ooo`0807lZ:P3oool0oooo003o003oool0003o0?ooo`3o003o0?oooc80oooo00<00000 +0?ooo`3oool0o`3ooolV0?ooo`030000o`3oool0oooo00d0oooo00<0ObXZ003o003o0000S`3oool0 +06D0oooo00P0ObXZ0?ooo`3oool0oooo003o003oool0003o0?l00?l0oooo<`3oool00`000000oooo +0?ooo`3o0?ooobH0oooo00<0003o0?ooo`3oool03@3oool00`1o:RX00?l00?l0002?0?ooo`00I@3o +ool0201o:RX0oooo0?ooo`3oool00?l00000o`3oool0o`00o`3ooolc0?ooo`030000003oool0oooo +0?l0oooo9`3oool00`000?l0oooo0?ooo`0=0?ooo`0307lZ:P3oool0o`0008h0oooo001T0?ooo`09 +07lZ:P3oool0oooo0?ooo`00o`00oooo0000o`3oool0o`000?l0oooo<`3oool00`000000oooo0?oo +o`3o0?ooobP0oooo00<0003o0?ooo`3oool0303oool00`1o:RX00?l00?l0002>0?ooo`00I03oool0 +201o:RX0oooo0?ooo`3oool00?l00?ooo`000?l0o`00o`3ooold0?ooo`030000003oool0oooo0?l0 +oooo:@3oool00`000?l0oooo0?ooo`0<0?ooo`0307lZ:P3o0000oooo08d0oooo001T0?ooo`0807lZ +:P3oool0oooo003o003oool0003o0?ooo`3o003o0?oooc@0oooo00<000000?ooo`3oool0o`3ooolZ +0?ooo`030000o`3oool0oooo00/0oooo00<0ObXZ0?l0003oool0S@3oool006<0oooo00T0ObXZ0?oo +o`3oool0oooo003o003oool0003o0?ooo`3o0000o`3ooold0?ooo`030000003oool0oooo0?l0oooo +:P3oool00`000?l0oooo0?ooo`0<0?ooo`0307lZ:P3oool0oooo08`0oooo001S0?ooo`0607lZ:P3o +ool0oooo0?ooo`00o`00003o0P3oool00`3o0000oooo0?ooo`3o0?oooc80oooo00<000000?ooo`3o +ool0o`3oool[0?ooo`030000o`3oool0oooo00/0oooo00<0ObXZ0?ooo`3oool0S03oool00680oooo +00L0ObXZ0?ooo`3oool0oooo003o003oool0003o0080oooo00<0o`000?ooo`3oool0o`3ooolb0?oo +o`@00000o`3oool[0?ooo`030000o`3oool0oooo00X0oooo00<0ObXZ0?l0003oool0S03oool00680 +oooo00L0ObXZ0?ooo`3oool0oooo003o003oool0003o0080oooo00<0o`000?ooo`3oool0o`3ooolb +0?ooo`030000003oool0oooo0?l0oooo;@3oool00`000?l0oooo0?ooo`090?ooo`03003o001o:RX0 +oooo08`0oooo001R0?ooo`0607lZ:P000000000000000000o`00003o0P3oool00`3o0000oooo0?oo +o`2C0?ooo`@00000V`3oool00`000000oooo0?ooo`2J0?ooo`@00000S`3oool00`000?l0oooo0?oo +o`080?ooo`03003o001o:RX0o`0000<00000R@3oool00680oooo00H0ObXZ0?ooo`0000000?l00?oo +o`000?l20?ooo`030?l0003oool0oooo09<0oooo00<000000?ooo`3oool0W03oool00`000000oooo +0?ooo`2J0?ooo`030000003oool0oooo0900oooo00<0003o0?ooo`3oool02@3oool0101o:RX0o`00 +0?ooo`00002:0?ooo`00H@3oool01P000000ObXZ0000000000000?l00000o`<0oooo00<0o`000?oo +o`3oool0U03oool00`000000oooo0?ooo`2K0?ooo`030000003oool0oooo09/0oooo00<000000?oo +o`3oool0T03oool00`000?l0oooo0?ooo`080?ooo`0307lZ:P3o0000000000800000R@3oool005/0 +oooo100000020?ooo`0607lZ:P3oool0oooo003o003oool0003o0`3oool00`3o0000oooo0?ooo`2= +0?ooo`@00000103oool00`000000oooo0?ooo`2J0?ooo`030000003oool0oooo09`0oooo00<00000 +0?ooo`3oool0T03oool00`000?l0oooo0?ooo`070?ooo`04003o001o:RX0oooo000008X0oooo001Q +0?ooo`0607lZ:P000000oooo003o003oool0003o0P3oool00`3o0000oooo0?ooo`2D0?ooo`040000 +003oool0oooo000009/0oooo00<000000?ooo`3oool0VP3oool010000000oooo0?ooo`00002B0?oo +o`030000o`3oool0oooo00L0oooo00<0ObXZ0?ooo`000000RP3oool00640oooo00D0ObXZ0?ooo`00 +00000?l00000o`030?ooo`030?l0003oool0oooo09D0oooo0P00002L0?ooo`030000003oool0oooo +09/0oooo0P00002D0?ooo`030000o`3oool0oooo00H0oooo00<0ObXZ000000000000RP3oool00640 +oooo00D0ObXZ0?ooo`00o`00oooo0000o`030?ooo`030?l0003oool0oooo0?l0oooo=03oool00`00 +0000oooo0?ooo`3o0?oooc80oooo00<0003o0?ooo`3oool01P3oool00`1o:RX0o`000?ooo`2:0?oo +o`00H@3oool0101o:RX0oooo003o00000?l30?ooo`030?l0003oool0oooo0?l0oooo=@3oool00`00 +0000oooo0?ooo`3o0?oooc<0oooo00<0003o0?ooo`3oool01@3oool00`1o:RX0o`000?ooo`2:0?oo +o`00H@3oool0101o:RX0oooo003o00000?l30?ooo`030?l0003oool0oooo0?l0oooo=@3oool40000 +0?l0oooo<`3oool00`000?l0oooo0?ooo`040?ooo`0307lZ:P3o0000oooo08X0oooo001Q0?ooo`04 +07lZ:P3oool00?l00000o`80oooo00<0o`000?ooo`3oool0o`3ooolf0?ooo`030000003oool0oooo +0?l0oooo=@3oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P3o0000oooo08X0oooo001P0?ooo`04 +07lZ:P3oool0oooo0000o`<0oooo00<0o`000?ooo`3oool0o`3ooolf0?ooo`030000003oool0oooo +0?l0oooo=P3oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P3oool0oooo08T0oooo001P0?ooo`04 +07lZ:P3oool00?l00000o`<0oooo00<0o`000?ooo`3oool0o`3ooolf0?ooo`030000003oool0oooo +0?l0oooo=P3oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P3oool0oooo08T0oooo001P0?ooo`03 +07lZ:P3oool0003o00<0oooo00<0o`000?ooo`3oool0o`3ooolg0?ooo`030000003oool0oooo0?l0 +oooo=`3oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3oool0oooo08T0oooo001P0?ooo`0307lZ +:P3oool0003o00<0oooo00<0o`000?ooo`3oool0o`3ooolg0?ooo`030000003oool0oooo0?l0oooo +>03oool01@000?l0oooo0?ooo`3oool0ObXZ08/0oooo001P0?ooo`0307lZ:P00o`00003o0080oooo +00<0o`000?ooo`3oool0o`3ooolh0?ooo`030000003oool0oooo0?l0oooo>@3oool010000?l0oooo +0?ooo`1o:RZ;0?ooo`00H03oool00`1o:RX0003o0?ooo`020?ooo`030?l0003oool0oooo0?l0oooo +>03oool00`000000oooo0?ooo`3o0?ooocX0oooo00<0003o0?ooo`1o:RX0R`3oool005l0oooo0`00 +0?l20?ooo`030?l0003oool0oooo0?l0oooo>@3oool00`000000oooo0?ooo`3o0?ooocX0oooo1000 +0?mU0?ooo`030000003oool0oooo00P0oooo0P0000000`3oool000000000000E0?ooo`00GP3oool5 +0000o`030?l0003oool0oooo0?l0oooo>P3oool00`000000oooo0?ooo`3o0?ooocX0oooo1@000?mU +0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`0000005P3oool00100ooooCP0000050000 +ool00000o`00001j000000D0003oCP00000H0?ooo`8000002@3oool00`000000oooo0?ooo`0E0?oo +o`00>03oool00`000000oooo0?ooo`0S0?ooo`D0003o9@3oool00`000000oooo0?ooo`0U0?ooo`03 +0000003oool0oooo02@0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0U0?ooo`03 +0000003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0U0?ooo`03 +0000003oool0oooo02@0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0U0?ooo`03 +0000003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0T0?ooo`03 +0000003oool0oooo02D0oooo00<000000?ooo`3oool08`3oool50000obD0oooo00<000000?ooo`3o +ool0?@3oool00`000000oooo0?ooo`070?ooo`80000000<0oooo0000000000005@3oool003P0oooo +00<000000?ooo`3oool0903oool30000obH0oooo00<000000?ooo`3oool09@3oool00`000000oooo +0?ooo`0T0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo +0?ooo`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo +0?ooo`0T0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo +0?ooo`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool0903oool00`000000oooo +0?ooo`0U0?ooo`030000003oool0oooo02<0oooo10000?lV0?ooo`030000003oool0oooo03`0oooo +00<000000?ooo`3oool08P3oool003P0oooo00<000000?ooo`3oool09@3oool00`000?l0o`000?oo +o`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool0903oool00`000000oooo0?oo +o`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?oo +o`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool0903oool00`000000oooo0?oo +o`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?oo +o`0U0?ooo`030000003oool0oooo02@0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?oo +o`0S0?ooo`030000o`3oool0ObXZ02L0oooo00<000000?ooo`3oool0H@3oool00600oooo00<0ObXZ +0000o`3oool0W03oool00`000000oooo0?ooo`2M0?ooo`030000003oool0oooo09`0oooo00<00000 +0?ooo`3oool0V@3oool010000?l0oooo0?ooo`1o:RZ;0?ooo`00H03oool00`1o:RX0003o0?ooo`2L +0?ooo`030000003oool0oooo09d0oooo00<000000?ooo`3oool0W03oool00`000000oooo0?ooo`2H +0?ooo`050000o`3oool0oooo0?ooo`1o:RX0R`3oool00600oooo00<0ObXZ0000o`3o0000o`3ooolm +0?ooo`030000003oool0oooo0?l0oooo=`3oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3oool0 +oooo08T0oooo001P0?ooo`0307lZ:P000?l0o`000?l0oooo?@3oool00`000000oooo0?ooo`3o0?oo +ocH0oooo00<0003o0?ooo`3oool00P3oool00`00o`00ObXZ0?ooo`2:0?ooo`00H03oool00`1o:RX0 +003o0?l0003o0?ooocd0oooo00<000000?ooo`3oool0o`3ooolf0?ooo`030000o`3oool0oooo0080 +oooo00<0ObXZ0?ooo`3oool0RP3oool00640oooo00<0003o0?l0003oool0o`3oooll0?ooo`030000 +003oool0oooo0?l0oooo=@3oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P3oool0oooo08X0oooo +001Q0?ooo`0307lZ:P000?l0oooo0?l0oooo?03oool400000?l0oooo<`3oool00`000?l0oooo0?oo +o`040?ooo`0307lZ:P3oool0oooo08X0oooo001Q0?ooo`0307lZ:P000?l0oooo0?l0oooo?03oool0 +0`000000oooo0?ooo`3o0?oooc<0oooo00<0003o0?ooo`3oool01@3oool00`1o:RX0oooo0?ooo`2: +0?ooo`00H@3oool00`1o:RX0003o0?ooo`3o0?oooc`0oooo00<000000?ooo`3oool0o`3ooolb0?oo +o`030000o`3oool0oooo00H0oooo00<0ObXZ0?ooo`3oool0RP3oool00640oooo00<0ObXZ0000o`3o +ool0o`3oooll0?ooo`030000003oool0oooo0?l0oooo<@3oool00`000?l0oooo0?ooo`060?ooo`03 +0?l0001o:RX0oooo08/0oooo001Q0?ooo`0307lZ:P000?l0o`000?l0oooo?03oool00`000000oooo +0?ooo`3o0?oooc40oooo00<0003o0?ooo`3oool01P3oool00`3o0000ObXZ0?ooo`2;0?ooo`00H@3o +ool00`1o:RX0003o0?l0003o0?oooc`0oooo00<000000?ooo`3oool0o`3oool`0?ooo`030000o`3o +ool0oooo00L0oooo00<0ObXZ0?ooo`3oool0R`3oool00680oooo00<0ObXZ0000o`3oool0o`3ooolk +0?ooo`030000003oool0oooo0?l0oooo;`3oool00`000?l0oooo0?ooo`080?ooo`0307lZ:P3oool0 +oooo08/0oooo001R0?ooo`0307lZ:P000?l0oooo0?l0oooo>`3oool00`000000oooo0?ooo`3o0?oo +obh0oooo00<0003o0?ooo`3oool02@3oool00`1o:RX0oooo0?ooo`2;0?ooo`00HP3oool00`1o:RX0 +003o0?ooo`3o0?oooc/0oooo00<000000?ooo`3oool0o`3oool]0?ooo`030000o`3oool0oooo00T0 +oooo00<00?l007lZ:P3oool0S03oool00680oooo00<0ObXZ0000o`3oool0o`3ooolk0?ooo`030000 +003oool0oooo0?l0oooo;@3oool00`000?l0oooo0?ooo`090?ooo`030?l0001o:RX0oooo08`0oooo +001S0?ooo`030000o`3oool0oooo0?l0oooo>P3oool400000?l0oooo:`3oool00`000?l0oooo0?oo +o`0:0?ooo`0307lZ:P3oool0oooo08`0oooo001S0?ooo`030000o`3oool0oooo0?l0oooo>P3oool0 +0`000000oooo0?ooo`3o0?ooob/0oooo00<0003o0?ooo`3oool02P3oool00`00o`00ObXZ0?ooo`2= +0?ooo`00H`3oool30000ool0oooo>P3oool00`000000oooo0?ooo`3o0?ooobX0oooo00<0003o0?oo +o`3oool02`3oool00`1o:RX0oooo0?ooo`2=0?ooo`00HP3oool50000ool0oooo>@3oool00`000000 +oooo0?ooo`3o0?ooobT0oooo00<0003o0?ooo`3oool0303oool00`1o:RX0oooo0?ooo`2=0?ooo`00 +HP3oool50000ool0oooo>@3oool00`000000oooo0?ooo`3o0?ooobT0oooo00<0003o0?ooo`3oool0 +2`3oool00`1o:RX0o`000?ooo`2>0?ooo`00HP3oool50000ool0oooo>@3oool00`000000oooo0?oo +o`3o0?ooobP0oooo00<0003o0?ooo`3oool0303oool00`1o:RX0oooo0?ooo`2>0?ooo`00H`3oool3 +0000ool0oooo>P3oool00`000000oooo0?ooo`3o0?ooobL0oooo00<0003o0?ooo`3oool0303oool0 +0`00o`00ObXZ0?ooo`2?0?ooo`00I03oool00`3o00000?l00000o`3o0?ooocT0oooo00<000000?oo +o`3oool0o`3ooolV0?ooo`030000o`3oool0oooo00d0oooo00<0ObXZ0?ooo`3oool0S`3oool006@0 +oooo00@0o`00003o001o:RX0003oo`3ooolh0?ooo`030000003oool0oooo0?l0oooo9@3oool00`00 +0?l0oooo0?ooo`0>0?ooo`0307lZ:P3oool0oooo08l0oooo001U0?ooo`040?l0001o:RX0oooo0000 +ool0oooo=`3oool400000?l0oooo903oool00`000?l0oooo0?ooo`0=0?ooo`0307lZ:P3o0000oooo +0900oooo001U0?ooo`040?l00000o`00ObXZ0000ool0oooo=`3oool00`000000oooo0?ooo`3o0?oo +ob@0oooo00<0003o0?ooo`3oool03P3oool00`1o:RX0oooo0?ooo`2@0?ooo`00I@3oool01@3o0000 +oooo07lZ:P3oool0003o0?l0oooo=P3oool00`000000oooo0?ooo`3o0?ooob<0oooo00<0003o0?oo +o`3oool03P3oool00`1o:RX0o`000?ooo`2A0?ooo`00IP3oool01@3o00000?l007lZ:P3oool0003o +0?l0oooo=@3oool00`000000oooo0?ooo`3o0?ooob80oooo00<0003o0?ooo`3oool03`3oool00`1o +:RX0oooo0?ooo`2A0?ooo`00IP3oool01@3o00000?l007lZ:P3oool0003o0?l0oooo=@3oool00`00 +0000oooo0?ooo`3o0?ooob40oooo00<0003o0?ooo`3oool03`3oool00`1o:RX0o`000?ooo`2B0?oo +o`00IP3oool01P3o0000oooo003o001o:RX0oooo0000ool0oooo=03oool00`000000oooo0?ooo`3o +0?ooob40oooo00<0003o0?ooo`3oool03`3oool00`1o:RX0oooo0?ooo`2B0?ooo`00I`3oool00`3o +00000?l007lZ:P020?ooo`030000o`3oool0oooo0?l0oooo<@3oool00`000000oooo0?ooo`3o0?oo +ob00oooo00<0003o0?ooo`3oool03`3oool00`00o`00ObXZ0?ooo`2C0?ooo`00I`3oool0103o0000 +0?l00?ooo`1o:RX20?ooo`030000o`3oool0oooo0?l0oooo<03oool00`000000oooo0?ooo`3o0?oo +oal0oooo00<0003o0?ooo`3oool0403oool00`1o:RX0oooo0?ooo`2C0?ooo`00I`3oool0103o0000 +oooo003o001o:RX20?ooo`030000o`3oool0oooo0?l0oooo<03oool00`000000oooo0?ooo`3o0?oo +oah0oooo00<0003o0?ooo`3oool0403oool00`00o`00ObXZ0?ooo`2D0?ooo`00J03oool00`3o0000 +0?l007lZ:P030?ooo`030000o`3oool0oooo0?l0oooo;`3oool00`000000oooo0?ooo`3o0?oooad0 +oooo00<0003o0?ooo`3oool04@3oool00`1o:RX0oooo0?ooo`2D0?ooo`00J@3oool00`3o00000?l0 +07lZ:P030?ooo`030000o`3oool0oooo0?l0oooo;P3oool400000?l0oooo6`3oool00`000?l0oooo +0?ooo`0A0?ooo`030?l0001o:RX0oooo09D0oooo001Y0?ooo`040?l00000o`00oooo07lZ:P<0oooo +00<0003o0?ooo`3oool0o`3oool]0?ooo`030000003oool0oooo0?l0oooo703oool00`000?l0oooo +0?ooo`0A0?ooo`0307lZ:P3oool0oooo09D0oooo001Z0?ooo`040?l00000o`00oooo07lZ:P80oooo +00<0003o0?ooo`3oool0o`3oool]0?ooo`030000003oool0oooo0?l0oooo6`3oool00`000?l0oooo +0?ooo`0A0?ooo`0307lZ:P3oool0oooo09H0oooo001Z0?ooo`040?l00000o`00oooo07lZ:P<0oooo +00<0003o0?ooo`3oool0o`3oool/0?ooo`030000003oool0oooo0?l0oooo6P3oool00`000?l0oooo +0?ooo`0A0?ooo`03003o001o:RX0oooo09L0oooo001[0?ooo`040?l00000o`00oooo07lZ:P<0oooo +00<0003o0?ooo`3oool0o`3oool[0?ooo`030000003oool0oooo0?l0oooo6@3oool00`000?l0oooo +0?ooo`0A0?ooo`03003o001o:RX0oooo09P0oooo001[0?ooo`040?l00000o`00oooo07lZ:P<0oooo +00<0003o0?ooo`3oool0o`3oool[0?ooo`030000003oool0oooo0?l0oooo603oool00`000?l0oooo +0?ooo`0B0?ooo`03003o001o:RX0oooo09P0oooo001/0?ooo`040?l00000o`00oooo07lZ:P<0oooo +00<0003o0?ooo`3oool0o`3ooolZ0?ooo`030000003oool0oooo0?l0oooo603oool00`000?l0oooo +0?ooo`0A0?ooo`03003o001o:RX0oooo09T0oooo001]0?ooo`040?l00000o`00oooo07lZ:P<0oooo +00<0003o0?ooo`3oool0o`3ooolY0?ooo`030000003oool0oooo0?l0oooo5`3oool00`000?l0oooo +0?ooo`0B0?ooo`030?l0001o:RX0oooo09T0oooo001]0?ooo`040?l00000o`00oooo07lZ:P@0oooo +00<0003o0?ooo`3oool0o`3ooolI0?ooo`D000002P3oool00`000000oooo0?ooo`3o0?oooaH0oooo +00<0003o0?ooo`3oool04P3oool00`3o0000ObXZ0?ooo`2J0?ooo`00KP3oool0103o00000?l00?oo +o`1o:RX30?ooo`030000o`3oool0oooo0?l0oooo6`3oool00`000000oooo0?ooo`0:0?ooo`030000 +003oool0oooo0?l0oooo5@3oool00`000?l0oooo0?ooo`0C0?ooo`0307lZ:P3oool0oooo09X0oooo +001^0?ooo`050?l0003oool00?l00?ooo`1o:RX00`3oool00`000?l0oooo0?ooo`3o0?oooaX0oooo +00<000000?ooo`3oool02P3oool600000?l0oooo4@3oool00`000?l0oooo0?ooo`0C0?ooo`0307lZ +:P3oool0oooo09/0oooo001_0?ooo`050?l0003oool00?l00?ooo`1o:RX00`3oool00`000?l0oooo +0?ooo`3o0?oooaT0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`3o0?oooa@0oooo +00<0003o0?ooo`3oool04P3oool00`1o:RX0o`000?ooo`2L0?ooo`00L03oool01@3o0000oooo003o +003oool0ObXZ0080oooo00<0003o0?ooo`3oool0o`3ooolI0?ooo`030000003oool0oooo00X0oooo +00<000000?ooo`3oool0o`3ooolC0?ooo`030000o`3oool0oooo0180oooo00<0ObXZ0?l0003oool0 +W@3oool00740oooo00D0o`00003o003oool0oooo07lZ:P020?ooo`030000o`3oool0oooo0?l0oooo +5`3oool2000000`0oooo00<000000?ooo`3oool0o`3ooolB0?ooo`030000o`3oool0oooo0180oooo +00<00?l007lZ:P3oool0WP3oool00740oooo00D0o`000?ooo`00o`00oooo07lZ:P030?ooo`030000 +o`3oool0oooo0?l0oooo903oool00`000000oooo0?ooo`3o0?oooa40oooo00<0003o0?ooo`3oool0 +4`3oool00`1o:RX0oooo0?ooo`2N0?ooo`00LP3oool01@3o0000oooo003o003oool0ObXZ00<0oooo +00<0003o0?ooo`3oool0o`3ooolS0?ooo`030000003oool0oooo0?l0oooo403oool00`000?l0oooo +0?ooo`0C0?ooo`03003o001o:RX0oooo09l0oooo001c0?ooo`040?l0003oool00?l007lZ:P<0oooo +00<0003o0?ooo`3oool0o`3ooolS0?ooo`030000003oool0oooo0?l0oooo403oool00`000?l0oooo +0?ooo`0B0?ooo`03003o001o:RX0oooo0:00oooo001d0?ooo`040?l0003oool00?l007lZ:P<0oooo +00<0003o0?ooo`3oool0o`3ooolR0?ooo`030000003oool0oooo0?l0oooo3`3oool00`000?l0oooo +0?ooo`0B0?ooo`030?l0001o:RX0oooo0:40oooo001e0?ooo`040?l00000o`00oooo07lZ:P<0oooo +00<0003o0?ooo`3oool0o`3ooolQ0?ooo`030000003oool0oooo0?l0oooo3P3oool00`000?l0oooo +0?ooo`0B0?ooo`030?l0001o:RX0oooo0:80oooo001f0?ooo`040?l00000o`00oooo07lZ:P80oooo +00<0003o0?ooo`3oool0o`3ooolQ0?ooo`030000003oool0oooo0?l0oooo3@3oool00`000?l0oooo +0?ooo`0B0?ooo`030?l0001o:RX0oooo0:<0oooo001g0?ooo`040?l00000o`00oooo07lZ:P80oooo +00<0003o0?ooo`3oool0o`3ooolP0?ooo`@00000o`3oool;0?ooo`030000o`3oool0oooo01<0oooo +00<0ObXZ0?ooo`3oool0X`3oool007L0oooo00D0o`000?ooo`00o`00oooo07lZ:P020?ooo`030000 +o`3oool0oooo0?l0oooo7`3oool00`000000oooo0?ooo`3o0?ooo``0oooo00<0003o0?ooo`3oool0 +4@3oool00`00o`00ObXZ0?ooo`2U0?ooo`00N03oool01@3o0000oooo003o003oool0ObXZ0080oooo +00<0003o0?ooo`3oool0o`3ooolN0?ooo`030000003oool0oooo0?l0oooo2`3oool00`000?l0oooo +0?ooo`0A0?ooo`03003o001o:RX0oooo0:H0oooo001i0?ooo`80o`0000D00?l00?ooo`1o:RX0oooo +0000o`3o0?ooob00oooo00<000000?ooo`3oool0o`3oool:0?ooo`030000o`3oool0oooo0140oooo +00<00?l007lZ:P3oool0Y`3oool007/0oooo00H0o`00003o003oool0ObXZ0?ooo`000?oo0?oooal0 +oooo00<000000?ooo`3oool0o`3oool90?ooo`030000o`3oool0oooo0180oooo00<0ObXZ0?ooo`3o +ool0Y`3oool007`0oooo00H0o`000?ooo`3oool0ObXZ0?ooo`000?oo0?oooah0oooo00<000000?oo +o`3oool0o`3oool80?ooo`030000o`3oool0oooo0180oooo00<0ObXZ0?l0003oool0Z03oool007d0 +oooo00H0o`000?ooo`3oool0ObXZ0?ooo`000?oo0?oooad0oooo00<000000?ooo`3oool0o`3oool7 +0?ooo`030000o`3oool0oooo0140oooo00<00?l007lZ:P3o0000ZP3oool007h0oooo00D0o`00003o +003oool0ObXZ0000o`3o0?oooad0oooo00<000000?ooo`3oool0o`3oool70?ooo`030000o`3oool0 +oooo0100oooo0P1o:RX00`3o0000oooo0?ooo`2Y0?ooo`00O`3oool01@3o00000?l00?ooo`3oool0 +003o0?l0oooo703oool00`000000oooo0?ooo`3o0?ooo`H0oooo00<0003o0?ooo`3oool0403oool0 +0`1o:RX0o`000?ooo`2/0?ooo`00P03oool01@3o00000?l00?ooo`3oool0003o0?l0oooo6`3oool0 +0`000000oooo0?ooo`3o0?ooo`D0oooo00<0003o0?ooo`3oool0403oool00`1o:RX0o`000?ooo`2] +0?ooo`00P@3oool01@3o00000?l00?ooo`000?l0ObXZ0?l0oooo6P3oool400000?l0oooo0`3oool0 +0`000?l0oooo0?ooo`0@0?ooo`0307lZ:P3o0000oooo0:h0oooo00220?ooo`050?l00000o`00oooo +0000o`1o:RX0o`3ooolI0?ooo`030000003oool0oooo0?l0oooo0`3oool00`000?l0oooo0?ooo`0@ +0?ooo`0307lZ:P3o0000oooo0:l0oooo00230?ooo`80o`0000<0oooo0000o`3oool0o`3ooolH0?oo +o`030000003oool0oooo0?l0oooo0`3oool00`000?l0oooo0?ooo`0?0?ooo`03003o001o:RX0oooo +0;00oooo00250?ooo`030?l0003oool0003o0080003oo`3ooolF0?ooo`030000003oool0oooo0?l0 +oooo0P3oool00`000?l0oooo0?ooo`0?0?ooo`03003o001o:RX0oooo0;40oooo00260?ooo`D0003o +o`3ooolE0?ooo`030000003oool0oooo0?l0oooo0@3oool00`000?l0oooo0?ooo`0?0?ooo`80ObXZ +/`3oool008H0oooo1@000?oo0?oooaD0oooo00<000000?ooo`3oool0o`3oool00`000?l0oooo0?oo +o`0>0?ooo`03003o001o:RX0o`000;@0oooo00260?ooo`D0003o00<0ObXZ0?ooo`3oool0o`3ooolB +0?ooo`030000003oool0oooo0?h0oooo00<0003o0?ooo`3oool03P3oool00`00o`00ObXZ0?l0002e +0?ooo`00Q`3oool30000o`030?l000000?l0ObXZ0?l0oooo4`3oool00`000000oooo0?ooo`3n0?oo +o`030000o`3oool0oooo00d0oooo00<00?l007lZ:P3oool0]P3oool008/0oooo00@0o`000000o`00 +0?l0ObXZo`3ooolA0?ooo`030000003oool0oooo0?d0oooo00<0003o0?ooo`3oool03@3oool207lZ +:[P0oooo002=0?ooo`030?l000000?l0003o0?l0oooo403oool00`000000oooo0?ooo`3l0?ooo`03 +0000o`3oool0oooo00d0oooo00<0ObXZ0?ooo`3oool0^03oool008h0oooo0P3o00000`000?l0ObXZ +0?ooo`3o0?ooo`d0oooo1000003j0?ooo`030000o`3oool0oooo00`0oooo00<0o`0007lZ:P3oool0 +^P3oool00900oooo00<0o`000000o`000?l0o`3oool=0?ooo`030000003oool0oooo0?X0oooo00<0 +003o0?ooo`3oool0303oool00`3o0000ObXZ0?ooo`2k0?ooo`00T@3oool20?l000030000o`3oool0 +oooo0?l0oooo2P3oool00`000000oooo0?ooo`3j0?ooo`030000o`3oool0oooo00/0oooo0P1o:RZm +0?ooo`00TP3oool01000o`00o`000000o`000?oo0?ooo`X0oooo00<000000?ooo`3oool0n@3oool0 +0`000?l0oooo0?ooo`0;0?ooo`0307lZ:P3oool0oooo0;d0oooo002C0?ooo`03003o003o0000ObXZ +0080003oo`3oool80?ooo`030000003oool0oooo0?P0oooo00<0003o0?ooo`3oool02P3oool207lZ +:/00oooo002E0?ooo`04003o003o0000ObXZ0000ool0oooo1`3oool00`000000oooo0?ooo`3g0?oo +o`030000o`3oool0oooo00T0oooo0P1o:RX00`3o0000oooo0?ooo`2o0?ooo`00UP3oool00`00o`00 +o`000?l000020000ool0oooo1@3oool00`000000oooo0?ooo`3f0?ooo`030000o`3oool0oooo00P0 +oooo0P1o:RX00`00o`00o`000?ooo`310?ooo`00V03oool01@00o`00o`000?ooo`000?l0ObXZ0?l0 +oooo0`3oool00`000000oooo0?ooo`3f0?ooo`030000o`3oool0oooo00H0oooo0P1o:RX00`00o`00 +o`000?l000330?ooo`00V@3oool00`00o`00o`000?l000020000ool0oooo0P3oool00`000000oooo +0?ooo`3e0?ooo`030000o`3oool0oooo00H0oooo00@0ObXZ003o0000o`00o`00a@3oool009/0oooo +00<00?l00?l0003oool00P000?oo0?ooo`030000003oool0oooo0?@0oooo00<0003o0?ooo`3oool0 +1@3oool207lZ:P03003o003o0000o`000l0oooo00@0003o +0?ooo`3oool0oooo0P1o:RX00`3o0000oooo0?ooo`3?0?ooo`00Y`3oool20?l00080003om03oool0 +0`000000oooo0?ooo`3^0?ooo`060000o`3oool0oooo0?ooo`1o:RX0o`00d`3oool00:T0oooo00<0 +0?l007lZ:P000?l0l`3oool00`000000oooo0?ooo`3]0?ooo`030000o`3oool0oooo0080ObXZe@3o +ool00:/0oooo00@00?l00000o`000?l0oooo0`000?oN0?ooo`@000002`3oool00`000000oooo0?oo +o`3Z0?ooo`@0003o0P1o:RX00`3o0000oooo0?ooo`3D0?ooo`00[@3oool00`3o0000003o0000o`03 +0000omd0oooo00<000000?ooo`3oool0303oool00`000000oooo0?ooo`3Y0?ooo`D0003o00<0o`00 +0?ooo`3oool0eP3oool00:h0oooo1@000?oN0?ooo`030000003oool0oooo00/0oooo1P00003V0?oo +o`D0003of@3oool00:h0oooo1P000?oN0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3o +ool0j03oool60000omT0oooo002_0?ooo`<0003o0P3o00030000omT0oooo00@000000?ooo`3oool0 +00002`3oool00`000000oooo0?ooo`3U0?ooo`<0003o0P3o00030000omX0oooo002e0?ooo`030?l0 +001o:RX0003o0080003oe`3oool2000000`0oooo00<000000?ooo`3oool0hP3oool30000o`0307lZ +:P3o0000o`000=l0oooo002g0?ooo`80ObXZ00<0oooo0000o`000?l0h`3oool00`000000oooo0?oo +o`3P0?ooo`80003o00@0oooo07lZ:P1o:RX0o`00h@3oool00;T0oooo0`1o:RX30000on00oooo00<0 +00000?ooo`3oool0g@3oool30000o`<0ObXZi03oool00;/0oooo00@0o`0007lZ:P1o:RX0oooo0`00 +0?oM0?ooo`030000003oool0oooo0=X0oooo0`000?l0103oool0ObXZ07lZ:P3o003V0?ooo`00_@3o +ool00`3o0000ObXZ07lZ:P020?ooo`80003of`3oool00`000000oooo0?ooo`3H0?ooo`80003o0P3o +ool207lZ:P80o`00i`3oool00;l0oooo00D0o`0007lZ:P1o:RX0ObXZ0?ooo`030000omP0oooo00<0 +00000?ooo`3oool0e@3oool30000o`040?ooo`1o:RX0ObXZ07lZ:P80o`00j@3oool00<80oooo00<0 +o`0007lZ:P1o:RX00P3oool30000omD0oooo00<000000?ooo`3oool0dP3oool30000o`80oooo0P1o +:RX20?l00>`0oooo00340?ooo`030?l0001o:RX0ObXZ00<0oooo0P000?oC0?ooo`@00000c`3oool2 +0000o`<0oooo0P1o:RX20?l00>h0oooo00360?ooo`030?l0001o:RX0ObXZ00<0oooo0`000?o@0?oo +o`030000003oool0oooo00?ooo`030000003oool0oooo0P0oooo00<0o`0007lZ:P1o:RX00`1o:RX30000ojh0oooo00<0 +00000?ooo`3oool0Z`3oool30000o`D0ObXZo`3ooolE0?ooo`00k03oool20?l000<0ObXZ0`000?n[ +0?ooo`030000003oool0oooo0:P0oooo0`000?l307lZ:P030?l00000o`000?l00?l0oooo5`3oool0 +0?00oooo00@0o`0007lZ:P1o:RX0o`000P000?nY0?ooo`030000003oool0oooo0:H0oooo0P000?l0 +0`3oool0ObXZ07lZ:P020?l00003003o003oool0oooo0?l0oooo603oool00?<0oooo0`1o:RX30000 +ojH0oooo00<000000?ooo`3oool0X`3oool30000o`<0ObXZ00<0o`000?ooo`3oool0o`3ooolL0?oo +o`00mP3oool307lZ:P<0003o0P3oool30000oih0oooo00<000000?ooo`3oool0V`3oool30000o`80 +oooo0`000?l307lZ:_l0oooo8P3oool00?X0oooo0P1o:RX60000oid0oooo00<000000?ooo`3oool0 +VP3oool60000o`80ObXZo`3ooolV0?ooo`00o@3oool50000o`0307lZ:P3oool0oooo09X0oooo1000 +002H0?ooo`H0003oo`3ooolY0?ooo`00o@3oool:0000oiP0oooo00<000000?ooo`3oool0T@3oool8 +0000o`030?l000000?l0003o00<0003oo`3ooolY0?ooo`00oP3oool30000o`<0oooo0P3o00000`1o +:RX0003o0000o`040000oi80oooo00<000000?ooo`3oool0R@3oool80000o`030?ooo`3o0000o`00 +0080ObXZ1@3oool30000ool0oooo:P3oool00?l0oooo2@3oool407lZ:P030?ooo`000?l0003o00<0 +003oS@3oool00`000000oooo0?ooo`210?ooo`P0003o1@3oool20?l000@0ObXZo`3ooold0?ooo`00 +o`3oool=0?ooo`@0ObXZ0P3oool50000ohP0oooo00<000000?ooo`3oool0N@3oool80000o`T0oooo +0P3o000407lZ:_l0oooo>03oool00?l0oooo4@3oool507lZ:P80o`001P000?n20?ooo`030000003o +ool0oooo0740oooo20000?l=0?ooo`030?l0001o:RX0ObXZ00<0ObXZo`3oooll0?ooo`00o`3ooolE +0?ooo`03003o001o:RX0ObXZ0080ObXZ0`3o00000`3oool0003o0000o`030000ogd0oooo00<00000 +0?ooo`3oool0J@3oool80000oa40oooo00<0o`0007lZ:P1o:RX00P1o:R[o0?oood40oooo003o0?oo +oaX0oooo1@1o:RX20?l00080oooo1@000?mh0?ooo`030000003oool0oooo0640oooo20000?lD0?oo +o`030?l0001o:RX0ObXZ00<0ObXZo`3ooom50?ooo`00o`3ooolO0?ooo`D0ObXZ0P3o00020?ooo`H0 +003oLP3oool00`000000oooo0?ooo`1I0?ooo`P0003o503oool4003o00D0ObXZo`3ooom:0?ooo`00 +o`3ooolT0?ooo`T0ObXZ00<0oooo0000o`000?l00`000?m]0?ooo`030000003oool0oooo0540oooo +20000?lG0?ooo`T0ObXZo`3ooom?0?ooo`00o`3ooolZ0?ooo`<0o`001@1o:RX00`3oool0003o0000 +o`030000ofP0oooo100000180?ooo`P0003o6P3oool507lZ:P030?l0003oool0oooo0?l0ooooE@3o +ool00?l0oooo0?ooo`D0003o1@1o:RX@ +0000ocP0oooo00<000000?ooo`3oool06@3oool80000oal0oooo2P1o:R[o0?ooogh0oooo003o0?oo +odl0oooo0`000?l;0?ooo`X0ObXZ00<0o`000000o`000?l03P000?lX0?ooo`030000003oool0oooo +0140oooo20000?lL0?ooo`030?l0001o:RX0ObXZ00P0ObXZ0P3o003o0?ooohH0oooo003o0?ooofL0 +oooo3`1o:RX00`3o0000oooo0000o`0?0000o`X0oooo0P00000;0?ooo`<0003o2P3oool80000oaH0 +oooo3`1o:R[o0?oooi80oooo003o0?ooogH0oooo4P1o:RX@0000o`H0oooo1@000?l00`3oool0003o +0000o`060000o`/0oooo4`1o:RX00`3o0000oooo0?ooo`3o0?oooih0oooo003o0?ooohP0oooo0P3o +000>07lZ:P`0003o4`1o:RX20?l00?l0oooo/P3oool00?l0ooooU03oool00`000000oooo0?ooo`07 +0?ooo`D0003oo`3oooo80?ooo`00o`3ooonA0?ooo`040000003oool0oooo000000X0oooo0`000?oo +0?ooolT0oooo003o0?oooi80oooo0P00000<0?ooo`030000003oool0oooo0?l0oooob03oool00?l0 +ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0 +o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool0 +0`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3oooo80?oo +o`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool400000?l0oooo +a`3oool00?l0ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<00000 +0?ooo`3oool0o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0 +ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0 +o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool0 +0`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3oooo80?oo +o`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool400000?l0oooo +a`3oool00?l0ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<00000 +0?ooo`3oool0o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0 +ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0 +o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool0 +0`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3oooo80?oo +o`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool400000?l0oooo +a`3oool00?l0ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<00000 +0?ooo`3oool0o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0 +ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0 +o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool0 +0`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3oooo80?oo +o`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool400000?l0oooo +a`3oool00?l0ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<00000 +0?ooo`3oool0o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0 +ooooX03oool00`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooj00oooo00<000000?ooo`3oool0 +o`3oooo80?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob03oool00?l0ooooX03oool0 +0`000000oooo0?ooo`3o0?ooolP0oooo003o0?oooi<0oooo0`00000:0?ooo`030000003oool0oooo +0?l0oooob03oool00?l0ooooU03oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo0?l0 +oooob03oool00?l0ooooT@3oool5000000X0oooo1P00003o0?ooolD0oooo003o0?oooi40oooo00@0 +00000?ooo`3oool00000o`3ooooF0?ooo`00o`3ooonB0?ooo`030000003oool000000?l0ooooeP3o +ool00?l0ooooT`3oool200000?l0ooooeP3oool00?l0ooooo`3ooooo0?ooof`0oooo003o0?ooool0 +ooooo`3ooom/0?ooo`00o`3ooooo0?ooool0ooooK03oool00?l0ooooo`3ooooo0?ooof`0oooo003o +0?ooool0ooooo`3ooom/0?ooo`00o`3ooooo0?ooool0ooooK03oool00?l0ooooo`3ooooo0?ooof`0 +oooo003o0?ooool0ooooo`3ooom/0?ooo`00o`3ooooo0?ooool0ooooK03oool00?l0ooooo`3ooooo +0?ooof`0oooo003o0?ooool0ooooo`3ooom/0?ooo`00o`3ooooo0?ooool0ooooK03oool00?l0oooo +o`3ooooo0?ooof`0oooo003o0?ooool0ooooo`3ooom/0?ooo`00o`3ooooo0?ooool0ooooK03oool0 +0?l0ooooo`3ooooo0?ooof`0oooo003o0?ooool0ooooo`3ooom/0?ooo`00o`3ooooo0?ooool0oooo +K03oool00?l0ooooZP3oool200000?l0oooo_`3oool00?l0ooooZ`3oool00`000000oooo0?ooo`3o +0?oookd0oooo003o0?oooj`0oooo00<000000?ooo`3oool0o`3ooonl0?ooo`00o`3ooon[0?ooo`03 +0000003oool000000?l0oooo_@3oool00?l0ooooZP3oool010000000oooo0?ooo`00003o0?oookd0 +oooo003o0?ooojT0oooo0`0000000`3oool000000000003o0?oook`0oooo003o0?oooih0oooo00@0 +00000?ooo`3oool00000o`3oooo90?ooo`00o`3ooonO0?ooo`800000o`3oooo:0?ooo`00o`3ooooo +0?ooool0ooooK03oool00?l0ooooo`3ooooo0?ooof`0oooo003o0?ooool0ooooo`3ooom/0?ooo`00 +\ +\>"], + ImageRangeCache->{{{0, 872}, {435.5, 0}} -> {-5.21138, -4.09045, 0.0125562, \ +0.0200899}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"\[IndentingNewLine]", + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Numerik\ - \ + Aufgabe\ \ +4\ \ C\ \ \ \ \ \ \ \ \ \ \ \ \ Ergebnisse\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ +\ 2005\ \ \ \ *) \), + "Subtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subtitle", + FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]"}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]1\ +\[InvisibleSpace]" mit "\[InvisibleSpace]12\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 1, " mit ", 12, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.545455 0.0909091 0.25 0.0625 [ +[0 .2375 -6 -9 ] +[0 .2375 6 0 ] +[.18182 .2375 -6 -9 ] +[.18182 .2375 6 0 ] +[.36364 .2375 -6 -9 ] +[.36364 .2375 6 0 ] +[.72727 .2375 -3 -9 ] +[.72727 .2375 3 0 ] +[.90909 .2375 -3 -9 ] +[.90909 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.53295 0 -12 -4.5 ] +[.53295 0 0 4.5 ] +[.53295 .0625 -12 -4.5 ] +[.53295 .0625 0 4.5 ] +[.53295 .125 -12 -4.5 ] +[.53295 .125 0 4.5 ] +[.53295 .1875 -12 -4.5 ] +[.53295 .1875 0 4.5 ] +[.53295 .3125 -6 -4.5 ] +[.53295 .3125 0 4.5 ] +[.53295 .375 -6 -4.5 ] +[.53295 .375 0 4.5 ] +[.53295 .4375 -6 -4.5 ] +[.53295 .4375 0 4.5 ] +[.53295 .5 -6 -4.5 ] +[.53295 .5 0 4.5 ] +[.54545 .525 -17 0 ] +[.54545 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +0 .25 m +0 .25625 L +s +[(-6)] 0 .2375 0 1 Mshowa +.18182 .25 m +.18182 .25625 L +s +[(-4)] .18182 .2375 0 1 Mshowa +.36364 .25 m +.36364 .25625 L +s +[(-2)] .36364 .2375 0 1 Mshowa +.72727 .25 m +.72727 .25625 L +s +[(2)] .72727 .2375 0 1 Mshowa +.90909 .25 m +.90909 .25625 L +s +[(4)] .90909 .2375 0 1 Mshowa +.125 Mabswid +.04545 .25 m +.04545 .25375 L +s +.09091 .25 m +.09091 .25375 L +s +.13636 .25 m +.13636 .25375 L +s +.22727 .25 m +.22727 .25375 L +s +.27273 .25 m +.27273 .25375 L +s +.31818 .25 m +.31818 .25375 L +s +.40909 .25 m +.40909 .25375 L +s +.45455 .25 m +.45455 .25375 L +s +.5 .25 m +.5 .25375 L +s +.59091 .25 m +.59091 .25375 L +s +.63636 .25 m +.63636 .25375 L +s +.68182 .25 m +.68182 .25375 L +s +.77273 .25 m +.77273 .25375 L +s +.81818 .25 m +.81818 .25375 L +s +.86364 .25 m +.86364 .25375 L +s +.95455 .25 m +.95455 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.54545 0 m +.5517 0 L +s +[(-4)] .53295 0 1 0 Mshowa +.54545 .0625 m +.5517 .0625 L +s +[(-3)] .53295 .0625 1 0 Mshowa +.54545 .125 m +.5517 .125 L +s +[(-2)] .53295 .125 1 0 Mshowa +.54545 .1875 m +.5517 .1875 L +s +[(-1)] .53295 .1875 1 0 Mshowa +.54545 .3125 m +.5517 .3125 L +s +[(1)] .53295 .3125 1 0 Mshowa +.54545 .375 m +.5517 .375 L +s +[(2)] .53295 .375 1 0 Mshowa +.54545 .4375 m +.5517 .4375 L +s +[(3)] .53295 .4375 1 0 Mshowa +.54545 .5 m +.5517 .5 L +s +[(4)] .53295 .5 1 0 Mshowa +.125 Mabswid +.54545 .0125 m +.5492 .0125 L +s +.54545 .025 m +.5492 .025 L +s +.54545 .0375 m +.5492 .0375 L +s +.54545 .05 m +.5492 .05 L +s +.54545 .075 m +.5492 .075 L +s +.54545 .0875 m +.5492 .0875 L +s +.54545 .1 m +.5492 .1 L +s +.54545 .1125 m +.5492 .1125 L +s +.54545 .1375 m +.5492 .1375 L +s +.54545 .15 m +.5492 .15 L +s +.54545 .1625 m +.5492 .1625 L +s +.54545 .175 m +.5492 .175 L +s +.54545 .2 m +.5492 .2 L +s +.54545 .2125 m +.5492 .2125 L +s +.54545 .225 m +.5492 .225 L +s +.54545 .2375 m +.5492 .2375 L +s +.54545 .2625 m +.5492 .2625 L +s +.54545 .275 m +.5492 .275 L +s +.54545 .2875 m +.5492 .2875 L +s +.54545 .3 m +.5492 .3 L +s +.54545 .325 m +.5492 .325 L +s +.54545 .3375 m +.5492 .3375 L +s +.54545 .35 m +.5492 .35 L +s +.54545 .3625 m +.5492 .3625 L +s +.54545 .3875 m +.5492 .3875 L +s +.54545 .4 m +.5492 .4 L +s +.54545 .4125 m +.5492 .4125 L +s +.54545 .425 m +.5492 .425 L +s +.54545 .45 m +.5492 .45 L +s +.54545 .4625 m +.5492 .4625 L +s +.54545 .475 m +.5492 .475 L +s +.54545 .4875 m +.5492 .4875 L +s +.25 Mabswid +.54545 0 m +.54545 .5 L +s +gsave +.54545 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +.5 .165 .165 r +.5 Mabswid +.64109 .34862 m +.63681 .34421 L +.63252 .33979 L +.62824 .33537 L +.62395 .33095 L +.61967 .32653 L +.61539 .32212 L +.6111 .3177 L +.60682 .31328 L +.60253 .30886 L +.59825 .30445 L +.59397 .30003 L +.58968 .29561 L +.5854 .29119 L +.58111 .28677 L +.57683 .28236 L +.57255 .27794 L +.56826 .27352 L +.56398 .2691 L +.55969 .26468 L +.55541 .26027 L +.55113 .25585 L +.54684 .25143 L +.54256 .24701 L +.53827 .2426 L +.53399 .23818 L +.52971 .23376 L +.52542 .22934 L +.52114 .22492 L +.51685 .22051 L +.51257 .21609 L +.50829 .21167 L +.504 .20725 L +.49972 .20283 L +.49543 .19842 L +.49115 .194 L +.48687 .18958 L +.48258 .18516 L +.4783 .18075 L +.47401 .17633 L +.46973 .17191 L +.46545 .16749 L +.46116 .16307 L +.45688 .15866 L +.45259 .15424 L +.44831 .14982 L +.40909 .11742 L +.40481 .11433 L +.40052 .11132 L +.39624 .10838 L +Mistroke +.39197 .10553 L +.38769 .10275 L +.38343 .10006 L +.37916 .09745 L +.37491 .09492 L +.37066 .09248 L +.36643 .09013 L +.3622 .08787 L +.35799 .08569 L +.35379 .08361 L +.3496 .08162 L +.34542 .07972 L +.34127 .07792 L +.33713 .07621 L +.333 .0746 L +.3289 .07309 L +.32481 .07168 L +.32075 .07036 L +.31671 .06915 L +.31269 .06803 L +.30869 .06702 L +.30472 .0661 L +.30078 .06529 L +.29686 .06458 L +.29297 .06398 L +.28911 .06348 L +.28528 .06308 L +.28147 .06278 L +.2777 .06259 L +.27397 .06251 L +.27026 .06252 L +.26659 .06264 L +.26296 .06287 L +.25936 .0632 L +.2558 .06363 L +.25227 .06417 L +.24879 .06481 L +.24534 .06555 L +.24193 .0664 L +.23857 .06734 L +.23525 .06839 L +.23197 .06954 L +.22873 .07079 L +.22554 .07214 L +.2224 .07358 L +.2193 .07513 L +.21624 .07677 L +.21324 .07851 L +.21028 .08034 L +.20737 .08227 L +Mistroke +.20452 .08429 L +.20171 .08641 L +.19895 .08861 L +.19625 .0909 L +.19359 .09329 L +.191 .09575 L +.18845 .09831 L +.18596 .10095 L +.18352 .10367 L +.18114 .10647 L +.17882 .10935 L +.17655 .11231 L +.17434 .11535 L +.17219 .11846 L +.1701 .12165 L +.16806 .1249 L +.16609 .12823 L +.16417 .13162 L +.16232 .13508 L +.16053 .1386 L +.15879 .14219 L +.15712 .14583 L +.15552 .14953 L +.15397 .15329 L +.15249 .1571 L +.15107 .16096 L +.14971 .16488 L +.14842 .16884 L +.14719 .17284 L +.14603 .17689 L +.14493 .18098 L +.1439 .1851 L +.14293 .18927 L +.14203 .19346 L +.14119 .19769 L +.14042 .20195 L +.13972 .20623 L +.13908 .21054 L +.13851 .21487 L +.13801 .21921 L +.13757 .22358 L +.1372 .22796 L +.1369 .23235 L +.13667 .23676 L +.1365 .24117 L +.1364 .24558 L +.13636 .25 L +.1364 .25442 L +.1365 .25883 L +.13667 .26324 L +Mistroke +.1369 .26765 L +.1372 .27204 L +.13757 .27642 L +.13801 .28079 L +.13851 .28513 L +.13908 .28946 L +.13972 .29377 L +.14042 .29805 L +.14119 .30231 L +.14203 .30654 L +.14293 .31073 L +.1439 .3149 L +.14493 .31902 L +.14603 .32311 L +.14719 .32716 L +.14842 .33116 L +.14971 .33512 L +.15107 .33904 L +.15249 .3429 L +.15397 .34671 L +.15552 .35047 L +.15712 .35417 L +.15879 .35781 L +.16053 .3614 L +.16232 .36492 L +.16417 .36838 L +.16609 .37177 L +.16806 .3751 L +.1701 .37835 L +.17219 .38154 L +.17434 .38465 L +.17655 .38769 L +.17882 .39065 L +.18114 .39353 L +.18352 .39633 L +.18596 .39905 L +.18845 .40169 L +.191 .40425 L +.19359 .40671 L +.19625 .4091 L +.19895 .41139 L +.20171 .41359 L +.20452 .41571 L +.20737 .41773 L +.21028 .41966 L +.21324 .42149 L +.21624 .42323 L +.2193 .42487 L +.2224 .42642 L +.22554 .42786 L +Mistroke +.22873 .42921 L +.23197 .43046 L +.23525 .43161 L +.23857 .43266 L +.24193 .4336 L +.24534 .43445 L +.24879 .43519 L +.25227 .43583 L +.2558 .43637 L +.25936 .4368 L +.26296 .43713 L +.26659 .43736 L +.27026 .43748 L +.27397 .43749 L +.2777 .43741 L +.28147 .43722 L +.28528 .43692 L +.28911 .43652 L +.29297 .43602 L +.29686 .43542 L +.30078 .43471 L +.30472 .4339 L +.30869 .43298 L +.31269 .43197 L +.31671 .43085 L +.32075 .42964 L +.32481 .42832 L +.3289 .42691 L +.333 .4254 L +.33713 .42379 L +.34127 .42208 L +.34542 .42028 L +.3496 .41838 L +.35379 .41639 L +.35799 .41431 L +.3622 .41213 L +.36643 .40987 L +.37066 .40752 L +.37491 .40508 L +.37916 .40255 L +.38343 .39994 L +.38769 .39725 L +.39197 .39447 L +.39624 .39162 L +.40052 .38868 L +.40481 .38567 L +.40909 .38258 L +.43268 .3663 L +.43697 .36188 L +.44125 .35746 L +Mistroke +.44553 .35304 L +.44982 .34862 L +.4541 .34421 L +.45839 .33979 L +.46267 .33537 L +.46695 .33095 L +.47124 .32653 L +.47552 .32212 L +.47981 .3177 L +.48409 .31328 L +.48837 .30886 L +.49266 .30445 L +.49694 .30003 L +.50123 .29561 L +.50551 .29119 L +.50979 .28677 L +.51408 .28236 L +.51836 .27794 L +.52265 .27352 L +.52693 .2691 L +.53121 .26468 L +.5355 .26027 L +.53978 .25585 L +.54407 .25143 L +.54835 .24701 L +.55263 .2426 L +.55692 .23818 L +.5612 .23376 L +.56549 .22934 L +.56977 .22492 L +.57405 .22051 L +.57834 .21609 L +.58262 .21167 L +.58691 .20725 L +.59119 .20283 L +.59547 .19842 L +.59976 .194 L +.60404 .18958 L +.60833 .18516 L +.61261 .18075 L +.61689 .17633 L +.62118 .17191 L +.62546 .16749 L +.62975 .16307 L +.63403 .15866 L +.63831 .15424 L +.6426 .14982 L +.6861 .11433 L +.69038 .11132 L +.69467 .10838 L +Mistroke +.69894 .10553 L +.70322 .10275 L +.70748 .10006 L +.71175 .09745 L +.716 .09492 L +.72025 .09248 L +.72448 .09013 L +.72871 .08787 L +.73292 .08569 L +.73712 .08361 L +.74131 .08162 L +.74549 .07972 L +.74964 .07792 L +.75378 .07621 L +.75791 .0746 L +.76201 .07309 L +.7661 .07168 L +.77016 .07036 L +.7742 .06915 L +.77822 .06803 L +.78222 .06702 L +.78619 .0661 L +.79013 .06529 L +.79405 .06458 L +.79794 .06398 L +.8018 .06348 L +.80563 .06308 L +.80944 .06278 L +.81321 .06259 L +.81694 .06251 L +.82065 .06252 L +.82432 .06264 L +.82795 .06287 L +.83155 .0632 L +.83511 .06363 L +.83864 .06417 L +.84212 .06481 L +.84557 .06555 L +.84897 .0664 L +.85234 .06734 L +.85566 .06839 L +.85894 .06954 L +.86218 .07079 L +.86537 .07214 L +.86851 .07358 L +.87161 .07513 L +.87467 .07677 L +.87767 .07851 L +.88063 .08034 L +.88354 .08227 L +Mistroke +.88639 .08429 L +.8892 .08641 L +.89196 .08861 L +.89466 .0909 L +.89732 .09329 L +.89991 .09575 L +.90246 .09831 L +.90495 .10095 L +.90739 .10367 L +.90977 .10647 L +.91209 .10935 L +.91436 .11231 L +.91657 .11535 L +.91872 .11846 L +.92081 .12165 L +.92285 .1249 L +.92482 .12823 L +.92673 .13162 L +.92859 .13508 L +.93038 .1386 L +.93211 .14219 L +.93379 .14583 L +.93539 .14953 L +.93694 .15329 L +.93842 .1571 L +.93984 .16096 L +.9412 .16488 L +.94249 .16884 L +.94372 .17284 L +.94488 .17689 L +.94598 .18098 L +.94701 .1851 L +.94798 .18927 L +.94888 .19346 L +.94971 .19769 L +.95048 .20195 L +.95119 .20623 L +.95182 .21054 L +.95239 .21487 L +.9529 .21921 L +.95334 .22358 L +.9537 .22796 L +.95401 .23235 L +.95424 .23676 L +.95441 .24117 L +.95451 .24558 L +.95455 .25 L +.95451 .25442 L +.95441 .25883 L +.95424 .26324 L +Mistroke +.95401 .26765 L +.9537 .27204 L +.95334 .27642 L +.9529 .28079 L +.95239 .28513 L +.95182 .28946 L +.95119 .29377 L +.95048 .29805 L +.94971 .30231 L +.94888 .30654 L +.94798 .31073 L +.94701 .3149 L +.94598 .31902 L +.94488 .32311 L +.94372 .32716 L +.94249 .33116 L +.9412 .33512 L +.93984 .33904 L +.93842 .3429 L +.93694 .34671 L +.93539 .35047 L +.93379 .35417 L +.93211 .35781 L +.93038 .3614 L +.92859 .36492 L +.92673 .36838 L +.92482 .37177 L +.92285 .3751 L +.92081 .37835 L +.91872 .38154 L +.91657 .38465 L +.91436 .38769 L +.91209 .39065 L +.90977 .39353 L +.90739 .39633 L +.90495 .39905 L +.90246 .40169 L +.89991 .40425 L +.89732 .40671 L +.89466 .4091 L +.89196 .41139 L +.8892 .41359 L +.88639 .41571 L +.88354 .41773 L +.88063 .41966 L +.87767 .42149 L +.87467 .42323 L +.87161 .42487 L +.86851 .42642 L +.86537 .42786 L +Mistroke +.86218 .42921 L +.85894 .43046 L +.85566 .43161 L +.85234 .43266 L +.84897 .4336 L +.84557 .43445 L +.84212 .43519 L +.83864 .43583 L +.83511 .43637 L +.83155 .4368 L +.82795 .43713 L +.82432 .43736 L +.82065 .43748 L +.81694 .43749 L +.81321 .43741 L +.80944 .43722 L +.80563 .43692 L +.8018 .43652 L +.79794 .43602 L +.79405 .43542 L +.79013 .43471 L +.78619 .4339 L +.78222 .43298 L +.77822 .43197 L +.7742 .43085 L +.77016 .42964 L +.7661 .42832 L +.76201 .42691 L +.75791 .4254 L +.75378 .42379 L +.74964 .42208 L +.74549 .42028 L +.74131 .41838 L +.73712 .41639 L +.73292 .41431 L +.72871 .41213 L +.72448 .40987 L +.72025 .40752 L +.716 .40508 L +.71175 .40255 L +.70748 .39994 L +.70322 .39725 L +.69894 .39447 L +.69467 .39162 L +.69038 .38868 L +.6861 .38567 L +.68182 .38258 L +.67753 .37942 L +.67325 .37619 L +.66897 .37289 L +Mistroke +.66469 .36952 L +.66042 .36608 L +.65615 .36258 L +.65189 .35901 L +.64764 .35539 L +.64339 .35171 L +.63915 .34797 L +Mfstroke +0 1 0 r +.13636 .25 m +.13644 .25629 L +.13669 .26259 L +.13711 .26887 L +.13771 .27515 L +.13847 .2814 L +.13941 .28762 L +.14051 .29381 L +.14177 .29996 L +.14319 .30606 L +.14477 .3121 L +.1465 .31809 L +.14839 .32401 L +.15042 .32985 L +.15261 .33561 L +.15493 .34129 L +.1574 .34687 L +.16001 .35235 L +.16275 .35772 L +.16563 .36297 L +.16864 .36811 L +.17178 .37311 L +.17505 .37798 L +.17844 .38271 L +.18195 .3873 L +.18558 .39172 L +.18933 .39599 L +.19319 .40009 L +.19717 .40401 L +.20125 .40775 L +.20544 .41131 L +.20973 .41466 L +.21412 .41782 L +.21861 .42077 L +.2232 .4235 L +.22788 .42601 L +.23265 .42829 L +.23751 .43034 L +.24245 .43214 L +.24748 .4337 L +.25259 .435 L +.25778 .43604 L +.26304 .43681 L +.26838 .43731 L +.27379 .43752 L +.27926 .43745 L +.2848 .4371 L +.29039 .43649 L +.29603 .43562 L +.30172 .4345 L +Mistroke +.30745 .43314 L +.31321 .43156 L +.319 .42975 L +.32482 .42774 L +.33065 .42553 L +.3365 .42312 L +.34235 .42054 L +.3482 .41779 L +.35405 .41487 L +.35989 .4118 L +.36572 .40859 L +.37152 .40525 L +.3773 .40178 L +.38305 .3982 L +.38876 .39452 L +.39442 .39074 L +.40004 .38688 L +.40561 .38294 L +.41111 .37893 L +.41655 .37487 L +.42193 .37076 L +.42722 .36661 L +.43244 .36244 L +.43757 .35824 L +.4426 .35404 L +.44754 .34984 L +.45238 .34565 L +.45711 .34148 L +.46173 .33733 L +.46624 .33321 L +.47066 .32911 L +.47498 .32503 L +.47921 .32096 L +.48336 .31692 L +.48743 .31289 L +.49142 .30888 L +.49534 .30489 L +.4992 .30091 L +.50299 .29694 L +.50673 .29299 L +.51042 .28904 L +.51405 .28511 L +.51765 .28119 L +.52121 .27727 L +.52473 .27336 L +.52823 .26946 L +.5317 .26556 L +.53516 .26167 L +.5386 .25778 L +.54203 .25389 L +Mistroke +.54545 .25 L +.54888 .24611 L +.55231 .24222 L +.55575 .23833 L +.55921 .23444 L +.56268 .23054 L +.56617 .22663 L +.5697 .22273 L +.57326 .21881 L +.57685 .21488 L +.58049 .21095 L +.58418 .207 L +.58791 .20305 L +.59171 .19908 L +.59556 .1951 L +.59949 .1911 L +.60348 .18709 L +.60755 .18307 L +.61169 .17903 L +.61593 .17496 L +.62025 .17088 L +.62467 .16678 L +.62918 .16266 L +.6338 .15852 L +.63853 .15435 L +.64337 .15016 L +.64831 .14597 L +.65335 .14177 L +.65848 .13758 L +.66369 .13341 L +.66899 .12927 L +.67436 .12517 L +.67981 .12111 L +.68531 .11711 L +.69088 .11318 L +.6965 .10932 L +.70217 .10555 L +.70788 .10187 L +.71363 .09829 L +.71941 .09483 L +.72521 .09149 L +.73104 .08828 L +.73688 .08522 L +.74273 .0823 L +.74858 .07955 L +.75443 .07697 L +.76028 .07456 L +.76611 .07235 L +.77193 .07033 L +.77772 .06852 L +Mistroke +.78348 .06693 L +.7892 .06557 L +.79489 .06444 L +.80053 .06356 L +.80612 .06293 L +.81165 .06257 L +.81712 .06248 L +.82253 .06268 L +.82786 .06316 L +.83312 .06391 L +.8383 .06492 L +.8434 .0662 L +.84843 .06773 L +.85336 .06951 L +.85822 .07153 L +.86298 .07379 L +.86766 .07628 L +.87224 .07898 L +.87672 .0819 L +.88111 .08503 L +.88539 .08837 L +.88958 .09189 L +.89365 .09561 L +.89762 .09951 L +.90147 .10359 L +.90522 .10783 L +.90884 .11224 L +.91235 .1168 L +.91574 .12152 L +.919 .12638 L +.92214 .13137 L +.92515 .1365 L +.92803 .14175 L +.93077 .14712 L +.93338 .15259 L +.93585 .15818 L +.93817 .16386 L +.94036 .16963 L +.9424 .17548 L +.94429 .18142 L +.94603 .18742 L +.94761 .1935 L +.94904 .19963 L +.95031 .20581 L +.95142 .21204 L +.95236 .2183 L +.95314 .2246 L +.95375 .23093 L +.95419 .23728 L +.95446 .24363 L +Mistroke +.95455 .25 L +.95446 .25637 L +.95419 .26272 L +.95375 .26907 L +.95314 .2754 L +.95236 .2817 L +.95142 .28796 L +.95031 .29419 L +.94904 .30037 L +.94761 .30651 L +.94603 .31258 L +.94429 .31858 L +.9424 .32452 L +.94036 .33038 L +.93818 .33615 L +.93585 .34183 L +.93338 .34741 L +.93077 .35289 L +.92803 .35826 L +.92515 .36351 L +.92214 .36863 L +.919 .37363 L +.91574 .37849 L +.91235 .3832 L +.90885 .38777 L +.90522 .39218 L +.90148 .39642 L +.89762 .4005 L +.89365 .4044 L +.88958 .40811 L +.8854 .41164 L +.88111 .41497 L +.87673 .4181 L +.87224 .42103 L +.86766 .42373 L +.86299 .42622 L +.85822 .42847 L +.85337 .43049 L +.84843 .43227 L +.8434 .4338 L +.8383 .43508 L +.83312 .4361 L +.82786 .43685 L +.82253 .43732 L +.81712 .43752 L +.81165 .43743 L +.80612 .43706 L +.80053 .43644 L +.79489 .43555 L +.7892 .43443 L +Mistroke +.78348 .43306 L +.77771 .43147 L +.77192 .42966 L +.76611 .42764 L +.76028 .42542 L +.75443 .42302 L +.74858 .42043 L +.74272 .41768 L +.73687 .41476 L +.73103 .4117 L +.72521 .40849 L +.7194 .40515 L +.71362 .40168 L +.70788 .39811 L +.70216 .39443 L +.6965 .39065 L +.69088 .3868 L +.68531 .38286 L +.6798 .37886 L +.67436 .37481 L +.66899 .37071 L +.66369 .36657 L +.65847 .3624 L +.65334 .35822 L +.64831 .35402 L +.64337 .34983 L +.63853 .34565 L +.6338 .34149 L +.62918 .33735 L +.62467 .33323 L +.62025 .32913 L +.61593 .32506 L +.6117 .321 L +.60755 .31696 L +.60348 .31294 L +.59949 .30894 L +.59557 .30495 L +.59172 .30097 L +.58792 .297 L +.58419 .29305 L +.5805 .28911 L +.57686 .28517 L +.57327 .28125 L +.56971 .27733 L +.56619 .27342 L +.56269 .26951 L +.55921 .2656 L +.55576 .2617 L +.55232 .2578 L +.54888 .2539 L +Mistroke +.54545 .25 L +.54203 .2461 L +.53859 .24219 L +.53515 .23829 L +.53169 .23437 L +.52821 .23046 L +.52471 .22654 L +.52118 .22261 L +.51762 .21868 L +.51402 .21474 L +.51038 .21079 L +.50669 .20683 L +.50295 .20287 L +.49916 .1989 L +.4953 .19491 L +.49138 .19092 L +.48739 .18691 L +.48332 .18289 L +.47918 .17886 L +.47495 .17482 L +.47063 .17076 L +.46622 .16668 L +.46171 .1626 L +.4571 .15849 L +.45238 .15437 L +.44756 .15024 L +.44263 .1461 L +.43761 .14197 L +.4325 .13784 L +.4273 .13374 L +.42201 .12967 L +.41666 .12564 L +.41123 .12166 L +.40574 .11773 L +.40019 .11387 L +.39459 .11008 L +.38894 .10637 L +.38324 .10275 L +.3775 .09923 L +.37174 .09581 L +.36594 .09251 L +.36012 .08934 L +.35429 .0863 L +.34844 .0834 L +.34259 .08065 L +.33674 .07806 L +.33089 .07564 L +.32505 .0734 L +.31922 .07134 L +.31342 .06947 L +Mistroke +.30764 .0678 L +.30189 .06635 L +.29618 .06511 L +.29051 .0641 L +.28488 .06333 L +.27931 .0628 L +.2738 .06252 L +.26844 .0629 L +.26316 .06362 L +.25796 .0646 L +.25283 .06583 L +.24777 .06729 L +.24279 .069 L +.23789 .07093 L +.23306 .07309 L +.22833 .07546 L +.22368 .07804 L +.21912 .08084 L +.21465 .08383 L +.21028 .08701 L +.206 .09039 L +.20183 .09394 L +.19776 .09768 L +.19379 .10158 L +.18993 .10565 L +.18618 .10988 L +.18255 .11426 L +.17903 .11878 L +.17564 .12345 L +.17236 .12826 L +.16921 .13319 L +.16618 .13825 L +.16329 .14342 L +.16052 .14871 L +.15789 .1541 L +.1554 .1596 L +.15305 .16518 L +.15085 .17086 L +.14878 .17662 L +.14687 .18245 L +.14511 .18836 L +.1435 .19433 L +.14204 .20035 L +.14075 .20644 L +.13962 .21257 L +.13865 .21874 L +.13785 .22494 L +.13722 .23118 L +.13676 .23744 L +.13647 .24371 L +Mistroke +.13636 .25 L +Mfstroke +1 0 0 r +.13636 .25 m +.22987 .18741 L +.30889 .13542 L +.37491 .093 L +.42926 .05919 L +.47321 .03311 L +.5079 .01393 L +.5344 .00089 L +s +.5344 .00089 m +.53664 0 L +s +.57624 0 m +.57542 .00486 L +.57059 .01561 L +.56287 .0286 L +.55276 .04343 L +.54073 .05977 L +.52719 .07728 L +.51251 .09568 L +.49701 .11471 L +.48098 .13415 L +.4647 .15378 L +.44837 .17341 L +.4322 .1929 L +.41636 .21209 L +.401 .23087 L +.38623 .24912 L +.37217 .26676 L +.35889 .2837 L +.34647 .29989 L +.33495 .31527 L +.32438 .32981 L +.31478 .34347 L +.30617 .35623 L +.29854 .36808 L +.29191 .37902 L +.28625 .38904 L +.28155 .39815 L +.27779 .40637 L +.27493 .41371 L +.27295 .4202 L +.27181 .42585 L +.27146 .4307 L +.27187 .43477 L +.273 .43809 L +.2748 .44071 L +.27722 .44264 L +.28022 .44394 L +.28375 .44463 L +.28777 .44475 L +.29223 .44434 L +.2971 .44344 L +.30232 .44207 L +.30785 .44028 L +.31366 .43809 L +.3197 .43555 L +.32595 .43269 L +.33235 .42953 L +.33889 .42611 L +.34552 .42245 L +.35222 .41859 L +Mistroke +.35897 .41455 L +.36573 .41036 L +.37248 .40603 L +.3792 .40159 L +.38587 .39707 L +.39248 .39247 L +.399 .38783 L +.40542 .38314 L +.41174 .37843 L +.41793 .37372 L +.42399 .36901 L +.42992 .36431 L +.4357 .35963 L +.44134 .35499 L +.44683 .35038 L +.45217 .34581 L +.45735 .3413 L +.46238 .33683 L +.46726 .33242 L +.472 .32806 L +.47659 .32376 L +.48104 .31952 L +.48536 .31534 L +.48955 .31121 L +.49362 .30713 L +.49758 .3031 L +.50142 .29912 L +.50517 .29519 L +.50883 .29129 L +.5124 .28744 L +.5159 .28361 L +.51933 .27982 L +.5227 .27605 L +.52603 .27231 L +.52931 .26857 L +.53257 .26485 L +.5358 .26114 L +.53902 .25743 L +.54224 .25372 L +.54545 .25 L +.54868 .24627 L +.55193 .24253 L +.5552 .23878 L +.5585 .23501 L +.56185 .23121 L +.56523 .22739 L +.56867 .22355 L +.57217 .21968 L +.57572 .21578 L +.57935 .21185 L +Mistroke +.58304 .20789 L +.58681 .2039 L +.59065 .19988 L +.59457 .19584 L +.59858 .19177 L +.60267 .18767 L +.60685 .18355 L +.61111 .17941 L +.61547 .17525 L +.61991 .17108 L +.62444 .1669 L +.62906 .16272 L +.63376 .15853 L +.63856 .15435 L +.64343 .15017 L +.64839 .14601 L +.65343 .14187 L +.65855 .13776 L +.66375 .13368 L +.66901 .12964 L +.67435 .12565 L +.67975 .12171 L +.68521 .11783 L +.69073 .11402 L +.69631 .11028 L +.70193 .10663 L +.7076 .10307 L +.7133 .09961 L +.71905 .09625 L +.72482 .09301 L +.73062 .08989 L +.73644 .0869 L +.74227 .08404 L +.74812 .08133 L +.75397 .07878 L +.75982 .07638 L +.76566 .07415 L +.77149 .07209 L +.7773 .07021 L +.7831 .06851 L +.78886 .06701 L +.7946 .0657 L +.80029 .0646 L +.80595 .06371 L +.81155 .06303 L +.81711 .06256 L +.8226 .06232 L +.82804 .06231 L +.8334 .06252 L +.8387 .06297 L +Mistroke +.84392 .06365 L +.84906 .06456 L +.85412 .06572 L +.85909 .06711 L +.86396 .06874 L +.86874 .07062 L +.87342 .07273 L +.878 .07509 L +.88246 .07768 L +.88682 .08051 L +.89107 .08357 L +.89519 .08687 L +.8992 .09039 L +.90309 .09414 L +.90685 .09812 L +.91048 .10231 L +.91398 .10671 L +.91735 .11132 L +.92058 .11613 L +.92368 .12114 L +.92663 .12634 L +.92945 .13172 L +.93212 .13727 L +.93465 .143 L +.93704 .14888 L +.93927 .15491 L +.94136 .16109 L +.9433 .1674 L +.94508 .17384 L +.94672 .18039 L +.9482 .18704 L +.94953 .19379 L +.9507 .20063 L +.95172 .20754 L +.95258 .21452 L +.95329 .22155 L +.95384 .22862 L +.95423 .23573 L +.95447 .24286 L +.95455 .25 L +.95447 .25714 L +.95423 .26427 L +.95384 .27138 L +.95329 .27845 L +.95258 .28548 L +.95172 .29246 L +.9507 .29937 L +.94953 .30621 L +.9482 .31296 L +.94672 .31961 L +Mistroke +.94508 .32616 L +.9433 .3326 L +.94136 .33891 L +.93927 .34509 L +.93704 .35112 L +.93465 .357 L +.93212 .36273 L +.92945 .36828 L +.92663 .37366 L +.92368 .37886 L +.92058 .38387 L +.91735 .38868 L +.91398 .39329 L +.91048 .39769 L +.90685 .40188 L +.90309 .40586 L +.8992 .40961 L +.89519 .41313 L +.89107 .41643 L +.88682 .41949 L +.88246 .42232 L +.878 .42491 L +.87342 .42727 L +.86874 .42938 L +.86396 .43126 L +.85909 .43289 L +.85412 .43428 L +.84906 .43544 L +.84392 .43635 L +.8387 .43703 L +.8334 .43748 L +.82804 .43769 L +.8226 .43768 L +.81711 .43744 L +.81155 .43697 L +.80595 .43629 L +.80029 .4354 L +.7946 .4343 L +.78886 .43299 L +.7831 .43149 L +.7773 .42979 L +.77149 .42791 L +.76566 .42585 L +.75982 .42362 L +.75397 .42122 L +.74812 .41867 L +.74227 .41596 L +.73644 .4131 L +.73062 .41011 L +.72482 .40699 L +Mistroke +.71905 .40375 L +.7133 .40039 L +.7076 .39693 L +.70193 .39337 L +.69631 .38972 L +.69073 .38598 L +.68521 .38217 L +.67975 .37829 L +.67435 .37435 L +.66901 .37036 L +.66375 .36632 L +.65855 .36224 L +.65343 .35813 L +.64839 .35399 L +.64343 .34983 L +.63856 .34565 L +.63376 .34147 L +.62906 .33728 L +.62444 .3331 L +.61991 .32892 L +.61547 .32475 L +.61111 .32059 L +.60685 .31645 L +.60267 .31233 L +.59858 .30823 L +.59457 .30416 L +.59065 .30012 L +.58681 .2961 L +.58304 .29211 L +.57935 .28815 L +.57572 .28422 L +.57217 .28032 L +.56867 .27645 L +.56523 .27261 L +.56185 .26879 L +.5585 .26499 L +.5552 .26122 L +.55193 .25747 L +.54868 .25373 L +.54545 .25 L +.54224 .24628 L +.53902 .24257 L +.5358 .23886 L +.53257 .23515 L +.52931 .23143 L +.52603 .22769 L +.5227 .22395 L +.51933 .22018 L +.5159 .21639 L +.5124 .21256 L +Mistroke +.50883 .20871 L +.50517 .20481 L +.50142 .20088 L +.49758 .1969 L +.49362 .19287 L +.48955 .18879 L +.48536 .18466 L +.48104 .18048 L +.47659 .17624 L +.472 .17194 L +.46726 .16758 L +.46238 .16317 L +.45735 .1587 L +.45217 .15419 L +.44683 .14962 L +.44134 .14501 L +.4357 .14037 L +.42992 .13569 L +.42399 .13099 L +.41793 .12628 L +.41174 .12157 L +.40542 .11686 L +.399 .11217 L +.39248 .10753 L +.38587 .10293 L +.3792 .09841 L +.37248 .09397 L +.36573 .08964 L +.35897 .08545 L +.35222 .08141 L +.34552 .07755 L +.33889 .07389 L +.33235 .07047 L +.32595 .06731 L +.3197 .06445 L +.31366 .06191 L +.30785 .05972 L +.30232 .05793 L +.2971 .05656 L +.29223 .05566 L +.28777 .05525 L +.28375 .05537 L +.28022 .05606 L +.27722 .05736 L +.2748 .05929 L +.273 .06191 L +.27187 .06523 L +.27146 .0693 L +.27181 .07415 L +.27295 .0798 L +Mistroke +.27493 .08629 L +.27779 .09363 L +.28155 .10185 L +.28625 .11096 L +.29191 .12098 L +.29854 .13192 L +.30617 .14377 L +.31478 .15653 L +.32438 .17019 L +.33495 .18473 L +.34647 .20011 L +.35889 .2163 L +.37217 .23324 L +.38623 .25088 L +.401 .26913 L +.41636 .28791 L +.4322 .3071 L +.44837 .32659 L +.4647 .34622 L +.48098 .36585 L +.49701 .38529 L +.51251 .40432 L +.52719 .42272 L +.54073 .44023 L +.55276 .45657 L +.56287 .4714 L +.57059 .48439 L +.57542 .49514 L +Mfstroke +.57542 .49514 m +.57624 .5 L +s +.53664 .5 m +.5344 .49911 L +.5079 .48607 L +.47321 .46689 L +.42926 .44081 L +.37491 .407 L +.30889 .36458 L +.22987 .31259 L +.13636 .25 L +s +0 0 1 r +.13636 .25 m +.27273 .4375 L +.45455 .34375 L +.54545 .25 L +.63636 .15625 L +.81818 .0625 L +.95455 .25 L +.81818 .4375 L +.63636 .34375 L +.54545 .25 L +.45455 .15625 L +.27273 .0625 L +.13636 .25 L +s +5 Mabswid +.13636 .25 Mdot +.27273 .4375 Mdot +.45455 .34375 Mdot +.54545 .25 Mdot +.63636 .15625 Mdot +.81818 .0625 Mdot +.95455 .25 Mdot +.81818 .4375 Mdot +.63636 .34375 Mdot +.54545 .25 Mdot +.45455 .15625 Mdot +.27273 .0625 Mdot +.13636 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{700, 350}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`030000 +003oool0oooo00l0oooo00<0o`000?ooo`3oool0o`3oooln0?ooo`00o`3ooomI0?ooo`80o`00403o +ool00`000000oooo0?ooo`0?0?ooo`030?l0003oool0oooo0?l0oooo?P3oool00?l0ooooE`3oool2 +0?l00180oooo00<000000?ooo`3oool03P3oool00`3o0000oooo0?ooo`3o0?ooocl0oooo003o0?oo +oeD0oooo0P3o000D0?ooo`<000003P3oool00`3o0000oooo0?ooo`3o0?ooocl0oooo003o0?oooe<0 +oooo0P3o000F0?ooo`030000003oool0oooo00d0oooo00<0o`000?ooo`3oool0o`3ooom00?ooo`00 +o`3ooomA0?ooo`80o`00603oool00`000000oooo0?ooo`0=0?ooo`030?l0003oool0oooo0?l0oooo +@03oool00?l0ooooC`3oool20?l001X0oooo00<000000?ooo`3oool0303oool00`3o0000oooo0?oo +o`3o0?oood40oooo003o0?ooodd0oooo0P3o000L0?ooo`030000003oool0oooo00`0oooo00<0o`00 +0?ooo`3oool0o`3ooom10?ooo`00o`3ooom;0?ooo`80o`007P3oool00`000000oooo0?ooo`0;0?oo +o`030?l0003oool0oooo0?l0oooo@P3oool00?l0ooooB@3oool20?l00200oooo00<000000?ooo`3o +ool02P3oool00`3o0000oooo0?ooo`3o0?oood<0oooo003o0?ooodP0oooo00<0o`000?ooo`3oool0 +803oool00`000000oooo0?ooo`0:0?ooo`030?l0003oool0oooo0?l0oooo@`3oool00?l0ooooAP3o +ool20?l002<0oooo0`0000090?ooo`030?l0003oool0oooo0?l0ooooA03oool00?l0ooooA03oool2 +0?l002D0oooo00<000000?ooo`3oool02@3oool00`3o0000oooo0?ooo`3o0?oood@0oooo003o0?oo +od80oooo0P3o000W0?ooo`030000003oool0oooo00P0oooo00<0o`000?ooo`3oool0o`3ooom50?oo +o`00o`3ooom00?ooo`80o`00:@3oool00`000000oooo0?ooo`070?ooo`030?l0003oool0oooo0?l0 +ooooAP3oool00?l0oooo?P3oool20?l002/0oooo00<000000?ooo`3oool01P3oool00`3o0000oooo +0?ooo`3o0?ooodL0oooo003o0?ooocd0oooo00<0o`000?ooo`3oool0:`3oool00`000000oooo0?oo +o`060?ooo`030?l0003oool0oooo0?l0ooooA`3oool00?l0oooo>`3oool20?l002h0oooo00<00000 +0?ooo`3oool01@3oool00`3o0000oooo0?ooo`3o0?ooodP0oooo003o0?ooocT0oooo0P3o000`0?oo +o`030000003oool0oooo00@0oooo00<0o`000?ooo`3oool0o`3ooom90?ooo`00o`3ooolg0?ooo`80 +o`00`3oool2000000P0oooo00<0o`000?ooo`00 +0000ZP3oool30000oj@0oooo002l0?ooo`D0003o4@3oool40?l004P0oooo0P3o000m0?ooo`040000 +003oool0oooo000000H0oooo00@0o`000?ooo`3oool00000Z@3oool50000oj<0oooo002l0?ooo`D0 +003o5@3oool20?l004D0oooo00<0o`000?ooo`3oool0?`3oool00`000000oooo0?ooo`040?ooo`04 +0?l0003oool0oooo0?ooo`D00000Y@3oool50000o`T0o`00VP3oool00;<0oooo101o:RX5003o00D0 +003o2P00o`000`1o:RX0oooo0?ooo`0:0?ooo`80o`00@@3oool20?l003X0oooo100000050?ooo`03 +0000003oool0oooo0080oooo00<0o`000?ooo`3oool00P3oool00`000000oooo0?ooo`2L0?ooo`04 +07lZ:P00o`000?l0003o00L0o`001@000?l9003o00H0o`00U03oool00:`0oooo1`1o:RX4003o00H0 +oooo0`000?l00`3oool0003o0000o`080?ooo`<00?l00`1o:RX90?ooo`80o`00?P3oool00`3o0000 +oooo0?ooo`100?ooo`040000003oool0oooo000000@0oooo00<0o`000?ooo`3oool00P3oool00`00 +0000oooo0?ooo`2F0?ooo`<00?l01`3o00050?ooo`80003o00@0oooo0000o`000?l0003o2P3oool3 +003o00<0ObXZ103o002@0?ooo`00ZP3oool207lZ:P@0oooo0`00o`090?ooo`030000o`3o0000oooo +00@0oooo0P000?l90?ooo`@00?l0101o:RX60?ooo`80o`00>P3oool20?l004@0oooo0P0000040?oo +o`030?l0003oool0oooo00<0oooo00<000000?ooo`3oool0TP3oool4003o00<0o`002P3oool20000 +o`H0oooo00<0003o0?ooo`3oool02P3oool3003o00040?ooo`1o:RX0ObXZ0?ooo`H0o`00RP3oool0 +0:H0oooo101o:RX30?ooo`<00?l02`3oool00`000?l0oooo0?l000070?ooo`80003o2`3oool4003o +0080ObXZ1P3oool20?l003H0oooo0P3o001;0?ooo`030?l0003oool0oooo00@0oooo00<000000?oo +o`3oool0S`3oool3003o00@0o`002`3oool20000o`T0oooo00<0003o0?ooo`3oool0303oool3003o +00@0ObXZ0`3oool20?l008P0oooo002T0?ooo`80ObXZ103oool3003o00d0oooo00@0003o0?ooo`3o +ool0o`002@3oool20000o`d0oooo0`00o`0407lZ:P<0oooo0P3o000c0?ooo`030?l0003oool0oooo +04X0oooo00<0o`000?ooo`3oool01@3oool00`000000oooo0?ooo`2:0?ooo`80ObXZ0`00o`030?l0 +00d0oooo0P000?l<0?ooo`030000o`3oool0oooo00h0oooo0`00o`000`3oool0ObXZ07lZ:P030?oo +o`80o`00QP3oool00:80oooo0P1o:RX30?ooo`<00?l0403oool010000?l0oooo0?ooo`3o000;0?oo +o`80003o3P3oool4003o00<0ObXZ0P3oool20?l002l0oooo0P3o001<0?ooo`030?l0003oool0oooo +00H0oooo00<000000?ooo`3oool0R03oool207lZ:P800?l000<0oooo0?l0003o00003P3oool20000 +o`h0oooo00<0003o0?ooo`3oool04@3oool2003o00030?ooo`1o:RX0ObXZ00<0oooo0P3o00240?oo +o`00WP3oool407lZ:P80oooo0`00o`0B0?ooo`050000o`3oool0oooo0?ooo`3o00003@3oool20000 +oa00oooo0`00o`0307lZ:P030?ooo`3o0000o`0002`0oooo00<0o`000?ooo`3oool0B`3oool00`3o +0000oooo0?ooo`070?ooo`030000003oool0oooo08D0oooo0P1o:RX3003o00030?ooo`3o0000o`00 +00h0oooo0P000?lA0?ooo`030000o`3oool0oooo0180oooo0P00o`000`3oool0ObXZ07lZ:P0207lZ +:P040?ooo`3o0000o`000?l00840oooo002L0?ooo`80ObXZ1@3oool00`00o`00oooo0?ooo`0B0?oo +o`030000o`3oool0oooo0080oooo00<0o`000?ooo`3oool03@3oool20000oa40oooo0P00o`00103o +ool0ObXZ07lZ:P3oool30?l002L0oooo0P3o001>0?ooo`030?l0003oool0oooo00L0oooo0`000022 +0?ooo`<0ObXZ0P00o`040?l000h0oooo0P000?lD0?ooo`030000o`3oool0oooo01<0oooo0P00o`03 +0?ooo`80ObXZ0P3oool20?l007l0oooo002J0?ooo`80ObXZ1@3oool2003o01@0oooo00<0003o0?oo +o`3oool00`3oool00`3o0000oooo0?ooo`0?0?ooo`80003o4@3oool2003o00050?ooo`1o:RX0ObXZ +07lZ:P3oool00P3o000T0?ooo`030?l0003oool0oooo04d0oooo00<0o`000?ooo`3oool0203oool0 +0`000000oooo0?ooo`200?ooo`80ObXZ00<0oooo003o003o00000P3o000@0?ooo`80003o5`3oool0 +0`000?l0oooo0?ooo`0D0?ooo`800?l00`3oool207lZ:P80oooo0P3o001m0?ooo`00V@3oool00`1o +:RX0oooo0?ooo`030?ooo`800?l05P3oool00`000?l0oooo0?ooo`040?ooo`030?l0003oool0oooo +0100oooo00<0003o0?ooo`3oool0403oool3003o00040?ooo`1o:RX0ObXZ0?ooo`80o`00803oool2 +0?l004l0oooo00<0o`000?ooo`3oool02@3oool00`000000oooo0?ooo`1m0?ooo`<0ObXZ0P00o`02 +0?l00140oooo0P000?lI0?ooo`030000o`3oool0oooo01H0oooo0P00o`030?ooo`0507lZ:P3oool0 +oooo0?ooo`3o0000O03oool009P0oooo00<0ObXZ0?ooo`3oool00P3oool2003o01L0oooo00<0003o +0?ooo`3oool01@3oool00`3o0000oooo0?ooo`0A0?ooo`80003o4`3oool2003o00040?ooo`1o:RX0 +ObXZ0?ooo`80o`007@3oool00`3o0000oooo0?ooo`1>0?ooo`030?l0003oool0oooo00X0oooo00<0 +00000?ooo`3oool0N`3oool207lZ:P<00?l00P3o000A0?ooo`80003o703oool00`000?l0oooo0?oo +o`0G0?ooo`05003o003oool0oooo0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1i0?ooo`00UP3o +ool207lZ:P@0oooo00<00?l00?ooo`3oool05P3oool00`000?l0oooo0?ooo`060?ooo`030?l0003o +ool0oooo01<0oooo0P000?lC0?ooo`800?l000@0oooo07lZ:P1o:RX0oooo0P3o000I0?ooo`80o`00 +D03oool00`3o0000oooo0?ooo`0;0?ooo`030000003oool0oooo07X0oooo00<0ObXZ003o0000o`00 +0`3o000B0?ooo`030000o`3oool0oooo01d0oooo00<0003o0?ooo`3oool05`3oool2003o0080oooo +0P1o:RX20?ooo`030?l0003oool0oooo07P0oooo002D0?ooo`80ObXZ103oool2003o01P0oooo00<0 +003o0?ooo`3oool01`3oool00`3o0000oooo0?ooo`0E0?ooo`80003o4`3oool2003o00050?ooo`1o +:RX0ObXZ0?ooo`3o00005`3oool00`3o0000oooo0?ooo`1@0?ooo`030?l0003oool0oooo00/0oooo +00<000000?ooo`3oool0N03oool00`1o:RX00?l0003o00020?l001<0oooo0P000?lP0?ooo`030000 +o`3oool0oooo01T0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`80o`00N03oool00980oooo +0P1o:RX50?ooo`03003o003oool0oooo01P0oooo00<0003o0?ooo`3oool0203oool00`3o0000oooo +0?ooo`0F0?ooo`80003o4`3oool00`00o`00oooo0?ooo`0207lZ:P80o`004`3oool20?l00580oooo +00<0o`000?ooo`3oool0303oool00`000000oooo0?ooo`1e0?ooo`80ObXZ0P00o`020?l001<0oooo +0P000?lS0?ooo`030000o`3oool0oooo01T0oooo0P00o`020?ooo`80ObXZ0P3oool00`3o0000oooo +0?ooo`1e0?ooo`00T@3oool00`1o:RX0oooo0?ooo`030?ooo`800?l06P3oool00`000?l0oooo0?oo +o`090?ooo`030?l0003oool0oooo01P0oooo0P000?lB0?ooo`800?l00P3oool207lZ:P030?l0003o +ool0oooo00h0oooo0P3o001C0?ooo`030?l0003oool0oooo00d0oooo00<000000?ooo`3oool0L`3o +ool207lZ:P040?ooo`00o`00o`000?l001<0oooo0P000?lV0?ooo`030000o`3oool0oooo01X0oooo +00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`80o`00M@3oool00940oooo00<0ObXZ0?ooo`3oool0 +0P3oool00`00o`00oooo0?ooo`0I0?ooo`030000o`3oool0oooo00X0oooo00<0o`000?ooo`3oool0 +6P3oool20000oa80oooo0`00o`000`3oool0ObXZ0?l0000>0?ooo`030?l0003oool0oooo0580oooo +00<0o`000?ooo`3oool03P3oool300000780oooo00<0ObXZ0?ooo`00o`000P3o000C0?ooo`80003o +:@3oool00`000?l0oooo0?ooo`0J0?ooo`800?l00P3oool01@1o:RX0oooo0?ooo`3oool0o`0007@0 +oooo002?0?ooo`80ObXZ0`3oool2003o01`0oooo00<0003o0?ooo`3oool02P3oool00`3o0000oooo +0?ooo`0L0?ooo`80003o4`3oool3003o0080o`002P3oool20?l005@0oooo00<0o`000?ooo`3oool0 +3`3oool00`000000oooo0?ooo`1`0?ooo`80ObXZ00<00?l00?l0003o00004`3oool20000ob/0oooo +00<0003o0?ooo`3oool0703oool00`00o`00oooo0?ooo`0207lZ:P80oooo00<0o`000?ooo`3oool0 +L@3oool008d0oooo0P1o:RX40?ooo`03003o003oool0oooo01/0oooo00<0003o0?ooo`3oool0303o +ool00`3o0000oooo0?ooo`0M0?ooo`80003o503oool2003o0080o`001`3oool00`3o0000oooo0?oo +o`1C0?ooo`030?l0003oool0oooo0100oooo00<000000?ooo`3oool0K@3oool307lZ:P800?l000<0 +o`000?ooo`3oool04@3oool20000obh0oooo00<0003o0?ooo`3oool0703oool01@00o`00oooo0?oo +o`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0L03oool008`0oooo00<0ObXZ0?ooo`3oool00`3o +ool00`00o`00oooo0?ooo`0K0?ooo`030000o`3oool0oooo00d0oooo00<0o`000?ooo`3oool07`3o +ool20000oa@0oooo00@00?l00?ooo`3o0000o`000`3oool20?l005H0oooo00<0o`000?ooo`3oool0 +403oool00`000000oooo0?ooo`1[0?ooo`80ObXZ00<0oooo003o0000o`000P3o000B0?ooo`80003o +<@3oool00`000?l0oooo0?ooo`0L0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool20?l00700 +oooo002<0?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3oool06`3oool00`000?l0oooo +0?ooo`0?0?ooo`030?l0003oool0oooo0200oooo00<0003o0?ooo`3oool04P3oool00`00o`00oooo +0?ooo`030?l005L0oooo00<0o`000?ooo`3oool04@3oool00`000000oooo0?ooo`1Z0?ooo`0407lZ +:P3oool00?l0003o0080o`004P3oool20000oc<0oooo00<0003o0?ooo`3oool07@3oool2003o0080 +oooo00D0ObXZ0?ooo`3oool0oooo0?l0001_0?ooo`00RP3oool207lZ:P@0oooo00<00?l00?ooo`3o +ool0703oool00`000?l0oooo0?ooo`0?0?ooo`030?l0003oool0oooo0240oooo0P000?lC0?ooo`80 +0?l00`3o001F0?ooo`030?l0003oool0oooo0180oooo00<000000?ooo`3oool0J@3oool00`1o:RX0 +oooo003o00020?l00180oooo0P000?lf0?ooo`030000o`3oool0oooo01h0oooo00<00?l00?ooo`3o +ool00P1o:RX20?ooo`030?l0003oool0oooo06`0oooo00290?ooo`0307lZ:P3oool0oooo00<0oooo +00<00?l00?ooo`3oool0703oool00`000?l0oooo0?ooo`0A0?ooo`030?l0003oool0oooo0280oooo +0P000?lB0?ooo`040?l00000o`00oooo0?ooo`80o`00D`3oool00`3o0000oooo0?ooo`0C0?ooo`03 +0000003oool0oooo06L0oooo0P1o:RX00`00o`00o`000?l0000B0?ooo`80003o>@3oool00`000?l0 +oooo0?ooo`0N0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0K03oool008P0 +oooo00<0ObXZ0?ooo`3oool00`3oool00`00o`00oooo0?ooo`0L0?ooo`030000o`3oool0oooo0180 +oooo00<0o`000?ooo`3oool0903oool20000o`h0oooo0P3o00020?ooo`800?l00P3oool00`3o0000 +oooo0?ooo`1?0?ooo`030?l0003oool0oooo01@0oooo00<000000?ooo`3oool0I@3oool207lZ:P03 +003o003o0000o`000180oooo0P000?ll0?ooo`030000o`3oool0oooo01d0oooo00D00?l00?ooo`3o +ool0oooo07lZ:P020?ooo`030?l0003oool0oooo06/0oooo00270?ooo`0307lZ:P3oool0oooo00<0 +oooo00<00?l00?ooo`3oool0703oool00`000?l0oooo0?ooo`0D0?ooo`030?l0003oool0oooo02D0 +oooo0P000?l;0?ooo`030?l0003oool0oooo00@0oooo0P00o`000`3oool0o`0007lZ:P1>0?ooo`03 +0?l0003oool0oooo01D0oooo0`00001S0?ooo`80ObXZ0P00o`000`3o0000oooo0?ooo`0A0?ooo`03 +0000o`3oool0oooo03`0oooo00<0003o0?ooo`3oool07P3oool01@00o`00oooo0?ooo`3oool0ObXZ +0080oooo00<0o`000?ooo`3oool0JP3oool008L0oooo00<0ObXZ0?ooo`3oool00P3oool00`00o`00 +oooo0?ooo`0M0?ooo`030000o`3oool0oooo01@0oooo00<0o`000?ooo`3oool09`3oool20000o`L0 +oooo0P3o00090?ooo`800?l00P3o00000`1o:RX0oooo0?ooo`1:0?ooo`030?l0003oool0oooo01D0 +oooo00<000000?ooo`3oool0H@3oool207lZ:P800?l00P3o000B0?ooo`80003o@03oool00`000?l0 +oooo0?ooo`0N0?ooo`800?l00P3oool00`1o:RX0oooo0?l0001/0?ooo`00Q@3oool207lZ:P@0oooo +00<00?l00?ooo`3oool07@3oool00`000?l0oooo0?ooo`0E0?ooo`030?l0003oool0oooo02T0oooo +0P000?l30?ooo`80o`003@3oool01000o`00oooo0?l0001o:RY:0?ooo`030?l0003oool0oooo01H0 +oooo00<000000?ooo`3oool0H03oool00`1o:RX0oooo003o00020?l00180oooo0P000?m30?ooo`03 +0000o`3oool0oooo01l0oooo00H00?l00?ooo`3oool0ObXZ0?ooo`3o001[0?ooo`00Q03oool00`1o +:RX0oooo0?ooo`030?ooo`03003o003oool0oooo01d0oooo00<0003o0?ooo`3oool05`3oool00`3o +0000oooo0?ooo`0Z0?ooo`80003o00<0o`000?ooo`3oool03P3oool2003o00030?l0001o:RX0ObXZ +04L0oooo00<0o`000?ooo`3oool05`3oool00`000000oooo0?ooo`1O0?ooo`0407lZ:P3oool0o`00 +0?l00180oooo0P000?m60?ooo`030000o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0ObXZ0?oo +o`020?l006T0oooo00240?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3oool07P3oool0 +0`000?l0oooo0?ooo`0G0?ooo`030?l0003oool0oooo02X0oooo0P3o00020000oa40oooo00<00?l0 +0?l0003o00000P1o:RY40?ooo`030?l0003oool0oooo01P0oooo00<000000?ooo`3oool0G@3oool2 +07lZ:P030?ooo`3o0000oooo0140oooo0P000?m80?ooo`030000o`3oool0oooo01l0oooo00D00?l0 +0?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo06H0oooo00230?ooo`0307lZ:P3oool0 +oooo0080oooo00<00?l00?ooo`3oool07P3oool00`000?l0oooo0?ooo`0I0?ooo`030?l0003oool0 +oooo02P0oooo00<0o`000?ooo`3oool00P3oool20000oa40oooo00<00?l00?l0003oool00P1o:RY1 +0?ooo`030?l0003oool0oooo01T0oooo00<000000?ooo`3oool0F`3oool207lZ:P030?ooo`00o`00 +o`000140oooo0P000?m;0?ooo`030000o`3oool0oooo01l0oooo00@00?l00?ooo`3oool0ObXZ0`3o +ool00`3o0000oooo0?ooo`1U0?ooo`00PP3oool00`1o:RX0oooo0?ooo`020?ooo`03003o003oool0 +oooo01h0oooo00<0003o0?ooo`3oool06P3oool00`3o0000oooo0?ooo`0V0?ooo`80o`001`3oool0 +0`000?l0oooo0?ooo`0?0?ooo`05003o003o0000oooo0?ooo`1o:RX0?`3oool00`3o0000oooo0?oo +o`0J0?ooo`030000003oool0oooo05T0oooo0P1o:RX0103oool00?l00?l0003o000@0?ooo`80003o +CP3oool00`000?l0oooo0?ooo`0O0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3o +ool0I@3oool00840oooo00<0ObXZ0?ooo`3oool00P3oool00`00o`00oooo0?ooo`0N0?ooo`030000 +o`3oool0oooo01`0oooo00<0o`000?ooo`3oool0903oool00`3o0000oooo0?ooo`080?ooo`80003o +4@3oool20?l000030?ooo`1o:RX0oooo03d0oooo00<0o`000?ooo`3oool06P3oool00`000000oooo +0?ooo`1H0?ooo`0507lZ:P3oool00?l0003o003o0000403oool20000oe00oooo00<0003o0?ooo`3o +ool07`3oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0I03oool00840 +oooo00<0ObXZ0?ooo`3oool00P3oool00`00o`00oooo0?ooo`0N0?ooo`030000o`3oool0oooo01d0 +oooo00<0o`000?ooo`3oool08@3oool20?l000d0oooo0P000?l@0?ooo`03003o003o0000oooo0080 +ObXZ>`3oool00`3o0000oooo0?ooo`0K0?ooo`<00000E`3oool00`1o:RX0oooo003o00020?l000l0 +oooo0P000?mC0?ooo`030000o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?oo +o`030?l0003oool0oooo06<0oooo00200?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3o +ool07P3oool00`000?l0oooo0?ooo`0N0?ooo`030?l0003oool0oooo0200oooo00<0o`000?ooo`3o +ool03`3oool20000oa00oooo00@0o`000?ooo`3oool0ObXZ>@3oool00`3o0000oooo0?ooo`0L0?oo +o`030000003oool0oooo05H0oooo00@0ObXZ0?ooo`00o`00o`003`3oool20000oeH0oooo00<0003o +0?ooo`3oool07`3oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06<0oooo001o +0?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3oool07P3oool00`000?l0oooo0?ooo`0P +0?ooo`030?l0003oool0oooo01d0oooo0P3o000D0?ooo`80003o3`3oool20?l000030?ooo`1o:RX0 +ObXZ03H0oooo00<0o`000?ooo`3oool07@3oool00`000000oooo0?ooo`1E0?ooo`0407lZ:P00o`00 +o`000?l000h0oooo0P000?mI0?ooo`030000o`3oool0oooo01l0oooo00@00?l00?ooo`3oool0ObXZ +0P3oool00`3o0000oooo0?ooo`1R0?ooo`00OP3oool00`1o:RX0oooo0?ooo`020?ooo`03003o003o +ool0oooo01h0oooo00<0003o0?ooo`3oool08P3oool00`3o0000oooo0?ooo`0J0?ooo`80o`00603o +ool20000o`l0oooo00@0o`00003o003oool0ObXZ=03oool00`3o0000oooo0?ooo`0N0?ooo`030000 +003oool0oooo05<0oooo0P1o:RX20?l000h0oooo0P000?mK0?ooo`030000o`3oool0oooo0200oooo +00H00?l00?ooo`3oool0ObXZ0?ooo`3o001T0?ooo`00OP3oool01@1o:RX0oooo0?ooo`3oool00?l0 +0240oooo00<0003o0?ooo`3oool08P3oool00`3o0000oooo0?ooo`0I0?ooo`030?l0003oool0oooo +01X0oooo0P000?l>0?ooo`040?l00000o`00oooo07lZ:S<0oooo00<0o`000?ooo`3oool07P3oool0 +0`000000oooo0?ooo`1B0?ooo`0307lZ:P3oool0o`0000l0oooo00<0003o0?ooo`3oool0G03oool0 +0`000?l0oooo0?ooo`0P0?ooo`06003o003oool0oooo07lZ:P3oool0o`00H`3oool007d0oooo00D0 +ObXZ0?ooo`3oool0oooo003o000Q0?ooo`030000o`3oool0oooo02@0oooo00<0o`000?ooo`3oool0 +5P3oool20?l001l0oooo0P000?l=0?ooo`80o`0000<0oooo07lZ:P3oool0<03oool00`3o0000oooo +0?ooo`0O0?ooo`030000003oool0oooo0540oooo00<0ObXZ0?ooo`3o00003P3oool20000of00oooo +00<0003o0?ooo`3oool07`3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l006<0oooo001m0?ooo`05 +07lZ:P3oool0oooo0?ooo`00o`00803oool00`000?l0oooo0?ooo`0V0?ooo`030?l0003oool0oooo +01@0oooo00<0o`000?ooo`3oool08@3oool20000o`d0oooo00<0o`000?ooo`1o:RX0;`3oool00`3o +0000oooo0?ooo`0C0?ooo`@000002@3oool00`000000oooo0?ooo`1@0?ooo`0307lZ:P3oool0o`00 +00d0oooo0P000?mR0?ooo`030000o`3oool0oooo0200oooo00H00?l00?ooo`3oool0ObXZ0?ooo`3o +001R0?ooo`00O03oool01@1o:RX0oooo0?ooo`3oool00?l00200oooo00<0003o0?ooo`3oool09`3o +ool00`3o0000oooo0?ooo`0B0?ooo`80o`009P3oool20000o``0oooo00@0o`00003o001o:RX0ObXZ +;03oool00`3o0000oooo0?ooo`0D0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0 +C`3oool00`1o:RX0o`000?l0000<0?ooo`80003oI@3oool00`000?l0oooo0?ooo`0P0?ooo`03003o +003oool0ObXZ0080oooo00<0o`000?ooo`3oool0G`3oool007/0oooo00D0ObXZ0?ooo`3oool0oooo +003o000Q0?ooo`030000o`3oool0oooo02P0oooo00<0o`000?ooo`3oool0403oool00`3o0000oooo +0?ooo`0X0?ooo`030000o`3oool0oooo00X0oooo0P3o00000`3oool0ObXZ0?ooo`0Z0?ooo`030?l0 +003oool0oooo01D0oooo00<000000?ooo`3oool02@3oool5000004/0oooo00<0ObXZ0?l0003o0000 +303oool20000ofP0oooo00<0003o0?ooo`3oool07`3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l0 +0640oooo001j0?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3oool07P3oool00`000?l0 +oooo0?ooo`0Y0?ooo`030?l0003oool0oooo00h0oooo0P3o000/0?ooo`80003o303oool00`3o0000 +oooo07lZ:P0Y0?ooo`030?l0003oool0oooo00l0oooo100000040?ooo`030000003oool0oooo00P0 +oooo00<000000?ooo`3oool0C03oool00`1o:RX0o`000?ooo`0;0?ooo`80003oJ`3oool00`000?l0 +oooo0?ooo`0O0?ooo`03003o003oool0ObXZ0080oooo00<0o`000?ooo`3oool0GP3oool007X0oooo +00D0ObXZ0?ooo`3oool0oooo003o000P0?ooo`030000o`3oool0oooo02/0oooo00<0o`000?ooo`3o +ool0303oool00`3o0000oooo0?ooo`0^0?ooo`80003o2`3oool00`3o00000?l007lZ:P0W0?ooo`03 +0?l0003oool0oooo01H0oooo00@000000?ooo`3oool000002@3oool00`000000oooo0?ooo`1;0?oo +o`0307lZ:P3o0000oooo00X0oooo0P000?m]0?ooo`030000o`3oool0oooo0200oooo00D00?l00?oo +o`1o:RX0oooo0?l0001P0?ooo`00N@3oool01@1o:RX0oooo0?ooo`3oool00?l00240oooo00<0003o +0?ooo`3oool0:`3oool00`3o0000oooo0?ooo`0:0?ooo`80o`00<`3oool20000o`X0oooo0P3o0000 +0`1o:RX0oooo0?ooo`0S0?ooo`030?l0003oool0oooo01P0oooo0P00000:0?ooo`030000003oool0 +oooo04X0oooo00<0ObXZ0?l0003oool02@3oool20000og00oooo00<0003o0?ooo`3oool07`3oool0 +1P00o`00oooo0?ooo`1o:RX0oooo0?l005l0oooo001i0?ooo`0507lZ:P3oool0oooo0?ooo`00o`00 +803oool00`000?l0oooo0?ooo`0]0?ooo`030?l0003oool0oooo00L0oooo0P3o000g0?ooo`80003o +2P3oool00`3o00000?l00?ooo`0S0?ooo`030?l0003oool0oooo02@0oooo00<000000?ooo`3oool0 +B@3oool20?l000T0oooo0P000?mc0?ooo`030000o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0 +ObXZ0?l0001O0?ooo`00N03oool01@1o:RX0oooo0?ooo`3oool00?l00200oooo00<0003o0?ooo`3o +ool0;`3oool00`3o0000oooo0?ooo`050?ooo`030?l0003oool0oooo03T0oooo0P000?l90?ooo`03 +0?l00000o`00oooo0240oooo00<0o`000?ooo`3oool09@3oool00`000000oooo0?ooo`170?ooo`03 +07lZ:P3o0000oooo00P0oooo0P000?mf0?ooo`030000o`3oool0oooo01l0oooo00@00?l00?ooo`1o +:RX0o`00G`3oool007P0oooo00@0ObXZ0?ooo`3oool00?l0803oool00`000?l0oooo0?ooo`0`0?oo +o`030?l0003oool0oooo00<0oooo0P3o000n0?ooo`80003o203oool20?l0000307lZ:P3oool0oooo +01d0oooo00<0o`000?ooo`3oool09P3oool00`000000oooo0?ooo`160?ooo`0307lZ:P3o0000oooo +00L0oooo0P000?mh0?ooo`030000o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0ObXZ0?l0001N +0?ooo`00N03oool0101o:RX0oooo0?ooo`00o`0P0?ooo`030000o`3oool0oooo0340oooo00D0o`00 +0?ooo`3oool0oooo0?l000120?ooo`80003o203oool00`3o0000ObXZ0?ooo`0L0?ooo`030?l0003o +ool0oooo02L0oooo00<000000?ooo`3oool0A@3oool20?l000L0oooo0P000?mk0?ooo`030000o`3o +ool0oooo01l0oooo00@00?l00?ooo`1o:RX0o`00GP3oool007L0oooo00@0ObXZ0?ooo`3oool00?l0 +803oool00`000?l0oooo0?ooo`0b0?ooo`040?l0003oool0o`000?l004D0oooo0P000?l70?ooo`03 +0?l0001o:RX0oooo01X0oooo00<0o`000?ooo`3oool0:03oool3000004@0oooo00<0o`000?ooo`3o +ool01P3oool00`000?l0oooo0?ooo`1l0?ooo`030000o`3oool0oooo01h0oooo00D00?l00?ooo`3o +ool0ObXZ0?l0001M0?ooo`00M`3oool00`1o:RX0oooo003o000P0?ooo`030000o`3oool0oooo03@0 +oooo00<0o`000?ooo`3oool0A`3oool20000o`H0oooo00<0o`0007lZ:P3oool0603oool00`3o0000 +oooo0?ooo`0Y0?ooo`030000003oool0oooo0480oooo00<0ObXZ0?l0003oool01P3oool20000ogl0 +oooo00<0003o0?ooo`3oool07P3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l005`0oooo001f0?oo +o`0407lZ:P3oool0oooo003o01l0oooo00<0003o0?ooo`3oool0<`3oool20?l000030?ooo`3o0000 +oooo04T0oooo00<0003o0?ooo`3oool0103oool00`3o00000?l00?ooo`0G0?ooo`030?l0003oool0 +oooo02T0oooo00<000000?ooo`3oool0@@3oool00`1o:RX0o`000?ooo`050?ooo`80003oPP3oool0 +0`000?l0oooo0?ooo`0N0?ooo`05003o003oool0ObXZ0?ooo`3o0000G03oool007H0oooo00<0ObXZ +0?ooo`00o`00803oool00`000?l0oooo0?ooo`0a0?ooo`80o`000`3oool00`3o0000oooo0?ooo`19 +0?ooo`80003o1@3oool00`3o00000?l00?ooo`0E0?ooo`030?l0003oool0oooo02X0oooo00<00000 +0?ooo`3oool0@03oool00`1o:RX0o`000?ooo`040?ooo`80003oQ@3oool00`000?l0oooo0?ooo`0M +0?ooo`06003o003oool0oooo07lZ:P3oool0o`00F`3oool007D0oooo00@0ObXZ0?ooo`3oool00?l0 +7`3oool00`000?l0oooo0?ooo`0a0?ooo`030?l0003oool0oooo00@0oooo00<0o`000?ooo`3oool0 +BP3oool20000o`@0oooo0P3o00000`00o`00oooo0?ooo`0A0?ooo`030?l0003oool0oooo02/0oooo +00<000000?ooo`3oool0?`3oool20?l000@0oooo0P000?n80?ooo`030000o`3oool0oooo01d0oooo +00D00?l00?ooo`1o:RX0oooo0?l0001K0?ooo`00M@3oool0101o:RX0oooo0?ooo`00o`0N0?ooo`03 +0000o`3oool0oooo0300oooo0P3o00080?ooo`030?l0003oool0oooo04/0oooo0P000?l40?ooo`03 +0?l00000o`00oooo0100oooo00<0o`000?ooo`3oool0;03oool00`000000oooo0?ooo`0n0?ooo`03 +0?l0003oool0oooo0080oooo0P000?n:0?ooo`030000o`3oool0oooo01d0oooo00D00?l00?ooo`3o +ool0ObXZ0?l0001K0?ooo`00M03oool0101o:RX0oooo0?ooo`00o`0O0?ooo`030000o`3oool0oooo +02l0oooo00<0o`000?ooo`3oool0203oool00`3o0000oooo0?ooo`1=0?ooo`80003o0`3oool00`3o +00000?l00?ooo`0>0?ooo`030?l0003oool0oooo02d0oooo00<000000?ooo`3oool0?03oool00`1o +:RX0o`000?ooo`020?ooo`80003oS@3oool00`000?l0oooo0?ooo`0M0?ooo`05003o003oool0ObXZ +0?ooo`3o0000FP3oool007@0oooo00@0ObXZ0?ooo`3oool00?l07P3oool00`000?l0oooo0?ooo`0^ +0?ooo`80o`00303oool00`3o0000oooo0?ooo`1>0?ooo`80003o0P3oool20?l000d0oooo00<0o`00 +0?ooo`3oool0;P3oool00`000000oooo0?ooo`0k0?ooo`0407lZ:P3o0000oooo0?ooo`80003oT03o +ool00`000?l0oooo0?ooo`0M0?ooo`04003o003oool0ObXZ0?l005X0oooo001d0?ooo`0307lZ:P3o +ool00?l001h0oooo00<0003o0?ooo`3oool0;P3oool00`3o0000oooo0?ooo`0<0?ooo`030?l0003o +ool0oooo0500oooo0P000?l20?ooo`030?l0003oool0oooo00X0oooo00<0o`000?ooo`3oool0;P3o +ool3000003X0oooo00<0ObXZ0?l0003oool00P000?nB0?ooo`030000o`3oool0oooo01d0oooo00@0 +0?l00?ooo`1o:RX0o`00FP3oool007<0oooo00@0ObXZ0?ooo`3oool00?l07@3oool00`000?l0oooo +0?ooo`0]0?ooo`80o`00403oool00`3o0000oooo0?ooo`1A0?ooo`80003o00<0oooo0?l0003o0000 +2@3oool00`3o0000oooo0?ooo`0_0?ooo`030000003oool0oooo03P0oooo00<0ObXZ0?l0003o0000 +0P000?nE0?ooo`030000o`3oool0oooo01d0oooo00@00?l00?ooo`1o:RX0o`00F@3oool007<0oooo +00<0ObXZ0?ooo`00o`007P3oool00`000?l0oooo0?ooo`0/0?ooo`030?l0003oool0oooo0140oooo +00<0o`000?ooo`3oool0DP3oool20000o`04003o00000?l0003o0000o`D0oooo00<0o`000?ooo`3o +ool0<03oool00`000000oooo0?ooo`0e0?ooo`<0003o00<0o`000000o`000?l0V03oool00`000?l0 +oooo0?ooo`0L0?ooo`04003o003oool0ObXZ0?l005T0oooo001b0?ooo`0307lZ:P3oool00?l001h0 +oooo00<0003o0?ooo`3oool0:`3oool20?l001@0oooo00<0o`000?ooo`3oool0E03oool50000o`<0 +oooo00<0o`000?ooo`3oool0<@3oool00`000000oooo0?ooo`0d0?ooo`D0003oV`3oool00`000?l0 +oooo0?ooo`0K0?ooo`05003o003oool0ObXZ0?ooo`3o0000F03oool00780oooo00<0ObXZ0?ooo`00 +o`007@3oool00`000?l0oooo0?ooo`0Z0?ooo`80o`005`3oool00`3o0000oooo0?ooo`1C0?ooo`D0 +003o0P3oool00`3o0000oooo0?ooo`0b0?ooo`030000003oool0oooo03@0oooo1@000?nK0?ooo`03 +0000o`3oool0oooo01`0oooo00@00?l00?ooo`1o:RX0o`00F03oool00780oooo00<0ObXZ003o003o +ool0703oool00`000?l0oooo0?ooo`0Z0?ooo`030?l0003oool0oooo01P0oooo00<0o`000?ooo`3o +ool0DP3oool50000o`030?ooo`3o0000oooo03@0oooo00<000000?ooo`3oool0=03oool50000oi`0 +oooo00<0003o0?ooo`3oool06`3oool01000o`00oooo07lZ:P3o001H0?ooo`00L@3oool00`1o:RX0 +oooo003o000M0?ooo`030000o`3oool0oooo02P0oooo0P3o000K0?ooo`030?l0003oool0oooo05<0 +oooo10000?l20?l003D0oooo00<000000?ooo`3oool0=03oool40000oih0oooo00<0003o0?ooo`3o +ool06P3oool01@00o`00oooo0?ooo`1o:RX0o`0005L0oooo001a0?ooo`0307lZ:P3oool00?l001`0 +oooo00<0003o0?ooo`3oool0:03oool00`3o0000oooo0?ooo`0L0?ooo`030?l0003oool0oooo05H0 +oooo00<0003o0?l0003oool0=03oool00`000000oooo0?ooo`0c0?ooo`030000o`3oool0oooo0:40 +oooo00<0003o0?ooo`3oool06P3oool01000o`00oooo07lZ:P3o001G0?ooo`00L03oool00`1o:RX0 +oooo003o000L0?ooo`030000o`3oool0oooo02L0oooo0P3o000P0?ooo`030?l0003oool0oooo05@0 +oooo00@0o`000?ooo`000?l0o`00=03oool300000380oooo00<0003o0?ooo`3oool0XP3oool00`00 +0?l0oooo0?ooo`0J0?ooo`04003o003oool0ObXZ0?l005L0oooo001`0?ooo`0307lZ:P3oool00?l0 +01/0oooo00<0003o0?ooo`3oool09`3oool00`3o0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo +05<0oooo00L0o`000?ooo`3oool0oooo0000o`3o00000?l00380oooo00<000000?ooo`3oool0<03o +ool00`3o0000003o0?ooo`2U0?ooo`030000o`3oool0oooo01X0oooo00<00?l00?ooo`3o0000E`3o +ool00700oooo00<0ObXZ0?ooo`00o`006`3oool00`000?l0oooo0?ooo`0U0?ooo`80o`00903oool0 +0`3o0000oooo0?ooo`1A0?ooo`030?l0003oool0oooo00<0oooo00<0003o0?l00000o`00<@3oool0 +0`000000oooo0?ooo`0_0?ooo`030?l000000?l0oooo0:L0oooo00<0003o0?ooo`3oool06@3oool0 +1000o`00oooo07lZ:P3o001F0?ooo`00K`3oool00`1o:RX0oooo003o000K0?ooo`030000o`3oool0 +oooo02@0oooo0P3o000W0?ooo`030?l0003oool0oooo04l0oooo00<0o`000?ooo`3oool01@3oool0 +0`000?l0o`00003o000`0?ooo`030000003oool0oooo02h0oooo00<0o`000000o`3oool0Z03oool0 +0`000?l0oooo0?ooo`0J0?ooo`03003o003oool0o`0005H0oooo001_0?ooo`0307lZ:P3oool00?l0 +01X0oooo00<0003o0?ooo`3oool0903oool00`3o0000oooo0?ooo`0W0?ooo`030?l0003oool0oooo +04l0oooo00<0o`000?ooo`3oool01P3oool00`000?l0o`00003o000_0?ooo`030000003oool0oooo +02d0oooo00<0o`000000o`3oool0ZP3oool00`000?l0oooo0?ooo`0I0?ooo`03003o003oool0o`00 +05H0oooo001^0?ooo`0407lZ:P3oool0oooo003o01X0oooo00<0003o0?ooo`3oool08P3oool20?l0 +02/0oooo00<0o`000?ooo`3oool0C@3oool00`3o0000oooo0?ooo`080?ooo`030000o`3o00000?l0 +02h0oooo00<000000?ooo`3oool0;03oool00`3o0000003o07lZ:P2/0?ooo`030000o`3oool0oooo +01P0oooo00<00?l00?ooo`3o0000EP3oool006h0oooo00<0ObXZ0?ooo`00o`006P3oool00`000?l0 +oooo0?ooo`0R0?ooo`030?l0003oool0oooo02`0oooo00<0o`000?ooo`3oool0B`3oool00`3o0000 +oooo0?ooo`0:0?ooo`030000o`3o00000?l002d0oooo00<000000?ooo`3oool0:`3oool00`3o0000 +003o07lZ:P2^0?ooo`030000o`3oool0oooo01P0oooo00<00?l007lZ:P3o0000E@3oool006h0oooo +00<0ObXZ0?ooo`00o`006@3oool00`000?l0oooo0?ooo`0Q0?ooo`80o`00<03oool00`3o0000oooo +0?ooo`190?ooo`030?l0003oool0oooo00`0oooo00<0003o0?l0003o0000;03oool00`000000oooo +0?ooo`0Z0?ooo`030?l000000?l0ObXZ0:l0oooo00<0003o0?ooo`3oool0603oool00`00o`00ObXZ +0?l0001E0?ooo`00KP3oool00`1o:RX00?l00?ooo`0H0?ooo`030000o`3oool0oooo0240oooo00<0 +o`000?ooo`3oool0<03oool00`3o0000oooo0?ooo`180?ooo`030?l0003oool0oooo00h0oooo00<0 +003o07lZ:P3o0000:`3oool3000002T0oooo00<0o`000000o`3oool0/@3oool00`000?l0oooo0?oo +o`0H0?ooo`03003o003o0000oooo05@0oooo001^0?ooo`0307lZ:P00o`00oooo01P0oooo00<0003o +0?ooo`3oool07`3oool20?l003@0oooo00<0o`000?ooo`3oool0AP3oool00`3o0000oooo0?ooo`0@ +0?ooo`030000o`1o:RX0o`0002X0oooo00<000000?ooo`3oool09`3oool20?l000030000o`3oool0 +oooo0;80oooo00<0003o0?ooo`3oool05`3oool00`00o`00o`000?ooo`1D0?ooo`00K@3oool00`1o +:RX0oooo003o000H0?ooo`030000o`3oool0oooo01l0oooo00<0o`000?ooo`3oool0=@3oool00`3o +0000oooo0?ooo`140?ooo`030?l0003oool0oooo0180oooo00<0003o0?ooo`3o0000:@3oool00`00 +0000oooo0?ooo`0V0?ooo`030?l00000o`00003o0;D0oooo00<0003o0?ooo`3oool05`3oool00`00 +o`00ObXZ0?l0001D0?ooo`00K@3oool00`1o:RX00?l00?ooo`0G0?ooo`030000o`3oool0oooo01h0 +oooo0P3o000i0?ooo`030?l0003oool0oooo04<0oooo00<0o`000?ooo`3oool04`3oool00`000?l0 +oooo0?l0000X0?ooo`030000003oool0oooo02D0oooo00@0o`00003o001o:RX0003o]P3oool00`00 +0?l0oooo0?ooo`0G0?ooo`03003o003o0000oooo05<0oooo001]0?ooo`0307lZ:P00o`00oooo01H0 +oooo00<0003o0?ooo`3oool07@3oool20?l003/0oooo00<0o`000?ooo`3oool0@P3oool00`3o0000 +oooo0?ooo`0E0?ooo`030000o`3oool0o`0002L0oooo00<000000?ooo`3oool09@3oool00`3o0000 +ObXZ0000o`2h0?ooo`030000o`3oool0oooo01H0oooo00<00?l00?l0003oool0D`3oool006`0oooo +00<0ObXZ0?ooo`00o`005`3oool00`000?l0oooo0?ooo`0L0?ooo`030?l0003oool0oooo03`0oooo +00<0o`000?ooo`3oool0@03oool00`3o0000oooo0?ooo`0G0?ooo`030000o`3oool0o`0001T0oooo +1@0000080?ooo`030000003oool0oooo02@0oooo00<0o`000?ooo`000?l0^P3oool00`000?l0oooo +0?ooo`0E0?ooo`03003o003o0000oooo05<0oooo001/0?ooo`0307lZ:P00o`00oooo01H0oooo00<0 +003o0?ooo`3oool06`3oool20?l00400oooo00<0o`000?ooo`3oool0?P3oool00`3o0000oooo0?oo +o`0I0?ooo`030000o`3oool0o`0001X0oooo00<000000?ooo`3oool0203oool00`000000oooo0?oo +o`0R0?ooo`04003o003o0000oooo0000ok/0oooo00<0003o0?ooo`3oool05P3oool00`00o`00o`00 +0?ooo`1B0?ooo`00K03oool00`1o:RX00?l00?ooo`0E0?ooo`030000o`3oool0oooo01/0oooo00<0 +o`000?ooo`3oool0@@3oool00`3o0000oooo0?ooo`0l0?ooo`030?l0003oool0oooo01/0oooo00@0 +003o0?ooo`3o0000o`00603oool00`000000oooo0?ooo`080?ooo`D000007`3oool01000o`00o`00 +0?ooo`000?nm0?ooo`030000o`3oool0oooo01D0oooo00<00?l00?l0003oool0DP3oool006`0oooo +00<0ObXZ003o003oool05@3oool00`000?l0oooo0?ooo`0I0?ooo`80o`00A@3oool00`3o0000oooo +0?ooo`0j0?ooo`030?l0003oool0oooo01d0oooo00@0003o0?ooo`00o`00o`003`3oool4000000@0 +oooo00<000000?ooo`3oool0203oool00`000000oooo0?ooo`0P0?ooo`04003o003o0000oooo0000 +okl0oooo00<0003o0?ooo`3oool0503oool00`00o`00o`000?ooo`1B0?ooo`00K03oool00`1o:RX0 +0?l00?ooo`0D0?ooo`030000o`3oool0oooo01T0oooo00<0o`000?ooo`3oool0A@3oool00`3o0000 +oooo0?ooo`0j0?ooo`030?l0003oool0oooo01h0oooo00@0003o0?ooo`00o`00o`005P3oool00`00 +0000oooo0?ooo`080?ooo`030000003oool0oooo01l0oooo0P3o00000`3oool0003o0?ooo`300?oo +o`030000o`3oool0oooo01<0oooo00<00?l00?l0003oool0DP3oool006/0oooo00<0ObXZ003o003o +ool0503oool00`000?l0oooo0?ooo`0H0?ooo`80o`00B@3oool00`3o0000oooo0?ooo`0h0?ooo`03 +0?l0003oool0oooo0200oooo00<0003o0?ooo`3o00005@3oool2000000X0oooo00<000000?ooo`3o +ool07P3oool0103o00000?l00?ooo`000?o20?ooo`030000o`3oool0oooo01@0oooo00<00?l00?l0 +003oool0D@3oool006/0oooo00<0ObXZ003o003oool04`3oool00`000?l0oooo0?ooo`0H0?ooo`03 +0?l0003oool0oooo04X0oooo00<0o`000?ooo`3oool0=P3oool00`3o0000oooo0?ooo`0R0?ooo`03 +0000o`3oool0o`000200oooo00<000000?ooo`3oool07@3oool0103o00000?l00?ooo`000?o40?oo +o`030000o`3oool0oooo01<0oooo00<00?l00?l0003oool0D@3oool006/0oooo00<0ObXZ003o003o +ool04`3oool00`000?l0oooo0?ooo`0F0?ooo`80o`00CP3oool00`3o0000oooo0?ooo`0d0?ooo`03 +0?l0003oool0oooo02@0oooo00@0003o0?ooo`3o0000o`007P3oool00`000000oooo0?ooo`0L0?oo +o`04003o003o0000oooo0000olH0oooo00<0003o0?ooo`3oool04P3oool00`00o`00o`000?ooo`1A +0?ooo`00JP3oool00`1o:RX0oooo003o000C0?ooo`030000o`3oool0oooo01H0oooo00<0o`000?oo +o`3oool0CP3oool00`3o0000oooo0?ooo`0c0?ooo`030?l0003oool0oooo02H0oooo00@0003o0?oo +o`00o`00o`007@3oool00`000000oooo0?ooo`0K0?ooo`04003o003o0000ObXZ0000olL0oooo00<0 +003o0?ooo`3oool04P3oool00`00o`00o`000?ooo`1A0?ooo`00JP3oool00`1o:RX00?l00?ooo`0B +0?ooo`030000o`3oool0oooo01D0oooo0P3o001B0?ooo`030?l0003oool0oooo0340oooo00<0o`00 +0?ooo`3oool0:03oool010000?l0oooo003o003o000L0?ooo`030000003oool0oooo01X0oooo0P3o +00000`1o:RX0003o0?ooo`380?ooo`030000o`3oool0oooo0180oooo00<00?l00?l0003oool0D03o +ool006X0oooo00<0ObXZ003o003oool04@3oool00`000?l0oooo0?ooo`0E0?ooo`030?l0003oool0 +oooo05<0oooo00<0o`000?ooo`3oool0<03oool00`3o0000oooo0?ooo`0Y0?ooo`030000o`3oool0 +o`0001`0oooo0`00000I0?ooo`040?l00000o`00ObXZ0000ol/0oooo00<0003o0?ooo`3oool04@3o +ool00`00o`00o`000?ooo`1@0?ooo`00JP3oool00`1o:RX00?l00?ooo`0A0?ooo`030000o`3oool0 +oooo01<0oooo0P3o001G0?ooo`030?l0003oool0oooo02h0oooo00<0o`000?ooo`3oool0:`3oool0 +0`000?l0oooo0?l0000K0?ooo`030000003oool0oooo01P0oooo00@0o`00003o003oool0003oc@3o +ool00`000?l0oooo0?ooo`0@0?ooo`03003o003o0000oooo0500oooo001Z0?ooo`0307lZ:P00o`00 +oooo0100oooo00<0003o0?ooo`3oool04`3oool00`3o0000oooo0?ooo`1G0?ooo`030?l0003oool0 +oooo02d0oooo00<0o`000?ooo`3oool0;@3oool00`000?l0oooo0?l0000J0?ooo`030000003oool0 +oooo01P0oooo00<0o`000?ooo`000?l0cP3oool00`000?l0oooo0?ooo`0@0?ooo`03003o003o0000 +oooo0500oooo001Z0?ooo`03003o003oool0oooo00l0oooo00<0003o0?ooo`3oool04`3oool00`3o +0000oooo0?ooo`1I0?ooo`030?l0003oool0oooo02/0oooo00<0o`000?ooo`3oool0;P3oool01000 +0?l0ObXZ0?ooo`3o000I0?ooo`030000003oool0oooo01L0oooo00<0o`000?ooo`000?l0d03oool0 +0`000?l0oooo0?ooo`0@0?ooo`030?l0003oool0oooo04l0oooo001Z0?ooo`03003o003oool0oooo +00h0oooo00<0003o0?ooo`3oool04P3oool20?l005d0oooo00<0o`000?ooo`3oool0:@3oool00`3o +0000oooo0?ooo`0`0?ooo`040000o`1o:RX00?l00?l001P0oooo00<000000?ooo`3oool05P3oool0 +0`3o0000oooo0000o`3B0?ooo`030000o`3oool0oooo00l0oooo00<0o`000?ooo`3oool0C`3oool0 +06X0oooo00<00?l00?ooo`3oool03P3oool00`000?l0oooo0?ooo`0A0?ooo`030?l0003oool0oooo +05h0oooo00<0o`000?ooo`3oool09`3oool00`3o0000oooo0?ooo`0b0?ooo`040000o`1o:RX00?l0 +0?l001L0oooo00<000000?ooo`3oool05@3oool00`3o0000oooo0000o`3C0?ooo`030000o`3oool0 +oooo00l0oooo00<0o`000?ooo`3oool0C`3oool006T0oooo00<00?l00?ooo`3oool03P3oool00`00 +0?l0oooo0?ooo`0@0?ooo`80o`00H@3oool00`3o0000oooo0?ooo`0W0?ooo`030?l0003oool0oooo +03<0oooo00@0003o07lZ:P00o`00o`005P3oool00`000000oooo0?ooo`0D0?ooo`030?l0003oool0 +003o0=D0oooo00<0003o0?ooo`3oool03P3oool00`3o0000ObXZ0?ooo`1?0?ooo`00J@3oool00`00 +o`00oooo0?ooo`0=0?ooo`030000o`3oool0oooo0100oooo00<0o`000?ooo`3oool0HP3oool00`3o +0000oooo0?ooo`0U0?ooo`030?l0003oool0oooo03D0oooo00@0003o0?ooo`3oool0o`005@3oool0 +0`000000oooo0?ooo`0C0?ooo`030?l0003oool0003o0=L0oooo00<0003o0?ooo`3oool03@3oool0 +0`3o0000ObXZ0?ooo`1?0?ooo`00J@3oool00`00o`00oooo0?ooo`0=0?ooo`030000o`3oool0oooo +00h0oooo0P3o001V0?ooo`030?l0003oool0oooo02<0oooo00<0o`000?ooo`3oool0=`3oool01000 +0?l0oooo0?ooo`3o000D0?ooo`<000004P3oool00`3o0000oooo0000o`3I0?ooo`030000o`3oool0 +oooo00`0oooo00<00?l00?l0003oool0C`3oool006T0oooo00<00?l00?ooo`3oool0303oool00`00 +0?l0oooo0?ooo`0>0?ooo`030?l0003oool0oooo06L0oooo00<0o`000?ooo`3oool08@3oool00`3o +0000oooo0?ooo`0i0?ooo`040000o`1o:RX00?l00?l001<0oooo00<000000?ooo`3oool04@3oool0 +0`3o00000?l00000o`3J0?ooo`030000o`3oool0oooo00`0oooo00<00?l00?l0003oool0C`3oool0 +06T0oooo00<00?l00?ooo`3oool02`3oool00`000?l0oooo0?ooo`0=0?ooo`80o`00JP3oool00`3o +0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo03/0oooo00<0003o07lZ:P3o00004`3oool00`00 +0000oooo0?ooo`0@0?ooo`030?l00000o`00003o0=`0oooo00<0003o0?ooo`3oool02`3oool00`00 +o`00o`000?ooo`1?0?ooo`00J03oool00`1o:RX00?l00?ooo`0;0?ooo`030000o`3oool0oooo00d0 +oooo00<0o`000?ooo`3oool0J`3oool00`3o0000oooo0?ooo`0O0?ooo`030?l0003oool0oooo03`0 +oooo00<0003o07lZ:P3o00004P3oool00`000000oooo0?ooo`0?0?ooo`030?l00000o`00003o0=h0 +oooo00<0003o0?ooo`3oool02`3oool00`3o0000oooo0?ooo`1>0?ooo`00J03oool00`1o:RX00?l0 +0?ooo`0;0?ooo`030000o`3oool0oooo00/0oooo0P3o001_0?ooo`030?l0003oool0oooo01d0oooo +00<0o`000?ooo`3oool0?P3oool00`000?l0ObXZ0?l0000A0?ooo`030000003oool0oooo00h0oooo +00<00?l00?l000000?l0h03oool00`000?l0oooo0?ooo`0:0?ooo`030?l0003oool0oooo04h0oooo +001X0?ooo`0307lZ:P00o`00oooo00X0oooo00<0003o0?ooo`3oool02`3oool00`3o0000oooo0?oo +o`1`0?ooo`030?l0003oool0oooo01/0oooo00<0o`000?ooo`3oool0@03oool00`000?l0ObXZ0?l0 +000@0?ooo`030000003oool0oooo00d0oooo00<00?l00?l000000?l0h@3oool00`000?l0oooo0?oo +o`0:0?ooo`030?l0003oool0oooo04h0oooo001X0?ooo`03003o003oool0oooo00T0oooo00<0003o +0?ooo`3oool02P3oool20?l007<0oooo00<0o`000?ooo`3oool06P3oool00`3o0000oooo0?ooo`12 +0?ooo`030000o`00o`00o`0000l0oooo00<000000?ooo`3oool0303oool20?l000030000o`3oool0 +oooo0>40oooo00<0003o0?ooo`3oool02@3oool00`3o0000oooo0?ooo`1>0?ooo`00J03oool00`00 +o`00oooo0?ooo`080?ooo`030000o`3oool0oooo00X0oooo00<0o`000?ooo`3oool0M03oool00`3o +0000oooo0?ooo`0I0?ooo`030?l0003oool0oooo04<0oooo00<0003o003o003o00003P3oool00`00 +0000oooo0?ooo`0;0?ooo`030?l00000o`00003o0>D0oooo00<0003o0?ooo`3oool0203oool00`3o +0000oooo0?ooo`1>0?ooo`004P3oool3000005<0oooo00<00?l00?ooo`3oool0203oool00`000?l0 +oooo0?ooo`080?ooo`80o`001`3oool3000006h0oooo00@0o`0000000000000000005P3oool00`3o +0000oooo0?ooo`150?ooo`030000o`00o`00o`0000d0oooo0`00000:0?ooo`030?l00000o`00003o +0640oooo1000001a0?ooo`<000003@3oool00`000?l0oooo0?ooo`080?ooo`030?l0003oool0oooo +04h0oooo000B0?ooo`040000003oool0oooo00000580oooo00<00?l00?ooo`3oool01`3oool00`00 +0?l0oooo0?ooo`080?ooo`030?l0003oool0oooo00P0oooo00<000000?ooo`3oool0K@3oool00`00 +0000o`000?ooo`0F0?ooo`030?l0003oool0oooo04L0oooo00<0003o0?ooo`3o0000303oool00`00 +0000oooo0?ooo`0:0?ooo`030?l000000?l0oooo0640oooo00<000000?ooo`3oool0L`3oool00`00 +0000oooo0?ooo`0=0?ooo`030000o`3oool0oooo00L0oooo00<00?l00?l0003oool0CP3oool00180 +oooo00@000000?ooo`3oool00000DP3oool00`00o`00oooo0?ooo`060?ooo`030000o`3oool0oooo +00L0oooo0P3o00080?ooo`D00000K`3oool00`000000o`000?ooo`0D0?ooo`030?l0003oool0oooo +04T0oooo00<0003o0?ooo`3o00002`3oool00`000000oooo0?ooo`090?ooo`030?l0001o:RX0003o +06<0oooo00<000000?ooo`3oool0K`3oool5000000l0oooo00<0003o0?ooo`3oool01P3oool00`00 +o`00o`000?ooo`1>0?ooo`00303oool400000080oooo0`00001C0?ooo`03003o003oool0oooo00H0 +oooo00<0003o0?ooo`3oool01P3oool00`3o0000oooo0?ooo`020?ooo`@000000P3oool010000000 +oooo0?ooo`00001Y0?ooo`@00000103oool00`3o0000oooo0?ooo`0C0?ooo`030?l0003oool0oooo +04X0oooo00<0003o003o003o00002P3oool00`000000oooo0?ooo`080?ooo`030?l00000o`00003o +06D0oooo00<000000?ooo`3oool0KP3oool010000000oooo0?ooo`00000A0?ooo`030000o`3oool0 +oooo00H0oooo00<0o`000?ooo`3oool0C@3oool001<0oooo00<000000?ooo`3oool0DP3oool00`00 +o`00oooo0?ooo`050?ooo`030000o`3oool0oooo00D0oooo0P3o000<0?ooo`030000003oool00000 +06l0oooo00@000000?ooo`3oool0o`004`3oool00`3o0000oooo0?ooo`1<0?ooo`030000o`00o`00 +o`0000T0oooo00<000000?ooo`3oool01`3oool00`3o00000?l00000o`1T0?ooo`040000003oool0 +oooo00000700oooo00<000000?ooo`0000004@3oool00`000?l0oooo0?ooo`060?ooo`030?l0003o +ool0oooo04d0oooo000C0?ooo`<00000DP3oool00`00o`00oooo0?ooo`040?ooo`030000o`3oool0 +oooo00D0oooo00<0o`000?ooo`3oool03@3oool200000700oooo0P0000000`3oool0o`000?ooo`0@ +0?ooo`030?l0003oool0oooo04h0oooo00<0003o003o003o0000203oool00`000000oooo0?ooo`06 +0?ooo`030?l00000o`00003o06H0oooo0P00001b0?ooo`8000004P3oool00`000?l0oooo0?ooo`05 +0?ooo`030?l0003oool0oooo04d0oooo001X0?ooo`03003o003oool0oooo00<0oooo00<0003o0?oo +o`3oool01@3oool00`3o0000oooo0?ooo`240?ooo`030?l0003oool0oooo00d0oooo00<0o`000?oo +o`3oool0D03oool00`000?l0o`000?ooo`070?ooo`030000003oool0oooo00D0oooo00<0o`00003o +00000?l0l03oool00`000?l0oooo0?ooo`040?ooo`030?l0003oool0oooo04d0oooo001X0?ooo`03 +003o003oool0oooo00<0oooo00<0003o0?ooo`3oool00`3oool20?l008P0oooo00<0o`000?ooo`3o +ool02`3oool00`3o0000oooo0?ooo`1B0?ooo`030000o`3o0000oooo00H0oooo00<000000?ooo`3o +ool0103oool00`3o00000?l00000o`3a0?ooo`030000o`3oool0oooo00@0oooo00<0o`000?ooo`3o +ool0C@3oool006P0oooo00<00?l00?ooo`3oool00P3oool00`000?l0oooo0?ooo`030?ooo`030?l0 +003oool0oooo08P0oooo00<0o`000?ooo`3oool02P3oool00`3o0000oooo0?ooo`1D0?ooo`030000 +o`3o0000oooo00D0oooo0`0000040?ooo`030?l000000?l0oooo0?80oooo00<0003o0?ooo`3oool0 +0`3oool00`3o0000oooo0?ooo`1=0?ooo`00I`3oool00`1o:RX00?l00?ooo`020?ooo`030000o`3o +ool0oooo0080oooo0P3o002<0?ooo`030?l0003oool0oooo00P0oooo00<0o`000?ooo`3oool0EP3o +ool00`000?l0o`000?ooo`040?ooo`030000003oool0oooo00<0oooo00<0o`000000o`3oool0m03o +ool00`000?l0oooo0?ooo`020?ooo`030?l0003oool0oooo04d0oooo001W0?ooo`05003o003oool0 +oooo0?ooo`000?l0103oool00`3o0000oooo0?ooo`2=0?ooo`030?l0003oool0oooo00L0oooo00<0 +o`000?ooo`3oool0E`3oool00`000?l0o`000?ooo`030?ooo`030000003oool0oooo0080oooo00<0 +o`000000o`3oool0mP3oool01@000?l0oooo0?ooo`3oool0o`0004l0oooo001W0?ooo`05003o003o +ool0oooo0?ooo`000?l00P3oool20?l00940oooo00<0o`000?ooo`3oool01@3oool00`3o0000oooo +0?ooo`1I0?ooo`030000o`3o0000oooo0080oooo00H000000?ooo`3oool0oooo0?l000000?oh0?oo +o`050000o`3oool0oooo0?ooo`3o0000C`3oool006L0oooo00@00?l00?ooo`3oool0003o0P3oool0 +0`3o0000oooo0?ooo`2B0?ooo`030?l0003oool0oooo00<0oooo00<0o`000?ooo`3oool0F`3oool0 +1@000?l0o`000?ooo`3oool000000080oooo00<0o`000000o`3oool0n@3oool010000?l0oooo0?oo +o`3o001?0?ooo`00I`3oool01000o`00oooo0000o`3oool20?l009H0oooo00D0o`000?ooo`3oool0 +oooo0?l0001O0?ooo`070000o`00o`00oooo0000003oool00?l00000o`3l0?ooo`030000o`3oool0 +o`0004l0oooo001V0?ooo`<0003o00<0oooo0?l0003oool0U`3oool0103o0000oooo0?ooo`3o001Q +0?ooo`D0003ooP3oool30000obh0oooo00<000000?ooo`3oool0203oool2000000030?ooo`000000 +00000100oooo001U0?ooo`D0003oVP3oool20?l00680oooo1@000?om0?ooo`D0003o;P3oool00`00 +0000oooo0?ooo`080?ooo`030000003oool000000140oooo000A0?oooe@000001@000?nJ00000080 +o`00HP0000050000ood000001@000?lK000001@0oooo0P0000090?ooo`030000003oool0oooo0100 +oooo000A0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool00`000000oooo +0?ooo`0G0?ooo`D0003o6P3oool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo +00<000000?ooo`3oool06@3oool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo00T0oooo +00@0o`000?ooo`3oool0o`003@3oool00`000000oooo0?ooo`0I0?ooo`030000003oool0oooo01X0 +oooo00<000000?ooo`3oool0603oool50000oaX0oooo00<000000?ooo`3oool06@3oool00`000000 +oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06@3oool00`000000 +oooo0?ooo`0J0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06P3oool00`000000 +oooo0?ooo`0G0?ooo`D0003o;P3oool00`000000oooo0?ooo`070?ooo`80000000<0oooo00000000 +0000403oool00140oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0J0?ooo`030000 +003oool0oooo01P0oooo0`000?l00`3oool0o`000?ooo`0H0?ooo`030000003oool0oooo01X0oooo +00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0I0?ooo`030000003oool0oooo01X0oooo +00<000000?ooo`3oool02@3oool01@3o0000oooo0?ooo`3oool0o`0000`0oooo00<000000?ooo`3o +ool06@3oool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01P0oooo1@000?lJ0?ooo`03 +0000003oool0oooo01T0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0J0?ooo`03 +0000003oool0oooo01T0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0J0?ooo`03 +0000003oool0oooo01X0oooo00<000000?ooo`3oool0603oool30000obh0oooo00<000000?ooo`3o +ool07@3oool00140oooo00<000000?ooo`3oool0D`3oool01000o`00oooo0000o`3oool20?l001L0 +oooo00<000000?ooo`3oool0L03oool00`000000oooo0?ooo`080?ooo`030?l0003oool0oooo0080 +oooo00<0o`000?ooo`3oool0G@3oool01`000?l0oooo0?ooo`000000oooo07lZ:P000?l0K`3oool0 +0`000000oooo0?ooo`1`0?ooo`030000003oool0oooo01L0oooo00<0003o0?ooo`3o0000C`3oool0 +0140oooo00<000000?ooo`3oool0D`3oool01000o`00oooo0?ooo`000?l20?ooo`030?l0003oool0 +oooo01@0oooo00<000000?ooo`3oool0L03oool00`000000oooo0?ooo`070?ooo`030?l0003oool0 +oooo00@0oooo00<0o`000?ooo`3oool0F`3oool01@000?l0o`000?ooo`3oool000000080oooo00<0 +o`000000o`3oool0K@3oool00`000000oooo0?ooo`1`0?ooo`030000003oool0oooo01H0oooo00@0 +003o0?ooo`3oool0o`00C`3oool006L0oooo00D00?l00?ooo`3oool0oooo0000o`020?ooo`80o`00 +T03oool00`3o0000oooo0?ooo`060?ooo`030?l0003oool0oooo05T0oooo00<0003o0?l0003oool0 +0P3oool01P000000oooo0?ooo`3oool0o`000000ooP0oooo00D0003o0?ooo`3oool0oooo0?l0001? +0?ooo`00I`3oool01@00o`00oooo0?ooo`3oool0003o00@0oooo00<0o`000?ooo`3oool0S@3oool0 +0`3o0000oooo0?ooo`070?ooo`030?l0003oool0oooo05L0oooo00<0003o0?l0003oool00`3oool0 +0`000000oooo0?ooo`020?ooo`030?l000000?l0oooo0?H0oooo00D0003o0?ooo`3oool0oooo0?l0 +001?0?ooo`00J03oool01@00o`00oooo0?ooo`3oool0003o00@0oooo0P3o002<0?ooo`030?l0003o +ool0oooo00T0oooo00<0o`000?ooo`3oool0E@3oool00`000?l0o`000?ooo`040?ooo`030000003o +ool0oooo00<0oooo00<0o`000000o`3oool0m03oool00`000?l0oooo0?ooo`020?ooo`030?l0003o +ool0oooo04d0oooo001X0?ooo`03003o003oool0oooo0080oooo00<0003o0?ooo`3oool00`3oool0 +0`3o0000oooo0?ooo`280?ooo`030?l0003oool0oooo00/0oooo00<0o`000?ooo`3oool0D`3oool0 +0`000?l0o`000?ooo`050?ooo`<00000103oool00`3o0000003o0?ooo`3b0?ooo`030000o`3oool0 +oooo00<0oooo00<0o`000?ooo`3oool0C@3oool006P0oooo00<00?l00?ooo`3oool00`3oool00`00 +0?l0oooo0?ooo`030?ooo`80o`00Q`3oool00`3o0000oooo0?ooo`0<0?ooo`030?l0003oool0oooo +0580oooo00<0003o0?l0003oool01P3oool00`000000oooo0?ooo`050?ooo`030?l000000?l0oooo +0?00oooo00<0003o0?ooo`3oool0103oool00`3o0000oooo0?ooo`1=0?ooo`00J03oool00`00o`00 +oooo0?ooo`030?ooo`030000o`3oool0oooo00D0oooo00<0o`000?ooo`3oool0Q03oool00`3o0000 +oooo0?ooo`0=0?ooo`030?l0003oool0oooo0500oooo00<0003o0?l0003oool01`3oool00`000000 +oooo0?ooo`060?ooo`030?l000000?l0oooo0>l0oooo00<0003o0?ooo`3oool0103oool00`3o0000 +oooo0?ooo`1=0?ooo`00J03oool00`00o`00oooo0?ooo`040?ooo`030000o`3oool0oooo00D0oooo +0P3o00230?ooo`030?l0003oool0oooo00l0oooo00<0o`000?ooo`3oool0CP3oool00`000?l00?l0 +0?l000080?ooo`030000003oool0oooo00H0oooo00<0o`00003o00000?l0kP3oool00`000?l0oooo +0?ooo`050?ooo`030?l0003oool0oooo04d0oooo001X0?ooo`03003o003oool0oooo00D0oooo00<0 +003o0?ooo`3oool01P3oool00`3o0000oooo0?ooo`1o0?ooo`030?l0003oool0oooo0140oooo00<0 +o`000?ooo`3oool0C03oool00`000?l00?l00?l000090?ooo`030000003oool0oooo00L0oooo00<0 +o`00003o00000?l0k03oool00`000?l0oooo0?ooo`060?ooo`030?l0003oool0oooo04d0oooo001X +0?ooo`03003o003oool0oooo00H0oooo00<0003o0?ooo`3oool01P3oool20?l007h0oooo00<0o`00 +0?ooo`3oool04`3oool00`3o0000oooo0?ooo`1:0?ooo`030000o`00o`00o`0000X0oooo00<00000 +0?ooo`3oool0203oool00`3o00000?l00000o`3[0?ooo`030000o`3oool0oooo00H0oooo00<0o`00 +0?ooo`3oool0C@3oool006P0oooo00<00?l00?ooo`3oool01P3oool00`000?l0oooo0?ooo`080?oo +o`030?l0003oool0oooo07/0oooo00<0o`000?ooo`3oool04`3oool00`3o0000oooo0?ooo`190?oo +o`030000o`3oool0o`0000/0oooo00<000000?ooo`3oool02@3oool00`3o0000ObXZ0000o`3Y0?oo +o`030000o`3oool0oooo00H0oooo00<00?l00?l0003oool0CP3oool006P0oooo00<00?l00?ooo`3o +ool01`3oool00`000?l0oooo0?ooo`080?ooo`80o`00NP3oool00`3o0000oooo0?ooo`0E0?ooo`03 +0?l0003oool0oooo04L0oooo00<0003o0?l0003o0000303oool00`000000oooo0?ooo`0:0?ooo`03 +0?l000000?l0oooo0>L0oooo00<0003o0?ooo`3oool01`3oool00`00o`00o`000?ooo`1>0?ooo`00 +J03oool00`00o`00oooo0?ooo`080?ooo`030000o`3oool0oooo00T0oooo00<0o`000?ooo`3oool0 +MP3oool00`3o0000oooo0?ooo`0G0?ooo`030?l0003oool0oooo04D0oooo00<0003o0?l00000o`00 +3@3oool3000000X0oooo00<0o`00003o00000?l0iP3oool00`000?l0oooo0?ooo`080?ooo`030?l0 +003oool0oooo04h0oooo001X0?ooo`03003o003oool0oooo00T0oooo00<0003o0?ooo`3oool02@3o +ool20?l007D0oooo00<0o`000?ooo`3oool06@3oool00`3o0000oooo0?ooo`130?ooo`030000o`3o +00000?l000h0oooo00<000000?ooo`3oool02`3oool00`3o00000?l00000o`3U0?ooo`030000o`3o +ool0oooo00P0oooo00<0o`000?ooo`3oool0CP3oool006P0oooo00<00?l00?ooo`3oool02@3oool0 +0`000?l0oooo0?ooo`0;0?ooo`030?l0003oool0oooo0740oooo00<0o`000?ooo`3oool06P3oool0 +0`3o0000oooo0?ooo`120?ooo`030000o`1o:RX0o`0000l0oooo00<000000?ooo`3oool0303oool2 +0?l000030000o`3oool0oooo0>40oooo00<0003o0?ooo`3oool02@3oool00`3o0000oooo0?ooo`1> +0?ooo`00J03oool00`1o:RX00?l00?ooo`0:0?ooo`030000o`3oool0oooo00/0oooo0P3o001a0?oo +o`030?l0003oool0oooo01/0oooo00<0o`000?ooo`3oool0@03oool00`000?l0ObXZ0?l0000@0?oo +o`030000003oool0oooo00d0oooo00@00?l00?l000000?l0ObXZh03oool00`000?l0oooo0?ooo`0: +0?ooo`030?l0003oool0oooo04h0oooo001X0?ooo`0307lZ:P00o`00oooo00/0oooo00<0003o0?oo +o`3oool0303oool20?l006h0oooo00<0o`000?ooo`3oool07@3oool00`3o0000oooo0?ooo`0n0?oo +o`030000o`3oool0o`000140oooo00<000000?ooo`3oool03P3oool01000o`00o`000000o`1o:R[N +0?ooo`030000o`3oool0oooo00/0oooo00<0o`000?ooo`3oool0CP3oool006T0oooo00<00?l00?oo +o`3oool02P3oool00`000?l0oooo0?ooo`0>0?ooo`030?l0003oool0oooo06X0oooo00<0o`000?oo +o`3oool07`3oool00`3o0000oooo0?ooo`0l0?ooo`030000o`3oool0o`000180oooo00<000000?oo +o`3oool03`3oool0103o00000?l00000o`1o:R[M0?ooo`030000o`3oool0oooo00/0oooo00<0o`00 +0?ooo`3oool0CP3oool006T0oooo00<00?l00?ooo`3oool02`3oool00`000?l0oooo0?ooo`0>0?oo +o`80o`00J@3oool00`3o0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo03/0oooo00<0003o0?oo +o`3o00004`3oool00`000000oooo0?ooo`0@0?ooo`030?l00000o`00003o0=`0oooo00<0003o0?oo +o`3oool02`3oool00`00o`00o`000?ooo`1?0?ooo`00J@3oool00`00o`00oooo0?ooo`0<0?ooo`03 +0000o`3oool0oooo00l0oooo00<0o`000?ooo`3oool0I@3oool00`3o0000oooo0?ooo`0R0?ooo`03 +0?l0003oool0oooo03T0oooo00@0003o0?ooo`00o`00o`004`3oool00`000000oooo0?ooo`0A0?oo +o`030?l00000o`00003o0=X0oooo00<0003o0?ooo`3oool0303oool00`00o`00o`000?ooo`1?0?oo +o`00J@3oool00`00o`00oooo0?ooo`0=0?ooo`030000o`3oool0oooo00l0oooo0P3o001U0?ooo`03 +0?l0003oool0oooo02<0oooo00<0o`000?ooo`3oool0=`3oool010000?l0oooo0?ooo`3o000D0?oo +o`<000004P3oool00`3o0000oooo0000o`3I0?ooo`030000o`3oool0oooo00`0oooo00<00?l00?l0 +003oool0C`3oool006T0oooo00<00?l00?ooo`3oool03@3oool00`000?l0oooo0?ooo`0A0?ooo`03 +0?l0003oool0oooo0640oooo00<0o`000?ooo`3oool09@3oool00`3o0000oooo0?ooo`0e0?ooo`04 +0000o`1o:RX0oooo0?l001D0oooo00<000000?ooo`3oool04`3oool00`3o0000oooo0000o`3G0?oo +o`030000o`3oool0oooo00d0oooo00<0o`0007lZ:P3oool0C`3oool006T0oooo00<00?l00?ooo`3o +ool03P3oool00`000?l0oooo0?ooo`0A0?ooo`80o`00H03oool00`3o0000oooo0?ooo`0W0?ooo`03 +0?l0003oool0oooo03<0oooo00@0003o07lZ:P00o`00o`005P3oool00`000000oooo0?ooo`0D0?oo +o`030?l0003oool0003o0=D0oooo00<0003o0?ooo`3oool03P3oool00`3o0000ObXZ0?ooo`1?0?oo +o`00JP3oool00`00o`00oooo0?ooo`0>0?ooo`030000o`3oool0oooo0180oooo00<0o`000?ooo`3o +ool0G03oool00`3o0000oooo0?ooo`0X0?ooo`030?l0003oool0oooo0380oooo00@0003o07lZ:P3o +0000o`005`3oool00`000000oooo0?ooo`0E0?ooo`030?l0003oool0003o0=<0oooo00<0003o0?oo +o`3oool03`3oool00`3o0000oooo0?ooo`1?0?ooo`00JP3oool00`00o`00oooo0?ooo`0?0?ooo`03 +0000o`3oool0oooo0180oooo0P3o001K0?ooo`030?l0003oool0oooo02X0oooo00<0o`000?ooo`3o +ool0<03oool00`000?l0ObXZ0?l0000I0?ooo`030000003oool0oooo01H0oooo00<0o`000?ooo`00 +0?l0dP3oool00`000?l0oooo0?ooo`0?0?ooo`030?l0003oool0oooo04l0oooo001Z0?ooo`03003o +003oool0oooo00l0oooo00<0003o0?ooo`3oool0503oool00`3o0000oooo0?ooo`1H0?ooo`030?l0 +003oool0oooo02/0oooo00<0o`000?ooo`3oool0;P3oool010000?l0ObXZ0?l00000o`0I0?ooo`03 +0000003oool0oooo01L0oooo00<0o`000?ooo`000?l0d03oool00`000?l0oooo0?ooo`0@0?ooo`03 +0?l0003oool0oooo04l0oooo001Z0?ooo`0307lZ:P00o`00oooo0100oooo00<0003o0?ooo`3oool0 +503oool20?l005L0oooo00<0o`000?ooo`3oool0;@3oool00`3o0000oooo0?ooo`0]0?ooo`030000 +o`3oool0o`0001X0oooo00<000000?ooo`3oool0603oool00`3o0000oooo0000o`3>0?ooo`030000 +o`3oool0oooo0100oooo00<00?l00?l0003oool0D03oool006X0oooo00<0ObXZ003o003oool04@3o +ool00`000?l0oooo0?ooo`0E0?ooo`030?l0003oool0oooo05<0oooo00<0o`000?ooo`3oool0;`3o +ool00`3o0000oooo0?ooo`0[0?ooo`030000o`3oool0o`0001/0oooo0`00000H0?ooo`040?l00000 +o`00ObXZ0000ol`0oooo00<0003o0?ooo`3oool04@3oool00`00o`00o`000?ooo`1@0?ooo`00JP3o +ool00`1o:RX00?l00?ooo`0B0?ooo`030000o`3oool0oooo01D0oooo0P3o001B0?ooo`030?l0003o +ool0oooo0340oooo00<0o`000?ooo`3oool0:@3oool00`000?l0oooo0?l0000L0?ooo`030000003o +ool0oooo01T0oooo00@0o`00003o001o:RX0003ob`3oool00`000?l0oooo0?ooo`0A0?ooo`03003o +003o0000oooo0500oooo001Z0?ooo`0307lZ:P00o`00oooo0180oooo00<0003o0?ooo`3oool05`3o +ool00`3o0000oooo0?ooo`1?0?ooo`030?l0003oool0oooo0340oooo00<0o`000?ooo`3oool09`3o +ool0101o:RX0003o0?ooo`3o000M0?ooo`030000003oool0oooo01X0oooo0P3o00000`1o:RX0003o +0?ooo`380?ooo`030000o`3oool0oooo0180oooo00<0o`000?ooo`3oool0D03oool006X0oooo00<0 +ObXZ0?ooo`00o`004`3oool00`000?l0oooo0?ooo`0G0?ooo`80o`00CP3oool00`3o0000oooo0?oo +o`0c0?ooo`030?l0003oool0oooo02D0oooo00@0ObXZ0000o`3oool0o`007P3oool00`000000oooo +0?ooo`0K0?ooo`04003o003o0000oooo0000olL0oooo00<0003o0?ooo`3oool04P3oool00`00o`00 +o`000?ooo`1A0?ooo`00J`3oool00`1o:RX00?l00?ooo`0C0?ooo`030000o`3oool0oooo01P0oooo +00<0o`000?ooo`3oool0BP3oool00`3o0000oooo0?ooo`0e0?ooo`030?l0003oool0oooo02<0oooo +00@0ObXZ0000o`3oool0o`007`3oool00`000000oooo0?ooo`0L0?ooo`04003o003o0000oooo0000 +olD0oooo00<0003o0?ooo`3oool04`3oool00`00o`00o`000?ooo`1A0?ooo`00J`3oool00`1o:RX0 +0?l00?ooo`0D0?ooo`030000o`3oool0oooo01P0oooo0P3o00190?ooo`030?l0003oool0oooo03L0 +oooo00<0o`000?ooo`3oool08P3oool00`000?l0oooo0?l0000P0?ooo`030000003oool0oooo01d0 +oooo00@0o`00003o003oool0003oa03oool00`000?l0oooo0?ooo`0C0?ooo`03003o003o0000oooo +0540oooo001[0?ooo`0307lZ:P00o`00oooo01@0oooo00<0003o0?ooo`3oool06P3oool00`3o0000 +oooo0?ooo`160?ooo`030?l0003oool0oooo03P0oooo00<0o`000?ooo`3oool0803oool00`000?l0 +oooo0?l0000D0?ooo`D00000203oool00`000000oooo0?ooo`0N0?ooo`040?l00000o`00oooo0000 +ol80oooo00<0003o0?ooo`3oool0503oool00`00o`00o`000?ooo`1A0?ooo`00K03oool00`1o:RX0 +0?l00?ooo`0D0?ooo`030000o`3oool0oooo01X0oooo0P3o00150?ooo`030?l0003oool0oooo03X0 +oooo00<0o`000?ooo`3oool07P3oool010000?l0oooo003o003o000F0?ooo`030000003oool0oooo +00P0oooo00<000000?ooo`3oool07`3oool20?l000030?ooo`000?l0oooo0;l0oooo00<0003o0?oo +o`3oool0503oool00`00o`00o`000?ooo`1B0?ooo`00K03oool00`1o:RX00?l00?ooo`0E0?ooo`03 +0000o`3oool0oooo01/0oooo00<0o`000?ooo`3oool0@@3oool00`3o0000oooo0?ooo`0k0?ooo`03 +0?l0003oool0oooo01d0oooo00@0003o0?ooo`00o`00o`005`3oool00`000000oooo0?ooo`080?oo +o`D000007P3oool01000o`00o`000?ooo`000?no0?ooo`030000o`3oool0oooo01@0oooo00<00?l0 +0?l0003oool0DP3oool006`0oooo00<0ObXZ003o003oool05@3oool00`000?l0oooo0?ooo`0L0?oo +o`80o`00@@3oool00`3o0000oooo0?ooo`0l0?ooo`030?l0003oool0oooo01/0oooo00@0003o0?oo +o`3o0000o`00603oool00`000000oooo0?ooo`080?ooo`030000003oool0oooo0240oooo00@00?l0 +0?l0003oool0003o_@3oool00`000?l0oooo0?ooo`0E0?ooo`03003o003o0000oooo0580oooo001/ +0?ooo`0307lZ:P00o`00oooo01H0oooo00<0003o0?ooo`3oool07@3oool00`3o0000oooo0?ooo`0m +0?ooo`030?l0003oool0oooo03h0oooo00<0o`000?ooo`3oool06@3oool00`000?l0oooo0?l0000J +0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3oool08P3oool01000o`00o`000?ooo`00 +0?nk0?ooo`030000o`3oool0oooo01D0oooo00<00?l007lZ:P3o0000D`3oool006`0oooo00<0ObXZ +0?ooo`00o`005`3oool00`000?l0oooo0?ooo`0M0?ooo`80o`00?03oool00`3o0000oooo0?ooo`10 +0?ooo`030?l0003oool0oooo01L0oooo00<0003o0?ooo`3o00006P3oool2000000X0oooo00<00000 +0?ooo`3oool0903oool00`3o0000ObXZ0000o`2i0?ooo`030000o`3oool0oooo01H0oooo00<00?l0 +0?l0003oool0D`3oool006d0oooo00<0ObXZ003o003oool05`3oool00`000?l0oooo0?ooo`0N0?oo +o`030?l0003oool0oooo03P0oooo00<0o`000?ooo`3oool0@P3oool00`3o0000oooo0?ooo`0E0?oo +o`030000o`3oool0o`0002L0oooo00<000000?ooo`3oool09@3oool00`3o0000ObXZ0000o`2h0?oo +o`030000o`3oool0oooo01H0oooo00<00?l00?l0003oool0D`3oool006d0oooo00<0ObXZ003o003o +ool05`3oool00`000?l0oooo0?ooo`0O0?ooo`80o`00>03oool00`3o0000oooo0?ooo`130?ooo`03 +0?l0003oool0oooo01<0oooo00<0003o0?ooo`3o0000:03oool00`000000oooo0?ooo`0U0?ooo`04 +0?l00000o`00ObXZ0000okH0oooo00<0003o0?ooo`3oool05`3oool00`00o`00o`000?ooo`1C0?oo +o`00K@3oool00`1o:RX00?l00?ooo`0H0?ooo`030000o`3oool0oooo0200oooo00<0o`000?ooo`3o +ool0=03oool00`3o0000oooo0?ooo`140?ooo`030?l0003oool0oooo0180oooo00<0003o0?ooo`3o +0000:@3oool00`000000oooo0?ooo`0V0?ooo`040?l00000o`00003o07lZ:[@0oooo00<0003o0?oo +o`3oool05`3oool00`00o`00ObXZ0?l0001D0?ooo`00KP3oool00`1o:RX00?l00?ooo`0H0?ooo`03 +0000o`3oool0oooo0200oooo0P3o000c0?ooo`030?l0003oool0oooo04H0oooo00<0o`000?ooo`3o +ool0403oool00`000?l00?l00?l0000Z0?ooo`030000003oool0oooo02L0oooo0P3o00000`000?l0 +ObXZ0?ooo`2a0?ooo`030000o`3oool0oooo01P0oooo00<00?l00?l0003oool0E03oool006h0oooo +00<0ObXZ003o003oool06@3oool00`000?l0oooo0?ooo`0Q0?ooo`030?l0003oool0oooo02l0oooo +00<0o`000?ooo`3oool0B03oool00`3o0000oooo0?ooo`0>0?ooo`030000o`00o`00o`0002/0oooo +0`00000Y0?ooo`030?l000000?l0ObXZ0;40oooo00<0003o0?ooo`3oool0603oool00`00o`00o`00 +0?ooo`1D0?ooo`00KP3oool00`1o:RX00?l00?ooo`0I0?ooo`030000o`3oool0oooo0280oooo0P3o +000_0?ooo`030?l0003oool0oooo04T0oooo00<0o`000?ooo`3oool0303oool00`000?l0o`000?l0 +000/0?ooo`030000003oool0oooo02X0oooo00<0o`000000o`1o:RX0[`3oool00`000?l0oooo0?oo +o`0H0?ooo`03003o001o:RX0o`0005D0oooo001^0?ooo`0307lZ:P3oool00?l001X0oooo00<0003o +0?ooo`3oool08`3oool00`3o0000oooo0?ooo`0[0?ooo`030?l0003oool0oooo04/0oooo00<0o`00 +0?ooo`3oool02P3oool00`000?l0o`00003o000]0?ooo`030000003oool0oooo02/0oooo00<0o`00 +0000o`1o:RX0[@3oool00`000?l0oooo0?ooo`0I0?ooo`03003o001o:RX0o`0005D0oooo001^0?oo +o`0307lZ:P3oool00?l001/0oooo00<0003o0?ooo`3oool08`3oool20?l002X0oooo00<0o`000?oo +o`3oool0C@3oool00`3o0000oooo0?ooo`080?ooo`030000o`3o00000?l002h0oooo00<000000?oo +o`3oool0;03oool00`3o0000003o0?ooo`2/0?ooo`030000o`3oool0oooo01P0oooo00<00?l00?oo +o`3o0000EP3oool006l0oooo00<0ObXZ003o003oool06`3oool00`000?l0oooo0?ooo`0T0?ooo`03 +0?l0003oool0oooo02H0oooo00<0o`000?ooo`3oool0C`3oool00`3o0000oooo0?ooo`060?ooo`03 +0000o`3o00000?l002l0oooo00<000000?ooo`3oool0;@3oool00`3o0000003o0?ooo`2Z0?ooo`03 +0000o`3oool0oooo01T0oooo00<00?l00?ooo`3o0000EP3oool006l0oooo00<0ObXZ0?ooo`00o`00 +6`3oool00`000?l0oooo0?ooo`0U0?ooo`80o`009P3oool00`3o0000oooo0?ooo`1?0?ooo`030?l0 +003oool0oooo00D0oooo00<0003o0?l0003oool0<03oool00`000000oooo0?ooo`0_0?ooo`030000 +o`3oool0oooo0:L0oooo00<0003o0?ooo`3oool06P3oool00`00o`00oooo0?l0001F0?ooo`00L03o +ool00`1o:RX00?l00?ooo`0K0?ooo`030000o`3oool0oooo02H0oooo00<0o`000?ooo`3oool08P3o +ool00`3o0000oooo0?ooo`1A0?ooo`030?l0003oool0oooo00<0oooo00<0003o0?l0003oool0<@3o +ool00`000000oooo0?ooo`0`0?ooo`030000o`3oool0oooo0:D0oooo00<0003o0?ooo`3oool06P3o +ool01000o`00oooo07lZ:P3o001F0?ooo`00L03oool00`1o:RX0oooo003o000L0?ooo`030000o`3o +ool0oooo02H0oooo0P3o000Q0?ooo`030?l0003oool0oooo05<0oooo00H0o`000?ooo`3oool0oooo +0000o`3o000c0?ooo`030000003oool0oooo0340oooo00<0003o0?ooo`3oool0Y03oool00`000?l0 +oooo0?ooo`0J0?ooo`03003o003oool0o`0005L0oooo001`0?ooo`0307lZ:P3oool00?l001d0oooo +00<0003o0?ooo`3oool09`3oool00`3o0000oooo0?ooo`0N0?ooo`030?l0003oool0oooo05@0oooo +00@0o`000?ooo`000?l0o`00=03oool300000380oooo00<0003o0?ooo`3oool0XP3oool00`000?l0 +oooo0?ooo`0J0?ooo`04003o003oool0ObXZ0?l005L0oooo001a0?ooo`0307lZ:P00o`00oooo01`0 +oooo00<0003o0?ooo`3oool0:03oool20?l001d0oooo00<0o`000?ooo`3oool0EP3oool00`000?l0 +o`000?ooo`0d0?ooo`030000003oool0oooo03<0oooo00<0003o0?ooo`3oool0X03oool00`000?l0 +oooo0?ooo`0K0?ooo`04003o003oool0ObXZ0?l005L0oooo001a0?ooo`0307lZ:P3oool00?l001d0 +oooo00<0003o0?ooo`3oool0:@3oool20?l001X0oooo00<0o`000?ooo`3oool0D`3oool40000o`80 +o`00=@3oool00`000000oooo0?ooo`0d0?ooo`@0003oW@3oool00`000?l0oooo0?ooo`0K0?ooo`05 +003o003oool0oooo07lZ:P3o0000E`3oool00780oooo00<0ObXZ003o003oool07@3oool00`000?l0 +oooo0?ooo`0Z0?ooo`030?l0003oool0oooo01L0oooo00<0o`000?ooo`3oool0DP3oool50000o`03 +0?ooo`3o0000oooo03@0oooo00<000000?ooo`3oool0=03oool50000oi`0oooo00<0003o0?ooo`3o +ool06`3oool01000o`00oooo07lZ:P3o001H0?ooo`00LP3oool00`1o:RX0oooo003o000M0?ooo`03 +0000o`3oool0oooo02/0oooo0P3o000F0?ooo`030?l0003oool0oooo05<0oooo1@000?l20?ooo`03 +0?l0003oool0oooo0380oooo00<000000?ooo`3oool0=03oool50000oi/0oooo00<0003o0?ooo`3o +ool0703oool01000o`00oooo07lZ:P3o001H0?ooo`00LP3oool00`1o:RX0oooo003o000N0?ooo`03 +0000o`3oool0oooo02`0oooo00<0o`000?ooo`3oool04P3oool00`3o0000oooo0?ooo`1D0?ooo`D0 +003o0`3oool00`3o0000oooo0?ooo`0a0?ooo`030000003oool0oooo03@0oooo1@000?nJ0?ooo`03 +0000o`3oool0oooo01`0oooo00D00?l00?ooo`1o:RX0oooo0?l0001H0?ooo`00L`3oool00`1o:RX0 +oooo003o000N0?ooo`030000o`3oool0oooo02`0oooo0P3o000B0?ooo`030?l0003oool0oooo0580 +oooo0P000?l0103o0000003o0000o`000?l50?ooo`030?l0003oool0oooo0300oooo00<000000?oo +o`3oool0=@3oool30000o`0307lZ:P000?l0003o09P0oooo00<0003o0?ooo`3oool0703oool01000 +o`00oooo07lZ:P3o001I0?ooo`00L`3oool00`1o:RX0oooo003o000O0?ooo`030000o`3oool0oooo +02d0oooo00<0o`000?ooo`3oool03P3oool00`3o0000oooo0?ooo`1A0?ooo`80003o00<0oooo0?l0 +003oool02@3oool00`3o0000oooo0?ooo`0_0?ooo`030000003oool0oooo03P0oooo0P1o:RX00`3o +0000003o0000o`2E0?ooo`030000o`3oool0oooo01`0oooo00D00?l00?ooo`1o:RX0oooo0?l0001I +0?ooo`00M03oool00`1o:RX00?l00?ooo`0N0?ooo`030000o`3oool0oooo02h0oooo0P3o000=0?oo +o`030?l0003oool0oooo0500oooo0P000?l20?ooo`030?l0003oool0oooo00X0oooo00<0o`000?oo +o`3oool0;P3oool3000003T0oooo0P1o:RX0103o0000oooo0000o`000?nB0?ooo`030000o`3oool0 +oooo01d0oooo00@00?l00?ooo`1o:RX0o`00FP3oool007@0oooo00<0ObXZ0?ooo`00o`007`3oool0 +0`000?l0oooo0?ooo`0_0?ooo`030?l0003oool0oooo00X0oooo00<0o`000?ooo`3oool0CP3oool2 +0000o`<0oooo00<0o`0007lZ:P3oool02`3oool00`3o0000oooo0?ooo`0^0?ooo`030000003oool0 +oooo03/0oooo00@0ObXZ0?l0003oool0oooo0P000?n?0?ooo`030000o`3oool0oooo01d0oooo00D0 +0?l00?ooo`3oool0ObXZ0?l0001J0?ooo`00M@3oool00`1o:RX00?l00?ooo`0O0?ooo`030000o`3o +ool0oooo02l0oooo0P3o00090?ooo`030?l0003oool0oooo04d0oooo0P000?l30?ooo`80o`0000<0 +ObXZ0?ooo`3oool0303oool00`3o0000oooo0?ooo`0]0?ooo`030000003oool0oooo03`0oooo00<0 +ObXZ0?l0003oool00P3oool20000ohd0oooo00<0003o0?ooo`3oool07@3oool01@00o`00oooo07lZ +:P3oool0o`0005X0oooo001e0?ooo`0307lZ:P3oool00?l00200oooo00<0003o0?ooo`3oool0<03o +ool00`3o0000oooo0?ooo`060?ooo`030?l0003oool0oooo04/0oooo0P000?l40?ooo`030?l00000 +o`00ObXZ0100oooo00<0o`000?ooo`3oool0;03oool00`000000oooo0?ooo`0m0?ooo`0307lZ:P3o +0000oooo00<0oooo0P000?n:0?ooo`030000o`3oool0oooo01d0oooo00D00?l00?ooo`3oool0ObXZ +0?l0001K0?ooo`00M@3oool00`1o:RX0oooo003o000P0?ooo`030000o`3oool0oooo0340oooo0P3o +00050?ooo`030?l0003oool0oooo04X0oooo0P000?l50?ooo`030?l00000o`00ObXZ0180oooo00<0 +o`000?ooo`3oool0:`3oool00`000000oooo0?ooo`0n0?ooo`0307lZ:P3o0000o`0000@0oooo0P00 +0?n70?ooo`030000o`3oool0oooo01h0oooo00D00?l00?ooo`1o:RX0oooo0?l0001K0?ooo`00MP3o +ool00`1o:RX0oooo003o000P0?ooo`030000o`3oool0oooo0380oooo00D0o`000?ooo`3oool0oooo +0?l0001;0?ooo`80003o1@3oool20?l000030?ooo`1o:RX0oooo01<0oooo00<0o`000?ooo`3oool0 +:P3oool00`000000oooo0?ooo`0o0?ooo`0307lZ:P3oool0o`0000D0oooo0P000?n40?ooo`030000 +o`3oool0oooo01h0oooo00H00?l00?ooo`3oool0ObXZ0?ooo`3o001K0?ooo`00MP3oool0101o:RX0 +oooo0?ooo`00o`0P0?ooo`030000o`3oool0oooo0380oooo0P3o00000`3oool0o`000?ooo`180?oo +o`80003o1P3oool0103o00000?l00?ooo`1o:RXF0?ooo`030?l0003oool0oooo02T0oooo00<00000 +0?ooo`3oool0@03oool00`1o:RX0oooo0?l000060?ooo`80003oPP3oool00`000?l0oooo0?ooo`0N +0?ooo`05003o003oool0ObXZ0?ooo`3o0000G03oool007L0oooo00<0ObXZ0?ooo`00o`008@3oool0 +0`000?l0oooo0?ooo`0c0?ooo`030?l0003oool0oooo04H0oooo0P000?l70?ooo`040?l00000o`00 +oooo07lZ:QL0oooo00<0o`000?ooo`3oool0:@3oool00`000000oooo0?ooo`110?ooo`80ObXZ00<0 +o`000?ooo`3oool01@3oool20000ogl0oooo00<0003o0?ooo`3oool07P3oool01P00o`00oooo0?oo +o`1o:RX0oooo0?l005`0oooo001g0?ooo`0407lZ:P3oool0oooo003o0200oooo00<0003o0?ooo`3o +ool00?oo +o`80o`00;03oool20000o``0oooo00@0o`00003o003oool0ObXZ:03oool00`3o0000oooo0?ooo`0E +0?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0B`3oool0101o:RX0oooo003o003o +000<0?ooo`80003oJ@3oool00`000?l0oooo0?ooo`0P0?ooo`03003o003oool0ObXZ0080oooo00<0 +o`000?ooo`3oool0GP3oool007/0oooo00D0ObXZ0?ooo`3oool0oooo003o000Q0?ooo`030000o`3o +ool0oooo02L0oooo00<0o`000?ooo`3oool04@3oool00`3o0000oooo0?ooo`0W0?ooo`80003o3@3o +ool0103o0000oooo0?ooo`1o:RXZ0?ooo`030?l0003oool0oooo01D0oooo00<000000?ooo`3oool0 +2@3oool5000004X0oooo0P1o:RX00`00o`00o`000?ooo`0<0?ooo`030000o`3oool0oooo06D0oooo +00<0003o0?ooo`3oool0803oool01P00o`00oooo0?ooo`1o:RX0oooo0?l00640oooo001l0?ooo`04 +07lZ:P3oool0oooo003o0280oooo00<0003o0?ooo`3oool09P3oool00`3o0000oooo0?ooo`0B0?oo +o`80o`009@3oool20000o`d0oooo0P3o00000`3oool0ObXZ07lZ:P0/0?ooo`030?l0003oool0oooo +01D0oooo00<000000?ooo`3oool0203oool00`000000oooo0?ooo`1>0?ooo`0407lZ:P00o`00o`00 +0?l000`0oooo0P000?mU0?ooo`030000o`3oool0oooo0200oooo00<00?l00?ooo`1o:RX00P3oool0 +0`3o0000oooo0?ooo`1O0?ooo`00O@3oool0101o:RX0oooo0?ooo`00o`0R0?ooo`030000o`3oool0 +oooo02@0oooo00<0o`000?ooo`3oool05@3oool00`3o0000oooo0?ooo`0P0?ooo`80003o3P3oool0 +103o0000oooo0?ooo`1o:RX_0?ooo`030?l0003oool0oooo0180oooo00@000000?ooo`3oool00000 +2@3oool00`000000oooo0?ooo`1?0?ooo`0407lZ:P3oool00?l00?l000d0oooo0P000?mR0?ooo`03 +0000o`3oool0oooo0200oooo00H00?l00?ooo`3oool0ObXZ0?ooo`3o001R0?ooo`00O@3oool01@1o +:RX0oooo0?ooo`3oool00?l00240oooo00<0003o0?ooo`3oool08`3oool00`3o0000oooo0?ooo`0G +0?ooo`80o`007P3oool20000o`l0oooo00@0o`000?ooo`3oool0ObXZ<03oool00`3o0000oooo0?oo +o`0C0?ooo`8000002P3oool00`000000oooo0?ooo`1@0?ooo`0307lZ:P3oool0oooo0080o`003@3o +ool20000oel0oooo00<0003o0?ooo`3oool0803oool01P00o`00oooo0?ooo`1o:RX0oooo0?l006<0 +oooo001n0?ooo`0407lZ:P3oool0oooo003o0280oooo00<0003o0?ooo`3oool08P3oool00`3o0000 +oooo0?ooo`0I0?ooo`030?l0003oool0oooo01T0oooo0P000?l?0?ooo`80o`0000<0oooo07lZ:P1o +:RX00?ooo`80003oG@3oool00`000?l0oooo0?ooo`0P0?ooo`06003o003oool0oooo07lZ +:P3oool0o`00H`3oool007h0oooo00D0ObXZ0?ooo`3oool0oooo003o000R0?ooo`030000o`3oool0 +oooo0200oooo00<0o`000?ooo`3oool06`3oool20?l001L0oooo0P000?l@0?ooo`040?l0003oool0 +oooo07lZ:SD0oooo00<0o`000?ooo`3oool07@3oool00`000000oooo0?ooo`1C0?ooo`0407lZ:P3o +ool00?l00?l000l0oooo0P000?mJ0?ooo`030000o`3oool0oooo0200oooo00H00?l00?ooo`3oool0 +ObXZ0?ooo`3o001T0?ooo`00O`3oool01@1o:RX0oooo0?ooo`3oool00?l00280oooo00<0003o0?oo +o`3oool07`3oool00`3o0000oooo0?ooo`0M0?ooo`030?l0003oool0oooo0180oooo0P000?l@0?oo +o`03003o003o0000oooo0080ObXZ=`3oool00`3o0000oooo0?ooo`0L0?ooo`030000003oool0oooo +05@0oooo0P1o:RX00`00o`00o`000?l0000?0?ooo`80003oE`3oool00`000?l0oooo0?ooo`0P0?oo +o`06003o003oool0oooo07lZ:P3oool0o`00I@3oool00800oooo00@0ObXZ0?ooo`3oool00?l08P3o +ool00`000?l0oooo0?ooo`0N0?ooo`030?l0003oool0oooo01l0oooo0P3o000@0?ooo`80003o4@3o +ool20?l000030?ooo`1o:RX0oooo03T0oooo00<0o`000?ooo`3oool06`3oool00`000000oooo0?oo +o`1F0?ooo`0407lZ:P3oool00?l00?l00100oooo0P000?mD0?ooo`030000o`3oool0oooo0200oooo +00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1S0?ooo`00P@3oool0101o:RX0oooo +0?ooo`00o`0R0?ooo`030000o`3oool0oooo01d0oooo00<0o`000?ooo`3oool08@3oool20?l000`0 +oooo0P000?lB0?ooo`040?l0003oool0ObXZ07lZ:S`0oooo00<0o`000?ooo`3oool06P3oool30000 +05L0oooo00<0ObXZ0?ooo`3oool00P3o000@0?ooo`80003oDP3oool00`000?l0oooo0?ooo`0O0?oo +o`07003o003oool0oooo0?ooo`1o:RX0oooo0?l0001V0?ooo`00P@3oool01@1o:RX0oooo0?ooo`3o +ool00?l00280oooo00<0003o0?ooo`3oool06`3oool00`3o0000oooo0?ooo`0T0?ooo`030?l0003o +ool0oooo00P0oooo00<0003o0?ooo`3oool0403oool01000o`00o`000?ooo`1o:RXn0?ooo`030?l0 +003oool0oooo01X0oooo00<000000?ooo`3oool0F03oool207lZ:P030?ooo`00o`00o`000140oooo +0P000?m?0?ooo`030000o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`03 +0?l0003oool0oooo06@0oooo00220?ooo`0507lZ:P3oool0oooo0?ooo`00o`008P3oool00`000?l0 +oooo0?ooo`0I0?ooo`030?l0003oool0oooo02H0oooo0P3o00060?ooo`80003o4P3oool20?l00080 +ObXZ@03oool00`3o0000oooo0?ooo`0I0?ooo`030000003oool0oooo05X0oooo0P1o:RX00`00o`00 +o`000?l0000A0?ooo`80003oC03oool00`000?l0oooo0?ooo`0P0?ooo`04003o003oool0oooo07lZ +:P80oooo00<0o`000?ooo`3oool0I@3oool008<0oooo00D0ObXZ0?ooo`3oool0oooo003o000Q0?oo +o`030000o`3oool0oooo01T0oooo00<0o`000?ooo`3oool0:03oool0103o0000oooo0?ooo`3oool2 +0000oa80oooo00@00?l00?l0001o:RX0ObXZ@`3oool00`3o0000oooo0?ooo`0H0?ooo`030000003o +ool0oooo05`0oooo00<0ObXZ003o0000o`000P3o000A0?ooo`80003oB@3oool00`000?l0oooo0?oo +o`0P0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0IP3oool008@0oooo00D0 +ObXZ0?ooo`3oool0oooo003o000Q0?ooo`030000o`3oool0oooo01L0oooo00<0o`000?ooo`3oool0 +:P3oool00`3o0000003o0000o`0C0?ooo`03003o003o0000ObXZ04H0oooo00<0o`000?ooo`3oool0 +5`3oool00`000000oooo0?ooo`1N0?ooo`0407lZ:P00o`000?l00?l00180oooo0P000?m70?ooo`03 +0000o`3oool0oooo01l0oooo00L00?l00?ooo`3oool0oooo07lZ:P3oool0o`0006T0oooo00250?oo +o`0507lZ:P3oool0oooo0?ooo`00o`008@3oool00`000?l0oooo0?ooo`0F0?ooo`030?l0003oool0 +oooo02T0oooo0P000?l00`3oool0o`000?ooo`0A0?ooo`80o`0000<0ObXZ0?ooo`3oool0AP3oool0 +0`3o0000oooo0?ooo`0F0?ooo`030000003oool0oooo05l0oooo00@0ObXZ0?ooo`00o`00o`004`3o +ool20000od@0oooo00<0003o0?ooo`3oool07`3oool00`00o`00oooo0?ooo`0207lZ:P030?ooo`3o +0000oooo06T0oooo00260?ooo`0507lZ:P3oool0oooo0?ooo`00o`008@3oool00`000?l0oooo0?oo +o`0D0?ooo`030?l0003oool0oooo02P0oooo0P000?l40?ooo`80o`003P3oool00`00o`00o`0007lZ +:P1;0?ooo`030?l0003oool0oooo01D0oooo00<000000?ooo`3oool0H03oool0101o:RX0oooo0?oo +o`3o000D0?ooo`80003o@@3oool00`000?l0oooo0?ooo`0O0?ooo`04003o003oool0oooo07lZ:P80 +oooo00<0o`000?ooo`3oool0J@3oool008L0oooo00@0ObXZ0?ooo`3oool00?l08@3oool00`000?l0 +oooo0?ooo`0D0?ooo`030?l0003oool0oooo02H0oooo0P000?l80?ooo`030?l0003oool0oooo00X0 +oooo00<00?l00?l0001o:RX0C03oool00`3o0000oooo0?ooo`0E0?ooo`030000003oool0oooo0640 +oooo0P1o:RX00`3oool0o`000?l0000D0?ooo`80003o?P3oool00`000?l0oooo0?ooo`0O0?ooo`07 +003o003oool0oooo0?ooo`1o:RX0oooo0?l0001/0?ooo`00Q`3oool01@1o:RX0oooo0?ooo`3oool0 +0?l00240oooo00<0003o0?ooo`3oool04P3oool00`3o0000oooo0?ooo`0U0?ooo`80003o2`3oool2 +0?l000P0oooo00<00?l00?l0003o0000C`3oool00`3o0000oooo0?ooo`0D0?ooo`<00000H`3oool2 +07lZ:P03003o003o0000o`0001@0oooo0P000?ll0?ooo`030000o`3oool0oooo01h0oooo00D00?l0 +0?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo06X0oooo00280?ooo`0407lZ:P3oool0 +oooo0?ooo`800?l0803oool00`000?l0oooo0?ooo`0A0?ooo`030?l0003oool0oooo02<0oooo0P00 +0?l?0?ooo`80o`001@3oool00`00o`00o`0007lZ:P1A0?ooo`030?l0003oool0oooo01<0oooo00<0 +00000?ooo`3oool0I@3oool207lZ:P03003o003o0000o`0001@0oooo0P000?li0?ooo`030000o`3o +ool0oooo01h0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo06/0oooo +00290?ooo`80ObXZ0`3oool00`00o`00oooo0?ooo`0N0?ooo`030000o`3oool0oooo0100oooo00<0 +o`000?ooo`3oool08@3oool20000oa<0oooo00@0o`000?ooo`3oool00?l00P3o001D0?ooo`030?l0 +003oool0oooo0180oooo00<000000?ooo`3oool0I`3oool0101o:RX00?l0003o003o000E0?ooo`80 +003o=P3oool00`000?l0oooo0?ooo`0N0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o +0000oooo0?ooo`1/0?ooo`00R`3oool01@1o:RX0oooo0?ooo`3oool00?l001l0oooo00<0003o0?oo +o`3oool03`3oool00`3o0000oooo0?ooo`0P0?ooo`80003o5P3oool30?l005L0oooo00<0o`000?oo +o`3oool04@3oool00`000000oooo0?ooo`1Y0?ooo`0407lZ:P00o`00o`000?l001D0oooo00<0003o +0?ooo`3oool0<`3oool00`000?l0oooo0?ooo`0M0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3o +ool00`3o0000oooo0?ooo`1]0?ooo`00S03oool0101o:RX0oooo0?ooo`00o`0P0?ooo`030000o`3o +ool0oooo00h0oooo00<0o`000?ooo`3oool07P3oool20000oaH0oooo00D00?l00?l0003o0000oooo +0?l0001G0?ooo`030?l0003oool0oooo0140oooo00<000000?ooo`3oool0JP3oool207lZ:P03003o +003o0000o`0001@0oooo0P000?lb0?ooo`030000o`3oool0oooo01d0oooo00D00?l00?ooo`3oool0 +oooo07lZ:P020?ooo`030?l0003oool0oooo06h0oooo002=0?ooo`0407lZ:P3oool0oooo003o0200 +oooo00<0003o0?ooo`3oool0303oool00`3o0000oooo0?ooo`0M0?ooo`80003o5P3oool00`00o`00 +o`000?l000040?ooo`80o`00EP3oool00`3o0000oooo0?ooo`0@0?ooo`030000003oool0oooo06`0 +oooo0P1o:RX00`00o`00o`000?l0000D0?ooo`80003o;`3oool00`000?l0oooo0?ooo`0M0?ooo`03 +003o003oool0oooo0080ObXZ0P3oool00`3o0000oooo0?ooo`1_0?ooo`00SP3oool00`1o:RX0oooo +0?ooo`02003o01h0oooo00<0003o0?ooo`3oool0303oool00`3o0000oooo0?ooo`0K0?ooo`80003o +5P3oool2003o00030?l0001o:RX0oooo00H0oooo0P3o001E0?ooo`030?l0003oool0oooo00l0oooo +00<000000?ooo`3oool0KP3oool00`1o:RX00?l0003o00020?l001@0oooo0P000?l/0?ooo`030000 +o`3oool0oooo01d0oooo00@00?l00?ooo`3oool0ObXZ0`3oool00`3o0000oooo0?ooo`1`0?ooo`00 +S`3oool01@1o:RX0oooo0?ooo`3oool00?l001h0oooo00<0003o0?ooo`3oool02P3oool00`3o0000 +oooo0?ooo`0J0?ooo`80003o5`3oool00`00o`00ObXZ0?l0000;0?ooo`030?l0003oool0oooo05<0 +oooo00<0o`000?ooo`3oool03P3oool00`000000oooo0?ooo`1`0?ooo`0307lZ:P00o`000?l00080 +o`00503oool20000obX0oooo00<0003o0?ooo`3oool0703oool01@00o`00oooo0?ooo`3oool0ObXZ +0080oooo00<0o`000?ooo`3oool0L@3oool00900oooo0P1o:RX20?ooo`800?l07@3oool00`000?l0 +oooo0?ooo`090?ooo`030?l0003oool0oooo01T0oooo00<0003o0?ooo`3oool05@3oool2003o0080 +o`003@3oool20?l005<0oooo00<0o`000?ooo`3oool03P3oool300000780oooo00@0ObXZ003o0000 +o`00o`005@3oool20000obL0oooo00<0003o0?ooo`3oool06`3oool2003o0080oooo0P1o:RX20?oo +o`030?l0003oool0oooo0780oooo002A0?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3o +ool06`3oool00`000?l0oooo0?ooo`080?ooo`030?l0003oool0oooo01L0oooo0P000?lF0?ooo`80 +0?l000<0ObXZ0?l0003oool0403oool00`3o0000oooo0?ooo`1A0?ooo`030?l0003oool0oooo00d0 +oooo00<000000?ooo`3oool0L`3oool207lZ:P03003o003o0000o`0001D0oooo0P000?lT0?ooo`03 +0000o`3oool0oooo01/0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`80o`00M@3oool00980 +oooo00<0ObXZ0?ooo`3oool00P3oool2003o01/0oooo00<0003o0?ooo`3oool01`3oool00`3o0000 +oooo0?ooo`0F0?ooo`80003o5P3oool2003o000307lZ:P3o0000o`0001<0oooo0P3o001B0?ooo`03 +0?l0003oool0oooo00`0oooo00<000000?ooo`3oool0M@3oool207lZ:P04003o003o0000o`000?l0 +01@0oooo0P000?lQ0?ooo`030000o`3oool0oooo01X0oooo0P00o`030?ooo`0407lZ:P3oool0oooo +0?l007L0oooo002C0?ooo`80ObXZ103oool00`00o`00oooo0?ooo`0I0?ooo`030000o`3oool0oooo +00H0oooo00<0o`000?ooo`3oool0503oool20000oaH0oooo0P00o`000`1o:RX0o`000?l0000G0?oo +o`80o`00D@3oool00`3o0000oooo0?ooo`0;0?ooo`030000003oool0oooo07P0oooo00<0ObXZ003o +003oool00`3o000C0?ooo`80003o7`3oool00`000?l0oooo0?ooo`0I0?ooo`04003o003oool0oooo +0?ooo`80ObXZ00<0oooo0?l0003o0000N03oool009D0oooo0P1o:RX30?ooo`03003o003oool0oooo +01T0oooo00<0003o0?ooo`3oool01@3oool00`3o0000oooo0?ooo`0B0?ooo`80003o5P3oool2003o +0080oooo00<0o`000?ooo`3oool06@3oool00`3o0000oooo0?ooo`1>0?ooo`030?l0003oool0oooo +00/0oooo00<000000?ooo`3oool0NP3oool2003o0080oooo0P3o000C0?ooo`80003o703oool00`00 +0?l0oooo0?ooo`0H0?ooo`800?l00`3oool0101o:RX0oooo0?ooo`3o001j0?ooo`00U`3oool207lZ +:P80oooo00<00?l00?ooo`3oool06@3oool00`000?l0oooo0?ooo`040?ooo`030?l0003oool0oooo +0100oooo0P000?lF0?ooo`800?l00P3oool20?l001d0oooo0P3o001?0?ooo`030?l0003oool0oooo +00X0oooo00<000000?ooo`3oool0O03oool3003o00030?ooo`3o0000o`0001<0oooo0P000?lI0?oo +o`030000o`3oool0oooo01P0oooo00@00?l00?ooo`3oool0oooo0P1o:RX20?ooo`030?l0003oool0 +oooo07T0oooo002I0?ooo`80ObXZ00<0oooo003o0000o`006@3oool00`000?l0oooo0?ooo`030?oo +o`030?l0003oool0oooo00l0oooo0P000?lE0?ooo`<00?l000@0ObXZ0?ooo`3o0000o`008@3oool0 +0`3o0000oooo0?ooo`1=0?ooo`030?l0003oool0oooo00T0oooo00<000000?ooo`3oool0OP3oool0 +101o:RX00?l0003o0000o`020?l001<0oooo0P000?lG0?ooo`030000o`3oool0oooo01H0oooo0P00 +o`020?ooo`80ObXZ0P3oool20?l007`0oooo002K0?ooo`80ObXZ00<0oooo003o0000o`00603oool0 +0`000?l0oooo0?ooo`020?ooo`030?l0003oool0oooo00d0oooo0P000?lE0?ooo`800?l00P1o:RX0 +0`3oool0o`000?l0000T0?ooo`80o`00CP3oool00`3o0000oooo0?ooo`080?ooo`<00000O`3oool3 +07lZ:P800?l00P3o000C0?ooo`80003o503oool00`000?l0oooo0?ooo`0E0?ooo`800?l00P3oool2 +07lZ:P80oooo0P3o001n0?ooo`00W@3oool207lZ:P030?ooo`00o`000?l001L0oooo00D0003o0?oo +o`3oool0oooo0?l0000=0?ooo`80003o503oool3003o0080ObXZ00<0oooo0?l0003o0000:03oool2 +0?l004d0oooo00<0o`000?ooo`3oool01`3oool00`000000oooo0?ooo`220?ooo`80ObXZ0P00o`04 +0?l00140oooo0P000?lA0?ooo`030000o`3oool0oooo01@0oooo0P00o`020?ooo`80ObXZ0P3oool2 +0?l00800oooo002O0?ooo`80ObXZ00<0oooo003o0000o`005P3oool010000?l0oooo0?ooo`3o000; +0?ooo`80003o4P3oool4003o0080ObXZ0P3oool20?l002`0oooo00<0o`000?ooo`3oool0BP3oool0 +0`3o0000oooo0?ooo`070?ooo`030000003oool0oooo08D0oooo0P1o:RX3003o00@0o`003`3oool2 +0000o`h0oooo00<0003o0?ooo`3oool04`3oool2003o0080oooo0P1o:RX20?ooo`80o`00PP3oool0 +0:40oooo0P1o:RX00`3oool00?l0003o000D0?ooo`040000o`3oool0oooo0?l000T0oooo0P000?lB +0?ooo`800?l00`1o:RX30?ooo`80o`00;`3oool20?l004/0oooo00<0o`000?ooo`3oool01P3oool0 +0`000000oooo0?ooo`270?ooo`<0ObXZ0`00o`000`3oool0o`000?l0000?0?ooo`80003o303oool0 +0`000?l0oooo0?ooo`0A0?ooo`800?l00P3oool207lZ:P040?ooo`3o0000o`000?l008@0oooo002S +0?ooo`80ObXZ00@0oooo003o0000o`000?l04P3oool00`000?l0oooo0?l000070?ooo`80003o4P3o +ool2003o00H0oooo0P3o000c0?ooo`80o`00BP3oool00`3o0000oooo0?ooo`050?ooo`030000003o +ool0oooo08`0oooo00@0ObXZ003o0000o`00oooo0P3o000?0?ooo`80003o2@3oool00`000?l0oooo +0?ooo`0?0?ooo`<00?l00P3oool207lZ:P<0o`00Q`3oool00:D0oooo101o:RX3003o0100oooo00<0 +003o0?l0003oool0103oool20000o`l0oooo0P1o:RX3003o00H0oooo0P3o000g0?ooo`030?l0003o +ool0oooo04P0oooo00<0o`000?ooo`3oool0103oool00`000000oooo0?ooo`2?0?ooo`<00?l00`3o +000>0?ooo`80003o1P3oool00`000?l0oooo0?ooo`0=0?ooo`<00?l000@0oooo07lZ:P1o:RX0ObXZ +0`3o002:0?ooo`00Z@3oool307lZ:P@00?l03@3oool30000o`030?ooo`000?l0003o00`0oooo1`00 +o`070?ooo`80o`00>P3oool20?l004<0oooo0P0000040?ooo`030?l0003oool0oooo00<0oooo00<0 +00000?ooo`3oool0TP3oool3003o00L0o`002@3oool20000o`040?ooo`000?l0003o0000o`d0oooo +0`00o`0407lZ:P<0o`00S@3oool00:d0oooo0`1o:RX6003o00H0oooo1@000?l90?ooo`0307lZ:P00 +o`000?l000800?l00P1o:RX:0?ooo`80o`00?P3oool00`3o0000oooo0?ooo`0o0?ooo`040000003o +ool0oooo000000@0oooo00<0o`000?ooo`3oool00P3oool00`000000oooo0?ooo`2F0?ooo`<0ObXZ +0`00o`040?l000L0oooo1@000?l60?ooo`H00?l00P1o:RX20?ooo`<0o`00T03oool00;80oooo101o +:RX6003o00D0003o2P00o`0>0?ooo`80o`00@@3oool20?l00440oooo00<000000?ooo`3oool00`3o +ool00`3o0000oooo0?ooo`020?ooo`D00000VP3oool4003o00L0o`001@000?l@0?l009<0oooo002l +0?ooo`D0003o5@3oool30?l004D0oooo0P3o00100?ooo`030000003oool0oooo00<0oooo00D0o`00 +0?ooo`3oool0oooo0000002Y0?ooo`D0003oX`3oool00;d0oooo0`000?lC0?ooo`<0o`00BP3oool0 +0`3o0000oooo0?ooo`0j0?ooo`040000003oool0oooo000000H0oooo00@0o`000?ooo`3oool00000 +ZP3oool30000oj@0oooo002o0?ooo`030?l0003oool0oooo00d0oooo103o001>0?ooo`80o`00>`3o +ool2000000P0oooo00<0o`000?ooo`000000o`3ooomB0?ooo`00`03oool40?l000P0oooo0`3o001D +0?ooo`80o`00@`3oool00`3o0000oooo0000003o0?oooe80oooo00340?ooo`P0o`00F@3oool00`3o +0000oooo0?ooo`110?ooo`030?l000000000oooo0?l0ooooD@3oool00?l0oooo9`3oool20?l00480 +oooo00<0o`000?ooo`3oool0o`3ooom@0?ooo`00o`3ooolY0?ooo`80o`00@03oool00`3o0000oooo +0?ooo`3o0?oooe00oooo003o0?ooob/0oooo00<0o`000?ooo`3oool0?@3oool00`000000o`000000 +003o0?oooe00oooo003o0?ooob`0oooo0P3o000m0?ooo`030000003oool0o`000?l0ooooD03oool0 +0?l0oooo;P3oool00`3o0000oooo0?ooo`0j0?ooo`040000003oool0oooo0?l00?l0ooooC`3oool0 +0?l0oooo;`3oool20?l003X0oooo00@000000?ooo`3oool0o`00o`3ooom?0?ooo`00o`3ooola0?oo +o`80o`00>03oool01@000000oooo0?ooo`3oool0o`000?l0ooooCP3oool00?l0oooo<`3oool00`3o +0000oooo0?ooo`0e0?ooo`030000003oool0oooo0080oooo00<0o`000?ooo`3oool0o`3ooom;0?oo +o`00o`3ooold0?ooo`80o`00=@3oool00`000000oooo0?ooo`020?ooo`030?l0003oool0oooo0?l0 +ooooB`3oool00?l0oooo=P3oool20?l003<0oooo00<000000?ooo`3oool00`3oool00`3o0000oooo +0?ooo`3o0?ooodX0oooo003o0?ooocP0oooo00<0o`000?ooo`3oool0<03oool3000000@0oooo00<0 +o`000?ooo`3oool0o`3ooom90?ooo`00o`3oooli0?ooo`80o`00<03oool00`000000oooo0?ooo`04 +0?ooo`030?l0003oool0oooo0?l0ooooB@3oool00?l0oooo>`3oool20?l002h0oooo00<000000?oo +o`3oool01@3oool00`3o0000oooo0?ooo`3o0?ooodP0oooo003o0?ooocd0oooo00<0o`000?ooo`3o +ool0:`3oool00`000000oooo0?ooo`060?ooo`030?l0003oool0oooo0?l0ooooA`3oool00?l0oooo +?P3oool20?l002/0oooo00<000000?ooo`3oool01`3oool00`3o0000oooo0?ooo`3o0?ooodH0oooo +003o0?oood00oooo0P3o000Y0?ooo`030000003oool0oooo00L0oooo00<0o`000?ooo`3oool0o`3o +oom60?ooo`00o`3ooom20?ooo`80o`009`3oool00`000000oooo0?ooo`080?ooo`030?l0003oool0 +oooo0?l0ooooA@3oool00?l0ooooA03oool20?l002D0oooo00<000000?ooo`3oool02@3oool00`3o +0000oooo0?ooo`3o0?oood@0oooo003o0?ooodH0oooo0P3o000S0?ooo`<000002@3oool00`3o0000 +oooo0?ooo`3o0?oood@0oooo003o0?ooodP0oooo00<0o`000?ooo`3oool0803oool00`000000oooo +0?ooo`0:0?ooo`030?l0003oool0oooo0?l0oooo@`3oool00?l0ooooB@3oool20?l00200oooo00<0 +00000?ooo`3oool02P3oool00`3o0000oooo0?ooo`3o0?oood<0oooo003o0?oood/0oooo0P3o000N +0?ooo`030000003oool0oooo00/0oooo00<0o`000?ooo`3oool0o`3ooom20?ooo`00o`3ooom=0?oo +o`80o`00703oool00`000000oooo0?ooo`0<0?ooo`030?l0003oool0oooo0?l0oooo@@3oool00?l0 +ooooC`3oool20?l001X0oooo00<000000?ooo`3oool0303oool00`3o0000oooo0?ooo`3o0?oood40 +oooo003o0?oooe40oooo0P3o000H0?ooo`030000003oool0oooo00d0oooo00<0o`000?ooo`3oool0 +o`3ooom00?ooo`00o`3ooomC0?ooo`80o`005P3oool00`000000oooo0?ooo`0=0?ooo`030?l0003o +ool0oooo0?l0oooo@03oool00?l0ooooE@3oool20?l001@0oooo0`00000>0?ooo`030?l0003oool0 +oooo0?l0oooo?`3oool00?l0ooooE`3oool20?l00180oooo00<000000?ooo`3oool03P3oool00`3o +0000oooo0?ooo`3o0?ooocl0oooo003o0?oooeT0oooo0P3o000@0?ooo`030000003oool0oooo00l0 +oooo00<0o`000?ooo`3oool0o`3oooln0?ooo`00o`3ooomK0?ooo`80o`003P3oool00`000000oooo +0?ooo`0?0?ooo`030?l0003oool0oooo0?l0oooo?P3oool00?l0ooooG@3oool20?l000`0oooo00<0 +00000?ooo`3oool0403oool00`3o0000oooo0?ooo`3o0?ooocd0oooo003o0?oooel0oooo0P3o000: +0?ooo`030000003oool0oooo0100oooo00<0o`000?ooo`3oool0o`3ooolm0?ooo`00o`3ooomP0?oo +o`030000003o0000o`0000P0oooo00<000000?ooo`3oool0403oool00`3o0000oooo0?ooo`3o0?oo +ocd0oooo003o0?ooof40oooo00@000000?ooo`3o0000o`001P3oool00`000000oooo0?ooo`0@0?oo +o`030?l0003oool0oooo0?l0oooo?@3oool00?l0ooooGP3oool500000080oooo00<0o`000?ooo`3o +ool00`3oool5000000h0oooo00<0o`000?ooo`3oool0o`3ooolm0?ooo`00o`3ooomN0?ooo`040000 +003oool0oooo00000?l0ooooG03oool00?l0ooooG`3oool00`000000oooo0000003o0?oooe`0oooo +003o0?ooof00oooo0P00003o0?oooe`0oooo003o0?ooool0oooo_P3oool00?l0ooooo`3ooonn0?oo +o`00o`3ooooo0?oookh0oooo003o0?ooool0oooo_P3oool00?l0ooooo`3ooonn0?ooo`00o`3ooooo +0?oookh0oooo003o0?ooool0oooo_P3oool00?l0ooooo`3ooonn0?ooo`00o`3ooooo0?oookh0oooo +003o0?ooool0oooo_P3oool00?l0ooooo`3ooonn0?ooo`00o`3ooooo0?oookh0oooo003o0?ooool0 +oooo_P3oool00?l0ooooo`3ooonn0?ooo`00o`3ooome0?ooo`800000o`3ooom70?ooo`00o`3ooomf +0?ooo`030000003oool0oooo0?l0ooooA@3oool00?l0ooooM`3oool00`000000oooo0?ooo`3o0?oo +od@0oooo003o0?ooogH0oooo00<000000?ooo`000000o`3ooom50?ooo`00o`3ooome0?ooo`040000 +003oool0oooo00000?l0ooooA@3oool00?l0ooooM03oool3000000030?ooo`00000000000?l0oooo +A03oool00?l0ooooJ@3oool010000000oooo0?ooo`00003o0?oooe40oooo003o0?ooofX0oooo0P00 +003o0?oooe80oooo003o0?ooool0oooo_P3oool00?l0ooooo`3ooonn0?ooo`00o`3ooooo0?oookh0 +oooo0000\ +\>"], + ImageRangeCache->{{{0, 699}, {349, 0}} -> {-6.30953, -4.11403, 0.0174144, \ +0.0253301}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]2\ +\[InvisibleSpace]" mit "\[InvisibleSpace]14\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 2, " mit ", 14, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.545455 0.0909091 0.25 0.0625 [ +[0 .2375 -6 -9 ] +[0 .2375 6 0 ] +[.18182 .2375 -6 -9 ] +[.18182 .2375 6 0 ] +[.36364 .2375 -6 -9 ] +[.36364 .2375 6 0 ] +[.72727 .2375 -3 -9 ] +[.72727 .2375 3 0 ] +[.90909 .2375 -3 -9 ] +[.90909 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.53295 0 -12 -4.5 ] +[.53295 0 0 4.5 ] +[.53295 .0625 -12 -4.5 ] +[.53295 .0625 0 4.5 ] +[.53295 .125 -12 -4.5 ] +[.53295 .125 0 4.5 ] +[.53295 .1875 -12 -4.5 ] +[.53295 .1875 0 4.5 ] +[.53295 .3125 -6 -4.5 ] +[.53295 .3125 0 4.5 ] +[.53295 .375 -6 -4.5 ] +[.53295 .375 0 4.5 ] +[.53295 .4375 -6 -4.5 ] +[.53295 .4375 0 4.5 ] +[.53295 .5 -6 -4.5 ] +[.53295 .5 0 4.5 ] +[.54545 .525 -17 0 ] +[.54545 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +0 .25 m +0 .25625 L +s +[(-6)] 0 .2375 0 1 Mshowa +.18182 .25 m +.18182 .25625 L +s +[(-4)] .18182 .2375 0 1 Mshowa +.36364 .25 m +.36364 .25625 L +s +[(-2)] .36364 .2375 0 1 Mshowa +.72727 .25 m +.72727 .25625 L +s +[(2)] .72727 .2375 0 1 Mshowa +.90909 .25 m +.90909 .25625 L +s +[(4)] .90909 .2375 0 1 Mshowa +.125 Mabswid +.04545 .25 m +.04545 .25375 L +s +.09091 .25 m +.09091 .25375 L +s +.13636 .25 m +.13636 .25375 L +s +.22727 .25 m +.22727 .25375 L +s +.27273 .25 m +.27273 .25375 L +s +.31818 .25 m +.31818 .25375 L +s +.40909 .25 m +.40909 .25375 L +s +.45455 .25 m +.45455 .25375 L +s +.5 .25 m +.5 .25375 L +s +.59091 .25 m +.59091 .25375 L +s +.63636 .25 m +.63636 .25375 L +s +.68182 .25 m +.68182 .25375 L +s +.77273 .25 m +.77273 .25375 L +s +.81818 .25 m +.81818 .25375 L +s +.86364 .25 m +.86364 .25375 L +s +.95455 .25 m +.95455 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.54545 0 m +.5517 0 L +s +[(-4)] .53295 0 1 0 Mshowa +.54545 .0625 m +.5517 .0625 L +s +[(-3)] .53295 .0625 1 0 Mshowa +.54545 .125 m +.5517 .125 L +s +[(-2)] .53295 .125 1 0 Mshowa +.54545 .1875 m +.5517 .1875 L +s +[(-1)] .53295 .1875 1 0 Mshowa +.54545 .3125 m +.5517 .3125 L +s +[(1)] .53295 .3125 1 0 Mshowa +.54545 .375 m +.5517 .375 L +s +[(2)] .53295 .375 1 0 Mshowa +.54545 .4375 m +.5517 .4375 L +s +[(3)] .53295 .4375 1 0 Mshowa +.54545 .5 m +.5517 .5 L +s +[(4)] .53295 .5 1 0 Mshowa +.125 Mabswid +.54545 .0125 m +.5492 .0125 L +s +.54545 .025 m +.5492 .025 L +s +.54545 .0375 m +.5492 .0375 L +s +.54545 .05 m +.5492 .05 L +s +.54545 .075 m +.5492 .075 L +s +.54545 .0875 m +.5492 .0875 L +s +.54545 .1 m +.5492 .1 L +s +.54545 .1125 m +.5492 .1125 L +s +.54545 .1375 m +.5492 .1375 L +s +.54545 .15 m +.5492 .15 L +s +.54545 .1625 m +.5492 .1625 L +s +.54545 .175 m +.5492 .175 L +s +.54545 .2 m +.5492 .2 L +s +.54545 .2125 m +.5492 .2125 L +s +.54545 .225 m +.5492 .225 L +s +.54545 .2375 m +.5492 .2375 L +s +.54545 .2625 m +.5492 .2625 L +s +.54545 .275 m +.5492 .275 L +s +.54545 .2875 m +.5492 .2875 L +s +.54545 .3 m +.5492 .3 L +s +.54545 .325 m +.5492 .325 L +s +.54545 .3375 m +.5492 .3375 L +s +.54545 .35 m +.5492 .35 L +s +.54545 .3625 m +.5492 .3625 L +s +.54545 .3875 m +.5492 .3875 L +s +.54545 .4 m +.5492 .4 L +s +.54545 .4125 m +.5492 .4125 L +s +.54545 .425 m +.5492 .425 L +s +.54545 .45 m +.5492 .45 L +s +.54545 .4625 m +.5492 .4625 L +s +.54545 .475 m +.5492 .475 L +s +.54545 .4875 m +.5492 .4875 L +s +.25 Mabswid +.54545 0 m +.54545 .5 L +s +gsave +.54545 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +.5 .165 .165 r +.5 Mabswid +.64109 .34862 m +.63681 .34421 L +.63252 .33979 L +.62824 .33537 L +.62395 .33095 L +.61967 .32653 L +.61539 .32212 L +.6111 .3177 L +.60682 .31328 L +.60253 .30886 L +.59825 .30445 L +.59397 .30003 L +.58968 .29561 L +.5854 .29119 L +.58111 .28677 L +.57683 .28236 L +.57255 .27794 L +.56826 .27352 L +.56398 .2691 L +.55969 .26468 L +.55541 .26027 L +.55113 .25585 L +.54684 .25143 L +.54256 .24701 L +.53827 .2426 L +.53399 .23818 L +.52971 .23376 L +.52542 .22934 L +.52114 .22492 L +.51685 .22051 L +.51257 .21609 L +.50829 .21167 L +.504 .20725 L +.49972 .20283 L +.49543 .19842 L +.49115 .194 L +.48687 .18958 L +.48258 .18516 L +.4783 .18075 L +.47401 .17633 L +.46973 .17191 L +.46545 .16749 L +.46116 .16307 L +.45688 .15866 L +.45259 .15424 L +.44831 .14982 L +.40909 .11742 L +.40481 .11433 L +.40052 .11132 L +.39624 .10838 L +Mistroke +.39197 .10553 L +.38769 .10275 L +.38343 .10006 L +.37916 .09745 L +.37491 .09492 L +.37066 .09248 L +.36643 .09013 L +.3622 .08787 L +.35799 .08569 L +.35379 .08361 L +.3496 .08162 L +.34542 .07972 L +.34127 .07792 L +.33713 .07621 L +.333 .0746 L +.3289 .07309 L +.32481 .07168 L +.32075 .07036 L +.31671 .06915 L +.31269 .06803 L +.30869 .06702 L +.30472 .0661 L +.30078 .06529 L +.29686 .06458 L +.29297 .06398 L +.28911 .06348 L +.28528 .06308 L +.28147 .06278 L +.2777 .06259 L +.27397 .06251 L +.27026 .06252 L +.26659 .06264 L +.26296 .06287 L +.25936 .0632 L +.2558 .06363 L +.25227 .06417 L +.24879 .06481 L +.24534 .06555 L +.24193 .0664 L +.23857 .06734 L +.23525 .06839 L +.23197 .06954 L +.22873 .07079 L +.22554 .07214 L +.2224 .07358 L +.2193 .07513 L +.21624 .07677 L +.21324 .07851 L +.21028 .08034 L +.20737 .08227 L +Mistroke +.20452 .08429 L +.20171 .08641 L +.19895 .08861 L +.19625 .0909 L +.19359 .09329 L +.191 .09575 L +.18845 .09831 L +.18596 .10095 L +.18352 .10367 L +.18114 .10647 L +.17882 .10935 L +.17655 .11231 L +.17434 .11535 L +.17219 .11846 L +.1701 .12165 L +.16806 .1249 L +.16609 .12823 L +.16417 .13162 L +.16232 .13508 L +.16053 .1386 L +.15879 .14219 L +.15712 .14583 L +.15552 .14953 L +.15397 .15329 L +.15249 .1571 L +.15107 .16096 L +.14971 .16488 L +.14842 .16884 L +.14719 .17284 L +.14603 .17689 L +.14493 .18098 L +.1439 .1851 L +.14293 .18927 L +.14203 .19346 L +.14119 .19769 L +.14042 .20195 L +.13972 .20623 L +.13908 .21054 L +.13851 .21487 L +.13801 .21921 L +.13757 .22358 L +.1372 .22796 L +.1369 .23235 L +.13667 .23676 L +.1365 .24117 L +.1364 .24558 L +.13636 .25 L +.1364 .25442 L +.1365 .25883 L +.13667 .26324 L +Mistroke +.1369 .26765 L +.1372 .27204 L +.13757 .27642 L +.13801 .28079 L +.13851 .28513 L +.13908 .28946 L +.13972 .29377 L +.14042 .29805 L +.14119 .30231 L +.14203 .30654 L +.14293 .31073 L +.1439 .3149 L +.14493 .31902 L +.14603 .32311 L +.14719 .32716 L +.14842 .33116 L +.14971 .33512 L +.15107 .33904 L +.15249 .3429 L +.15397 .34671 L +.15552 .35047 L +.15712 .35417 L +.15879 .35781 L +.16053 .3614 L +.16232 .36492 L +.16417 .36838 L +.16609 .37177 L +.16806 .3751 L +.1701 .37835 L +.17219 .38154 L +.17434 .38465 L +.17655 .38769 L +.17882 .39065 L +.18114 .39353 L +.18352 .39633 L +.18596 .39905 L +.18845 .40169 L +.191 .40425 L +.19359 .40671 L +.19625 .4091 L +.19895 .41139 L +.20171 .41359 L +.20452 .41571 L +.20737 .41773 L +.21028 .41966 L +.21324 .42149 L +.21624 .42323 L +.2193 .42487 L +.2224 .42642 L +.22554 .42786 L +Mistroke +.22873 .42921 L +.23197 .43046 L +.23525 .43161 L +.23857 .43266 L +.24193 .4336 L +.24534 .43445 L +.24879 .43519 L +.25227 .43583 L +.2558 .43637 L +.25936 .4368 L +.26296 .43713 L +.26659 .43736 L +.27026 .43748 L +.27397 .43749 L +.2777 .43741 L +.28147 .43722 L +.28528 .43692 L +.28911 .43652 L +.29297 .43602 L +.29686 .43542 L +.30078 .43471 L +.30472 .4339 L +.30869 .43298 L +.31269 .43197 L +.31671 .43085 L +.32075 .42964 L +.32481 .42832 L +.3289 .42691 L +.333 .4254 L +.33713 .42379 L +.34127 .42208 L +.34542 .42028 L +.3496 .41838 L +.35379 .41639 L +.35799 .41431 L +.3622 .41213 L +.36643 .40987 L +.37066 .40752 L +.37491 .40508 L +.37916 .40255 L +.38343 .39994 L +.38769 .39725 L +.39197 .39447 L +.39624 .39162 L +.40052 .38868 L +.40481 .38567 L +.40909 .38258 L +.43268 .3663 L +.43697 .36188 L +.44125 .35746 L +Mistroke +.44553 .35304 L +.44982 .34862 L +.4541 .34421 L +.45839 .33979 L +.46267 .33537 L +.46695 .33095 L +.47124 .32653 L +.47552 .32212 L +.47981 .3177 L +.48409 .31328 L +.48837 .30886 L +.49266 .30445 L +.49694 .30003 L +.50123 .29561 L +.50551 .29119 L +.50979 .28677 L +.51408 .28236 L +.51836 .27794 L +.52265 .27352 L +.52693 .2691 L +.53121 .26468 L +.5355 .26027 L +.53978 .25585 L +.54407 .25143 L +.54835 .24701 L +.55263 .2426 L +.55692 .23818 L +.5612 .23376 L +.56549 .22934 L +.56977 .22492 L +.57405 .22051 L +.57834 .21609 L +.58262 .21167 L +.58691 .20725 L +.59119 .20283 L +.59547 .19842 L +.59976 .194 L +.60404 .18958 L +.60833 .18516 L +.61261 .18075 L +.61689 .17633 L +.62118 .17191 L +.62546 .16749 L +.62975 .16307 L +.63403 .15866 L +.63831 .15424 L +.6426 .14982 L +.6861 .11433 L +.69038 .11132 L +.69467 .10838 L +Mistroke +.69894 .10553 L +.70322 .10275 L +.70748 .10006 L +.71175 .09745 L +.716 .09492 L +.72025 .09248 L +.72448 .09013 L +.72871 .08787 L +.73292 .08569 L +.73712 .08361 L +.74131 .08162 L +.74549 .07972 L +.74964 .07792 L +.75378 .07621 L +.75791 .0746 L +.76201 .07309 L +.7661 .07168 L +.77016 .07036 L +.7742 .06915 L +.77822 .06803 L +.78222 .06702 L +.78619 .0661 L +.79013 .06529 L +.79405 .06458 L +.79794 .06398 L +.8018 .06348 L +.80563 .06308 L +.80944 .06278 L +.81321 .06259 L +.81694 .06251 L +.82065 .06252 L +.82432 .06264 L +.82795 .06287 L +.83155 .0632 L +.83511 .06363 L +.83864 .06417 L +.84212 .06481 L +.84557 .06555 L +.84897 .0664 L +.85234 .06734 L +.85566 .06839 L +.85894 .06954 L +.86218 .07079 L +.86537 .07214 L +.86851 .07358 L +.87161 .07513 L +.87467 .07677 L +.87767 .07851 L +.88063 .08034 L +.88354 .08227 L +Mistroke +.88639 .08429 L +.8892 .08641 L +.89196 .08861 L +.89466 .0909 L +.89732 .09329 L +.89991 .09575 L +.90246 .09831 L +.90495 .10095 L +.90739 .10367 L +.90977 .10647 L +.91209 .10935 L +.91436 .11231 L +.91657 .11535 L +.91872 .11846 L +.92081 .12165 L +.92285 .1249 L +.92482 .12823 L +.92673 .13162 L +.92859 .13508 L +.93038 .1386 L +.93211 .14219 L +.93379 .14583 L +.93539 .14953 L +.93694 .15329 L +.93842 .1571 L +.93984 .16096 L +.9412 .16488 L +.94249 .16884 L +.94372 .17284 L +.94488 .17689 L +.94598 .18098 L +.94701 .1851 L +.94798 .18927 L +.94888 .19346 L +.94971 .19769 L +.95048 .20195 L +.95119 .20623 L +.95182 .21054 L +.95239 .21487 L +.9529 .21921 L +.95334 .22358 L +.9537 .22796 L +.95401 .23235 L +.95424 .23676 L +.95441 .24117 L +.95451 .24558 L +.95455 .25 L +.95451 .25442 L +.95441 .25883 L +.95424 .26324 L +Mistroke +.95401 .26765 L +.9537 .27204 L +.95334 .27642 L +.9529 .28079 L +.95239 .28513 L +.95182 .28946 L +.95119 .29377 L +.95048 .29805 L +.94971 .30231 L +.94888 .30654 L +.94798 .31073 L +.94701 .3149 L +.94598 .31902 L +.94488 .32311 L +.94372 .32716 L +.94249 .33116 L +.9412 .33512 L +.93984 .33904 L +.93842 .3429 L +.93694 .34671 L +.93539 .35047 L +.93379 .35417 L +.93211 .35781 L +.93038 .3614 L +.92859 .36492 L +.92673 .36838 L +.92482 .37177 L +.92285 .3751 L +.92081 .37835 L +.91872 .38154 L +.91657 .38465 L +.91436 .38769 L +.91209 .39065 L +.90977 .39353 L +.90739 .39633 L +.90495 .39905 L +.90246 .40169 L +.89991 .40425 L +.89732 .40671 L +.89466 .4091 L +.89196 .41139 L +.8892 .41359 L +.88639 .41571 L +.88354 .41773 L +.88063 .41966 L +.87767 .42149 L +.87467 .42323 L +.87161 .42487 L +.86851 .42642 L +.86537 .42786 L +Mistroke +.86218 .42921 L +.85894 .43046 L +.85566 .43161 L +.85234 .43266 L +.84897 .4336 L +.84557 .43445 L +.84212 .43519 L +.83864 .43583 L +.83511 .43637 L +.83155 .4368 L +.82795 .43713 L +.82432 .43736 L +.82065 .43748 L +.81694 .43749 L +.81321 .43741 L +.80944 .43722 L +.80563 .43692 L +.8018 .43652 L +.79794 .43602 L +.79405 .43542 L +.79013 .43471 L +.78619 .4339 L +.78222 .43298 L +.77822 .43197 L +.7742 .43085 L +.77016 .42964 L +.7661 .42832 L +.76201 .42691 L +.75791 .4254 L +.75378 .42379 L +.74964 .42208 L +.74549 .42028 L +.74131 .41838 L +.73712 .41639 L +.73292 .41431 L +.72871 .41213 L +.72448 .40987 L +.72025 .40752 L +.716 .40508 L +.71175 .40255 L +.70748 .39994 L +.70322 .39725 L +.69894 .39447 L +.69467 .39162 L +.69038 .38868 L +.6861 .38567 L +.68182 .38258 L +.67753 .37942 L +.67325 .37619 L +.66897 .37289 L +Mistroke +.66469 .36952 L +.66042 .36608 L +.65615 .36258 L +.65189 .35901 L +.64764 .35539 L +.64339 .35171 L +.63915 .34797 L +Mfstroke +0 1 0 r +.13636 .25 m +.13673 .25397 L +.13776 .25795 L +.13941 .26194 L +.14159 .26596 L +.14426 .27001 L +.14734 .27411 L +.15077 .27826 L +.15449 .28248 L +.15845 .28676 L +.16256 .29112 L +.16678 .29558 L +.17103 .30013 L +.17526 .30479 L +.1794 .30957 L +.18338 .31447 L +.18719 .31949 L +.19082 .32462 L +.1943 .32984 L +.19763 .33513 L +.20083 .34047 L +.20392 .34585 L +.2069 .35124 L +.20979 .35663 L +.2126 .362 L +.21535 .36734 L +.21805 .37262 L +.22071 .37782 L +.22335 .38294 L +.22598 .38794 L +.22862 .39282 L +.23127 .39755 L +.23396 .40212 L +.23669 .40651 L +.23948 .4107 L +.24234 .41467 L +.24528 .41841 L +.24833 .42189 L +.25149 .42511 L +.25477 .42803 L +.25819 .43065 L +.26177 .43295 L +.26551 .4349 L +.26943 .43649 L +.27355 .43771 L +.27786 .43853 L +.28237 .43898 L +.28705 .43907 L +.29191 .43881 L +.29692 .43821 L +Mistroke +.30209 .43729 L +.30739 .43607 L +.31281 .43455 L +.31835 .43275 L +.32399 .43068 L +.32973 .42837 L +.33555 .42581 L +.34143 .42303 L +.34738 .42004 L +.35338 .41685 L +.35942 .41347 L +.36548 .40993 L +.37156 .40623 L +.37764 .40239 L +.38372 .39842 L +.38978 .39433 L +.39582 .39015 L +.40181 .38587 L +.40776 .38153 L +.41365 .37712 L +.41946 .37267 L +.4252 .36818 L +.43084 .36368 L +.43637 .35917 L +.44179 .35467 L +.44709 .3502 L +.45224 .34576 L +.45726 .34137 L +.46212 .33703 L +.46684 .33275 L +.47142 .32852 L +.47588 .32433 L +.48021 .32019 L +.48443 .31609 L +.48855 .31203 L +.49256 .308 L +.49648 .30401 L +.50031 .30004 L +.50407 .29611 L +.50775 .2922 L +.51137 .28831 L +.51492 .28444 L +.51843 .28058 L +.52189 .27674 L +.52531 .27291 L +.52871 .26909 L +.53208 .26527 L +.53543 .26146 L +.53877 .25764 L +.54211 .25382 L +Mistroke +.54545 .25 L +.54881 .24617 L +.55218 .24233 L +.55557 .23847 L +.55898 .23461 L +.56242 .23074 L +.56589 .22686 L +.5694 .22296 L +.57295 .21905 L +.57654 .21513 L +.58018 .21119 L +.58387 .20724 L +.58762 .20328 L +.59143 .1993 L +.59531 .1953 L +.59925 .19129 L +.60327 .18726 L +.60736 .18321 L +.61154 .17915 L +.6158 .17506 L +.62015 .17096 L +.6246 .16683 L +.62914 .16269 L +.63379 .15853 L +.63854 .15434 L +.6434 .15014 L +.64836 .14593 L +.65341 .14172 L +.65856 .13752 L +.66379 .13334 L +.6691 .12919 L +.67448 .12508 L +.67993 .12102 L +.68544 .11701 L +.69101 .11308 L +.69663 .10922 L +.7023 .10544 L +.70801 .10176 L +.71376 .09819 L +.71954 .09473 L +.72534 .09139 L +.73116 .08819 L +.73699 .08513 L +.74284 .08222 L +.74868 .07947 L +.75453 .07689 L +.76036 .07449 L +.76619 .07228 L +.77199 .07027 L +.77778 .06847 L +Mistroke +.78353 .06689 L +.78925 .06553 L +.79492 .06441 L +.80056 .06354 L +.80614 .06292 L +.81166 .06256 L +.81712 .06248 L +.82252 .06268 L +.82785 .06317 L +.8331 .06392 L +.83828 .06494 L +.84338 .06623 L +.8484 .06776 L +.85333 .06955 L +.85818 .07157 L +.86295 .07383 L +.86762 .07632 L +.8722 .07903 L +.87668 .08195 L +.88107 .08508 L +.88535 .08841 L +.88953 .09194 L +.89361 .09566 L +.89758 .09956 L +.90143 .10364 L +.90518 .10788 L +.9088 .11229 L +.91231 .11686 L +.9157 .12157 L +.91897 .12643 L +.92211 .13142 L +.92512 .13655 L +.928 .1418 L +.93074 .14716 L +.93335 .15264 L +.93582 .15822 L +.93815 .1639 L +.94034 .16967 L +.94238 .17552 L +.94427 .18145 L +.94601 .18746 L +.9476 .19352 L +.94903 .19965 L +.9503 .20583 L +.95141 .21206 L +.95236 .21832 L +.95314 .22462 L +.95375 .23094 L +.95419 .23728 L +.95446 .24364 L +Mistroke +.95455 .25 L +.95446 .25636 L +.95419 .26272 L +.95375 .26906 L +.95314 .27538 L +.95236 .28168 L +.95141 .28794 L +.9503 .29417 L +.94903 .30035 L +.9476 .30648 L +.94601 .31255 L +.94427 .31855 L +.94238 .32448 L +.94034 .33034 L +.93815 .3361 L +.93582 .34178 L +.93335 .34736 L +.93074 .35284 L +.928 .3582 L +.92512 .36345 L +.92211 .36858 L +.91897 .37357 L +.9157 .37843 L +.91231 .38314 L +.9088 .38771 L +.90518 .39212 L +.90143 .39636 L +.89758 .40044 L +.89361 .40434 L +.88953 .40806 L +.88535 .41159 L +.88107 .41492 L +.87668 .41805 L +.8722 .42098 L +.86762 .42368 L +.86295 .42617 L +.85818 .42843 L +.85333 .43046 L +.8484 .43224 L +.84338 .43378 L +.83828 .43506 L +.8331 .43608 L +.82785 .43683 L +.82252 .43732 L +.81712 .43752 L +.81166 .43744 L +.80614 .43708 L +.80056 .43646 L +.79492 .43559 L +.78925 .43447 L +Mistroke +.78353 .43311 L +.77778 .43153 L +.77199 .42972 L +.76619 .42772 L +.76036 .42551 L +.75453 .42311 L +.74868 .42053 L +.74283 .41778 L +.73699 .41487 L +.73116 .41181 L +.72534 .40861 L +.71953 .40527 L +.71376 .40181 L +.70801 .39824 L +.7023 .39456 L +.69663 .39078 L +.69101 .38692 L +.68544 .38298 L +.67993 .37898 L +.67448 .37492 L +.66909 .37081 L +.66379 .36666 L +.65856 .36248 L +.65341 .35828 L +.64836 .35407 L +.6434 .34986 L +.63854 .34566 L +.63379 .34147 L +.62914 .33731 L +.6246 .33317 L +.62015 .32904 L +.6158 .32494 L +.61154 .32086 L +.60737 .31679 L +.60327 .31274 L +.59925 .30872 L +.59531 .3047 L +.59144 .30071 L +.58763 .29673 L +.58388 .29276 L +.58018 .28881 L +.57654 .28488 L +.57295 .28095 L +.5694 .27704 L +.5659 .27315 L +.56242 .26926 L +.55898 .26539 L +.55557 .26153 L +.55218 .25768 L +.54881 .25383 L +Mistroke +.54545 .25 L +.54211 .24617 L +.53877 .24236 L +.53542 .23854 L +.53207 .23472 L +.5287 .23091 L +.52531 .22708 L +.52188 .22325 L +.51842 .21941 L +.51491 .21555 L +.51135 .21168 L +.50773 .20779 L +.50405 .20388 L +.5003 .19994 L +.49646 .19598 L +.49254 .19199 L +.48853 .18796 L +.48442 .1839 L +.4802 .1798 L +.47586 .17566 L +.47141 .17147 L +.46683 .16724 L +.46211 .16296 L +.45725 .15863 L +.45225 .15425 L +.44709 .14981 L +.4418 .14534 L +.43639 .14084 L +.43086 .13634 L +.42523 .13184 L +.4195 .12736 L +.41369 .12291 L +.40781 .11851 L +.40187 .11417 L +.39588 .1099 L +.38986 .10572 L +.3838 .10164 L +.37773 .09768 L +.37165 .09384 L +.36557 .09014 L +.35951 .0866 L +.35348 .08323 L +.34749 .08004 L +.34154 .07705 L +.33565 .07427 L +.32983 .07171 L +.3241 .06939 L +.31845 .06733 L +.31291 .06552 L +.30748 .064 L +Mistroke +.30217 .06277 L +.297 .06185 L +.29197 .06124 L +.28711 .06097 L +.2824 .06105 L +.27788 .06148 L +.27355 .0623 L +.26941 .0635 L +.26547 .06507 L +.2617 .067 L +.2581 .06928 L +.25466 .07188 L +.25135 .07479 L +.24816 .07798 L +.24509 .08145 L +.24212 .08517 L +.23924 .08912 L +.23643 .09329 L +.23368 .09767 L +.23097 .10222 L +.2283 .10694 L +.22565 .11181 L +.22301 .11681 L +.22036 .12191 L +.2177 .12712 L +.215 .1324 L +.21225 .13774 L +.20945 .14311 L +.20658 .14852 L +.20362 .15393 L +.20056 .15932 L +.1974 .16469 L +.19411 .17001 L +.19068 .17527 L +.1871 .18044 L +.18336 .18551 L +.17937 .19042 L +.1752 .19518 L +.17095 .19983 L +.16668 .20438 L +.16245 .20883 L +.15833 .21319 L +.15438 .21748 L +.15066 .2217 L +.14724 .22586 L +.14417 .22996 L +.14152 .23402 L +.13935 .23805 L +.13773 .24205 L +.13671 .24603 L +Mistroke +.13636 .25 L +Mfstroke +1 0 0 r +.13636 .25 m +.13059 .25524 L +.12768 .25986 L +.1271 .26403 L +.12838 .26791 L +.13111 .27163 L +.13496 .2753 L +.13962 .279 L +.14484 .28279 L +.15042 .28672 L +.15619 .29084 L +.162 .29516 L +.16774 .29969 L +.17333 .30445 L +.17871 .30941 L +.18382 .31458 L +.18864 .31994 L +.19315 .32546 L +.19736 .33111 L +.20125 .33688 L +.20485 .34273 L +.20817 .34862 L +.21124 .35454 L +.2141 .36044 L +.21675 .3663 L +.21925 .37207 L +.22163 .37775 L +.2239 .38328 L +.22612 .38865 L +.22831 .39383 L +.23051 .3988 L +.23273 .40354 L +.23502 .40802 L +.23739 .41222 L +.23986 .41614 L +.24246 .41976 L +.2452 .42307 L +.2481 .42605 L +.25117 .42871 L +.25442 .43103 L +.25786 .43302 L +.26149 .43467 L +.26532 .43598 L +.26935 .43696 L +.27356 .4376 L +.27798 .43792 L +.28257 .43792 L +.28735 .4376 L +.2923 .43698 L +.29741 .43607 L +Mistroke +.30268 .43488 L +.30809 .43341 L +.31362 .43168 L +.31928 .42971 L +.32503 .4275 L +.33088 .42507 L +.3368 .42244 L +.34279 .41961 L +.34882 .4166 L +.35489 .41342 L +.36098 .41009 L +.36708 .40662 L +.37317 .40302 L +.37925 .39931 L +.3853 .3955 L +.3913 .3916 L +.39726 .38762 L +.40316 .38357 L +.40898 .37947 L +.41473 .37532 L +.4204 .37114 L +.42597 .36692 L +.43144 .36269 L +.43682 .35844 L +.44208 .35419 L +.44724 .34993 L +.45229 .34568 L +.45722 .34144 L +.46203 .33722 L +.46674 .33301 L +.47133 .32883 L +.4758 .32467 L +.48017 .32053 L +.48443 .31642 L +.48859 .31234 L +.49264 .30828 L +.49661 .30426 L +.50048 .30026 L +.50426 .29629 L +.50797 .29234 L +.51161 .28842 L +.51517 .28451 L +.51868 .28063 L +.52214 .27677 L +.52555 .27292 L +.52892 .26908 L +.53226 .26526 L +.53558 .26144 L +.53888 .25763 L +.54217 .25381 L +Mistroke +.54545 .25 L +.54875 .24618 L +.55205 .24236 L +.55538 .23853 L +.55873 .23469 L +.56211 .23083 L +.56553 .22696 L +.569 .22307 L +.57251 .21917 L +.57608 .21525 L +.57971 .2113 L +.5834 .20734 L +.58716 .20336 L +.59099 .19935 L +.5949 .19533 L +.59888 .19129 L +.60294 .18723 L +.60709 .18315 L +.61133 .17906 L +.61564 .17496 L +.62005 .17085 L +.62454 .16673 L +.62912 .16261 L +.63379 .15849 L +.63854 .15438 L +.64338 .15027 L +.6483 .14618 L +.6533 .14211 L +.65839 .13807 L +.66355 .13405 L +.66879 .13008 L +.6741 .12614 L +.67947 .12226 L +.68491 .11843 L +.69042 .11466 L +.69598 .11097 L +.70159 .10735 L +.70725 .10381 L +.71296 .10037 L +.7187 .09703 L +.72448 .09379 L +.73028 .09067 L +.73611 .08767 L +.74196 .0848 L +.74781 .08207 L +.75368 .07949 L +.75955 .07705 L +.76541 .07478 L +.77127 .07267 L +.77711 .07073 L +Mistroke +.78292 .06898 L +.78872 .06741 L +.79448 .06604 L +.8002 .06486 L +.80588 .06389 L +.81152 .06313 L +.8171 .06258 L +.82262 .06225 L +.82809 .06215 L +.83348 .06228 L +.8388 .06263 L +.84404 .06322 L +.8492 .06405 L +.85428 .06512 L +.85927 .06643 L +.86416 .06798 L +.86895 .06978 L +.87364 .07182 L +.87823 .0741 L +.8827 .07663 L +.88707 .07939 L +.89132 .0824 L +.89544 .08565 L +.89945 .08913 L +.90333 .09284 L +.90709 .09679 L +.91072 .10095 L +.91421 .10534 L +.91757 .10994 L +.92079 .11475 L +.92388 .11977 L +.92682 .12498 L +.92963 .13038 L +.93229 .13596 L +.9348 .14172 L +.93717 .14764 L +.93939 .15373 L +.94147 .15996 L +.94339 .16633 L +.94516 .17283 L +.94679 .17945 L +.94826 .18619 L +.94957 .19302 L +.95074 .19995 L +.95175 .20695 L +.9526 .21402 L +.9533 .22115 L +.95384 .22832 L +.95423 .23553 L +.95447 .24276 L +Mistroke +.95455 .25 L +.95447 .25724 L +.95423 .26447 L +.95384 .27168 L +.9533 .27885 L +.9526 .28598 L +.95175 .29305 L +.95074 .30005 L +.94957 .30698 L +.94826 .31381 L +.94679 .32055 L +.94516 .32717 L +.94339 .33367 L +.94147 .34004 L +.93939 .34627 L +.93717 .35236 L +.9348 .35828 L +.93229 .36404 L +.92963 .36962 L +.92682 .37502 L +.92388 .38023 L +.92079 .38525 L +.91757 .39006 L +.91421 .39466 L +.91072 .39905 L +.90709 .40321 L +.90333 .40716 L +.89945 .41087 L +.89544 .41435 L +.89132 .4176 L +.88707 .42061 L +.8827 .42337 L +.87823 .4259 L +.87364 .42818 L +.86895 .43022 L +.86416 .43202 L +.85927 .43357 L +.85428 .43488 L +.8492 .43595 L +.84404 .43678 L +.8388 .43737 L +.83348 .43772 L +.82809 .43785 L +.82262 .43775 L +.8171 .43742 L +.81152 .43687 L +.80588 .43611 L +.8002 .43514 L +.79448 .43396 L +.78872 .43259 L +Mistroke +.78292 .43102 L +.77711 .42927 L +.77127 .42733 L +.76541 .42522 L +.75955 .42295 L +.75368 .42051 L +.74781 .41793 L +.74196 .4152 L +.73611 .41233 L +.73028 .40933 L +.72448 .40621 L +.7187 .40297 L +.71296 .39963 L +.70725 .39619 L +.70159 .39265 L +.69598 .38903 L +.69042 .38534 L +.68491 .38157 L +.67947 .37774 L +.6741 .37386 L +.66879 .36992 L +.66355 .36595 L +.65839 .36193 L +.6533 .35789 L +.6483 .35382 L +.64338 .34973 L +.63854 .34562 L +.63379 .34151 L +.62912 .33739 L +.62454 .33327 L +.62005 .32915 L +.61564 .32504 L +.61133 .32094 L +.60709 .31685 L +.60294 .31277 L +.59888 .30871 L +.5949 .30467 L +.59099 .30065 L +.58716 .29664 L +.5834 .29266 L +.57971 .2887 L +.57608 .28475 L +.57251 .28083 L +.569 .27693 L +.56553 .27304 L +.56211 .26917 L +.55873 .26531 L +.55538 .26147 L +.55205 .25764 L +.54875 .25382 L +Mistroke +.54545 .25 L +.54217 .24619 L +.53888 .24237 L +.53558 .23856 L +.53226 .23474 L +.52892 .23092 L +.52555 .22708 L +.52214 .22323 L +.51868 .21937 L +.51517 .21549 L +.51161 .21158 L +.50797 .20766 L +.50426 .20371 L +.50048 .19974 L +.49661 .19574 L +.49264 .19172 L +.48859 .18766 L +.48443 .18358 L +.48017 .17947 L +.4758 .17533 L +.47133 .17117 L +.46674 .16699 L +.46203 .16278 L +.45722 .15856 L +.45229 .15432 L +.44724 .15007 L +.44208 .14581 L +.43682 .14156 L +.43144 .13731 L +.42597 .13308 L +.4204 .12886 L +.41473 .12468 L +.40898 .12053 L +.40316 .11643 L +.39726 .11238 L +.3913 .1084 L +.3853 .1045 L +.37925 .10069 L +.37317 .09698 L +.36708 .09338 L +.36098 .08991 L +.35489 .08658 L +.34882 .0834 L +.34279 .08039 L +.3368 .07756 L +.33088 .07493 L +.32503 .0725 L +.31928 .07029 L +.31362 .06832 L +.30809 .06659 L +Mistroke +.30268 .06512 L +.29741 .06393 L +.2923 .06302 L +.28735 .0624 L +.28257 .06208 L +.27798 .06208 L +.27356 .0624 L +.26935 .06304 L +.26532 .06402 L +.26149 .06533 L +.25786 .06698 L +.25442 .06897 L +.25117 .07129 L +.2481 .07395 L +.2452 .07693 L +.24246 .08024 L +.23986 .08386 L +.23739 .08778 L +.23502 .09198 L +.23273 .09646 L +.23051 .1012 L +.22831 .10617 L +.22612 .11135 L +.2239 .11672 L +.22163 .12225 L +.21925 .12793 L +.21675 .1337 L +.2141 .13956 L +.21124 .14546 L +.20817 .15138 L +.20485 .15727 L +.20125 .16312 L +.19736 .16889 L +.19315 .17454 L +.18864 .18006 L +.18382 .18542 L +.17871 .19059 L +.17333 .19555 L +.16774 .20031 L +.162 .20484 L +.15619 .20916 L +.15042 .21328 L +.14484 .21721 L +.13962 .221 L +.13496 .2247 L +.13111 .22837 L +.12838 .23209 L +.1271 .23597 L +.12768 .24014 L +.13059 .24476 L +Mistroke +.13636 .25 L +Mfstroke +0 0 1 r +.13636 .25 m +.18182 .3125 L +.27273 .4375 L +.45455 .34375 L +.54545 .25 L +.63636 .15625 L +.81818 .0625 L +.95455 .25 L +.81818 .4375 L +.63636 .34375 L +.54545 .25 L +.45455 .15625 L +.27273 .0625 L +.18182 .1875 L +.13636 .25 L +s +5 Mabswid +.13636 .25 Mdot +.18182 .3125 Mdot +.27273 .4375 Mdot +.45455 .34375 Mdot +.54545 .25 Mdot +.63636 .15625 Mdot +.81818 .0625 Mdot +.95455 .25 Mdot +.81818 .4375 Mdot +.63636 .34375 Mdot +.54545 .25 Mdot +.45455 .15625 Mdot +.27273 .0625 Mdot +.18182 .1875 Mdot +.13636 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{725, 362.5}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`030000o`3oool0 +oooo0180oooo0P00o`000`3oool0ObXZ07lZ:P040?ooo`80o`00Q`3oool00:D0oooo0P1o:RX>0?oo +o`040?l0003oool0oooo003o00H0oooo00<0003o0?ooo`3oool03`3oool20000oa80oooo0`3o0000 +101o:RX00?l0003o0000o`2;0?ooo`030000003oool0oooo08X0oooo0`1o:RX4003o00<0o`003P3o +ool20000oa40oooo00<0003o0?ooo`3oool04`3oool2003o00030?ooo`1o:RX0ObXZ00@0oooo0P3o +00250?ooo`00X`3oool207lZ:Pl0oooo00@0o`000?ooo`3oool00?l01P3oool00`000?l0oooo0?oo +o`0B0?ooo`80003o4`3oool20?l000030?ooo`1o:RX00?l000800?l0R03oool00`000000oooo0?oo +o`280?ooo`80ObXZ0`00o`020?ooo`80o`003`3oool20000oa@0oooo00<0003o0?ooo`3oool0503o +ool00`00o`00oooo0?ooo`0207lZ:P@0oooo0P3o00230?ooo`00X@3oool207lZ:Q00oooo00@0o`00 +0?ooo`3oool00?l01`3oool00`000?l0oooo0?ooo`0D0?ooo`80003o4`3oool20?l00080oooo00<0 +ObXZ003o0000o`00QP3oool4000008D0oooo0P1o:RX2003o0080oooo0`3o000?0?ooo`80003o5`3o +ool00`000?l0oooo0?ooo`0D0?ooo`800?l00P3oool207lZ:P@0oooo0P3o00210?ooo`00W`3oool2 +07lZ:Q40oooo00@0o`000?ooo`3oool00?l01`3oool00`000?l0oooo0?ooo`0G0?ooo`80003o4`3o +ool30?l000030?ooo`1o:RX00?l008D0oooo00<000000?ooo`3oool0Q03oool207lZ:P800?l000@0 +oooo0?l0003o0000o`00403oool20000oaT0oooo00<0003o0?ooo`3oool05P3oool2003o0080oooo +0P1o:RX40?ooo`030?l0003oool0oooo07h0oooo002M0?ooo`80ObXZ4P3oool0103o0000oooo0?oo +o`00o`070?ooo`030000o`3oool0oooo01X0oooo0P000?lD0?ooo`80o`0000<0ObXZ003o0000o`00 +P`3oool00`000000oooo0?ooo`220?ooo`80ObXZ0P00o`000`3oool0o`000?l0000A0?ooo`80003o +703oool00`000?l0oooo0?ooo`0G0?ooo`800?l00P3oool207lZ:P<0oooo0P3o001n0?ooo`00V`3o +ool207lZ:Q<0oooo00@0o`000?ooo`3oool00?l01`3oool00`000?l0oooo0?ooo`0M0?ooo`80003o +503oool20?l0000307lZ:P00o`000?l00840oooo00<000000?ooo`3oool0O`3oool207lZ:P<00?l0 +00<0oooo0?l0003o00004P3oool00`000?l0oooo0?ooo`0M0?ooo`030000o`3oool0oooo01P0oooo +0P00o`020?ooo`80ObXZ0`3oool00`3o0000oooo0?ooo`1k0?ooo`00V@3oool207lZ:Q@0oooo00@0 +o`000?ooo`3oool00?l0203oool00`000?l0oooo0?ooo`0O0?ooo`80003o503oool20?l000030?oo +o`00o`000?l007l0oooo00<000000?ooo`3oool0O@3oool01@1o:RX00?l0003o0000o`00oooo00<0 +o`004P3oool20000ob00oooo00<0003o0?ooo`3oool06P3oool01000o`00oooo0?ooo`3oool207lZ +:P80oooo0P3o001k0?ooo`00V03oool00`1o:RX0oooo0?ooo`0D0?ooo`030?l0003oool00?l000P0 +oooo00<0003o0?ooo`3oool08P3oool20000oa@0oooo0P3o00000`3oool00?l0003o001m0?ooo`03 +0000003oool0oooo07/0oooo00<0ObXZ003o0000o`000P3oool20?l001<0oooo0P000?lS0?ooo`03 +0000o`3oool0oooo01X0oooo0P00o`030?ooo`0507lZ:P3oool0oooo0?ooo`3o0000NP3oool009P0 +oooo00<0ObXZ0?ooo`3oool04`3oool00`3o0000oooo003o00080?ooo`030000o`3oool0oooo02D0 +oooo00<0003o0?ooo`3oool04`3oool20?l000030?ooo`00o`000?l007/0oooo00<000000?ooo`3o +ool0N@3oool207lZ:P03003o003oool0oooo0080o`004`3oool20000obH0oooo00<0003o0?ooo`3o +ool06`3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo0P3o001h0?ooo`00UP3oool207lZ:QH0 +oooo00<0o`00003o003oool01`3oool00`000?l0oooo0?ooo`0W0?ooo`80003o5@3oool20?l00003 +0?ooo`00o`000?l007T0oooo00<000000?ooo`3oool0M`3oool207lZ:P800?l000<0oooo0?l0003o +00004`3oool20000obT0oooo00<0003o0?ooo`3oool06`3oool2003o0080oooo00<0ObXZ0?ooo`3o +ool00P3oool00`3o0000oooo0?ooo`1e0?ooo`00U@3oool00`1o:RX0oooo0?ooo`0E0?ooo`030?l0 +003oool00?l000P0oooo00<0003o0?ooo`3oool0:@3oool20000oaD0oooo0P3o00000`3oool00?l0 +07lZ:P1g0?ooo`@00000M03oool207lZ:P800?l000<0oooo0?l0003o00004`3oool20000ob/0oooo +00<0003o0?ooo`3oool07@3oool01000o`00oooo0?ooo`1o:RX40?ooo`030?l0003oool0oooo07@0 +oooo002D0?ooo`0307lZ:P3oool0oooo01H0oooo00<0o`00003o003oool01`3oool00`000?l0oooo +0?ooo`0/0?ooo`80003o5@3oool20?l000800?l000<0ObXZ0?ooo`3oool0L`3oool00`000000oooo +0?ooo`1c0?ooo`80ObXZ0P00o`000`3oool0o`000?l0000C0?ooo`80003o;P3oool00`000?l0oooo +0?ooo`0M0?ooo`04003o003oool0oooo07lZ:P@0oooo00<0o`000?ooo`3oool0L`3oool00980oooo +0P1o:RXH0?ooo`030?l0003oool00?l000L0oooo00<0003o0?ooo`3oool0;`3oool20000oaD0oooo +00<0o`000?ooo`00o`000P1o:RYc0?ooo`030000003oool0oooo0780oooo00@0ObXZ003o0000o`00 +oooo0P3o000C0?ooo`80003o<@3oool00`000?l0oooo0?ooo`0M0?ooo`03003o003oool0oooo0080 +ObXZ0`3oool20?l007<0oooo002A0?ooo`0307lZ:P3oool0oooo01P0oooo00<0o`00003o003oool0 +1`3oool00`000?l0oooo0?ooo`0a0?ooo`80003o503oool20?l000800?l00P1o:RYa0?ooo`030000 +003oool0oooo0700oooo0P1o:RX01000o`00oooo0?l0003o000C0?ooo`80003o<`3oool00`000?l0 +oooo0?ooo`0N0?ooo`05003o003oool0oooo0?ooo`1o:RX0103oool00`3o0000oooo0?ooo`1`0?oo +o`00T03oool00`1o:RX0oooo0?ooo`0H0?ooo`030?l0003oool00?l000L0oooo00<0003o0?ooo`3o +ool0=03oool20000oa@0oooo00D0o`000?ooo`00o`000?l007lZ:P1`0?ooo`030000003oool0oooo +06h0oooo0P1o:RX2003o0080o`004`3oool20000ocH0oooo00<0003o0?ooo`3oool07P3oool01@00 +o`00oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?ooo`3oool0K`3oool008l0oooo00<0ObXZ0?oo +o`3oool06@3oool00`3o00000?l00?ooo`060?ooo`030000o`3oool0oooo03L0oooo0P000?lC0?oo +o`80o`0000@0oooo003o001o:RX0ObXZKP3oool00`000000oooo0?ooo`1/0?ooo`80ObXZ00@0oooo +003o003o0000o`004`3oool20000ocT0oooo00<0003o0?ooo`3oool07P3oool01@00o`00oooo0?oo +o`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0K`3oool008h0oooo00<0ObXZ0?ooo`3oool06@3o +ool00`3o0000oooo003o00060?ooo`030000o`3oool0oooo03X0oooo0P000?lC0?ooo`80o`000P00 +o`0207lZ:V`0oooo00<000000?ooo`3oool0JP3oool207lZ:P040?ooo`00o`000?l00?l001<0oooo +0P000?ll0?ooo`030000o`3oool0oooo01h0oooo00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`03 +0?l0003oool0oooo06h0oooo002=0?ooo`0307lZ:P3oool0oooo01X0oooo00<0o`00003o003oool0 +1P3oool00`000?l0oooo0?ooo`0l0?ooo`80003o4`3oool20?l00004003o003oool0ObXZ07lZ:VX0 +oooo00<000000?ooo`3oool0J03oool207lZ:P030?ooo`00o`000?l00080o`004P3oool20000och0 +oooo00<0003o0?ooo`3oool07`3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?oo +o`3oool0K@3oool008`0oooo00<0ObXZ0?ooo`3oool06P3oool00`3o00000?l00?ooo`060?ooo`03 +0000o`3oool0oooo03l0oooo0P000?lC0?ooo`80o`0000<00?l00?ooo`1o:RX0J@3oool4000006H0 +oooo00@0ObXZ0?ooo`00o`000?l00P3o000C0?ooo`030000o`3oool0oooo03l0oooo00<0003o0?oo +o`3oool07`3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0K03oool0 +08/0oooo00<0ObXZ0?ooo`3oool06`3oool00`3o00000?l00?ooo`050?ooo`030000o`3oool0oooo +0480oooo0P000?lC0?ooo`030?l00000o`000?l00080ObXZI`3oool00`000000oooo0?ooo`1V0?oo +o`0507lZ:P3oool00?l00?ooo`3o00004`3oool20000od<0oooo00<0003o0?ooo`3oool07`3oool0 +1@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0J`3oool008X0oooo00<0ObXZ +0?ooo`3oool06`3oool00`3o00000?l00?ooo`060?ooo`030000o`3oool0oooo04@0oooo0P000?lB +0?ooo`80o`0000<00?l00?ooo`1o:RX0IP3oool00`000000oooo0?ooo`1U0?ooo`0307lZ:P3oool0 +0?l00080o`004P3oool20000odH0oooo00<0003o0?ooo`3oool07`3oool01@00o`00oooo0?ooo`3o +ool0ObXZ00<0oooo00<0o`000?ooo`3oool0JP3oool008T0oooo00<0ObXZ0?ooo`3oool0703oool0 +0`3o0000oooo0?ooo`050?ooo`030000o`3oool0oooo04L0oooo0P000?lB0?ooo`040?l00000o`00 +0?l007lZ:VD0oooo00<000000?ooo`3oool0H`3oool207lZ:P800?l000<0o`000?ooo`3oool0403o +ool20000odP0oooo00<0003o0?ooo`3oool0803oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo +00<0o`000?ooo`3oool0JP3oool008P0oooo00<0ObXZ0?ooo`3oool0703oool00`3o00000?l00?oo +o`050?ooo`030000o`3oool0oooo04X0oooo0P000?lA0?ooo`040?l0003oool00?l007lZ:V@0oooo +00<000000?ooo`3oool0HP3oool00`1o:RX0oooo003o00020?l00140oooo0P000?m;0?ooo`030000 +o`3oool0oooo0200oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo06T0 +oooo00270?ooo`0307lZ:P3oool0oooo01d0oooo00<0o`000?ooo`3oool0103oool00`000?l0oooo +0?ooo`1=0?ooo`80003o403oool20?l00003003o001o:RX0ObXZ0680oooo00<000000?ooo`3oool0 +H03oool207lZ:P03003o003o0000o`000140oooo0P000?m>0?ooo`030000o`3oool0oooo0200oooo +00@00?l00?ooo`3oool0ObXZ0`3oool00`3o0000oooo0?ooo`1X0?ooo`00Q`3oool00`1o:RX0oooo +0?ooo`0L0?ooo`030?l0003oool0oooo00D0oooo00<0003o0?ooo`3oool0C`3oool00`000?l0oooo +0?ooo`0?0?ooo`030?l00000o`000?l00080ObXZH03oool00`000000oooo0?ooo`1N0?ooo`80ObXZ +00<00?l00?l0003o00004@3oool20000oe00oooo00<0003o0?ooo`3oool08@3oool01000o`00oooo +0?ooo`1o:RX20?ooo`030?l0003oool0oooo06P0oooo00260?ooo`0307lZ:P3oool0oooo01d0oooo +00<0o`000?ooo`3oool0103oool00`000?l0oooo0?ooo`1A0?ooo`80003o403oool20?l00004003o +003oool0ObXZ07lZ:Uh0oooo00<000000?ooo`3oool0G03oool207lZ:P030?ooo`00o`00o`000140 +oooo0P000?mC0?ooo`030000o`3oool0oooo0200oooo00D00?l00?ooo`3oool0oooo07lZ:P020?oo +o`030?l0003oool0oooo06L0oooo00250?ooo`0307lZ:P3oool0oooo01d0oooo00<0o`000?ooo`3o +ool0103oool00`000?l0oooo0?ooo`1D0?ooo`80003o403oool20?l00004003o003oool0ObXZ07lZ +:U`0oooo1000001I0?ooo`80ObXZ0P3oool00`00o`00o`000?ooo`0?0?ooo`80003oEP3oool00`00 +0?l0oooo0?ooo`0P0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1V +0?ooo`00Q03oool00`1o:RX0oooo0?ooo`0N0?ooo`030?l0003oool0oooo00@0oooo00<0003o0?oo +o`3oool0EP3oool20000oa00oooo00D0o`00003o0000o`00oooo07lZ:P1K0?ooo`030000003oool0 +oooo05T0oooo00@0ObXZ0?ooo`3oool0oooo0P3o000?0?ooo`80003oF@3oool00`000?l0oooo0?oo +o`0P0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0IP3oool008@0oooo00<0 +ObXZ0?ooo`3oool07@3oool00`3o0000oooo0?ooo`040?ooo`030000o`3oool0oooo05T0oooo0P00 +0?l?0?ooo`80o`0000@00?l00?ooo`1o:RX0ObXZF@3oool00`000000oooo0?ooo`1H0?ooo`0507lZ +:P3oool0oooo003o003o00003`3oool20000oe/0oooo00<0003o0?ooo`3oool08@3oool01000o`00 +oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06D0oooo00230?ooo`0307lZ:P3oool0oooo01h0 +oooo00<0o`000?ooo`3oool00`3oool00`000?l0oooo0?ooo`1L0?ooo`80003o3`3oool01@3o0000 +0?l0003o003oool0ObXZ05P0oooo00<000000?ooo`3oool0E`3oool00`1o:RX0oooo003o00020?l0 +00h0oooo0P000?mN0?ooo`030000o`3oool0oooo0240oooo00@00?l00?ooo`3oool0ObXZ0P3oool0 +0`3o0000oooo0?ooo`1T0?ooo`00PP3oool00`1o:RX0oooo0?ooo`0N0?ooo`03003o003o0000oooo +00<0oooo00<0003o0?ooo`3oool0G`3oool20000o`h0oooo00D0o`000?ooo`00o`00oooo07lZ:P1G +0?ooo`030000003oool0oooo05D0oooo0P1o:RX00`3oool00?l00?l0000?0?ooo`030000o`3oool0 +oooo05l0oooo00<0003o0?ooo`3oool08@3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l006H0oooo +00210?ooo`0307lZ:P3oool0oooo01l0oooo00<0o`000?ooo`3oool00`3oool00`000?l0oooo0?oo +o`1Q0?ooo`80003o3@3oool20?l00003003o003oool0ObXZ05H0oooo00<000000?ooo`3oool0E03o +ool01@1o:RX0oooo003o0000o`00o`0000h0oooo0P000?mR0?ooo`030000o`3oool0oooo0240oooo +00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1S0?ooo`00P@3oool00`1o:RX0oooo +0?ooo`0N0?ooo`03003o003o0000oooo00<0oooo00<0003o0?ooo`3oool0I03oool20000o`d0oooo +00@0o`00003o0000o`00ObXZB03oool4000000T0oooo00<000000?ooo`3oool0D`3oool00`1o:RX0 +oooo003o00020?l000d0oooo0P000?mU0?ooo`030000o`3oool0oooo0240oooo00@00?l00?ooo`3o +ool0ObXZ0P3oool00`3o0000oooo0?ooo`1R0?ooo`00P03oool00`1o:RX0oooo0?ooo`0N0?ooo`03 +003o003oool0o`0000<0oooo00<0003o0?ooo`3oool0I`3oool20000o``0oooo0P3o00000`00o`00 +ObXZ07lZ:P160?ooo`030000003oool0oooo00X0oooo00<000000?ooo`3oool0DP3oool0101o:RX0 +0?l0003o003o000=0?ooo`80003oJ03oool00`000?l0oooo0?ooo`0Q0?ooo`03003o003oool0ObXZ +0080oooo00<0o`000?ooo`3oool0HP3oool00800oooo00<0ObXZ0?ooo`3oool07P3oool00`00o`00 +o`000?ooo`020?ooo`030000o`3oool0oooo06X0oooo0P000?l<0?ooo`040?l00000o`00oooo07lZ +:TH0oooo00<000000?ooo`3oool02@3oool5000004l0oooo00@0ObXZ003o003o0000o`00303oool2 +0000of/0oooo00<0003o0?ooo`3oool0803oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003o +ool0oooo0640oooo001o0?ooo`0307lZ:P3oool0oooo01h0oooo00<00?l00?ooo`3o00000`3oool0 +0`000?l0oooo0?ooo`1/0?ooo`80003o2`3oool0103o00000?l0003o001o:RXn0?ooo`@00000103o +ool00`000000oooo0?ooo`080?ooo`030000003oool0oooo0500oooo00<0ObXZ0?l0003o0000303o +ool20000ofd0oooo00<0003o0?ooo`3oool08@3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l006<0 +oooo001o0?ooo`0307lZ:P3oool0oooo01h0oooo00<00?l00?l0003oool00P3oool00`000?l0oooo +0?ooo`1_0?ooo`80003o2P3oool20?l00003003o001o:RX0oooo0480oooo00@000000?ooo`3oool0 +00002@3oool00`000000oooo0?ooo`1>0?ooo`0307lZ:P00o`00o`0000`0oooo0P000?m`0?ooo`03 +0000o`3oool0oooo0200oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1P0?oo +o`00OP3oool00`1o:RX0oooo0?ooo`0N0?ooo`03003o003oool0o`000080oooo00<0003o0?ooo`3o +ool0LP3oool20000o`X0oooo00<0o`00003o001o:RX0@`3oool2000000X0oooo00<000000?ooo`3o +ool0C@3oool00`1o:RX00?l00?l0000;0?ooo`80003oL`3oool00`000?l0oooo0?ooo`0P0?ooo`06 +003o003oool0oooo07lZ:P3oool0o`00HP3oool007d0oooo00<0ObXZ0?ooo`3oool07`3oool00`00 +o`00o`000?ooo`020?ooo`030000o`3oool0oooo07@0oooo0P000?l90?ooo`030?l00000o`00ObXZ +04h0oooo00<000000?ooo`3oool0C03oool00`1o:RX00?l00?l0000:0?ooo`80003oMP3oool00`00 +0?l0oooo0?ooo`0O0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0G`3oool0 +07d0oooo00<0ObXZ0?ooo`3oool07P3oool00`00o`00oooo0?l000020?ooo`030000o`3oool0oooo +07L0oooo00<0003o0?ooo`3oool01`3oool20?l0000307lZ:P3oool0oooo04/0oooo00<000000?oo +o`3oool0B`3oool00`1o:RX0o`000?l000090?ooo`80003oN03oool00`000?l0oooo0?ooo`0P0?oo +o`06003o003oool0oooo07lZ:P3oool0o`00H@3oool007`0oooo00<0ObXZ0?ooo`3oool07`3oool0 +1@00o`00oooo0?l0003oool0003o07/0oooo0P000?l90?ooo`030?l0001o:RX0ObXZ04/0oooo00<0 +00000?ooo`3oool0BP3oool00`1o:RX0o`000?ooo`080?ooo`80003oN`3oool00`000?l0oooo0?oo +o`0P0?ooo`03003o003oool0ObXZ0080oooo00<0o`000?ooo`3oool0GP3oool007`0oooo00<0ObXZ +0?ooo`3oool07P3oool01@00o`00oooo0?l0003oool0003o07h0oooo0P000?l80?ooo`030?l00000 +o`00ObXZ04X0oooo00<000000?ooo`3oool0B@3oool00`1o:RX0o`000?ooo`070?ooo`80003oOP3o +ool00`000?l0oooo0?ooo`0O0?ooo`06003o003oool0oooo07lZ:P3oool0o`00H03oool007/0oooo +00<0ObXZ0?ooo`3oool07`3oool01@00o`00oooo0?l0003oool0003o0800oooo0P000?l70?ooo`03 +0?l00000o`00ObXZ04T0oooo00<000000?ooo`3oool0A`3oool00`1o:RX0o`000?l000070?ooo`80 +003oP03oool00`000?l0oooo0?ooo`0P0?ooo`03003o003oool0ObXZ0080oooo00<0o`000?ooo`3o +ool0G@3oool007/0oooo00<0ObXZ0?ooo`3oool07`3oool01000o`00o`000?ooo`000?n30?ooo`80 +003o1P3oool00`3o00000?l007lZ:P180?ooo`@00000A@3oool00`1o:RX0o`000?ooo`070?ooo`03 +0000o`3oool0oooo0840oooo00<0003o0?ooo`3oool0803oool01@00o`00oooo07lZ:P3oool0o`00 +05l0oooo001k0?ooo`0307lZ:P3oool0oooo01h0oooo00@00?l00?ooo`3o0000003oQP3oool20000 +o`D0oooo0P3o00000`00o`00oooo0?ooo`150?ooo`030000003oool0oooo04D0oooo00<00?l00?l0 +003oool01P3oool20000ohD0oooo00<0003o0?ooo`3oool07`3oool01P00o`00oooo0?ooo`1o:RX0 +oooo0?l005h0oooo001j0?ooo`0307lZ:P3oool0oooo01l0oooo00@00?l00?l0003oool0003oR03o +ool20000o`D0oooo0P3o00160?ooo`030000003oool0oooo04@0oooo00<00?l00?l0003oool01@3o +ool20000ohP0oooo00<0003o0?ooo`3oool07`3oool01@00o`00oooo07lZ:P3oool0o`0005h0oooo +001j0?ooo`0307lZ:P3oool0oooo01h0oooo00@00?l00?ooo`3o0000003oR`3oool20000o`D0oooo +00<0o`000?ooo`3oool0@`3oool00`000000oooo0?ooo`130?ooo`03003o003o0000oooo00@0oooo +0P000?n:0?ooo`030000o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0ObXZ0?l0001N0?ooo`00 +N@3oool00`1o:RX0oooo0?ooo`0N0?ooo`04003o003oool0o`000000ohh0oooo0P000?l40?ooo`03 +0?l0001o:RX0oooo0480oooo00<000000?ooo`3oool0@P3oool20?l000@0oooo0P000?n=0?ooo`03 +0000o`3oool0oooo01l0oooo00D00?l00?ooo`1o:RX0oooo0?l0001M0?ooo`00N@3oool00`1o:RX0 +oooo0?ooo`0N0?ooo`03003o003oool0003o0940oooo0P000?l30?ooo`030?l0001o:RX0oooo0440 +oooo00<000000?ooo`3oool0@03oool00`1o:RX0o`000?ooo`030?ooo`80003oT03oool00`000?l0 +oooo0?ooo`0N0?ooo`05003o003oool0oooo07lZ:P3o0000G@3oool007T0oooo00<0ObXZ0?ooo`3o +ool07@3oool01000o`00oooo0?l000000?nC0?ooo`80003o0P3oool00`3o0000ObXZ0?ooo`100?oo +o`030000003oool0oooo03l0oooo00<0ObXZ0?l0003oool00P3oool20000oi<0oooo00<0003o0?oo +o`3oool07P3oool01@00o`00oooo07lZ:P3oool0o`0005`0oooo001h0?ooo`0307lZ:P3oool0oooo +01h0oooo00<00?l00?ooo`000?l0UP3oool20000o`030?ooo`3o0000o`000400oooo00<000000?oo +o`3oool0?P3oool20?l00080oooo0P000?nE0?ooo`030000o`3oool0oooo01h0oooo00D00?l00?oo +o`3oool0ObXZ0?l0001L0?ooo`00N03oool00`1o:RX0oooo0?ooo`0M0?ooo`03003o003oool0003o +09T0oooo0P000?l00`3oool0o`000?ooo`0n0?ooo`@00000?03oool00`3o0000oooo0?ooo`020000 +oiP0oooo00<0003o0?ooo`3oool07@3oool01@00o`00oooo0?ooo`1o:RX0o`0005`0oooo001g0?oo +o`0307lZ:P3oool0oooo01h0oooo00<00?l00?ooo`000?l0V`3oool20000o`030?l0003oool0oooo +03`0oooo00<000000?ooo`3oool0?03oool0103o0000oooo0000o`000?nK0?ooo`030000o`3oool0 +oooo01d0oooo00D00?l00?ooo`1o:RX0oooo0?l0001K0?ooo`00MP3oool00`1o:RX0oooo0?ooo`0N +0?ooo`03003o003oool0003o09h0oooo0P000?l0103oool0003o0000o`000?li0?ooo`030000003o +ool0oooo03P0oooo0`000?l00`3o0000003o0000o`2M0?ooo`030000o`3oool0oooo01d0oooo00D0 +0?l00?ooo`3oool0ObXZ0?l0001K0?ooo`00MP3oool00`1o:RX0oooo0?ooo`0M0?ooo`04003o003o +ool0003o0?l00:00oooo1@000?lh0?ooo`030000003oool0oooo03L0oooo1@000?nP0?ooo`030000 +o`3oool0oooo01d0oooo00@00?l00?ooo`1o:RX0o`00F`3oool007H0oooo00<0ObXZ0?ooo`3oool0 +7@3oool00`00o`00003o0?l0002Q0?ooo`D0003o>03oool00`000000oooo0?ooo`0g0?ooo`D0003o +X@3oool00`000?l0oooo0?ooo`0L0?ooo`05003o003oool0oooo07lZ:P3o0000FP3oool007H0oooo +00<0ObXZ0?ooo`3oool0703oool01000o`00oooo0000o`3o002Q0?ooo`D0003o>03oool00`000000 +oooo0?ooo`0g0?ooo`D0003oXP3oool00`000?l0oooo0?ooo`0L0?ooo`04003o003oool0ObXZ0?l0 +05X0oooo001e0?ooo`0307lZ:P3oool0oooo01d0oooo00<00?l00000o`3o0000X`3oool40000ocP0 +oooo00<000000?ooo`3oool0=P3oool00`3o0000003o0000o`020000oj<0oooo00<0003o0?ooo`3o +ool0703oool01@00o`00oooo0?ooo`1o:RX0o`0005T0oooo001e0?ooo`0307lZ:P3oool0oooo01`0 +oooo00<00?l00000o`3o0000Z03oool00`000?l0oooo0?ooo`0e0?ooo`030000003oool0oooo03D0 +oooo00<0o`000000o`3oool0Y`3oool00`000?l0oooo0?ooo`0L0?ooo`04003o003oool0ObXZ0?l0 +05T0oooo001e0?ooo`0307lZ:P3oool0oooo01`0oooo00<00?l00000o`3oool0Z@3oool00`000?l0 +oooo0?ooo`0d0?ooo`@00000<`3oool00`3o0000003o0?ooo`2Y0?ooo`030000o`3oool0oooo01/0 +oooo00@00?l00?ooo`1o:RX0o`00F@3oool007@0oooo00<0ObXZ0?ooo`3oool0703oool00`00o`00 +003o0?ooo`2[0?ooo`030000o`3oool0oooo03<0oooo00<000000?ooo`3oool0<`3oool00`3o0000 +003o0?ooo`2Z0?ooo`030000o`3oool0oooo01`0oooo00@00?l00?ooo`1o:RX0o`00F03oool007@0 +oooo00<0ObXZ0?ooo`3oool06`3oool00`00o`00003o0?l0002]0?ooo`030000o`3o0000oooo0380 +oooo00<000000?ooo`3oool00?ooo`03003o003o0000 +oooo0580oooo001]0?ooo`0307lZ:P3oool0oooo00T0oooo0P3o00001@3oool00?l00?ooo`3oool0 +003o0=d0oooo00<0003o003o003o00005`3oool00`000000oooo0?ooo`0E0?ooo`040?l0003oool0 +ObXZ0000om`0oooo00<0003o0?ooo`3oool03P3oool00`00o`00o`000?ooo`1B0?ooo`00K@3oool0 +0`1o:RX0oooo0?ooo`080?ooo`040?l0003oool0oooo003o0080oooo00<0003o0?ooo`3oool0g@3o +ool00`000?l00?l00?l0000F0?ooo`030000003oool0oooo01D0oooo00<0o`0007lZ:P000?l0gP3o +ool00`000?l0oooo0?ooo`0>0?ooo`030?l0003oool0oooo0540oooo001]0?ooo`0307lZ:P3oool0 +oooo00H0oooo0P3o00020?ooo`04003o003oool0oooo0000on40oooo00<0003o0?ooo`3o00005@3o +ool00`000000oooo0?ooo`0D0?ooo`030?l0001o:RX0003o0>00oooo00<0003o0?ooo`3oool03@3o +ool00`00o`00o`000?ooo`1A0?ooo`00K03oool00`1o:RX0oooo0?ooo`050?ooo`80o`000`3oool0 +1@00o`00oooo0?ooo`3oool0003o0>80oooo00<0003o0?ooo`3o0000503oool400000180oooo00<0 +o`0007lZ:P000?l0hP3oool00`000?l0oooo0?ooo`0<0?ooo`03003o003o0000oooo0540oooo001/ +0?ooo`0307lZ:P3oool0oooo00@0oooo00<0o`000?ooo`3oool00P3oool01@00o`00oooo0?ooo`3o +ool0003o0>@0oooo00<0003o0?l0003oool04`3oool00`000000oooo0?ooo`0B0?ooo`030?l0003o +ool0003o0><0oooo00<0003o0?ooo`3oool0303oool00`00o`00o`000?ooo`1A0?ooo`00K03oool0 +0`1o:RX0oooo0?ooo`030?ooo`030?l0003oool0oooo00<0oooo00@00?l00?ooo`3oool0003oiP3o +ool00`000?l0o`000?ooo`0B0?ooo`030000003oool0oooo0140oooo00<0o`000?ooo`000?l0i@3o +ool00`000?l0oooo0?ooo`0<0?ooo`030?l0003oool0oooo0500oooo001/0?ooo`0307lZ:P3oool0 +oooo0080oooo00<0o`000?ooo`3oool00`3oool01000o`00oooo0?ooo`000?oX0?ooo`030000o`3o +0000o`000140oooo00<000000?ooo`3oool0403oool00`3o0000oooo0000o`3W0?ooo`030000o`3o +ool0oooo00/0oooo00<0o`000?ooo`3oool0D03oool006`0oooo00<0ObXZ0?ooo`3oool00P3o0005 +0?ooo`05003o003oool0oooo0?ooo`000?l0j03oool0101o:RX0003o003o003o000@0?ooo`030000 +003oool0oooo00l0oooo00<0o`000?ooo`000?l0j@3oool00`000?l0oooo0?ooo`0:0?ooo`030?l0 +003oool0oooo0500oooo001/0?ooo`0307lZ:P3o0000o`0000H0oooo00D00?l00?ooo`3oool0oooo +0000o`3Z0?ooo`0407lZ:P000?l00?l00?l000l0oooo00<000000?ooo`3oool03P3oool00`3o0000 +oooo0000o`3Z0?ooo`030000o`3oool0oooo00X0oooo00<0o`000?ooo`3oool0D03oool006`0oooo +00<0o`000?ooo`3oool01@3oool01@00o`00oooo0?ooo`3oool0003o0>`0oooo00<0ObXZ0000o`3o +00003`3oool00`000000oooo0?ooo`0>0?ooo`030?l000000?l0oooo0>/0oooo00<0003o0?ooo`3o +ool02@3oool00`3o0000oooo0?ooo`1@0?ooo`00J`3oool00`3o0000ObXZ0?ooo`050?ooo`05003o +003oool0oooo0?ooo`000?l0kP3oool00`1o:RX0003o0?l0000>0?ooo`030000003oool0oooo00d0 +oooo00<0o`000000o`3oool0k@3oool00`000?l0oooo0?ooo`080?ooo`030?l0003oool0oooo0500 +oooo000C0?ooo`<00000E03oool00`3o0000oooo07lZ:P060?ooo`05003o003oool0oooo0?ooo`00 +0?l0503oool300000780oooo1000001R0?ooo`0307lZ:P000?l0o`0000d0oooo1000000:0?ooo`80 +o`0000<0003o0?ooo`3oool0HP3oool4000007D0oooo0`00000?0?ooo`030000o`3oool0oooo00P0 +oooo00<00?l00?l0003oool0D03oool001<0oooo00@000000?ooo`3oool00000DP3oool0103o0000 +oooo0?ooo`1o:RX50?ooo`05003o003oool0oooo0?ooo`000?l05P3oool00`000000oooo0?ooo`1a +0?ooo`030000003oool0oooo06@0oooo00<0003o0?ooo`3o0000303oool00`000000oooo0?ooo`0: +0?ooo`030?l0003oool0003o06D0oooo00<000000?ooo`3oool0M`3oool00`000000oooo0?ooo`0? +0?ooo`030000o`3oool0oooo00L0oooo00<00?l00?l0003oool0D03oool001<0oooo00@000000?oo +o`3oool00000D@3oool01@3o0000oooo0?ooo`3oool0ObXZ00@0oooo00D00?l00?ooo`3oool0oooo +0000o`0D0?ooo`D00000L`3oool00`000000oooo0?ooo`1T0?ooo`030000o`3oool0o`0000/0oooo +00<000000?ooo`3oool02@3oool00`3o0000oooo0000o`1W0?ooo`030000003oool0oooo07<0oooo +1@00000A0?ooo`030000o`3oool0oooo00H0oooo00<00?l00?l0003oool0D03oool000d0oooo1000 +00020?ooo`<00000D@3oool00`3o0000oooo0?ooo`020?ooo`0507lZ:P3oool0oooo0?ooo`00o`00 +103oool00`000?l0oooo0?ooo`0<0?ooo`@000000P3oool010000000oooo0?ooo`00001]0?ooo`@0 +0000103oool00`000000oooo0?ooo`1T0?ooo`030000o`3o0000oooo00X0oooo00<000000?ooo`3o +ool02@3oool00`3o0000003o0?ooo`1X0?ooo`030000003oool0oooo0780oooo00@000000?ooo`3o +ool000004`3oool00`000?l0oooo0?ooo`060?ooo`030?l0003oool0oooo04l0oooo000D0?ooo`03 +0000003oool0oooo0500oooo00D0o`000?ooo`3oool0oooo07lZ:P030?ooo`03003o003oool0oooo +0080oooo00<0003o0?ooo`3oool0503oool00`000000oooo0000001c0?ooo`040000003oool0oooo +000006H0oooo00<0003o0?l0003oool02@3oool00`000000oooo0?ooo`080?ooo`030?l000000?l0 +oooo06L0oooo00@000000?ooo`3oool00000M03oool00`000000oooo0000000C0?ooo`030000o`3o +ool0oooo00H0oooo00<0o`000?ooo`3oool0C`3oool001@0oooo0`00001?0?ooo`030?l0003oool0 +oooo0080oooo00D0ObXZ0?ooo`3oool0oooo003o00030?ooo`030000o`3oool0oooo01H0oooo0P00 +001d0?ooo`800000J03oool00`000?l0o`000?ooo`080?ooo`030000003oool0oooo00L0oooo00<0 +o`000000o`3oool0J@3oool2000007H0oooo0P00000D0?ooo`030000o`3oool0oooo00D0oooo00<0 +o`000?ooo`3oool0C`3oool006D0oooo00<0o`000?ooo`3oool00`3oool0101o:RX0oooo0?ooo`00 +o`030?ooo`030000o`3oool0oooo0?P0oooo00<0003o0?l0003oool01`3oool00`000000oooo0?oo +o`060?ooo`030?l000000?l0oooo0?T0oooo00<0003o0?ooo`3oool0103oool00`3o0000oooo0?oo +o`1?0?ooo`00I@3oool00`3o0000oooo0?ooo`030?ooo`0407lZ:P3oool0oooo003o00<0oooo00<0 +003o0?ooo`3oool0n@3oool00`000?l0o`000?ooo`060?ooo`030000003oool0oooo00D0oooo00<0 +o`000000o`3oool0nP3oool00`000?l0oooo0?ooo`040?ooo`030?l0003oool0oooo04l0oooo001U +0?ooo`030?l0003oool0oooo00<0oooo00<0ObXZ0?ooo`00o`000`3oool00`000?l0oooo0?ooo`3k +0?ooo`030000o`3o0000oooo00D0oooo100000040?ooo`030000o`1o:RX0oooo0?/0oooo00<0003o +0?ooo`3oool00`3oool00`3o0000oooo0?ooo`1?0?ooo`00I@3oool00`3o0000oooo0?ooo`030?oo +o`0307lZ:P3oool00?l00080oooo00<0003o0?ooo`3oool0o@3oool00`000?l0o`000?ooo`040?oo +o`030000003oool0oooo00@0oooo00<0003o07lZ:P3oool0o@3oool00`000?l0oooo0?ooo`020?oo +o`030?l0003oool0oooo04l0oooo001U0?ooo`030?l0003oool0oooo00<0oooo00D0ObXZ003o003o +ool0oooo0000o`3o0?ooo`80oooo00<0003o0?l0003oool00`3oool00`000000oooo0?ooo`020?oo +o`030?l000000?l0ObXZ0?l0oooo0@3oool01@000?l0oooo0?ooo`3oool0o`000540oooo001V0?oo +o`030?l0003oool0oooo0080oooo00D0ObXZ003o003oool0oooo0000o`3o0?ooo`80oooo00<0ObXZ +0000o`3o00000`3oool01`000000oooo0?ooo`3oool0o`000000o`1o:RX0o`3oool20?ooo`050000 +o`3oool0oooo0?ooo`3o0000D@3oool006H0oooo00<0o`000?ooo`3oool00P3oool0101o:RX00?l0 +0?ooo`000?oo0?ooo`@0oooo00<0ObXZ0000o`3o00000P3oool01P000000oooo0?ooo`3o0000003o +07lZ:_l0oooo103oool010000?l0oooo0?ooo`3o001A0?ooo`00I`3oool01`3o0000oooo0?ooo`3o +ool00?l00?ooo`000?l0o`3oool60?ooo`0507lZ:P000?l0oooo0?ooo`0000000P3oool00`000?l0 +ObXZ0?ooo`3o0?ooo`D0oooo00<0003o0?ooo`3o0000D@3oool006P0oooo00<0o`000?ooo`000?l0 +0P000?oo0?ooo`T0oooo1@000?oo0?ooo`T0oooo0`000?m@0?ooo`00J@3oool50000ool0oooo203o +ool50000ool0oooo203oool50000obh0oooo00<000000?ooo`3oool0203oool2000000030?ooo`00 +000000000140oooo000B0?oooeL000001@000?oo000000P000001@000?oo000000P000001@000?lL +000001<0oooo00<000000?ooo`3oool0203oool00`000000oooo0000000B0?ooo`004P3oool00`00 +0000oooo0?ooo`0J0?ooo`030000003oool0oooo01/0oooo00<000000?ooo`3oool06@3oool50000 +oa/0oooo00<000000?ooo`3oool06`3oool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo +01/0oooo00<000000?ooo`3oool06`3oool00`000000oooo0?ooo`0K0?ooo`030000003oool0oooo +01/0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0I0?ooo`D0003o6`3oool00`00 +0000oooo0?ooo`0K0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool06`3oool00`00 +0000oooo0?ooo`0K0?ooo`030000003oool0oooo01/0oooo00<000000?ooo`3oool06`3oool00`00 +0000oooo0?ooo`0J0?ooo`030000003oool0oooo01T0oooo1@000?l`0?ooo`8000002@3oool00`00 +0000oooo0?ooo`0A0?ooo`004P3oool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01/0 +oooo00<000000?ooo`3oool06@3oool0103o0000003o0000o`000?lL0?ooo`030000003oool0oooo +01/0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0K0?ooo`030000003oool0oooo +01/0oooo00<000000?ooo`3oool06`3oool00`000000oooo0?ooo`0K0?ooo`030000003oool0oooo +01X0oooo00<000000?ooo`3oool06@3oool50000oa/0oooo00<000000?ooo`3oool06`3oool00`00 +0000oooo0?ooo`0J0?ooo`030000003oool0oooo01/0oooo00<000000?ooo`3oool06`3oool00`00 +0000oooo0?ooo`0K0?ooo`030000003oool0oooo01/0oooo00<000000?ooo`3oool06P3oool00`00 +0000oooo0?ooo`0J0?ooo`<0003o<03oool00`000000oooo0?ooo`070?ooo`80000000<0oooo0000 +000000004@3oool00180oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0K0?ooo`03 +0000003oool0oooo01P0oooo00H0o`000?ooo`3oool00?l00?ooo`000?lK0?ooo`030000003oool0 +oooo01/0oooo00<000000?ooo`3oool06P3oool00`000000oooo0?ooo`0K0?ooo`030000003oool0 +oooo01/0oooo00<000000?ooo`3oool06`3oool00`000000oooo0?ooo`0K0?ooo`030000003oool0 +oooo01X0oooo00<000000?ooo`3oool0603oool01`000?l0o`000?ooo`000000oooo0?l000000?l0 +6P3oool00`000000oooo0?ooo`0K0?ooo`030000003oool0oooo01X0oooo00<000000?ooo`3oool0 +6`3oool00`000000oooo0?ooo`0K0?ooo`030000003oool0oooo01/0oooo00<000000?ooo`3oool0 +6`3oool00`000000oooo0?ooo`0J0?ooo`030000003oool0oooo01T0oooo00<0003o0?ooo`3o0000 +<03oool00`000000oooo0?ooo`0N0?ooo`004P3oool00`000000oooo0?ooo`1B0?ooo`050?l0003o +ool0oooo0?ooo`00o`000P3oool00`000?l0oooo0?ooo`0H0?ooo`030000003oool0oooo07@0oooo +00<000000?ooo`3oool0L03oool01@000?l0o`000?ooo`3oool000000080oooo00<0o`000000o`3o +ool0L@3oool00`000000oooo0?ooo`1d0?ooo`030000003oool0oooo01P0oooo00@0003o0?ooo`3o +ool0o`00D@3oool006H0oooo00<0o`000?ooo`3oool00P3oool01@1o:RX00?l00?ooo`3oool0003o +0?l0oooo0`3oool00`000?l0o`000?ooo`020?ooo`060000003oool0oooo0?ooo`3o0000003oo`3o +ool30?ooo`050000o`3oool0oooo0?ooo`3o0000D@3oool006H0oooo00<0o`000?ooo`3oool00P3o +ool01@1o:RX00?l00?ooo`3oool0003o0?l0oooo0P3oool00`000?l0o`000?ooo`030?ooo`030000 +003oool0oooo0080oooo00<0o`000000o`3oool0o`3oool10?ooo`050000o`3oool0oooo0?ooo`3o +0000D@3oool006D0oooo00<0o`000?ooo`3oool00`3oool00`1o:RX00?l00?ooo`020?ooo`030000 +o`3oool0oooo0?d0oooo00<0003o07lZ:P3o0000103oool00`000000oooo0?ooo`030?ooo`030?l0 +00000?l0oooo0?h0oooo00<0003o0?ooo`3oool00P3oool00`3o0000oooo0?ooo`1?0?ooo`00I@3o +ool00`3o0000oooo0?ooo`030?ooo`0307lZ:P3oool00?l000<0oooo00<0003o0?ooo`3oool0n`3o +ool00`000?l0ObXZ0?l000050?ooo`030000003oool0oooo00@0oooo00<0o`000000o`3oool0o03o +ool00`000?l0oooo0?ooo`030?ooo`030?l0003oool0oooo04l0oooo001U0?ooo`030?l0003oool0 +oooo00<0oooo00<0ObXZ0?ooo`00o`00103oool00`000?l0oooo0?ooo`3i0?ooo`030000o`3o0000 +o`0000H0oooo100000040?ooo`030?l000000?l0oooo0?X0oooo00<0003o0?ooo`3oool0103oool0 +0`3o0000oooo0?ooo`1?0?ooo`00I@3oool00`3o0000oooo0?ooo`030?ooo`0407lZ:P3oool0oooo +003o00<0oooo00<0003o0?ooo`3oool0n03oool00`000?l0o`000?ooo`070?ooo`030000003oool0 +oooo00H0oooo00<0o`000000o`3oool0n@3oool00`000?l0oooo0?ooo`040?ooo`030?l0003oool0 +oooo04l0oooo001U0?ooo`030?l0003oool0oooo00<0oooo00@0ObXZ0?ooo`3oool00?l0103oool0 +0`000?l0oooo0?ooo`3g0?ooo`030000o`3oool0oooo00L0oooo00<000000?ooo`3oool01`3oool0 +0`3o0000003o0?ooo`3g0?ooo`030000o`3oool0oooo00D0oooo00<0o`000?ooo`3oool0C`3oool0 +06H0oooo00<0o`000?ooo`3oool00P3oool01@1o:RX0oooo0?ooo`3oool00?l000@0oooo00<0003o +0?ooo`3oool0m@3oool00`000?l0o`000?ooo`080?ooo`030000003oool0oooo00L0oooo00<0o`00 +07lZ:P000?l0mP3oool00`000?l0oooo0?ooo`060?ooo`030?l0003oool0oooo04l0oooo001W0?oo +o`050?l0003oool0oooo0?ooo`1o:RX0103oool00`00o`00oooo0?ooo`020?ooo`030000o`3oool0 +oooo0?<0oooo00<0003o0?l0003oool02@3oool00`000000oooo0?ooo`080?ooo`030?l0001o:RX0 +003o0?D0oooo00<0003o0?ooo`3oool01P3oool00`3o0000oooo0?ooo`1?0?ooo`00I`3oool00`3o +0000oooo0?ooo`020?ooo`0307lZ:P3oool0oooo0080oooo00D00?l00?ooo`3oool0oooo0000o`3d +0?ooo`030000o`3o0000oooo00X0oooo00<000000?ooo`3oool02@3oool00`3o0000ObXZ0000o`3c +0?ooo`030000o`3oool0oooo00L0oooo00<0o`000?ooo`3oool0C`3oool006P0oooo00D0o`000?oo +o`3oool0oooo07lZ:P040?ooo`03003o003oool0oooo0080oooo00<0003o0?ooo`3oool0l03oool0 +0`000?l0o`000?ooo`0;0?ooo`030000003oool0oooo00X0oooo00<0o`0007lZ:P000?l0l@3oool0 +0`000?l0oooo0?ooo`070?ooo`03003o003o0000oooo0500oooo001Y0?ooo`040?l0003oool0oooo +07lZ:PD0oooo00<00?l00?ooo`3oool00P3oool00`000?l0oooo0?ooo`3^0?ooo`030000o`3o0000 +oooo00`0oooo00<000000?ooo`3oool02`3oool00`3o0000003o0?ooo`3_0?ooo`030000o`3oool0 +oooo00P0oooo00<00?l00?l0003oool0D03oool006X0oooo00<0o`000?ooo`1o:RX01P3oool01@00 +o`00oooo0?ooo`3oool0003o0>l0oooo00<0003o0?ooo`3o00003@3oool4000000/0oooo00<0o`00 +0000o`3oool0kP3oool00`000?l0oooo0?ooo`080?ooo`030?l0003oool0oooo0500oooo001[0?oo +o`80o`001P3oool00`00o`00oooo0?ooo`020?ooo`030000o`3oool0oooo0>/0oooo00<0003o0?oo +o`3o00003P3oool00`000000oooo0?ooo`0=0?ooo`030?l000000?l0oooo0>`0oooo00<0003o0?oo +o`3oool02@3oool00`3o0000oooo0?ooo`1@0?ooo`00K03oool00`1o:RX0o`000?ooo`050?ooo`03 +003o003oool0oooo0080oooo00<0003o0?ooo`3oool0j@3oool00`000?l00?l00?l0000?0?ooo`03 +0000003oool0oooo00h0oooo00<0o`000000o`3oool0jP3oool00`000?l0oooo0?ooo`0:0?ooo`03 +0?l0003oool0oooo0500oooo001/0?ooo`0307lZ:P3oool0o`0000H0oooo00<00?l00?ooo`3oool0 +0P3oool00`000?l0oooo0?ooo`3W0?ooo`030000o`00o`00o`000100oooo00<000000?ooo`3oool0 +3P3oool00`3o0000oooo0000o`3Z0?ooo`030000o`3oool0oooo00X0oooo00<0o`000?ooo`3oool0 +D03oool006`0oooo00<0ObXZ0?ooo`3oool00P3o00050?ooo`05003o003oool0oooo0?ooo`000?l0 +j03oool00`000?l00?l00?l0000A0?ooo`030000003oool0oooo00l0oooo00<0o`000?ooo`000?l0 +j03oool00`000?l0oooo0?ooo`0;0?ooo`030?l0003oool0oooo0500oooo001/0?ooo`0307lZ:P3o +ool0oooo0080oooo00<0o`000?ooo`3oool00`3oool01@00o`00oooo0?ooo`3oool0003o0>H0oooo +00<0003o07lZ:P3o00004P3oool00`000000oooo0?ooo`0@0?ooo`030?l0003oool0003o0>H0oooo +00<0003o0?ooo`3oool0303oool00`3o0000oooo0?ooo`1@0?ooo`00K03oool00`1o:RX0oooo0?oo +o`030?ooo`80o`00103oool01@00o`00oooo0?ooo`3oool0003o0>@0oooo00<0003o07lZ:P3o0000 +4`3oool00`000000oooo0?ooo`0A0?ooo`030?l0003oool0003o0>@0oooo00<0003o0?ooo`3oool0 +303oool00`00o`00o`000?ooo`1A0?ooo`00K03oool00`1o:RX0oooo0?ooo`050?ooo`030?l0003o +ool0oooo0080oooo00D00?l00?ooo`3oool0oooo0000o`3R0?ooo`030000o`3oool0o`0001@0oooo +00<000000?ooo`3oool04P3oool00`3o0000oooo0000o`3S0?ooo`030000o`3oool0oooo00`0oooo +00<00?l00?l0003oool0D@3oool006d0oooo00<0ObXZ0?ooo`3oool01@3oool00`3o0000oooo0?oo +o`020?ooo`04003o003oool0oooo0000on40oooo00@0003o0?ooo`00o`00o`00503oool400000180 +oooo00<0o`000?ooo`000?l0h@3oool00`000?l0oooo0?ooo`0=0?ooo`03003o003o0000oooo0540 +oooo001]0?ooo`0307lZ:P3oool0oooo00H0oooo0P3o00030?ooo`04003o003oool0oooo0000oml0 +oooo00@0003o0?ooo`00o`00o`005@3oool00`000000oooo0?ooo`0D0?ooo`030?l0003oool0003o +0=l0oooo00<0003o0?ooo`3oool03P3oool00`00o`00o`000?ooo`1A0?ooo`00K@3oool00`1o:RX0 +oooo0?ooo`080?ooo`050?l0003oool0oooo0?ooo`00o`000P3oool00`000?l0oooo0?ooo`3K0?oo +o`040000o`3oool00?l00?l001H0oooo00<000000?ooo`3oool05@3oool00`3o0000oooo0000o`3M +0?ooo`030000o`3oool0oooo00h0oooo00<00?l00?l0003oool0DP3oool006d0oooo00<0ObXZ0?oo +o`3oool02@3oool01`3o0000oooo0?ooo`3oool00?l00?ooo`000?l0g03oool010000?l0oooo003o +003o000G0?ooo`030000003oool0oooo01H0oooo00<0o`000?ooo`000?l0g03oool00`000?l0oooo +0?ooo`0>0?ooo`03003o003o0000oooo0580oooo001]0?ooo`0307lZ:P3oool0oooo00X0oooo0P3o +00020?ooo`03003o003oool0003o0=X0oooo00@0003o0?ooo`00o`00o`00603oool00`000000oooo +0?ooo`0G0?ooo`030?l0003oool0003o0=X0oooo00<0003o0?ooo`3oool03`3oool00`00o`00o`00 +0?ooo`1B0?ooo`00K@3oool00`1o:RX0oooo0?ooo`0<0?ooo`060?l0003oool0oooo003o003oool0 +003of03oool010000?l0oooo0?ooo`3o000I0?ooo`030000003oool0oooo01L0oooo00@0o`00003o +003oool0003of03oool00`000?l0oooo0?ooo`0@0?ooo`03003o003o0000oooo0580oooo001^0?oo +o`0307lZ:P3oool0oooo00`0oooo00H0o`000?ooo`3oool00?l00?ooo`000?oF0?ooo`040000o`3o +ool0oooo0?l001X0oooo00<000000?ooo`3oool0603oool0103o00000?l00?ooo`000?oG0?ooo`03 +0000o`3oool0oooo0100oooo00<00?l00?l0003oool0DP3oool006h0oooo00<0ObXZ0?ooo`3oool0 +3@3oool20?l000030?ooo`00o`00003o0=D0oooo00@0ObXZ0000o`3oool0o`006`3oool00`000000 +oooo0?ooo`0I0?ooo`040?l00000o`00oooo0000omD0oooo00<0003o0?ooo`3oool04@3oool00`00 +o`00o`000?ooo`1B0?ooo`00KP3oool00`1o:RX0oooo0?ooo`0?0?ooo`040?l0003oool00?l00000 +om<0oooo00@0ObXZ0000o`3oool0o`00703oool4000001T0oooo00@0o`000?ooo`3oool0003od`3o +ool00`000?l0oooo0?ooo`0B0?ooo`03003o003o0000oooo0580oooo001^0?ooo`0307lZ:P3oool0 +oooo0100oooo00@0o`000?ooo`00o`00003od@3oool0101o:RX0003o0?ooo`3o000M0?ooo`030000 +003oool0oooo01/0oooo00@0o`000?ooo`3oool0003od@3oool00`000?l0oooo0?ooo`0C0?ooo`03 +003o003o0000oooo0580oooo001^0?ooo`0307lZ:P3oool0oooo0140oooo00@0o`00003o003oool0 +003oc`3oool0101o:RX0003o0?ooo`3o000N0?ooo`030000003oool0oooo01`0oooo0P3o00000`3o +ool0003o0?ooo`3?0?ooo`030000o`3oool0oooo0180oooo00<00?l007lZ:P3o0000D`3oool006h0 +oooo00<0ObXZ0?ooo`3oool04P3oool00`3o00000?l00000o`3>0?ooo`0407lZ:P000?l0oooo0?l0 +01l0oooo00<000000?ooo`3oool07P3oool00`3o0000oooo0000o`3>0?ooo`030000o`3oool0oooo +01<0oooo00<00?l00?l0003oool0D`3oool006l0oooo00<0ObXZ0?ooo`3oool04P3oool00`3o0000 +0?l00000o`3<0?ooo`0407lZ:P000?l00?l00?l00200oooo00<000000?ooo`3oool07`3oool00`3o +0000oooo0000o`3<0?ooo`030000o`3oool0oooo01@0oooo00<00?l00?l0003oool0D`3oool006l0 +oooo00<0ObXZ0?ooo`3oool04`3oool20?l000030000o`3oool0oooo003oool00`000000oooo0?ooo`0g0?ooo`@0003oX`3oool00`000?l0oooo0?ooo`0L +0?ooo`04003o003oool0ObXZ0?l005X0oooo001f0?ooo`0307lZ:P3oool0oooo01d0oooo00<00?l0 +0000o`3o0000X@3oool50000ocP0oooo00<000000?ooo`3oool0=`3oool50000oj40oooo00<0003o +0?ooo`3oool07@3oool01000o`00oooo07lZ:P3o001J0?ooo`00MP3oool00`1o:RX0oooo0?ooo`0M +0?ooo`03003o003oool0003o0:40oooo1@000?lh0?ooo`030000003oool0oooo03L0oooo1@000?nP +0?ooo`030000o`3oool0oooo01d0oooo00@00?l00?ooo`3oool0o`00F`3oool007H0oooo00<0ObXZ +0?ooo`3oool07P3oool00`00o`00oooo0000o`2P0?ooo`D0003o>03oool00`000000oooo0?ooo`0g +0?ooo`D0003oW`3oool00`000?l0oooo0?ooo`0N0?ooo`04003o003oool0ObXZ0?l005/0oooo001f +0?ooo`0307lZ:P3oool0oooo01h0oooo00@00?l00?ooo`3o0000003oW@3oool20000o`040?ooo`00 +0?l0003o0000ocT0oooo00<000000?ooo`3oool0>03oool30000o`030?l000000?l0003o09d0oooo +00<0003o0?ooo`3oool07@3oool01@00o`00oooo0?ooo`1o:RX0o`0005/0oooo001g0?ooo`0307lZ +:P3oool0oooo01h0oooo00<00?l00?ooo`000?l0V`3oool20000o`030?l0003oool0oooo03`0oooo +00<000000?ooo`3oool0>`3oool00`1o:RX0o`000?ooo`020000oiX0oooo00<0003o0?ooo`3oool0 +7P3oool01000o`00oooo07lZ:P3o001L0?ooo`00N03oool00`1o:RX0oooo0?ooo`0M0?ooo`04003o +003oool0o`000000oiP0oooo0P000?l00`3oool0o`000?ooo`0n0?ooo`@00000>`3oool0101o:RX0 +o`000?ooo`3oool20000oiL0oooo00<0003o0?ooo`3oool07P3oool01@00o`00oooo0?ooo`1o:RX0 +o`0005`0oooo001h0?ooo`0307lZ:P3oool0oooo01h0oooo00@00?l00?ooo`3o0000003oU@3oool2 +0000o`80oooo00<0o`0007lZ:P3oool0?P3oool00`000000oooo0?ooo`0m0?ooo`0307lZ:P3o0000 +o`000080oooo0P000?nE0?ooo`030000o`3oool0oooo01h0oooo00D00?l00?ooo`3oool0ObXZ0?l0 +001L0?ooo`00N@3oool00`1o:RX0oooo0?ooo`0N0?ooo`03003o003o0000003o09<0oooo0P000?l2 +0?ooo`80o`0000<0ObXZ0?ooo`3oool0?P3oool00`000000oooo0?ooo`0n0?ooo`0407lZ:P00o`00 +o`000?l00080oooo0P000?nB0?ooo`030000o`3oool0oooo01l0oooo00@00?l00?ooo`1o:RX0o`00 +G@3oool007T0oooo00<0ObXZ0?ooo`3oool07P3oool01000o`00oooo0?l000000?n@0?ooo`80003o +0`3oool00`3o0000oooo07lZ:P110?ooo`030000003oool0oooo0400oooo00<0ObXZ003o003o0000 +0`3oool20000ohl0oooo00<0003o0?ooo`3oool07`3oool01@00o`00oooo0?ooo`1o:RX0o`0005d0 +oooo001i0?ooo`0307lZ:P3oool0oooo01l0oooo00@00?l00?l0003oool0003oS@3oool20000o`<0 +oooo0P3o00000`3oool0ObXZ0?ooo`110?ooo`030000003oool0oooo0440oooo00<0ObXZ003o003o +0000103oool20000oh`0oooo00<0003o0?ooo`3oool0803oool01000o`00oooo07lZ:P3o001N0?oo +o`00NP3oool00`1o:RX0oooo0?ooo`0N0?ooo`05003o003oool0o`000?ooo`000?l0RP3oool20000 +o`@0oooo00@0o`00003o003oool0ObXZ@`3oool00`000000oooo0?ooo`120?ooo`0307lZ:P3oool0 +o`0000D0oooo0P000?n:0?ooo`030000o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0ObXZ0?l0 +001N0?ooo`00NP3oool00`1o:RX0oooo0?ooo`0O0?ooo`04003o003o0000oooo0000ohP0oooo0P00 +0?l50?ooo`040?l00000o`00oooo07lZ:T@0oooo00<000000?ooo`3oool0@`3oool00`1o:RX0oooo +0?l000060?ooo`80003oQ`3oool00`000?l0oooo0?ooo`0O0?ooo`06003o003oool0oooo07lZ:P3o +ool0o`00GP3oool007/0oooo00<0ObXZ0?ooo`3oool07P3oool01@00o`00oooo0?l0003oool0003o +08D0oooo0P000?l50?ooo`80o`0000<00?l00?ooo`1o:RX0A@3oool00`000000oooo0?ooo`140?oo +o`80ObXZ00<0o`000?ooo`3oool01@3oool20000oh@0oooo00<0003o0?ooo`3oool0803oool01@00 +o`00oooo07lZ:P3oool0o`0005l0oooo001k0?ooo`0307lZ:P3oool0oooo01l0oooo00D00?l00?l0 +003oool0oooo0000o`220?ooo`80003o1P3oool01@3o00000?l0003o003oool0ObXZ04H0oooo1000 +00150?ooo`0307lZ:P3o0000oooo00L0oooo0P000?n10?ooo`030000o`3oool0oooo0200oooo00H0 +0?l00?ooo`3oool0ObXZ0?ooo`3o001O0?ooo`00O03oool00`1o:RX0oooo0?ooo`0O0?ooo`04003o +003o0000oooo0000oh00oooo0P000?l70?ooo`050?l00000o`00oooo0?ooo`1o:RX0A`3oool00`00 +0000oooo0?ooo`170?ooo`0307lZ:P3o0000o`0000P0oooo0P000?mo0?ooo`030000o`3oool0oooo +0200oooo00<00?l00?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1M0?ooo`00O03oool00`1o:RX0 +oooo0?ooo`0O0?ooo`05003o003o0000oooo0?ooo`000?l0O@3oool20000o`P0oooo00D0o`00003o +003oool0oooo07lZ:P180?ooo`030000003oool0oooo04P0oooo00@0ObXZ003o003o0000o`00203o +ool20000og`0oooo00<0003o0?ooo`3oool0803oool01P00o`00oooo0?ooo`1o:RX0oooo0?l00600 +oooo001l0?ooo`0307lZ:P3oool0oooo0200oooo00D00?l00?l0003oool0oooo0000o`1j0?ooo`80 +003o2@3oool01@3o00000?l00?ooo`3oool0ObXZ04T0oooo00<000000?ooo`3oool0B@3oool0101o +:RX0oooo003o003o00090?ooo`80003oN@3oool00`000?l0oooo0?ooo`0Q0?ooo`03003o003oool0 +ObXZ0080oooo00<0o`000?ooo`3oool0GP3oool007d0oooo00<0ObXZ0?ooo`3oool07`3oool00`00 +o`00o`000?ooo`020?ooo`030000o`3oool0oooo07D0oooo0P000?l:0?ooo`030?l0003oool0oooo +0080ObXZBP3oool00`000000oooo0?ooo`1:0?ooo`0407lZ:P3oool00?l00?l000X0oooo0P000?mg +0?ooo`030000o`3oool0oooo0200oooo00H00?l00?ooo`3oool0ObXZ0?ooo`3o001Q0?ooo`00O@3o +ool00`1o:RX0oooo0?ooo`0O0?ooo`03003o003oool0o`000080oooo00<0003o0?ooo`3oool0L`3o +ool20000o`X0oooo0P3o00020?ooo`0307lZ:P3oool0oooo04X0oooo00<000000?ooo`3oool0B`3o +ool0101o:RX0oooo003o003o000;0?ooo`80003oM03oool00`000?l0oooo0?ooo`0P0?ooo`04003o +003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0G`3oool007h0oooo00<0ObXZ0?ooo`3oool0 +7`3oool00`00o`00o`000?ooo`020?ooo`030000o`3oool0oooo0700oooo0P000?l;0?ooo`030?l0 +0000o`00oooo0080ObXZ@03oool4000000T0oooo00<000000?ooo`3oool0C03oool207lZ:P03003o +003o0000oooo00/0oooo0P000?ma0?ooo`030000o`3oool0oooo0240oooo00H00?l00?ooo`3oool0 +ObXZ0?ooo`3o001R0?ooo`00O`3oool00`1o:RX0oooo0?ooo`0N0?ooo`03003o003o0000oooo00<0 +oooo00<0003o0?ooo`3oool0K@3oool20000o``0oooo00@0o`00003o003oool0ObXZ@P3oool00`00 +0000oooo0?ooo`0:0?ooo`030000003oool0oooo04h0oooo00<0ObXZ003o003o00003@3oool20000 +ofh0oooo00<0003o0?ooo`3oool08@3oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0 +oooo0600oooo00200?ooo`0307lZ:P3oool0oooo01h0oooo00<00?l00?l0003oool00P3oool00`00 +0?l0oooo0?ooo`1[0?ooo`80003o303oool20?l00003003o001o:RX0ObXZ04@0oooo00<000000?oo +o`3oool02@3oool5000004d0oooo0P1o:RX00`3o00000?l00?ooo`0<0?ooo`030000o`3oool0oooo +06/0oooo00<0003o0?ooo`3oool0803oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0 +oooo0640oooo00200?ooo`0307lZ:P3oool0oooo01h0oooo00<00?l00?l0003oool00`3oool00`00 +0?l0oooo0?ooo`1X0?ooo`80003o3@3oool0103o00000?l0003o001o:RY70?ooo`030000003oool0 +oooo00P0oooo00<000000?ooo`3oool0D@3oool00`1o:RX0o`000?l0000=0?ooo`80003oJP3oool0 +0`000?l0oooo0?ooo`0Q0?ooo`03003o003oool0ObXZ0080oooo00<0o`000?ooo`3oool0HP3oool0 +0840oooo00<0ObXZ0?ooo`3oool07P3oool00`00o`00o`000?ooo`030?ooo`030000o`3oool0oooo +06D0oooo0P000?l=0?ooo`80o`0000<00?l007lZ:P1o:RX0AP3oool010000000oooo0?ooo`000009 +0?ooo`030000003oool0oooo0580oooo0P1o:RX20?l000d0oooo0P000?mW0?ooo`030000o`3oool0 +oooo0240oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1R0?ooo`00P@3oool0 +0`1o:RX0oooo0?ooo`0N0?ooo`03003o003o0000oooo00@0oooo00<0003o0?ooo`3oool0HP3oool2 +0000o`h0oooo00@0o`000?ooo`00o`00ObXZB@3oool2000000X0oooo00<000000?ooo`3oool0E03o +ool00`1o:RX00?l00?l0000>0?ooo`80003oI03oool00`000?l0oooo0?ooo`0R0?ooo`06003o003o +ool0oooo07lZ:P3oool0o`00I@3oool00880oooo00<0ObXZ0?ooo`3oool07P3oool00`3o0000oooo +0?ooo`030?ooo`030000o`3oool0oooo0600oooo0P000?l?0?ooo`040?l00000o`000?l007lZ:UH0 +oooo00<000000?ooo`3oool0E@3oool0101o:RX00?l00?l0003o000>0?ooo`80003oHP3oool00`00 +0?l0oooo0?ooo`0Q0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0H`3oool0 +0880oooo00<0ObXZ0?ooo`3oool07P3oool00`00o`00o`000?ooo`040?ooo`030000o`3oool0oooo +05d0oooo0P000?l?0?ooo`80o`0000<00?l007lZ:P3oool0E`3oool00`000000oooo0?ooo`1F0?oo +o`0407lZ:P00o`000?l00?l000l0oooo0P000?mO0?ooo`030000o`3oool0oooo0280oooo00H00?l0 +0?ooo`3oool0ObXZ0?ooo`3o001V0?ooo`00P`3oool00`1o:RX0oooo0?ooo`0N0?ooo`030?l0003o +ool0oooo00@0oooo00<0003o0?ooo`3oool0FP3oool20000oa00oooo00@0o`00003o0000o`00ObXZ +F@3oool00`000000oooo0?ooo`1G0?ooo`80ObXZ00<00?l00?l0003o00003`3oool20000oe`0oooo +00<0003o0?ooo`3oool08P3oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06@0 +oooo00240?ooo`0307lZ:P3oool0oooo01h0oooo00<0o`000?ooo`3oool0103oool00`000?l0oooo +0?ooo`1G0?ooo`80003o4@3oool00`3o00000?l007lZ:P1K0?ooo`030000003oool0oooo05T0oooo +00@0ObXZ003o0000o`00o`00403oool20000oeX0oooo00<0003o0?ooo`3oool08@3oool01000o`00 +oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06D0oooo00240?ooo`0307lZ:P3oool0oooo01h0 +oooo00<0o`000?ooo`3oool0103oool00`000?l0oooo0?ooo`1E0?ooo`80003o4@3oool20?l00080 +ObXZG03oool4000005T0oooo0P1o:RX00`00o`00o`000?l0000@0?ooo`80003oE`3oool00`000?l0 +oooo0?ooo`0Q0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0IP3oool008D0 +oooo00<0ObXZ0?ooo`3oool07P3oool00`3o0000oooo0?ooo`040?ooo`030000o`3oool0oooo0580 +oooo0P000?lB0?ooo`030?l00000o`00ObXZ05h0oooo00<000000?ooo`3oool0G03oool00`1o:RX0 +oooo003o00020?l00100oooo0P000?mD0?ooo`030000o`3oool0oooo0240oooo00D00?l00?ooo`3o +ool0oooo07lZ:P020?ooo`030?l0003oool0oooo06H0oooo00260?ooo`0307lZ:P3oool0oooo01d0 +oooo00<0o`000?ooo`3oool01@3oool00`000?l0oooo0?ooo`1@0?ooo`030000o`3oool0oooo0100 +oooo0P3o000207lZ:Ul0oooo00<000000?ooo`3oool0G@3oool207lZ:P03003o003oool0o`000140 +oooo0P000?mA0?ooo`030000o`3oool0oooo0240oooo00D00?l00?ooo`3oool0oooo07lZ:P020?oo +o`030?l0003oool0oooo06L0oooo00270?ooo`0307lZ:P3oool0oooo01`0oooo00<0o`00003o003o +ool01@3oool00`000?l0oooo0?ooo`1>0?ooo`80003o4@3oool20?l00003003o001o:RX0oooo0600 +oooo00<000000?ooo`3oool0G`3oool0101o:RX00?l00?ooo`3o000B0?ooo`80003oC`3oool00`00 +0?l0oooo0?ooo`0Q0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0J03oool0 +08P0oooo00<0ObXZ0?ooo`3oool0703oool00`3o0000oooo0?ooo`050?ooo`030000o`3oool0oooo +04/0oooo0P000?lB0?ooo`040?l00000o`000?l007lZ:V80oooo00<000000?ooo`3oool0H03oool0 +101o:RX00?l0003o003o000C0?ooo`80003oC03oool00`000?l0oooo0?ooo`0Q0?ooo`04003o003o +ool0oooo07lZ:P<0oooo00<0o`000?ooo`3oool0J03oool008T0oooo00<0ObXZ0?ooo`3oool06`3o +ool00`3o00000?l00?ooo`060?ooo`030000o`3oool0oooo04P0oooo0P000?lB0?ooo`80o`0000<0 +0?l007lZ:P3oool0H`3oool00`000000oooo0?ooo`1R0?ooo`0407lZ:P00o`00o`000?l001<0oooo +0P000?m90?ooo`030000o`3oool0oooo0200oooo0P00o`020?ooo`0507lZ:P3oool0oooo0?ooo`3o +0000J`3oool008X0oooo00<0ObXZ0?ooo`3oool06`3oool00`3o0000oooo0?ooo`060?ooo`030000 +o`3oool0oooo04D0oooo0P000?lC0?ooo`040?l0003oool00?l007lZ:VD0oooo00<000000?ooo`3o +ool0H`3oool207lZ:P03003o003o0000o`0001<0oooo0P000?m70?ooo`030000o`3oool0oooo01l0 +oooo00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`030?l0003oool0oooo06X0oooo002:0?ooo`03 +07lZ:P3oool0oooo01/0oooo00<0o`00003o003oool01P3oool00`000?l0oooo0?ooo`130?ooo`80 +003o4`3oool20?l000800?l000<0ObXZ0?ooo`3oool0I03oool00`000000oooo0?ooo`1U0?ooo`03 +07lZ:P00o`000?l00080o`004`3oool20000od@0oooo00<0003o0?ooo`3oool07`3oool01@00o`00 +oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?ooo`3oool0JP3oool008/0oooo00<0ObXZ0?ooo`3o +ool06`3oool00`3o00000?l00?ooo`060?ooo`030000o`3oool0oooo0400oooo0P000?lC0?ooo`80 +o`0000@0oooo003o001o:RX0ObXZI`3oool00`000000oooo0?ooo`1V0?ooo`0407lZ:P3oool00?l0 +0?ooo`80o`004`3oool20000od40oooo00<0003o0?ooo`3oool0803oool01@00o`00oooo0?ooo`3o +ool0ObXZ00<0oooo00<0o`000?ooo`3oool0J`3oool008`0oooo00<0ObXZ0?ooo`3oool06P3oool0 +0`3o00000?l00?ooo`070?ooo`030000o`3oool0oooo03d0oooo0P000?lD0?ooo`050?l0003oool0 +0?l0003o001o:RX0J@3oool4000006H0oooo0P1o:RX2003o00030?ooo`3o0000oooo01<0oooo0P00 +0?ln0?ooo`030000o`3oool0oooo0200oooo00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`030?l0 +003oool0oooo06`0oooo002=0?ooo`0307lZ:P3oool0oooo01X0oooo00<0o`00003o003oool01P3o +ool00`000?l0oooo0?ooo`0k0?ooo`80003o503oool20?l000800?l000<0ObXZ0?ooo`3oool0J@3o +ool00`000000oooo0?ooo`1Y0?ooo`80ObXZ00@00?l00?ooo`3o0000o`00503oool20000oc`0oooo +00<0003o0?ooo`3oool07`3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3o +ool0K@3oool008h0oooo0P1o:RXJ0?ooo`030?l0003oool00?l000L0oooo00<0003o0?ooo`3oool0 +>03oool20000oaD0oooo00@0o`000?ooo`00o`00ObXZK@3oool00`000000oooo0?ooo`1[0?ooo`05 +07lZ:P00o`000?l00?ooo`3o00005@3oool20000ocT0oooo00<0003o0?ooo`3oool07`3oool00`00 +o`00oooo0?ooo`0207lZ:P<0oooo00<0o`000?ooo`3oool0KP3oool008l0oooo00<0ObXZ0?ooo`3o +ool06@3oool00`3o00000?l00?ooo`070?ooo`030000o`3oool0oooo03D0oooo0P000?lE0?ooo`80 +o`000P00o`1_0?ooo`030000003oool0oooo06d0oooo00<0ObXZ003o0000o`000P3o000E0?ooo`80 +003o=P3oool00`000?l0oooo0?ooo`0O0?ooo`04003o003oool0oooo07lZ:P@0oooo00<0o`000?oo +o`3oool0K`3oool00900oooo00<0ObXZ0?ooo`3oool0603oool00`3o0000oooo003o00080?ooo`03 +0000o`3oool0oooo0380oooo0P000?lE0?ooo`80o`0000<0oooo003o001o:RX0L03oool00`000000 +oooo0?ooo`1^0?ooo`80ObXZ0P00o`000`3o0000oooo0?ooo`0D0?ooo`030000o`3oool0oooo0380 +oooo00<0003o0?ooo`3oool07`3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?oo +o`3oool0L03oool00940oooo00<0ObXZ0?ooo`3oool0603oool00`3o0000oooo003o00070?ooo`03 +0000o`3oool0oooo0300oooo0P000?lE0?ooo`80o`0000@0oooo003o0000o`00ObXZL@3oool00`00 +0000oooo0?ooo`1`0?ooo`0307lZ:P3oool00?l00080o`005@3oool20000oc80oooo00<0003o0?oo +o`3oool07P3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0L@3oool0 +0980oooo00<0ObXZ0?ooo`3oool05`3oool00`3o0000oooo003o00080?ooo`030000o`3oool0oooo +02d0oooo0P000?lE0?ooo`80o`0000@0oooo003o0000o`00ObXZL`3oool00`000000oooo0?ooo`1a +0?ooo`80ObXZ00@0oooo003o003o0000o`005@3oool20000obl0oooo00<0003o0?ooo`3oool07@3o +ool2003o00<0oooo00D0ObXZ0?ooo`3oool0oooo0?l0001d0?ooo`00T`3oool207lZ:QP0oooo00<0 +o`000?ooo`00o`00203oool00`000?l0oooo0?ooo`0Z0?ooo`80003o5@3oool20?l00080oooo00<0 +0?l007lZ:P3oool0M03oool00`000000oooo0?ooo`1c0?ooo`80ObXZ00@0oooo003o003o0000o`00 +5@3oool20000ob`0oooo00<0003o0?ooo`3oool07@3oool01000o`00oooo0?ooo`3oool207lZ:P<0 +oooo00<0o`000?ooo`3oool0L`3oool009D0oooo00<0ObXZ0?ooo`3oool05@3oool00`3o0000oooo +003o00080?ooo`030000o`3oool0oooo02P0oooo0P000?lE0?ooo`80o`000P3oool2003o07L0oooo +1000001d0?ooo`80ObXZ00@0oooo003o003o0000o`005@3oool20000obX0oooo00<0003o0?ooo`3o +ool06`3oool2003o00<0oooo00<0ObXZ0?ooo`3oool00P3oool00`3o0000oooo0?ooo`1d0?ooo`00 +UP3oool00`1o:RX0oooo0?ooo`0E0?ooo`030?l0003oool00?l000P0oooo00<0003o0?ooo`3oool0 +9@3oool20000oaH0oooo00D0o`000?ooo`1o:RX0ObXZ003o001i0?ooo`030000003oool0oooo07L0 +oooo0`1o:RX00`00o`00o`000?l0000E0?ooo`80003o9`3oool00`000?l0oooo0?ooo`0K0?ooo`03 +003o003oool0oooo0080oooo00<0ObXZ0?ooo`3oool00P3oool00`3o0000oooo0?ooo`1e0?ooo`00 +U`3oool207lZ:QH0oooo00<0o`000?ooo`00o`00203oool00`000?l0oooo0?ooo`0R0?ooo`80003o +5P3oool20?l00080ObXZ0P00o`1j0?ooo`030000003oool0oooo07X0oooo0P1o:RX01000o`00o`00 +0?l0003o000D0?ooo`80003o903oool00`000?l0oooo0?ooo`0K0?ooo`03003o003oool0oooo0080 +oooo00@0ObXZ0?ooo`3oool0oooo0P3o001h0?ooo`00V@3oool00`1o:RX0oooo0?ooo`0C0?ooo`03 +0?l0003oool00?l000T0oooo00<0003o0?ooo`3oool07`3oool20000oaL0oooo00<0o`000?ooo`1o +:RX00P00o`1l0?ooo`030000003oool0oooo07`0oooo00@0ObXZ0?ooo`00o`00oooo0`3o000C0?oo +o`80003o8@3oool00`000?l0oooo0?ooo`0K0?ooo`04003o003oool0oooo0?ooo`80ObXZ0`3oool0 +0`3o0000oooo0?ooo`1h0?ooo`00VP3oool00`1o:RX0oooo0?ooo`0C0?ooo`030?l0003oool00?l0 +00P0oooo00<0003o0?ooo`3oool07@3oool20000oaL0oooo0P3o00000`1o:RX00?l0003o001n0?oo +o`030000003oool0oooo07d0oooo0P1o:RX2003o0080oooo0P3o000C0?ooo`80003o7`3oool00`00 +0?l0oooo0?ooo`0I0?ooo`800?l00`3oool0101o:RX0oooo0?ooo`3oool20?l007/0oooo002K0?oo +o`0307lZ:P3oool0oooo0180oooo00@0o`000?ooo`3oool00?l0203oool00`000?l0oooo0?ooo`0J +0?ooo`80003o5P3oool30?l0000307lZ:P00o`000?l00800oooo00<000000?ooo`3oool0O`3oool2 +07lZ:P800?l00P3oool20?l001<0oooo0P000?lL0?ooo`030000o`3oool0oooo01P0oooo0P00o`04 +0?ooo`0507lZ:P3oool0oooo0?ooo`3o0000O@3oool009`0oooo0P1o:RXC0?ooo`040?l0003oool0 +oooo003o00P0oooo00<0003o0?ooo`3oool05`3oool20000oaD0oooo0`3o000207lZ:P800?l0PP3o +ool00`000000oooo0?ooo`220?ooo`0307lZ:P00o`000?l00080oooo0P3o000C0?ooo`80003o6@3o +ool00`000?l0oooo0?ooo`0G0?ooo`800?l0103oool207lZ:P80oooo0P3o001n0?ooo`00WP3oool2 +07lZ:Q80oooo00@0o`000?ooo`3oool00?l0203oool00`000?l0oooo0?ooo`0D0?ooo`80003o5@3o +ool20?l000<0ObXZ0P00o`240?ooo`030000003oool0oooo08D0oooo0`00o`000`3oool0o`000?l0 +000C0?ooo`80003o5`3oool00`000?l0oooo0?ooo`0F0?ooo`03003o003oool0oooo0080oooo0P1o +:RX30?ooo`030?l0003oool0oooo07h0oooo002P0?ooo`80ObXZ4@3oool0103o0000oooo0?ooo`00 +o`070?ooo`030000o`3oool0oooo0180oooo0P000?lE0?ooo`80o`000P1o:RX00`3oool00?l0003o +00260?ooo`@00000QP3oool0101o:RX00?l0003o0000o`030?l00180oooo0P000?lD0?ooo`030000 +o`3oool0oooo01D0oooo0P00o`030?ooo`80ObXZ0`3oool20?l00840oooo002R0?ooo`80ObXZ403o +ool00`3o0000oooo0?ooo`02003o00H0oooo00<0003o0?ooo`3oool03`3oool20000oaD0oooo0P3o +00000`1o:RX0oooo0?ooo`02003o08P0oooo00<000000?ooo`3oool0RP3oool0101o:RX00?l0003o +003oool20?l00180oooo0P000?lA0?ooo`030000o`3oool0oooo01@0oooo0P00o`030?ooo`80ObXZ +0`3oool20?l008<0oooo002T0?ooo`80ObXZ3`3oool01@3o0000oooo0?ooo`3oool00?l000H0oooo +00<0003o0?ooo`3oool0303oool20000oaD0oooo0P3o00020?ooo`<00?l0RP3oool00`000000oooo +0?ooo`2=0?ooo`<00?l00`3o000A0?ooo`80003o3P3oool00`000?l0oooo0?ooo`0C0?ooo`800?l0 +0`3oool207lZ:P80oooo0`3o00250?ooo`00YP3oool307lZ:Pd0oooo00D0o`000?ooo`3oool0oooo +003o00050?ooo`030000o`3oool0oooo00X0oooo0P000?lC0?ooo`@0o`000P3oool2003o08d0oooo +00<000000?ooo`3oool0S`3oool0101o:RX00?l0003o0000o`040?l000l0oooo0P000?l<0?ooo`03 +0000o`3oool0oooo0140oooo0P00o`030?ooo`80ObXZ0P3oool20?l008P0oooo002Y0?ooo`@0ObXZ +2P3oool30?l000030?ooo`00o`00oooo00@0oooo00<0003o0?ooo`3oool01`3oool20000oa80oooo +0`3o00000`1o:RX0oooo0?ooo`03003o08l0oooo00<000000?ooo`3oool0TP3oool207lZ:P<00?l0 +103o000=0?ooo`80003o2@3oool00`000?l0oooo0?ooo`0@0?ooo`800?l01@1o:RX20?ooo`80o`00 +RP3oool00:d0oooo0P1o:RX;0?ooo`80o`000P00o`040?ooo`030000o`3oool0oooo00@0oooo0P00 +0?l@0?ooo`80ObXZ0P3o000207lZ:P@00?l0TP3oool00`000000oooo0?ooo`2E0?ooo`80ObXZ1000 +o`040?l000/0oooo0P000?l60?ooo`030000o`3oool0oooo00h0oooo0`00o`0207lZ:PD0oooo0P3o +002<0?ooo`00[`3oool507lZ:PP0oooo0P3o0002003o00<0oooo0`000?l00`3oool0003o0000o`0= +0?ooo`D0ObXZ0P3o0000103oool00?l0003o0000o`2:0?ooo`8000002P3oool00`000000oooo0?oo +o`2J0?ooo`0307lZ:P00o`000?l000800?l00`3o000:0?ooo`80003o00@0oooo0000o`000?l0003o +3@3oool4003o00<0ObXZ103oool30?l008h0oooo002d0?ooo`@0ObXZ1P3oool30?l000030?ooo`00 +0?l0003o00<0003o2P3oool307lZ:PL0o`000`00o`2<0?ooo`040000003oool0oooo000000T0oooo +00<000000?ooo`3oool0W`3oool3003o00P0o`00103oool50000o`H0oooo1P00o`0307lZ:P030?oo +o`3o0000o`0000D0o`00T@3oool00;P0oooo2@1o:RX00`3o0000003o0000o`030000o`H0ObXZ1`3o +00030?ooo`<00?l0TP3oool00`000000oooo0?ooo`080?ooo`D00000X@3oool7003o00@0o`001@00 +0?l@0?l009P0oooo00320?ooo`D0003o1P3o000:003o09H0oooo00<000000?ooo`3oool01`3oool0 +0`000000oooo0?ooo`2^0?ooo`D0003oZ03oool00<<0oooo0`000?nT0?ooo`040000003oool0oooo +000000T0oooo00<000000?ooo`3oool0[`3oool30000ojT0oooo003o0?ooof`0oooo0P00000:0?oo +o`030000003oool0oooo0?l0ooooG03oool00?l0ooooN03oool00`000000oooo0?ooo`3o0?oooe`0 +oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3ooomL0?ooo`00o`3ooomh0?ooo`030000003o +ool0oooo0?l0ooooG03oool00?l0ooooN03oool00`000000oooo0?ooo`3o0?oooe`0oooo003o0?oo +ogP0oooo1000003o0?oooe/0oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3ooomL0?ooo`00 +o`3ooomh0?ooo`030000003oool0oooo0?l0ooooG03oool00?l0ooooN03oool00`000000oooo0?oo +o`3o0?oooe`0oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3ooomL0?ooo`00o`3ooomh0?oo +o`030000003oool0oooo0?l0ooooG03oool00?l0ooooN03oool00`000000oooo0?ooo`3o0?oooe`0 +oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3ooomL0?ooo`00o`3ooomh0?ooo`030000003o +ool0oooo0?l0ooooG03oool00?l0ooooN03oool400000?l0ooooF`3oool00?l0ooooN03oool00`00 +0000oooo0?ooo`3o0?oooe`0oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3ooomL0?ooo`00 +o`3ooomh0?ooo`030000003oool0oooo0?l0ooooG03oool00?l0ooooN03oool00`000000oooo0?oo +o`3o0?oooe`0oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3ooomL0?ooo`00o`3ooomh0?oo +o`030000003oool0oooo0?l0ooooG03oool00?l0ooooN03oool00`000000oooo0?ooo`3o0?oooe`0 +oooo003o0?ooogP0oooo1000003o0?oooe/0oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3o +oomL0?ooo`00o`3ooomh0?ooo`030000003oool0oooo0?l0ooooG03oool00?l0ooooN03oool00`00 +0000oooo0?ooo`3o0?oooe`0oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3ooomL0?ooo`00 +o`3ooomh0?ooo`030000003oool0oooo0?l0ooooG03oool00?l0ooooN03oool00`000000oooo0?oo +o`3o0?oooe`0oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3ooomL0?ooo`00o`3ooomh0?oo +o`@00000o`3ooomK0?ooo`00o`3ooomh0?ooo`030000003oool0oooo0?l0ooooG03oool00?l0oooo +N03oool00`000000oooo0?ooo`3o0?oooe`0oooo003o0?ooogP0oooo00<000000?ooo`3oool0o`3o +oomL0?ooo`00o`3ooomh0?ooo`030000003oool0oooo0?l0ooooG03oool00?l0ooooN03oool00`00 +0000oooo0?ooo`3o0?oooe`0oooo003o0?ooofd0oooo0`0000080?ooo`030000003oool0oooo0?l0 +ooooG03oool00?l0ooooKP3oool00`000000oooo0?ooo`070?ooo`030000003oool0oooo0?l0oooo +G03oool00?l0ooooJ`3oool5000000P0oooo1@00003o0?oooeX0oooo003o0?ooof/0oooo00@00000 +0?ooo`3oool00000o`3ooomX0?ooo`00o`3ooom/0?ooo`030000003oool000000?l0ooooJ03oool0 +0?l0ooooK@3oool200000?l0ooooJ03oool00?l0ooooo`3ooooG0?ooo`00o`3ooooo0?ooomL0oooo +003o0?ooool0ooooe`3oool00?l0ooooo`3ooooG0?ooo`00o`3ooooo0?ooomL0oooo003o0?ooool0 +ooooe`3oool00?l0ooooo`3ooooG0?ooo`00o`3ooooo0?ooomL0oooo003o0?ooool0ooooe`3oool0 +0?l0ooooo`3ooooG0?ooo`00o`3ooooo0?ooomL0oooo003o0?ooool0ooooe`3oool00?l0ooooo`3o +oooG0?ooo`00o`3ooooo0?ooomL0oooo003o0?ooool0ooooe`3oool00?l0ooooPP3oool200000?l0 +ooooD`3oool00?l0ooooP`3oool00`000000oooo0?ooo`3o0?oooe40oooo003o0?oooh@0oooo00<0 +00000?ooo`3oool0o`3ooom@0?ooo`00o`3ooon30?ooo`030000003oool000000?l0ooooD@3oool0 +0?l0ooooPP3oool010000000oooo0?ooo`00003o0?oooe40oooo003o0?oooh40oooo0`0000000`3o +ool000000000003o0?oooe00oooo003o0?ooogH0oooo00@000000?ooo`3oool00000o`3ooomM0?oo +o`00o`3ooomg0?ooo`800000o`3ooomN0?ooo`00o`3ooooo0?ooomL0oooo003o0?ooool0ooooe`3o +ool00?l0ooooo`3ooooG0?ooo`00\ +\>"], + ImageRangeCache->{{{0, 724}, {361.5, 0}} -> {-6.30328, -4.10989, 0.0167819, \ +0.02441}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]3\ +\[InvisibleSpace]" mit "\[InvisibleSpace]14\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 3, " mit ", 14, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.545455 0.0909091 0.25 0.0625 [ +[0 .2375 -6 -9 ] +[0 .2375 6 0 ] +[.18182 .2375 -6 -9 ] +[.18182 .2375 6 0 ] +[.36364 .2375 -6 -9 ] +[.36364 .2375 6 0 ] +[.72727 .2375 -3 -9 ] +[.72727 .2375 3 0 ] +[.90909 .2375 -3 -9 ] +[.90909 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.53295 0 -12 -4.5 ] +[.53295 0 0 4.5 ] +[.53295 .0625 -12 -4.5 ] +[.53295 .0625 0 4.5 ] +[.53295 .125 -12 -4.5 ] +[.53295 .125 0 4.5 ] +[.53295 .1875 -12 -4.5 ] +[.53295 .1875 0 4.5 ] +[.53295 .3125 -6 -4.5 ] +[.53295 .3125 0 4.5 ] +[.53295 .375 -6 -4.5 ] +[.53295 .375 0 4.5 ] +[.53295 .4375 -6 -4.5 ] +[.53295 .4375 0 4.5 ] +[.53295 .5 -6 -4.5 ] +[.53295 .5 0 4.5 ] +[.54545 .525 -17 0 ] +[.54545 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +0 .25 m +0 .25625 L +s +[(-6)] 0 .2375 0 1 Mshowa +.18182 .25 m +.18182 .25625 L +s +[(-4)] .18182 .2375 0 1 Mshowa +.36364 .25 m +.36364 .25625 L +s +[(-2)] .36364 .2375 0 1 Mshowa +.72727 .25 m +.72727 .25625 L +s +[(2)] .72727 .2375 0 1 Mshowa +.90909 .25 m +.90909 .25625 L +s +[(4)] .90909 .2375 0 1 Mshowa +.125 Mabswid +.04545 .25 m +.04545 .25375 L +s +.09091 .25 m +.09091 .25375 L +s +.13636 .25 m +.13636 .25375 L +s +.22727 .25 m +.22727 .25375 L +s +.27273 .25 m +.27273 .25375 L +s +.31818 .25 m +.31818 .25375 L +s +.40909 .25 m +.40909 .25375 L +s +.45455 .25 m +.45455 .25375 L +s +.5 .25 m +.5 .25375 L +s +.59091 .25 m +.59091 .25375 L +s +.63636 .25 m +.63636 .25375 L +s +.68182 .25 m +.68182 .25375 L +s +.77273 .25 m +.77273 .25375 L +s +.81818 .25 m +.81818 .25375 L +s +.86364 .25 m +.86364 .25375 L +s +.95455 .25 m +.95455 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.54545 0 m +.5517 0 L +s +[(-4)] .53295 0 1 0 Mshowa +.54545 .0625 m +.5517 .0625 L +s +[(-3)] .53295 .0625 1 0 Mshowa +.54545 .125 m +.5517 .125 L +s +[(-2)] .53295 .125 1 0 Mshowa +.54545 .1875 m +.5517 .1875 L +s +[(-1)] .53295 .1875 1 0 Mshowa +.54545 .3125 m +.5517 .3125 L +s +[(1)] .53295 .3125 1 0 Mshowa +.54545 .375 m +.5517 .375 L +s +[(2)] .53295 .375 1 0 Mshowa +.54545 .4375 m +.5517 .4375 L +s +[(3)] .53295 .4375 1 0 Mshowa +.54545 .5 m +.5517 .5 L +s +[(4)] .53295 .5 1 0 Mshowa +.125 Mabswid +.54545 .0125 m +.5492 .0125 L +s +.54545 .025 m +.5492 .025 L +s +.54545 .0375 m +.5492 .0375 L +s +.54545 .05 m +.5492 .05 L +s +.54545 .075 m +.5492 .075 L +s +.54545 .0875 m +.5492 .0875 L +s +.54545 .1 m +.5492 .1 L +s +.54545 .1125 m +.5492 .1125 L +s +.54545 .1375 m +.5492 .1375 L +s +.54545 .15 m +.5492 .15 L +s +.54545 .1625 m +.5492 .1625 L +s +.54545 .175 m +.5492 .175 L +s +.54545 .2 m +.5492 .2 L +s +.54545 .2125 m +.5492 .2125 L +s +.54545 .225 m +.5492 .225 L +s +.54545 .2375 m +.5492 .2375 L +s +.54545 .2625 m +.5492 .2625 L +s +.54545 .275 m +.5492 .275 L +s +.54545 .2875 m +.5492 .2875 L +s +.54545 .3 m +.5492 .3 L +s +.54545 .325 m +.5492 .325 L +s +.54545 .3375 m +.5492 .3375 L +s +.54545 .35 m +.5492 .35 L +s +.54545 .3625 m +.5492 .3625 L +s +.54545 .3875 m +.5492 .3875 L +s +.54545 .4 m +.5492 .4 L +s +.54545 .4125 m +.5492 .4125 L +s +.54545 .425 m +.5492 .425 L +s +.54545 .45 m +.5492 .45 L +s +.54545 .4625 m +.5492 .4625 L +s +.54545 .475 m +.5492 .475 L +s +.54545 .4875 m +.5492 .4875 L +s +.25 Mabswid +.54545 0 m +.54545 .5 L +s +gsave +.54545 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +.5 .165 .165 r +.5 Mabswid +.64109 .34862 m +.63681 .34421 L +.63252 .33979 L +.62824 .33537 L +.62395 .33095 L +.61967 .32653 L +.61539 .32212 L +.6111 .3177 L +.60682 .31328 L +.60253 .30886 L +.59825 .30445 L +.59397 .30003 L +.58968 .29561 L +.5854 .29119 L +.58111 .28677 L +.57683 .28236 L +.57255 .27794 L +.56826 .27352 L +.56398 .2691 L +.55969 .26468 L +.55541 .26027 L +.55113 .25585 L +.54684 .25143 L +.54256 .24701 L +.53827 .2426 L +.53399 .23818 L +.52971 .23376 L +.52542 .22934 L +.52114 .22492 L +.51685 .22051 L +.51257 .21609 L +.50829 .21167 L +.504 .20725 L +.49972 .20283 L +.49543 .19842 L +.49115 .194 L +.48687 .18958 L +.48258 .18516 L +.4783 .18075 L +.47401 .17633 L +.46973 .17191 L +.46545 .16749 L +.46116 .16307 L +.45688 .15866 L +.45259 .15424 L +.44831 .14982 L +.40909 .11742 L +.40481 .11433 L +.40052 .11132 L +.39624 .10838 L +Mistroke +.39197 .10553 L +.38769 .10275 L +.38343 .10006 L +.37916 .09745 L +.37491 .09492 L +.37066 .09248 L +.36643 .09013 L +.3622 .08787 L +.35799 .08569 L +.35379 .08361 L +.3496 .08162 L +.34542 .07972 L +.34127 .07792 L +.33713 .07621 L +.333 .0746 L +.3289 .07309 L +.32481 .07168 L +.32075 .07036 L +.31671 .06915 L +.31269 .06803 L +.30869 .06702 L +.30472 .0661 L +.30078 .06529 L +.29686 .06458 L +.29297 .06398 L +.28911 .06348 L +.28528 .06308 L +.28147 .06278 L +.2777 .06259 L +.27397 .06251 L +.27026 .06252 L +.26659 .06264 L +.26296 .06287 L +.25936 .0632 L +.2558 .06363 L +.25227 .06417 L +.24879 .06481 L +.24534 .06555 L +.24193 .0664 L +.23857 .06734 L +.23525 .06839 L +.23197 .06954 L +.22873 .07079 L +.22554 .07214 L +.2224 .07358 L +.2193 .07513 L +.21624 .07677 L +.21324 .07851 L +.21028 .08034 L +.20737 .08227 L +Mistroke +.20452 .08429 L +.20171 .08641 L +.19895 .08861 L +.19625 .0909 L +.19359 .09329 L +.191 .09575 L +.18845 .09831 L +.18596 .10095 L +.18352 .10367 L +.18114 .10647 L +.17882 .10935 L +.17655 .11231 L +.17434 .11535 L +.17219 .11846 L +.1701 .12165 L +.16806 .1249 L +.16609 .12823 L +.16417 .13162 L +.16232 .13508 L +.16053 .1386 L +.15879 .14219 L +.15712 .14583 L +.15552 .14953 L +.15397 .15329 L +.15249 .1571 L +.15107 .16096 L +.14971 .16488 L +.14842 .16884 L +.14719 .17284 L +.14603 .17689 L +.14493 .18098 L +.1439 .1851 L +.14293 .18927 L +.14203 .19346 L +.14119 .19769 L +.14042 .20195 L +.13972 .20623 L +.13908 .21054 L +.13851 .21487 L +.13801 .21921 L +.13757 .22358 L +.1372 .22796 L +.1369 .23235 L +.13667 .23676 L +.1365 .24117 L +.1364 .24558 L +.13636 .25 L +.1364 .25442 L +.1365 .25883 L +.13667 .26324 L +Mistroke +.1369 .26765 L +.1372 .27204 L +.13757 .27642 L +.13801 .28079 L +.13851 .28513 L +.13908 .28946 L +.13972 .29377 L +.14042 .29805 L +.14119 .30231 L +.14203 .30654 L +.14293 .31073 L +.1439 .3149 L +.14493 .31902 L +.14603 .32311 L +.14719 .32716 L +.14842 .33116 L +.14971 .33512 L +.15107 .33904 L +.15249 .3429 L +.15397 .34671 L +.15552 .35047 L +.15712 .35417 L +.15879 .35781 L +.16053 .3614 L +.16232 .36492 L +.16417 .36838 L +.16609 .37177 L +.16806 .3751 L +.1701 .37835 L +.17219 .38154 L +.17434 .38465 L +.17655 .38769 L +.17882 .39065 L +.18114 .39353 L +.18352 .39633 L +.18596 .39905 L +.18845 .40169 L +.191 .40425 L +.19359 .40671 L +.19625 .4091 L +.19895 .41139 L +.20171 .41359 L +.20452 .41571 L +.20737 .41773 L +.21028 .41966 L +.21324 .42149 L +.21624 .42323 L +.2193 .42487 L +.2224 .42642 L +.22554 .42786 L +Mistroke +.22873 .42921 L +.23197 .43046 L +.23525 .43161 L +.23857 .43266 L +.24193 .4336 L +.24534 .43445 L +.24879 .43519 L +.25227 .43583 L +.2558 .43637 L +.25936 .4368 L +.26296 .43713 L +.26659 .43736 L +.27026 .43748 L +.27397 .43749 L +.2777 .43741 L +.28147 .43722 L +.28528 .43692 L +.28911 .43652 L +.29297 .43602 L +.29686 .43542 L +.30078 .43471 L +.30472 .4339 L +.30869 .43298 L +.31269 .43197 L +.31671 .43085 L +.32075 .42964 L +.32481 .42832 L +.3289 .42691 L +.333 .4254 L +.33713 .42379 L +.34127 .42208 L +.34542 .42028 L +.3496 .41838 L +.35379 .41639 L +.35799 .41431 L +.3622 .41213 L +.36643 .40987 L +.37066 .40752 L +.37491 .40508 L +.37916 .40255 L +.38343 .39994 L +.38769 .39725 L +.39197 .39447 L +.39624 .39162 L +.40052 .38868 L +.40481 .38567 L +.40909 .38258 L +.43268 .3663 L +.43697 .36188 L +.44125 .35746 L +Mistroke +.44553 .35304 L +.44982 .34862 L +.4541 .34421 L +.45839 .33979 L +.46267 .33537 L +.46695 .33095 L +.47124 .32653 L +.47552 .32212 L +.47981 .3177 L +.48409 .31328 L +.48837 .30886 L +.49266 .30445 L +.49694 .30003 L +.50123 .29561 L +.50551 .29119 L +.50979 .28677 L +.51408 .28236 L +.51836 .27794 L +.52265 .27352 L +.52693 .2691 L +.53121 .26468 L +.5355 .26027 L +.53978 .25585 L +.54407 .25143 L +.54835 .24701 L +.55263 .2426 L +.55692 .23818 L +.5612 .23376 L +.56549 .22934 L +.56977 .22492 L +.57405 .22051 L +.57834 .21609 L +.58262 .21167 L +.58691 .20725 L +.59119 .20283 L +.59547 .19842 L +.59976 .194 L +.60404 .18958 L +.60833 .18516 L +.61261 .18075 L +.61689 .17633 L +.62118 .17191 L +.62546 .16749 L +.62975 .16307 L +.63403 .15866 L +.63831 .15424 L +.6426 .14982 L +.6861 .11433 L +.69038 .11132 L +.69467 .10838 L +Mistroke +.69894 .10553 L +.70322 .10275 L +.70748 .10006 L +.71175 .09745 L +.716 .09492 L +.72025 .09248 L +.72448 .09013 L +.72871 .08787 L +.73292 .08569 L +.73712 .08361 L +.74131 .08162 L +.74549 .07972 L +.74964 .07792 L +.75378 .07621 L +.75791 .0746 L +.76201 .07309 L +.7661 .07168 L +.77016 .07036 L +.7742 .06915 L +.77822 .06803 L +.78222 .06702 L +.78619 .0661 L +.79013 .06529 L +.79405 .06458 L +.79794 .06398 L +.8018 .06348 L +.80563 .06308 L +.80944 .06278 L +.81321 .06259 L +.81694 .06251 L +.82065 .06252 L +.82432 .06264 L +.82795 .06287 L +.83155 .0632 L +.83511 .06363 L +.83864 .06417 L +.84212 .06481 L +.84557 .06555 L +.84897 .0664 L +.85234 .06734 L +.85566 .06839 L +.85894 .06954 L +.86218 .07079 L +.86537 .07214 L +.86851 .07358 L +.87161 .07513 L +.87467 .07677 L +.87767 .07851 L +.88063 .08034 L +.88354 .08227 L +Mistroke +.88639 .08429 L +.8892 .08641 L +.89196 .08861 L +.89466 .0909 L +.89732 .09329 L +.89991 .09575 L +.90246 .09831 L +.90495 .10095 L +.90739 .10367 L +.90977 .10647 L +.91209 .10935 L +.91436 .11231 L +.91657 .11535 L +.91872 .11846 L +.92081 .12165 L +.92285 .1249 L +.92482 .12823 L +.92673 .13162 L +.92859 .13508 L +.93038 .1386 L +.93211 .14219 L +.93379 .14583 L +.93539 .14953 L +.93694 .15329 L +.93842 .1571 L +.93984 .16096 L +.9412 .16488 L +.94249 .16884 L +.94372 .17284 L +.94488 .17689 L +.94598 .18098 L +.94701 .1851 L +.94798 .18927 L +.94888 .19346 L +.94971 .19769 L +.95048 .20195 L +.95119 .20623 L +.95182 .21054 L +.95239 .21487 L +.9529 .21921 L +.95334 .22358 L +.9537 .22796 L +.95401 .23235 L +.95424 .23676 L +.95441 .24117 L +.95451 .24558 L +.95455 .25 L +.95451 .25442 L +.95441 .25883 L +.95424 .26324 L +Mistroke +.95401 .26765 L +.9537 .27204 L +.95334 .27642 L +.9529 .28079 L +.95239 .28513 L +.95182 .28946 L +.95119 .29377 L +.95048 .29805 L +.94971 .30231 L +.94888 .30654 L +.94798 .31073 L +.94701 .3149 L +.94598 .31902 L +.94488 .32311 L +.94372 .32716 L +.94249 .33116 L +.9412 .33512 L +.93984 .33904 L +.93842 .3429 L +.93694 .34671 L +.93539 .35047 L +.93379 .35417 L +.93211 .35781 L +.93038 .3614 L +.92859 .36492 L +.92673 .36838 L +.92482 .37177 L +.92285 .3751 L +.92081 .37835 L +.91872 .38154 L +.91657 .38465 L +.91436 .38769 L +.91209 .39065 L +.90977 .39353 L +.90739 .39633 L +.90495 .39905 L +.90246 .40169 L +.89991 .40425 L +.89732 .40671 L +.89466 .4091 L +.89196 .41139 L +.8892 .41359 L +.88639 .41571 L +.88354 .41773 L +.88063 .41966 L +.87767 .42149 L +.87467 .42323 L +.87161 .42487 L +.86851 .42642 L +.86537 .42786 L +Mistroke +.86218 .42921 L +.85894 .43046 L +.85566 .43161 L +.85234 .43266 L +.84897 .4336 L +.84557 .43445 L +.84212 .43519 L +.83864 .43583 L +.83511 .43637 L +.83155 .4368 L +.82795 .43713 L +.82432 .43736 L +.82065 .43748 L +.81694 .43749 L +.81321 .43741 L +.80944 .43722 L +.80563 .43692 L +.8018 .43652 L +.79794 .43602 L +.79405 .43542 L +.79013 .43471 L +.78619 .4339 L +.78222 .43298 L +.77822 .43197 L +.7742 .43085 L +.77016 .42964 L +.7661 .42832 L +.76201 .42691 L +.75791 .4254 L +.75378 .42379 L +.74964 .42208 L +.74549 .42028 L +.74131 .41838 L +.73712 .41639 L +.73292 .41431 L +.72871 .41213 L +.72448 .40987 L +.72025 .40752 L +.716 .40508 L +.71175 .40255 L +.70748 .39994 L +.70322 .39725 L +.69894 .39447 L +.69467 .39162 L +.69038 .38868 L +.6861 .38567 L +.68182 .38258 L +.67753 .37942 L +.67325 .37619 L +.66897 .37289 L +Mistroke +.66469 .36952 L +.66042 .36608 L +.65615 .36258 L +.65189 .35901 L +.64764 .35539 L +.64339 .35171 L +.63915 .34797 L +Mfstroke +0 1 0 r +.13636 .25 m +.13634 .25493 L +.13637 .25985 L +.13645 .26478 L +.1366 .2697 L +.13681 .27462 L +.13711 .27953 L +.13749 .28443 L +.13796 .28932 L +.13853 .2942 L +.1392 .29906 L +.13999 .30392 L +.14089 .30875 L +.14193 .31357 L +.14309 .31837 L +.1444 .32315 L +.14585 .3279 L +.14746 .33264 L +.14923 .33734 L +.15117 .34202 L +.15328 .34667 L +.15557 .35129 L +.15806 .35588 L +.16074 .36044 L +.16362 .36496 L +.16671 .36945 L +.17003 .37389 L +.17356 .3783 L +.17733 .38267 L +.18133 .38699 L +.18558 .39127 L +.19006 .39549 L +.19475 .39962 L +.19965 .40366 L +.20474 .40757 L +.21 .41134 L +.21541 .41495 L +.22097 .41837 L +.22666 .4216 L +.23246 .42461 L +.23835 .42737 L +.24433 .42987 L +.25037 .43209 L +.25646 .43402 L +.2626 .43562 L +.26875 .43688 L +.27491 .43778 L +.28106 .43831 L +.28721 .43849 L +.29335 .43832 L +Mistroke +.29948 .43782 L +.30559 .43701 L +.31169 .4359 L +.31776 .43449 L +.32381 .43281 L +.32983 .43086 L +.33583 .42867 L +.34179 .42623 L +.34773 .42357 L +.35362 .4207 L +.35947 .41763 L +.36528 .41438 L +.37105 .41095 L +.37677 .40736 L +.38244 .40363 L +.38805 .39976 L +.39361 .39578 L +.39911 .39169 L +.40455 .3875 L +.40992 .38323 L +.41523 .3789 L +.42047 .37451 L +.42563 .37008 L +.43072 .36562 L +.43574 .36115 L +.44067 .35667 L +.44552 .35221 L +.45028 .34777 L +.45496 .34336 L +.45954 .33901 L +.46404 .3347 L +.46845 .33043 L +.47279 .32621 L +.47704 .32202 L +.48123 .31787 L +.48535 .31376 L +.4894 .30968 L +.49339 .30563 L +.49732 .3016 L +.5012 .2976 L +.50502 .29363 L +.5088 .28967 L +.51254 .28573 L +.51624 .28181 L +.5199 .2779 L +.52353 .274 L +.52713 .27011 L +.5307 .26623 L +.53426 .26234 L +.53779 .25846 L +Mistroke +.54132 .25458 L +.54483 .25069 L +.54833 .2468 L +.55184 .2429 L +.55535 .239 L +.55886 .23508 L +.56239 .23116 L +.56594 .22722 L +.56951 .22328 L +.57312 .21932 L +.57675 .21535 L +.58043 .21137 L +.58416 .20737 L +.58793 .20336 L +.59176 .19934 L +.59565 .1953 L +.5996 .19125 L +.60363 .18717 L +.60773 .18308 L +.61192 .17897 L +.61619 .17485 L +.62055 .1707 L +.62501 .16653 L +.62958 .16234 L +.63425 .15813 L +.63903 .1539 L +.64393 .14965 L +.64893 .14539 L +.65403 .14114 L +.65923 .13689 L +.66451 .13267 L +.66988 .12848 L +.67533 .12433 L +.68084 .12023 L +.68643 .1162 L +.69207 .11223 L +.69777 .10834 L +.70352 .10455 L +.70931 .10085 L +.71513 .09726 L +.72099 .09379 L +.72687 .09045 L +.73278 .08725 L +.73869 .0842 L +.74462 .08131 L +.75055 .07858 L +.75647 .07603 L +.76238 .07368 L +.76828 .07151 L +.77416 .06956 L +Mistroke +.78002 .06782 L +.78584 .06631 L +.79162 .06503 L +.79736 .064 L +.80305 .06323 L +.80868 .06272 L +.81426 .06249 L +.81977 .06255 L +.8252 .06289 L +.83056 .06351 L +.83585 .06442 L +.84105 .06559 L +.84617 .06703 L +.85121 .06872 L +.85616 .07066 L +.86103 .07285 L +.86579 .07527 L +.87047 .07792 L +.87505 .0808 L +.87952 .08389 L +.8839 .08719 L +.88817 .09069 L +.89233 .09439 L +.89638 .09827 L +.90031 .10234 L +.90414 .10659 L +.90784 .111 L +.91142 .11558 L +.91488 .12031 L +.91822 .12519 L +.92142 .13021 L +.9245 .13536 L +.92744 .14065 L +.93024 .14605 L +.9329 .15157 L +.93543 .1572 L +.93781 .16293 L +.94004 .16876 L +.94212 .17467 L +.94406 .18066 L +.94583 .18673 L +.94745 .19286 L +.94891 .19906 L +.95021 .20531 L +.95135 .2116 L +.95231 .21794 L +.95311 .22431 L +.95373 .23071 L +.95418 .23713 L +.95445 .24356 L +Mistroke +.95455 .25 L +.95445 .25644 L +.95418 .26287 L +.95373 .26929 L +.95311 .27569 L +.95231 .28206 L +.95135 .2884 L +.95021 .29469 L +.94891 .30094 L +.94745 .30714 L +.94583 .31327 L +.94406 .31934 L +.94212 .32533 L +.94004 .33124 L +.93781 .33707 L +.93543 .3428 L +.9329 .34843 L +.93024 .35395 L +.92743 .35935 L +.92449 .36464 L +.92142 .36979 L +.91821 .37481 L +.91488 .37969 L +.91142 .38442 L +.90784 .389 L +.90413 .39341 L +.90031 .39766 L +.89638 .40173 L +.89232 .40561 L +.88816 .40931 L +.8839 .41281 L +.87952 .41611 L +.87504 .4192 L +.87047 .42208 L +.86579 .42473 L +.86102 .42715 L +.85616 .42934 L +.85121 .43128 L +.84617 .43297 L +.84105 .43441 L +.83585 .43558 L +.83056 .43649 L +.8252 .43711 L +.81977 .43745 L +.81426 .43751 L +.80869 .43728 L +.80305 .43677 L +.79736 .436 L +.79162 .43497 L +.78584 .43369 L +Mistroke +.78002 .43218 L +.77417 .43044 L +.76829 .42849 L +.76239 .42633 L +.75647 .42397 L +.75055 .42142 L +.74462 .41869 L +.7387 .4158 L +.73278 .41275 L +.72688 .40955 L +.72099 .40621 L +.71514 .40274 L +.70931 .39915 L +.70352 .39546 L +.69777 .39166 L +.69207 .38777 L +.68643 .3838 L +.68085 .37977 L +.67533 .37567 L +.66988 .37152 L +.66451 .36733 L +.65923 .36311 L +.65403 .35886 L +.64893 .35461 L +.64393 .35035 L +.63903 .3461 L +.63425 .34187 L +.62957 .33766 L +.62501 .33347 L +.62055 .3293 L +.61618 .32515 L +.61191 .32102 L +.60773 .31692 L +.60362 .31283 L +.5996 .30875 L +.59564 .3047 L +.59175 .30066 L +.58792 .29663 L +.58415 .29262 L +.58042 .28863 L +.57675 .28465 L +.57311 .28068 L +.56951 .27672 L +.56593 .27278 L +.56239 .26884 L +.55886 .26492 L +.55534 .261 L +.55183 .2571 L +.54833 .2532 L +.54483 .24931 L +Mistroke +.54132 .24542 L +.5378 .24154 L +.53426 .23766 L +.53071 .23378 L +.52714 .22989 L +.52354 .226 L +.51992 .2221 L +.51626 .21819 L +.51256 .21427 L +.50883 .21033 L +.50505 .20638 L +.50122 .2024 L +.49735 .1984 L +.49342 .19438 L +.48943 .19033 L +.48537 .18625 L +.48126 .18213 L +.47707 .17798 L +.47281 .1738 L +.46847 .16957 L +.46405 .16531 L +.45955 .161 L +.45496 .15664 L +.45027 .15223 L +.4455 .14779 L +.44064 .14332 L +.4357 .13885 L +.43068 .13437 L +.42558 .12991 L +.4204 .12548 L +.41515 .12108 L +.40983 .11675 L +.40444 .11248 L +.399 .10829 L +.39348 .10419 L +.38792 .10021 L +.38229 .09634 L +.37662 .0926 L +.37089 .08902 L +.36512 .08559 L +.3593 .08233 L +.35345 .07926 L +.34755 .07639 L +.34162 .07373 L +.33566 .0713 L +.32967 .0691 L +.32365 .06716 L +.31761 .06547 L +.31155 .06407 L +.30547 .06296 L +Mistroke +.29937 .06215 L +.29326 .06166 L +.28715 .0615 L +.28102 .06168 L +.2749 .06222 L +.26877 .06313 L +.26265 .0644 L +.25656 .066 L +.2505 .06793 L +.24449 .07016 L +.23855 .07267 L +.23268 .07544 L +.22691 .07845 L +.22124 .08168 L +.21569 .08511 L +.21027 .08872 L +.205 .09249 L +.19989 .09639 L +.19495 .10042 L +.1902 .10454 L +.18565 .10874 L +.18135 .11301 L +.17752 .11736 L +.1739 .12175 L +.17051 .12618 L +.16731 .13064 L +.16432 .13514 L +.16152 .13967 L +.15892 .14423 L +.15649 .14883 L +.15424 .15345 L +.15216 .1581 L +.15024 .16278 L +.14848 .16748 L +.14687 .17221 L +.1454 .17696 L +.14407 .18173 L +.14287 .18652 L +.1418 .19133 L +.14085 .19616 L +.14 .201 L +.13927 .20586 L +.13863 .21073 L +.13809 .21561 L +.13763 .2205 L +.13726 .2254 L +.13695 .23031 L +.13672 .23523 L +.13655 .24015 L +.13643 .24507 L +Mistroke +.13636 .25 L +Mfstroke +1 0 0 r +.13636 .25 m +.09152 .25844 L +.05656 .26542 L +.03011 .27125 L +.01095 .27619 L +s +.01095 .27619 m +0 .27978 L +s +0 .29942 m +.00308 .3008 L +.01191 .30427 L +.02182 .30791 L +.03249 .31175 L +.04365 .3158 L +.05508 .32007 L +.06659 .32455 L +.07804 .32923 L +.08932 .3341 L +.10032 .33912 L +.11098 .34429 L +.12125 .34956 L +.1311 .35491 L +.1405 .36031 L +.14945 .36572 L +.15797 .37112 L +.16604 .37647 L +.17371 .38174 L +.18099 .3869 L +.1879 .39192 L +.19448 .39678 L +.20077 .40145 L +.20679 .40591 L +.21257 .41013 L +.21816 .41409 L +.22358 .41779 L +.22887 .4212 L +.23405 .42431 L +.23916 .42711 L +.24421 .4296 L +.24923 .43176 L +.25425 .4336 L +.25927 .4351 L +.26432 .43628 L +.26941 .43713 L +.27455 .43765 L +.27976 .43785 L +.28503 .43773 L +.29037 .43731 L +.29578 .43659 L +.30127 .43557 L +.30683 .43428 L +.31247 .43272 L +.31817 .4309 L +.32394 .42883 L +.32976 .42654 L +.33564 .42402 L +.34155 .4213 L +.3475 .41839 L +Mistroke +.35347 .4153 L +.35946 .41205 L +.36545 .40864 L +.37144 .4051 L +.37742 .40143 L +.38337 .39766 L +.38929 .39378 L +.39517 .38982 L +.401 .38578 L +.40677 .38167 L +.41247 .37752 L +.4181 .37332 L +.42365 .36908 L +.42911 .36482 L +.43448 .36054 L +.43976 .35625 L +.44494 .35195 L +.45001 .34766 L +.45498 .34337 L +.45984 .3391 L +.4646 .33484 L +.46925 .3306 L +.47379 .32638 L +.47823 .32219 L +.48257 .31802 L +.4868 .31388 L +.49094 .30977 L +.49498 .30569 L +.49893 .30163 L +.5028 .2976 L +.50659 .2936 L +.51031 .28962 L +.51395 .28566 L +.51754 .28173 L +.52107 .27781 L +.52456 .27391 L +.528 .27002 L +.53141 .26614 L +.53479 .26227 L +.53816 .25841 L +.54151 .25455 L +.54486 .25069 L +.54821 .24683 L +.55157 .24296 L +.55494 .23908 L +.55834 .23519 L +.56177 .23129 L +.56524 .22737 L +.56874 .22344 L +.5723 .21949 L +Mistroke +.57591 .21552 L +.57958 .21153 L +.58331 .20752 L +.58711 .20349 L +.59098 .19944 L +.59493 .19537 L +.59895 .19128 L +.60306 .18717 L +.60725 .18305 L +.61153 .17891 L +.61589 .17476 L +.62034 .1706 L +.62488 .16644 L +.62951 .16227 L +.63423 .1581 L +.63904 .15394 L +.64394 .14979 L +.64892 .14566 L +.65398 .14155 L +.65913 .13746 L +.66436 .13341 L +.66966 .12939 L +.67504 .12542 L +.68049 .1215 L +.686 .11764 L +.69158 .11384 L +.69721 .11012 L +.7029 .10648 L +.70864 .10293 L +.71443 .09947 L +.72025 .09612 L +.7261 .09288 L +.73199 .08975 L +.73789 .08676 L +.74382 .0839 L +.74975 .08119 L +.7557 .07862 L +.76164 .07621 L +.76757 .07397 L +.7735 .0719 L +.77941 .07002 L +.78529 .06832 L +.79115 .06681 L +.79697 .0655 L +.80275 .0644 L +.80849 .06351 L +.81417 .06284 L +.8198 .06239 L +.82537 .06217 L +.83087 .06218 L +Mistroke +.83629 .06243 L +.84164 .06291 L +.84691 .06364 L +.85209 .06461 L +.85718 .06582 L +.86218 .06729 L +.86707 .069 L +.87187 .07096 L +.87655 .07318 L +.88112 .07564 L +.88558 .07835 L +.88993 .08131 L +.89415 .08451 L +.89824 .08795 L +.90221 .09163 L +.90605 .09555 L +.90975 .0997 L +.91333 .10408 L +.91676 .10868 L +.92006 .11349 L +.92321 .11852 L +.92622 .12374 L +.92908 .12917 L +.9318 .13478 L +.93437 .14057 L +.9368 .14654 L +.93907 .15267 L +.94119 .15895 L +.94315 .16538 L +.94496 .17194 L +.94662 .17863 L +.94812 .18544 L +.94947 .19235 L +.95065 .19935 L +.95169 .20643 L +.95256 .21358 L +.95327 .22079 L +.95383 .22805 L +.95423 .23535 L +.95447 .24267 L +.95455 .25 L +.95447 .25733 L +.95423 .26465 L +.95383 .27195 L +.95327 .27921 L +.95256 .28642 L +.95169 .29357 L +.95065 .30065 L +.94947 .30765 L +.94812 .31456 L +Mistroke +.94662 .32137 L +.94496 .32806 L +.94315 .33462 L +.94119 .34105 L +.93907 .34733 L +.9368 .35346 L +.93437 .35943 L +.9318 .36522 L +.92908 .37083 L +.92622 .37626 L +.92321 .38148 L +.92006 .38651 L +.91676 .39132 L +.91333 .39592 L +.90975 .4003 L +.90605 .40445 L +.90221 .40837 L +.89824 .41205 L +.89415 .41549 L +.88993 .41869 L +.88558 .42165 L +.88112 .42436 L +.87655 .42682 L +.87187 .42904 L +.86707 .431 L +.86218 .43271 L +.85718 .43418 L +.85209 .43539 L +.84691 .43636 L +.84164 .43709 L +.83629 .43757 L +.83087 .43782 L +.82537 .43783 L +.8198 .43761 L +.81417 .43716 L +.80849 .43649 L +.80275 .4356 L +.79697 .4345 L +.79115 .43319 L +.78529 .43168 L +.77941 .42998 L +.7735 .4281 L +.76757 .42603 L +.76164 .42379 L +.7557 .42138 L +.74975 .41881 L +.74382 .4161 L +.73789 .41324 L +.73199 .41025 L +.7261 .40712 L +Mistroke +.72025 .40388 L +.71443 .40053 L +.70864 .39707 L +.7029 .39352 L +.69721 .38988 L +.69158 .38616 L +.686 .38236 L +.68049 .3785 L +.67504 .37458 L +.66966 .37061 L +.66436 .36659 L +.65913 .36254 L +.65398 .35845 L +.64892 .35434 L +.64394 .35021 L +.63904 .34606 L +.63423 .3419 L +.62951 .33773 L +.62488 .33356 L +.62034 .3294 L +.61589 .32524 L +.61153 .32109 L +.60725 .31695 L +.60306 .31283 L +.59895 .30872 L +.59493 .30463 L +.59098 .30056 L +.58711 .29651 L +.58331 .29248 L +.57958 .28847 L +.57591 .28448 L +.5723 .28051 L +.56874 .27656 L +.56524 .27263 L +.56177 .26871 L +.55834 .26481 L +.55494 .26092 L +.55157 .25704 L +.54821 .25317 L +.54486 .24931 L +.54151 .24545 L +.53816 .24159 L +.53479 .23773 L +.53141 .23386 L +.528 .22998 L +.52456 .22609 L +.52107 .22219 L +.51754 .21827 L +.51395 .21434 L +.51031 .21038 L +Mistroke +.50659 .2064 L +.5028 .2024 L +.49893 .19837 L +.49498 .19431 L +.49094 .19023 L +.4868 .18612 L +.48257 .18198 L +.47823 .17781 L +.47379 .17362 L +.46925 .1694 L +.4646 .16516 L +.45984 .1609 L +.45498 .15663 L +.45001 .15234 L +.44494 .14805 L +.43976 .14375 L +.43448 .13946 L +.42911 .13518 L +.42365 .13092 L +.4181 .12668 L +.41247 .12248 L +.40677 .11833 L +.401 .11422 L +.39517 .11018 L +.38929 .10622 L +.38337 .10234 L +.37742 .09857 L +.37144 .0949 L +.36545 .09136 L +.35946 .08795 L +.35347 .0847 L +.3475 .08161 L +.34155 .0787 L +.33564 .07598 L +.32976 .07346 L +.32394 .07117 L +.31817 .0691 L +.31247 .06728 L +.30683 .06572 L +.30127 .06443 L +.29578 .06341 L +.29037 .06269 L +.28503 .06227 L +.27976 .06215 L +.27455 .06235 L +.26941 .06287 L +.26432 .06372 L +.25927 .0649 L +.25425 .0664 L +.24923 .06824 L +Mistroke +.24421 .0704 L +.23916 .07289 L +.23405 .07569 L +.22887 .0788 L +.22358 .08221 L +.21816 .08591 L +.21257 .08987 L +.20679 .09409 L +.20077 .09855 L +.19448 .10322 L +.1879 .10808 L +.18099 .1131 L +.17371 .11826 L +.16604 .12353 L +.15797 .12888 L +.14945 .13428 L +.1405 .13969 L +.1311 .14509 L +.12125 .15044 L +.11098 .15571 L +.10032 .16088 L +.08932 .1659 L +.07804 .17077 L +.06659 .17545 L +.05508 .17993 L +.04365 .1842 L +.03249 .18825 L +.02182 .19209 L +.01191 .19573 L +.00308 .1992 L +Mfstroke +.00308 .1992 m +0 .20058 L +s +0 .22022 m +.01095 .22381 L +.03011 .22875 L +.05656 .23458 L +.09152 .24156 L +.13636 .25 L +s +0 0 1 r +.13636 .25 m +.18182 .3875 L +.27273 .4375 L +.45455 .34375 L +.54545 .25 L +.63636 .15625 L +.81818 .0625 L +.95455 .25 L +.81818 .4375 L +.63636 .34375 L +.54545 .25 L +.45455 .15625 L +.27273 .0625 L +.18182 .1125 L +.13636 .25 L +s +5 Mabswid +.13636 .25 Mdot +.18182 .3875 Mdot +.27273 .4375 Mdot +.45455 .34375 Mdot +.54545 .25 Mdot +.63636 .15625 Mdot +.81818 .0625 Mdot +.95455 .25 Mdot +.81818 .4375 Mdot +.63636 .34375 Mdot +.54545 .25 Mdot +.45455 .15625 Mdot +.27273 .0625 Mdot +.18182 .1125 Mdot +.13636 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{862, 431}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`<0ObXZ1P3oool2003o0080o`00 +1`3oool20000o`d0oooo0P000?lB0?ooo`80ObXZ103o00060?ooo`<00?l0[03oool00`000000oooo +0?ooo`2c0?ooo`80ObXZ0`00o`00101o:RX0oooo0?ooo`3oool40?l000/0oooo0P000?l90?ooo`03 +0000o`3oool0oooo00h0oooo1000o`020?ooo`<0ObXZ103oool40?l00:<0oooo003<0?ooo`80ObXZ +1`3oool01000o`00o`000?l0003o00070?ooo`80003o4@3oool20000oaH0oooo103o00050?ooo`@0 +0?l0Z03oool00`000000oooo0?ooo`2`0?ooo`<0ObXZ0P00o`030?ooo`@0o`003@3oool20000o``0 +oooo00<0003o0?ooo`3oool04@3oool3003o0080oooo0P1o:RX60?ooo`<0o`00X03oool000?ooo`030000o`3oool0oooo01@0oooo0P00o`020?ooo`<0ObXZ +1P3oool20?l009h0oooo00360?ooo`<0ObXZ203oool20?l000X0oooo0P000?lH0?ooo`80003o603o +ool20?l0000307lZ:P3oool0oooo00@0oooo0`00o`2S0?ooo`030000003oool0oooo0:T0oooo0P1o +:RX4003o00<0oooo0P3o000A0?ooo`80003o4@3oool00`000?l0oooo0?ooo`0E0?ooo`<00?l00P3o +ool207lZ:PH0oooo00<0o`000?ooo`3oool0V`3oool00<@0oooo0P1o:RX80?ooo`03003o003o0000 +o`0000X0oooo0P000?lL0?ooo`80003o603oool20?l00080ObXZ1P3oool2003o0:40oooo00<00000 +0?ooo`3oool0Y`3oool207lZ:P800?l00`3oool40?l00140oooo0P000?lD0?ooo`030000o`3oool0 +oooo01L0oooo0`00o`00103oool0ObXZ07lZ:P1o:RX40?ooo`80o`00V`3oool00<80oooo0P1o:RX8 +0?ooo`03003o003o0000o`0000X0oooo0P000?lP0?ooo`80003o603oool30?l0000307lZ:P3oool0 +oooo00@0oooo0P00o`2O0?ooo`030000003oool0oooo0:D0oooo0P1o:RX2003o0080oooo0`3o000C +0?ooo`80003o5`3oool00`000?l0oooo0?ooo`0I0?ooo`800?l00P3oool207lZ:P@0oooo0`3o002H +0?ooo`00_`3oool307lZ:PP0oooo00<00?l00?l0003o00002P3oool20000ob@0oooo0P000?lI0?oo +o`80o`0000<0ObXZ0?ooo`3oool0103oool2003o09d0oooo1000002R0?ooo`80ObXZ0P00o`020?oo +o`80o`00503oool20000oaT0oooo00<0003o0?ooo`3oool06`3oool2003o0080oooo0`1o:RX40?oo +o`<0o`00U@3oool00;d0oooo0P1o:RX:0?ooo`03003o003o0000oooo00T0oooo0P000?lX0?ooo`80 +003o6@3oool30?l0000307lZ:P3oool0oooo00<0oooo0`00o`2J0?ooo`030000003oool0oooo0:00 +oooo0P1o:RX3003o00040?ooo`3o0000o`000?l001@0oooo0P000?lL0?ooo`030000o`3oool0oooo +01`0oooo0P00o`030?ooo`80ObXZ1@3oool00`3o0000oooo0?ooo`2B0?ooo`00_03oool00`1o:RX0 +oooo0?ooo`080?ooo`03003o003o0000o`0000T0oooo0P000?l/0?ooo`030000o`3oool0oooo01T0 +oooo0P3o00000`1o:RX0oooo0?ooo`040?ooo`800?l0V03oool00`000000oooo0?ooo`2M0?ooo`<0 +ObXZ0P00o`020?ooo`80o`005@3oool20000oal0oooo00<0003o0?ooo`3oool07@3oool00`00o`00 +oooo0?ooo`020?ooo`0307lZ:P3oool0oooo00<0oooo00<0o`000?ooo`3oool0T@3oool00;X0oooo +0P1o:RX90?ooo`800?l000<0o`000?ooo`3oool0203oool00`000?l0oooo0?ooo`0]0?ooo`80003o +6`3oool20?l0000307lZ:P3oool0oooo00@0oooo0P00o`2F0?ooo`030000003oool0oooo09/0oooo +0P1o:RX3003o00040?ooo`3o0000o`000?l001D0oooo0P000?lQ0?ooo`030000o`3oool0oooo01h0 +oooo00<00?l00?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`030?ooo`030?l0003oool0oooo0900 +oooo002h0?ooo`80ObXZ2@3oool2003o00030?ooo`3o0000oooo00P0oooo0P000?lb0?ooo`80003o +6`3oool20?l00080ObXZ1@3oool2003o09@0oooo00<000000?ooo`3oool0V@3oool207lZ:P800?l0 +0P3oool20?l001H0oooo0P000?lT0?ooo`030000o`3oool0oooo01h0oooo0P00o`030?ooo`80ObXZ +103oool20?l00900oooo002g0?ooo`0307lZ:P3oool0oooo00L0oooo0P00o`000`3oool0o`000?l0 +00080?ooo`80003o=P3oool20000oa/0oooo0P3o000207lZ:PD0oooo0P00o`2B0?ooo`030000003o +ool0oooo09L0oooo0P1o:RX2003o0080oooo0P3o000G0?ooo`030000o`3oool0oooo02D0oooo00<0 +003o0?ooo`3oool07`3oool00`00o`00oooo0?ooo`020?ooo`80ObXZ103oool20?l008h0oooo002f +0?ooo`0307lZ:P3oool0oooo00L0oooo00@00?l00?ooo`3oool0o`00203oool20000ocX0oooo0P00 +0?lK0?ooo`80o`000P1o:RX50?ooo`03003o003oool0oooo08l0oooo00<000000?ooo`3oool0U@3o +ool207lZ:P800?l00P3oool20?l001L0oooo0P000?lY0?ooo`030000o`3oool0oooo01l0oooo0P00 +o`040?ooo`0307lZ:P3oool0oooo00<0oooo0P3o002<0?ooo`00]03oool207lZ:PP0oooo0P00o`02 +0?ooo`030?l0003oool0oooo00D0oooo0P000?ln0?ooo`80003o6`3oool20?l00080ObXZ103oool2 +003o08l0oooo00<000000?ooo`3oool0T`3oool207lZ:P800?l000@0oooo0?l0003o0000o`005`3o +ool20000ob/0oooo00<0003o0?ooo`3oool08@3oool00`00o`00oooo0?ooo`020?ooo`80ObXZ1@3o +ool00`3o0000oooo0?ooo`290?ooo`00/`3oool00`1o:RX0oooo0?ooo`070?ooo`03003o003oool0 +oooo0080o`001P3oool20000od80oooo0P000?lK0?ooo`80o`000`1o:RX30?ooo`800?l0S@3oool0 +0`000000oooo0?ooo`2@0?ooo`<0ObXZ0P00o`000`3oool0o`000?l0000H0?ooo`80003o;P3oool0 +0`000?l0oooo0?ooo`0Q0?ooo`03003o003oool0oooo00<0oooo00<0ObXZ0?ooo`3oool00`3oool0 +0`3o0000oooo0?ooo`280?ooo`00/P3oool00`1o:RX0oooo0?ooo`060?ooo`800?l00P3oool00`3o +0000oooo0?ooo`050?ooo`030000o`3oool0oooo04@0oooo0P000?lK0?ooo`80o`0000<0oooo07lZ +:P1o:RX00`3oool2003o08/0oooo00<000000?ooo`3oool0SP3oool207lZ:P040?ooo`00o`000?l0 +0?ooo`80o`00603oool20000oc40oooo00<0003o0?ooo`3oool08@3oool2003o00@0oooo00<0ObXZ +0?ooo`3oool00`3oool00`3o0000oooo0?ooo`270?ooo`00/@3oool00`1o:RX0oooo0?ooo`050?oo +o`800?l00P3oool20?l000H0oooo0P000?m90?ooo`80003o6`3oool20?l000030?ooo`1o:RX0oooo +00<0oooo0P00o`290?ooo`@00000S03oool0101o:RX0oooo003o0000o`020?ooo`030?l0003oool0 +oooo01H0oooo0P000?ld0?ooo`030000o`3oool0oooo0280oooo00<00?l00?ooo`3oool00P3oool0 +0`1o:RX0oooo0?ooo`030?ooo`030?l0003oool0oooo08H0oooo002_0?ooo`80ObXZ1`3oool00`00 +o`00oooo0?ooo`020?l000H0oooo0P000?m=0?ooo`80003o6`3oool0103o0000oooo07lZ:P1o:RX4 +0?ooo`03003o003oool0oooo08H0oooo00<000000?ooo`3oool0R`3oool207lZ:P800?l00P3oool2 +0?l001L0oooo0P000?lf0?ooo`030000o`3oool0oooo02<0oooo0P00o`030?ooo`0307lZ:P3oool0 +oooo00<0oooo00<0o`000?ooo`3oool0Q@3oool00:d0oooo0P1o:RX80?ooo`04003o003oool0oooo +0?l000H0oooo0P000?mA0?ooo`80003o6P3oool20?l000030?ooo`1o:RX0oooo00<0oooo00<00?l0 +0?ooo`3oool0Q@3oool00`000000oooo0?ooo`2:0?ooo`0307lZ:P00o`000?l00080oooo0P3o000G +0?ooo`80003o>@3oool00`000?l0oooo0?ooo`0T0?ooo`04003o003oool0oooo0?ooo`80ObXZ103o +ool00`3o0000oooo0?ooo`240?ooo`00[03oool00`1o:RX0oooo0?ooo`060?ooo`800?l00P3oool0 +0`3o0000oooo0?ooo`030?ooo`80003oE@3oool20000oaX0oooo00@0o`000?ooo`1o:RX0ObXZ0`3o +ool2003o08D0oooo00<000000?ooo`3oool0R03oool207lZ:P03003o003oool0oooo0080o`005`3o +ool20000oc`0oooo00<0003o0?ooo`3oool0903oool00`00o`00oooo0?ooo`020?ooo`0307lZ:P3o +ool0oooo0080oooo00<0o`000?ooo`3oool0P`3oool00:/0oooo00<0ObXZ0?ooo`3oool01P3oool0 +0`00o`00oooo0?ooo`020?l000@0oooo0P000?mI0?ooo`80003o6@3oool20?l000030?ooo`1o:RX0 +ObXZ00<0oooo00<00?l00?ooo`3oool0PP3oool00`000000oooo0?ooo`260?ooo`80ObXZ0P00o`00 +0`3oool0o`000?l0000G0?ooo`80003o?P3oool00`000?l0oooo0?ooo`0U0?ooo`800?l00`3oool0 +0`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo0880oooo002Z0?ooo`0307lZ:P3oool0oooo +00H0oooo00@00?l00?ooo`3oool0o`00103oool20000oed0oooo00<0003o0?ooo`3oool0603oool2 +0?l000030?ooo`1o:RX0ObXZ0080oooo0P00o`220?ooo`030000003oool0oooo08@0oooo0P1o:RX2 +003o00030?ooo`3o0000o`0001L0oooo0P000?m10?ooo`030000o`3oool0oooo02H0oooo00D00?l0 +0?ooo`3oool0oooo07lZ:P040?ooo`030?l0003oool0oooo0840oooo002Y0?ooo`0307lZ:P3oool0 +oooo00D0oooo0P00o`000`3oool0o`000?l000040?ooo`030000o`3oool0oooo05h0oooo0P000?lJ +0?ooo`80o`0000<0oooo07lZ:P3oool00P3oool2003o0800oooo00<000000?ooo`3oool0P`3oool0 +101o:RX00?l0003o003oool20?l001L0oooo0P000?m40?ooo`030000o`3oool0oooo02H0oooo00D0 +0?l00?ooo`3oool0oooo07lZ:P040?ooo`030?l0003oool0oooo0800oooo002X0?ooo`0307lZ:P3o +ool0oooo00D0oooo00@00?l00?ooo`3o0000o`00103oool20000of<0oooo0P000?lJ0?ooo`80o`00 +0P1o:RX30?ooo`03003o003oool0oooo07d0oooo00<000000?ooo`3oool0P@3oool00`1o:RX00?l0 +003o00020?ooo`030?l0003oool0oooo01D0oooo0P000?m70?ooo`030000o`3oool0oooo02H0oooo +00D00?l00?ooo`3oool0oooo07lZ:P040?ooo`030?l0003oool0oooo07l0oooo002W0?ooo`0307lZ +:P3oool0oooo00D0oooo00<00?l00?ooo`3o0000103oool20000ofL0oooo0P000?lJ0?ooo`80o`00 +00D0ObXZ0?ooo`3oool0oooo003o001n0?ooo`030000003oool0oooo0800oooo00@0ObXZ003o003o +ool0oooo0P3o000F0?ooo`80003oB@3oool00`000?l0oooo0?ooo`0W0?ooo`05003o003oool0oooo +0?ooo`1o:RX0103oool00`3o0000oooo0?ooo`1n0?ooo`00YP3oool00`1o:RX0oooo0?ooo`040?oo +o`800?l000<0oooo0?l0003oool00P3oool20000of/0oooo0P000?lJ0?ooo`80o`0000<0ObXZ0?oo +o`3oool00P00o`1l0?ooo`030000003oool0oooo07h0oooo00@0ObXZ003o0000o`00oooo0P3o000F +0?ooo`80003oC03oool00`000?l0oooo0?ooo`0W0?ooo`05003o003oool0oooo0?ooo`1o:RX0103o +ool00`3o0000oooo0?ooo`1m0?ooo`00Y@3oool00`1o:RX0oooo0?ooo`040?ooo`04003o003oool0 +o`000?l00080oooo0P000?m_0?ooo`80003o6P3oool20?l0000407lZ:P3oool0oooo003o07/0oooo +1000001k0?ooo`80ObXZ00@00?l00?ooo`3o0000o`005`3oool00`000?l0oooo0?ooo`1=0?ooo`03 +0000o`3oool0oooo02L0oooo00D00?l00?ooo`3oool0oooo07lZ:P040?ooo`030?l0003oool0oooo +07`0oooo002T0?ooo`0307lZ:P3oool0oooo00@0oooo00<00?l00?ooo`3o00000P3oool20000og<0 +oooo0P000?lJ0?ooo`050?l0001o:RX0ObXZ0?ooo`00o`00NP3oool00`000000oooo0?ooo`1j0?oo +o`80ObXZ0P00o`020?l001L0oooo0P000?mA0?ooo`030000o`3oool0oooo02L0oooo00D00?l00?oo +o`3oool0oooo07lZ:P030?ooo`030?l0003oool0oooo07`0oooo002S0?ooo`0307lZ:P3oool0oooo +00@0oooo00<00?l00?ooo`3o00000P3oool00`000?l0oooo0?ooo`1e0?ooo`80003o6@3oool0103o +0000oooo07lZ:P3oool2003o07P0oooo00<000000?ooo`3oool0N@3oool01@1o:RX00?l0003o003o +ool0o`0001L0oooo0P000?mC0?ooo`030000o`3oool0oooo02P0oooo00D00?l00?ooo`3oool0oooo +07lZ:P030?ooo`030?l0003oool0oooo07/0oooo002S0?ooo`0307lZ:P3oool0oooo00<0oooo00@0 +0?l00?ooo`3o0000oooo0P000?mj0?ooo`80003o603oool20?l00080ObXZ00<0oooo003o003oool0 +MP3oool00`000000oooo0?ooo`1g0?ooo`80ObXZ00@00?l00?ooo`3oool0o`005P3oool20000oeH0 +oooo00<0003o0?ooo`3oool09`3oool00`00o`00oooo0?ooo`020?ooo`0507lZ:P3oool0oooo0?oo +o`3o0000O03oool00:80oooo00<0ObXZ0?ooo`3oool00`3oool00`00o`00o`000?l000020000ogh0 +oooo0P000?lH0?ooo`040?l0003oool0ObXZ0?ooo`800?l0M@3oool00`000000oooo0?ooo`1f0?oo +o`0407lZ:P3oool00?l00?ooo`80o`005@3oool20000oeT0oooo00<0003o0?ooo`3oool09`3oool0 +1@00o`00oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?ooo`3oool0N@3oool00:80oooo00@0ObXZ +0?ooo`3oool0oooo0P00o`000`3o0000003o0000o`220?ooo`80003o5`3oool01@3o0000oooo07lZ +:P1o:RX0oooo00800?l0L`3oool00`000000oooo0?ooo`1d0?ooo`80ObXZ0P00o`000`3oool0o`00 +0?ooo`0D0?ooo`80003oF`3oool00`000?l0oooo0?ooo`0X0?ooo`05003o003oool0oooo0?ooo`1o +:RX0103oool00`3o0000oooo0?ooo`1h0?ooo`00X@3oool01P1o:RX0oooo0?ooo`3oool00?l00?oo +o`80003oQP3oool20000oaH0oooo0P3o00001@3oool0ObXZ07lZ:P3oool00?l00780oooo00<00000 +0?ooo`3oool0LP3oool207lZ:P030?ooo`00o`00oooo0080o`00503oool20000oeh0oooo00<0003o +0?ooo`3oool0:03oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?ooo`3oool0M`3o +ool00:00oooo00D0ObXZ0000o`000?l0003o003o00020000ohX0oooo00<0003o0?ooo`3oool05@3o +ool00`3o0000oooo0?ooo`0207lZ:P03003o003oool0oooo06l0oooo00<000000?ooo`3oool0L03o +ool207lZ:P030?ooo`00o`000?l00080o`00503oool20000of40oooo00<0003o0?ooo`3oool0:03o +ool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0M`3oool009l0oooo00<0 +ObXZ0000o`000?l00`000?n=0?ooo`80003o5P3oool01@3o0000oooo0?ooo`3oool0ObXZ00800?l0 +K`3oool00`000000oooo0?ooo`1_0?ooo`0607lZ:P3oool00?l0003o003oool0o`00503oool20000 +of@0oooo00<0003o0?ooo`3oool0:03oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`00 +0?ooo`3oool0MP3oool009h0oooo00<0ObXZ0?ooo`000?l010000?n?0?ooo`80003o5@3oool01`3o +0000oooo0?ooo`3oool0ObXZ0?ooo`00o`00KP3oool4000006d0oooo00@0ObXZ0?ooo`00o`00oooo +0P3o000C0?ooo`80003oIP3oool00`000?l0oooo0?ooo`0Y0?ooo`05003o003oool0oooo0?ooo`1o +:RX00P3oool00`3o0000oooo0?ooo`1f0?ooo`00W@3oool00`1o:RX0oooo0?ooo`050000oi40oooo +0P000?lD0?ooo`80o`000P3oool00`1o:RX0oooo003o001]0?ooo`030000003oool0oooo06`0oooo +0P1o:RX0103oool00?l00?l0003o000C0?ooo`80003oJ@3oool00`000?l0oooo0?ooo`0X0?ooo`03 +003o003oool0oooo0080oooo00@0ObXZ0?ooo`3oool0o`00M`3oool009d0oooo00@0ObXZ0?ooo`3o +ool0o`000`000?nD0?ooo`80003o503oool01P3o0000oooo0?ooo`1o:RX0oooo003o06`0oooo00<0 +00000?ooo`3oool0J`3oool00`1o:RX0oooo003o00020?l001<0oooo0P000?m/0?ooo`030000o`3o +ool0oooo02P0oooo00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`030?l0003oool0oooo07@0oooo +002L0?ooo`0607lZ:P3oool0o`000?l00000o`00003oV03oool20000oa<0oooo0P3o0000103oool0 +ObXZ07lZ:P00o`1[0?ooo`030000003oool0oooo06X0oooo00@0ObXZ0?ooo`3o0000o`004`3oool2 +0000ofl0oooo00<0003o0?ooo`3oool0:03oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0 +o`000?ooo`3oool0M03oool009/0oooo00L0ObXZ0?ooo`3o0000oooo003o003oool0003o09X0oooo +0P000?lC0?ooo`80o`0000<0oooo07lZ:P00o`00JP3oool00`000000oooo0?ooo`1X0?ooo`80ObXZ +00<00?l00?l0003oool04P3oool20000og40oooo00<0003o0?ooo`3oool0:03oool01@00o`00oooo +0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0L`3oool009/0oooo00H0ObXZ0?l0003oool0 +0?l00?ooo`000?nM0?ooo`80003o4`3oool0103o0000oooo0?ooo`00o`1Y0?ooo`030000003oool0 +oooo06L0oooo00@0ObXZ003o0000o`00o`004`3oool00`000?l0oooo0?ooo`1b0?ooo`030000o`3o +ool0oooo02P0oooo00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`030?l0003oool0oooo0780oooo +002J0?ooo`80o`0000D0oooo003o003oool0oooo0000o`2O0?ooo`80003o4P3oool00`3o0000oooo +0?ooo`02003o06L0oooo00<000000?ooo`3oool0IP3oool0101o:RX00?l00?l0003o000B0?ooo`80 +003oMP3oool00`000?l0oooo0?ooo`0W0?ooo`03003o003oool0oooo0080oooo00@0ObXZ0?ooo`3o +ool0o`00M03oool009T0oooo00D0o`0007lZ:P3oool0oooo003o00020?ooo`030000o`3oool0oooo +09l0oooo0P000?lA0?ooo`80o`0000<0oooo07lZ:P00o`00IP3oool00`000000oooo0?ooo`1U0?oo +o`0307lZ:P00o`00o`000180oooo0P000?mh0?ooo`030000o`3oool0oooo02P0oooo00D00?l00?oo +o`3oool0oooo07lZ:P030?ooo`030?l0003oool0oooo0740oooo002G0?ooo`80o`0000@0ObXZ0?oo +o`3oool00?l00P3oool00`000?l0oooo0?ooo`2R0?ooo`80003o4@3oool0103o0000oooo0?ooo`00 +o`1F0?ooo`@000002`3oool00`000000oooo0?ooo`1T0?ooo`0307lZ:P00o`00o`000140oooo0P00 +0?mk0?ooo`030000o`3oool0oooo02P0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0 +003oool0oooo0740oooo002F0?ooo`030?l0003oool0ObXZ0080oooo00D00?l00?ooo`3oool0oooo +0000o`2V0?ooo`80003o403oool00`3o0000oooo0?ooo`02003o05@0oooo00<000000?ooo`3oool0 +303oool00`000000oooo0?ooo`1R0?ooo`80ObXZ00<00?l00?l0003oool03`3oool20000ogh0oooo +00<0003o0?ooo`3oool0:03oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3o +ool0L03oool009@0oooo0P3o00001@3oool0ObXZ0?ooo`3oool00?l000@0oooo00<0003o0?ooo`3o +ool0YP3oool00`000?l0oooo0?ooo`0>0?ooo`80o`0000<0oooo07lZ:P00o`00E03oool00`000000 +oooo0?ooo`0;0?ooo`H00000GP3oool0101o:RX0oooo003o003o000?0?ooo`80003oP@3oool00`00 +0?l0oooo0?ooo`0X0?ooo`07003o003oool0oooo0?ooo`1o:RX0oooo0?l0001b0?ooo`00TP3oool2 +0?l000<0oooo00<0ObXZ0?ooo`00o`00103oool00`000?l0oooo0?ooo`2X0?ooo`80003o403oool0 +103o0000oooo07lZ:P00o`1<0?ooo`@00000103oool00`000000oooo0?ooo`0:0?ooo`030000003o +ool0oooo0600oooo00@0ObXZ0?ooo`00o`00o`003P3oool20000oh<0oooo00<0003o0?ooo`3oool0 +:03oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0K`3oool00900oooo +0P3o00040?ooo`0307lZ:P3oool00?l000D0oooo00<0003o0?ooo`3oool0ZP3oool20000o`l0oooo +00@0o`000?ooo`1o:RX00?l0D@3oool010000000oooo0?ooo`00000;0?ooo`030000003oool0oooo +05l0oooo00@0ObXZ003o0000o`00o`003@3oool20000ohH0oooo00<0003o0?ooo`3oool0:03oool0 +1`00o`00oooo0?ooo`3oool0ObXZ0?ooo`3o0000L@3oool008l0oooo00<0o`000?ooo`3oool0103o +ool00`1o:RX0oooo003o00050?ooo`030000o`3oool0oooo0:`0oooo0P000?l>0?ooo`030?l0003o +ool0oooo00800?l0D03oool2000000`0oooo00<000000?ooo`3oool0GP3oool0101o:RX00?l00?l0 +003o000<0?ooo`80003oR@3oool00`000?l0oooo0?ooo`0W0?ooo`05003o003oool0oooo0?ooo`1o +:RX00P3oool00`3o0000oooo0?ooo`1^0?ooo`00SP3oool00`3o0000oooo0?ooo`040?ooo`0307lZ +:P3oool00?l000D0oooo00<0003o0?ooo`3oool0[`3oool20000o`d0oooo0P3o00000`3oool0ObXZ +003o001M0?ooo`030000003oool0oooo05`0oooo00@0ObXZ003o0000o`00o`00303oool20000oh`0 +oooo00<0003o0?ooo`3oool09`3oool01`00o`00oooo0?ooo`3oool0ObXZ0?ooo`3o0000L03oool0 +08d0oooo00<0o`000?ooo`3oool0103oool0101o:RX0oooo0?ooo`00o`050?ooo`030000o`3oool0 +oooo0;40oooo0P000?l=0?ooo`040?l0003oool0ObXZ003o05`0oooo00<000000?ooo`3oool0F`3o +ool2003o0080o`002`3oool20000ohh0oooo00<0003o0?ooo`3oool0:03oool01`00o`00oooo0?oo +o`3oool0ObXZ0?ooo`3o0000K`3oool008/0oooo0P3o00070?ooo`0307lZ:P3oool00?l000H0oooo +00<0003o0?ooo`3oool0/`3oool20000o``0oooo00@0o`000?ooo`1o:RX00?l0F`3oool00`000000 +oooo0?ooo`1J0?ooo`03003o003o0000o`0000/0oooo0P000?nA0?ooo`030000o`3oool0oooo02L0 +oooo00L00?l00?ooo`3oool0oooo07lZ:P3oool0o`0006l0oooo002:0?ooo`030?l0003oool0oooo +00H0oooo00<0ObXZ0?ooo`00o`001P3oool00`000?l0oooo0?ooo`2f0?ooo`80003o2`3oool20?l0 +000307lZ:P00o`00oooo05T0oooo00<000000?ooo`3oool0F@3oool00`00o`00o`000?ooo`0:0?oo +o`80003oU03oool00`000?l0oooo0?ooo`0W0?ooo`07003o003oool0oooo0?ooo`1o:RX0oooo0?l0 +001^0?ooo`00R@3oool00`3o0000oooo0?ooo`070?ooo`0307lZ:P00o`00oooo00H0oooo00<0003o +0?ooo`3oool0^03oool20000o`/0oooo00<0o`000?ooo`00o`00F@3oool00`000000oooo0?ooo`1G +0?ooo`0307lZ:P00o`00o`0000X0oooo0P000?nF0?ooo`030000o`3oool0oooo02P0oooo00@00?l0 +0?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1[0?ooo`00Q`3oool20?l000T0oooo00<0ObXZ +003o003oool01`3oool00`000?l0oooo0?ooo`2j0?ooo`80003o2P3oool00`3o0000oooo003o001H +0?ooo`030000003oool0oooo05H0oooo00<0ObXZ0?l0003o00002@3oool20000oiT0oooo00<0003o +0?ooo`3oool09`3oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06/0oooo0025 +0?ooo`80o`002`3oool00`1o:RX00?l00?ooo`060?ooo`030000o`3oool0oooo0;d0oooo0P000?l9 +0?ooo`80o`000P00o`1F0?ooo`@00000E03oool00`1o:RX0o`000?ooo`090?ooo`030000o`3oool0 +oooo09X0oooo00<0003o0?ooo`3oool09`3oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003o +ool0oooo06X0oooo00230?ooo`80o`00303oool00`1o:RX00?l00?ooo`070?ooo`030000o`3oool0 +oooo0;l0oooo0P000?l90?ooo`030?l0001o:RX00?l005D0oooo00<000000?ooo`3oool0E03oool0 +0`1o:RX0o`000?ooo`080?ooo`80003oWP3oool00`000?l0oooo0?ooo`0V0?ooo`04003o003oool0 +oooo07lZ:P80oooo00<0o`000?ooo`3oool0JP3oool00880oooo00<0o`000?ooo`3oool0303oool0 +0`1o:RX00?l00?ooo`070?ooo`030000o`3oool0oooo0<40oooo0P000?l80?ooo`030?l0001o:RX0 +0?l005@0oooo00<000000?ooo`3oool0D`3oool20?l000P0oooo0P000?nP0?ooo`030000o`3oool0 +oooo02L0oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1Y0?ooo`00P03oool2 +0?l000h0oooo00<0ObXZ003o003oool01`3oool00`000?l0oooo0?ooo`340?ooo`030000o`3oool0 +oooo00H0oooo00<0o`000?ooo`00o`00D`3oool00`000000oooo0?ooo`1A0?ooo`0307lZ:P3o0000 +oooo00L0oooo0P000?nS0?ooo`030000o`3oool0oooo02H0oooo00@00?l00?ooo`3oool0ObXZ0P3o +ool00`3o0000oooo0?ooo`1Y0?ooo`00OP3oool20?l00100oooo00<0ObXZ003o003oool01`3oool0 +0`000?l0oooo0?ooo`350?ooo`80003o1`3oool20?l00003003o003oool0oooo0500oooo00<00000 +0?ooo`3oool0D03oool00`1o:RX0o`000?ooo`060?ooo`80003oYP3oool00`000?l0oooo0?ooo`0U +0?ooo`07003o003oool0oooo0?ooo`1o:RX0oooo0?l0001[0?ooo`00O03oool20?l00180oooo00<0 +0?l00?ooo`3oool01`3oool00`000?l0oooo0?ooo`370?ooo`80003o1`3oool00`3o00000?l00?oo +o`1@0?ooo`030000003oool0oooo04l0oooo0P3o00060?ooo`80003oZ@3oool00`000?l0oooo0?oo +o`0U0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0J03oool007X0oooo0P3o +000C0?ooo`03003o003oool0oooo00L0oooo00<0003o0?ooo`3oool0bP3oool20000o`H0oooo00<0 +o`00003o003oool0C`3oool00`000000oooo0?ooo`1>0?ooo`030?l0003oool0oooo00@0oooo0P00 +0?n[0?ooo`030000o`3oool0oooo02D0oooo00L00?l00?ooo`3oool0oooo07lZ:P3oool0o`0006X0 +oooo001h0?ooo`80o`005@3oool00`00o`00oooo0?ooo`070?ooo`030000o`3oool0oooo0<`0oooo +0P000?l50?ooo`80o`0000<0ObXZ0?ooo`3oool0C03oool00`000000oooo0?ooo`1=0?ooo`030?l0 +003oool0oooo00<0oooo0P000?n^0?ooo`030000o`3oool0oooo02D0oooo00H00?l00?ooo`3oool0 +ObXZ0?ooo`3o001Z0?ooo`00MP3oool20?l001H0oooo00<00?l00?ooo`3oool0203oool00`000?l0 +oooo0?ooo`3>0?ooo`80003o1@3oool00`3o0000ObXZ0?ooo`1<0?ooo`030000003oool0oooo04/0 +oooo00<0ObXZ0?l0003oool00`3oool20000ok40oooo00<0003o0?ooo`3oool0903oool01P00o`00 +oooo0?ooo`1o:RX0oooo0?l006X0oooo001d0?ooo`80o`00603oool00`00o`00oooo0?ooo`070?oo +o`030000o`3oool0oooo0=40oooo0P000?l40?ooo`030?l0001o:RX0oooo04/0oooo00<000000?oo +o`3oool0BP3oool00`1o:RX0o`000?ooo`020?ooo`80003o/`3oool00`000?l0oooo0?ooo`0U0?oo +o`06003o003oool0oooo07lZ:P3oool0o`00J@3oool00780oooo0P3o000I0?ooo`03003o003oool0 +oooo00P0oooo00<0003o0?ooo`3oool0d`3oool20000o`<0oooo00<0o`0007lZ:P3oool0BP3oool4 +000004P0oooo00@0ObXZ0?l0003oool0oooo0P000?nf0?ooo`030000o`3oool0oooo02@0oooo00H0 +0?l00?ooo`3oool0ObXZ0?ooo`3o001Y0?ooo`00L03oool20?l001X0oooo00<0ObXZ003o003oool0 +2@3oool00`000?l0oooo0?ooo`3E0?ooo`80003o0P3oool00`3o0000ObXZ0?ooo`190?ooo`030000 +003oool0oooo04P0oooo00<0ObXZ0?l0003oool00P000?ni0?ooo`030000o`3oool0oooo02@0oooo +00H00?l00?ooo`3oool0ObXZ0?ooo`3o001X0?ooo`00KP3oool20?l001`0oooo00<00?l00?ooo`3o +ool0203oool00`000?l0oooo0?ooo`3H0?ooo`80003o00<0oooo0?l0001o:RX0B@3oool00`000000 +oooo0?ooo`170?ooo`80o`000P000?nl0?ooo`030000o`3oool0oooo02<0oooo00H00?l00?ooo`3o +ool0oooo07lZ:P3o001X0?ooo`00K03oool20?l001h0oooo00<00?l00?ooo`3oool0203oool00`00 +0?l0oooo0?ooo`3J0?ooo`80003o00@0o`000000o`000?l0003oAP3oool00`000000oooo0?ooo`13 +0?ooo`<0003o00<0o`000000o`000?l0_P3oool00`000?l0oooo0?ooo`0T0?ooo`05003o003oool0 +oooo07lZ:P3o0000J03oool006X0oooo0P3o000O0?ooo`0307lZ:P00o`00oooo00T0oooo00<0003o +0?ooo`3oool0g03oool50000odD0oooo00<000000?ooo`3oool0@P3oool50000ol40oooo00<0003o +0?ooo`3oool08`3oool01P00o`00oooo0?ooo`3oool0ObXZ0?l006L0oooo001X0?ooo`80o`008@3o +ool00`00o`00oooo0?ooo`080?ooo`030000o`3oool0oooo0=d0oooo1@000?m50?ooo`030000003o +ool0oooo0480oooo1@000?o20?ooo`030000o`3oool0oooo02<0oooo00D00?l00?ooo`3oool0ObXZ +0?l0001W0?ooo`00IP3oool20?l002<0oooo00<00?l00?ooo`3oool0203oool00`000?l0oooo0?oo +o`3M0?ooo`D0003oA@3oool00`000000oooo0?ooo`120?ooo`D0003o``3oool00`000?l0oooo0?oo +o`0R0?ooo`06003o003oool0oooo07lZ:P3oool0o`00IP3oool006@0oooo0P3o000T0?ooo`03003o +003oool0oooo00T0oooo00<0003o0?ooo`3oool0gP3oool40000o`80o`00@`3oool00`000000oooo +0?ooo`120?ooo`@0003oa03oool00`000?l0oooo0?ooo`0R0?ooo`06003o003oool0oooo07lZ:P3o +ool0o`00IP3oool00640oooo0`3o000V0?ooo`03003o003oool0oooo00P0oooo00<0003o0?ooo`3o +ool0h`3oool00`000?l0oooo0?l000120?ooo`030000003oool0oooo0440oooo00<0003o07lZ:P3o +ool0a`3oool00`000?l0oooo0?ooo`0R0?ooo`05003o003oool0oooo07lZ:P3o0000IP3oool005l0 +oooo0P3o000X0?ooo`03003o001o:RX0oooo00T0oooo00<0003o0?ooo`3oool0i03oool00`000?l0 +ObXZ0?l000110?ooo`030000003oool0oooo0400oooo00<0003o07lZ:P3oool0b@3oool00`000?l0 +oooo0?ooo`0Q0?ooo`05003o003oool0oooo07lZ:P3o0000IP3oool005d0oooo0P3o000Z0?ooo`03 +003o001o:RX0oooo00T0oooo00<0003o0?ooo`3oool0i@3oool00`000?l0o`000?ooo`100?ooo`@0 +0000?P3oool00`000?l0oooo0?ooo`3;0?ooo`030000o`3oool0oooo0240oooo00D00?l00?ooo`1o +:RX0oooo0?l0001U0?ooo`00F`3oool20?l002`0oooo00<00?l00?ooo`3oool0203oool00`000?l0 +oooo0?ooo`3W0?ooo`030000o`3o0000oooo03l0oooo00<000000?ooo`3oool0?P3oool00`000?l0 +oooo0?ooo`3<0?ooo`030000o`3oool0oooo0240oooo00D00?l00?ooo`3oool0ObXZ0?l0001U0?oo +o`00F@3oool20?l002d0oooo00<00?l007lZ:P3oool02@3oool00`000?l0oooo0?ooo`3X0?ooo`03 +0000o`3o0000oooo03h0oooo00<000000?ooo`3oool0?03oool00`3o0000003o0?ooo`3?0?ooo`03 +0000o`3oool0oooo0240oooo00@00?l00?ooo`1o:RX0o`00I@3oool005L0oooo0P3o000_0?ooo`03 +003o001o:RX0oooo00T0oooo00<0003o0?ooo`3oool0j@3oool00`000?l0o`000?ooo`0m0?ooo`03 +0000003oool0oooo03/0oooo00<0o`000000o`1o:RX0d@3oool00`000?l0oooo0?ooo`0P0?ooo`04 +003o003oool0ObXZ0?l006D0oooo001E0?ooo`80o`00<@3oool00`00o`00oooo0?ooo`080?ooo`03 +0000o`3oool0oooo0>/0oooo00<0003o0?l0003o0000?03oool00`000000oooo0?ooo`0j0?ooo`03 +0?l000000?l0ObXZ0=80oooo00<0003o0?ooo`3oool08@3oool01000o`00oooo07lZ:P3o001T0?oo +o`00D`3oool20?l003<0oooo00<00?l00?ooo`3oool0203oool00`000?l0oooo0?ooo`3/0?ooo`03 +0000o`00o`00o`0003/0oooo00<000000?ooo`3oool0>@3oool00`3o0000003o07lZ:P3D0?ooo`03 +0000o`3oool0oooo0200oooo00@00?l00?ooo`1o:RX0o`00I03oool00500oooo0`3o000d0?ooo`03 +003o001o:RX0oooo00T0oooo00<0003o0?ooo`3oool0k@3oool00`000?l00?l00?l0000j0?ooo`03 +0000003oool0oooo03P0oooo00<0o`000000o`1o:RX0eP3oool00`000?l0oooo0?ooo`0O0?ooo`05 +003o003oool0ObXZ0?ooo`3o0000H`3oool004h0oooo0P3o000g0?ooo`03003o003oool0oooo00P0 +oooo00<0003o0?ooo`3oool0k`3oool010000?l00?l00?l0003o000h0?ooo`030000003oool0oooo +03L0oooo00<0o`000000o`3oool0f03oool00`000?l0oooo0?ooo`0O0?ooo`04003o003oool0ObXZ +0?l006<0oooo001<0?ooo`80o`00>03oool00`00o`00ObXZ0?ooo`090?ooo`030000o`3oool0oooo +0?00oooo00@0003o003o003oool0o`00=`3oool00`000000oooo0?ooo`0e0?ooo`80o`0000<0003o +0?ooo`3oool0f03oool00`000?l0oooo0?ooo`0O0?ooo`04003o003oool0ObXZ0?l006<0oooo001: +0?ooo`80o`00>P3oool00`00o`00ObXZ0?ooo`090?ooo`030000o`3oool0oooo0?40oooo00@0003o +003o003oool0o`00=P3oool00`000000oooo0?ooo`0d0?ooo`030?l0003oool0003o0=`0oooo00<0 +003o0?ooo`3oool07`3oool00`00o`00ObXZ0?l0001S0?ooo`00A`3oool30?l003/0oooo00<00?l0 +07lZ:P3oool02@3oool00`000?l0oooo0?ooo`3c0?ooo`030000o`00o`00o`0003H0oooo1000000b +0?ooo`040?l0003oool0003o07lZ:]d0oooo00<0003o0?ooo`3oool07P3oool01000o`00oooo07lZ +:P3o001R0?ooo`00A03oool30?l003h0oooo00<00?l007lZ:P3oool02@3oool00`000?l0oooo0?oo +o`3d0?ooo`030000o`00o`00o`0003D0oooo00<000000?ooo`3oool080oooo00<0003o0?ooo`3oool07@3oool00`00o`00oooo0?l0 +001R0?ooo`00?03oool20?l004H0oooo00<00?l007lZ:P3oool02@3oool00`000?l0oooo0?ooo`3h +0?ooo`030000o`00o`00o`000380oooo00<000000?ooo`3oool0<03oool00`3o0000oooo0000o`3T +0?ooo`030000o`3oool0oooo01`0oooo00<00?l00?ooo`3o0000HP3oool003X0oooo0P3o00180?oo +o`03003o001o:RX0oooo00T0oooo00<0003o0?ooo`3oool0n@3oool00`000?l00?l00?l0000a0?oo +o`030000003oool0oooo02h0oooo0P3o00000`3oool0003o0?ooo`3T0?ooo`030000o`3oool0oooo +01`0oooo00<00?l00?ooo`3o0000HP3oool003P0oooo0P3o001:0?ooo`03003o003oool0oooo00P0 +oooo00<0003o0?ooo`3oool0nP3oool0101o:RX0003o003o003o000`0?ooo`030000003oool0oooo +02d0oooo00@0o`00003o003oool0003oi`3oool00`000?l0oooo0?ooo`0L0?ooo`03003o003oool0 +o`000640oooo000e0?ooo`<0o`00B`3oool00`00o`00ObXZ0?ooo`090?ooo`030000o`3oool0oooo +0?/0oooo00<0ObXZ0000o`00o`000P3o000O0?ooo`D000002P3oool00`000000oooo0?ooo`0/0?oo +o`040?l00000o`00oooo0000onT0oooo00<0003o0?ooo`3oool06`3oool00`00o`00oooo0?l0001Q +0?ooo`000?ooo`@000000P3oool3000001`0oooo1P3o00160?ooo`05003o003oool0oooo0?oo +o`000?l06@3oool400000080oooo00@000000?ooo`3oool00000Q@3oool4000000@0oooo00<00000 +0?ooo`3oool0N`3oool00`000?l0o`000?ooo`0;0?ooo`030000003oool0oooo00X0oooo00<0o`00 +0000o`3oool0O`3oool00`000000oooo0?ooo`2:0?ooo`040000003oool0oooo000001L0oooo00<0 +003o0?ooo`3oool01`3oool00`3o0000oooo0?ooo`1J0?ooo`005@3oool00`000000oooo0?ooo`0Q +0?ooo`D0o`00@@3oool01000o`00oooo0?ooo`000?lQ0?ooo`030000003oool0000008/0oooo00@0 +00000?ooo`3oool00000O@3oool00`000?l0o`000?ooo`0:0?ooo`030000003oool0oooo00T0oooo +00<0o`000000o`3oool0OP3oool010000000oooo0?ooo`00002<0?ooo`030000003oool0000001P0 +oooo00<0003o0?ooo`3oool01P3oool00`3o0000oooo0?ooo`1J0?ooo`005@3oool3000002H0oooo +1@3o000l0?ooo`04003o003oool0oooo0000ob80oooo0P00002<0?ooo`800000O`3oool00`000?l0 +o`000?ooo`090?ooo`030000003oool0oooo00P0oooo00<0o`000000o`3oool0P03oool2000008h0 +oooo0P00000H0?ooo`030000o`3oool0oooo00H0oooo00<0o`000?ooo`3oool0FP3oool004<0oooo +103o000h0?ooo`04003o003oool0oooo0000ool0oooo<`3oool00`000?l0o`000?ooo`080?ooo`03 +0000003oool0oooo00L0oooo00<0o`000000o`3oool0o`3oool]0?ooo`030000o`3oool0oooo00D0 +oooo00<0o`000?ooo`3oool0FP3oool004L0oooo1@3o000c0?ooo`03003o003oool0003o0?l0oooo +=@3oool00`000?l0o`000?ooo`070?ooo`030000003oool0oooo00H0oooo00<0o`000000o`3oool0 +o`3oool_0?ooo`030000o`3oool0oooo00@0oooo00<0o`000?ooo`3oool0FP3oool004`0oooo103o +000_0?ooo`03003o003oool0003o0?l0oooo=P3oool00`000?l0o`000?ooo`060?ooo`@00000103o +ool00`3o0000003o0?ooo`3o0?oooc00oooo00<0003o0?ooo`3oool0103oool00`3o0000oooo0?oo +o`1J0?ooo`00D03oool50?l002T0oooo00@0ObXZ003o003oool0003oo`3ooolg0?ooo`030000o`3o +0000oooo00D0oooo00<000000?ooo`3oool0103oool00`3o0000003o0?ooo`3o0?oooc80oooo00<0 +003o0?ooo`3oool00`3oool00`3o0000oooo0?ooo`1J0?ooo`00E@3oool40?l002D0oooo00<0ObXZ +003o00000?l0o`3ooolh0?ooo`0307lZ:P000?l0oooo00D0oooo00<000000?ooo`3oool00`3oool0 +0`3o0000003o0?ooo`3o0?oooc@0oooo00<0003o0?ooo`3oool00P3oool00`3o0000oooo0?ooo`1J +0?ooo`00F@3oool50?l00200oooo00<0ObXZ003o00000?l0o`3oooli0?ooo`0307lZ:P000?l0oooo +00@0oooo00<000000?ooo`3oool00`3oool00`000?l0ObXZ0?ooo`3o0?ooocD0oooo00D0003o0?oo +o`3oool0oooo0?l0001L0?ooo`00GP3oool60?l001X0oooo00<00?l00?ooo`000?l0o`3ooolj0?oo +o`0307lZ:P000?l0oooo00<0oooo00<000000?ooo`3oool00P3oool00`000?l0ObXZ0?ooo`3o0?oo +ocH0oooo00D0003o0?ooo`3oool0oooo0?l0001L0?ooo`00I03oool60?l001@0oooo00<00?l00000 +o`3oool0o`3ooolk0?ooo`0307lZ:P000?l0oooo0080oooo00H000000?ooo`3oool0oooo0000o`1o +:R[o0?ooocT0oooo00@0003o0?ooo`3oool0o`00G03oool006X0oooo1P3o000>0?ooo`03003o0000 +0?l0oooo0?l0oooo?03oool01@1o:RX0003o0?ooo`3oool000000080oooo00<0003o07lZ:P3oool0 +o`3ooolj0?ooo`030000o`3oool0o`0005`0oooo001`0?ooo`H0o`001`3oool30000ool0oooo?`3o +ool50000ool0oooo?P3oool30000oe/0oooo001f0?ooo`H0o`001@000?oo0?oooch0oooo1@000?oo +0?ooocd0oooo1@000?lh0?ooo`030000003oool0oooo00P0oooo0P0000000`3oool000000000000B +0?ooo`004`3ooomY000000D0003oo`00000n000000D0003oo`00000m000000D0003o8P00000G0?oo +o`030000003oool0oooo00P0oooo00<000000?ooo`0000004`3oool001<0oooo00<000000?ooo`3o +ool08@3oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo01T0oooo1@3o00050000ob40 +oooo00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0200 +oooo00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0200 +oooo00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0O0?ooo`D0003o8@3oool00`000000 +oooo0?ooo`0P0?ooo`030000003oool0oooo0240oooo00<000000?ooo`3oool08@3oool00`000000 +oooo0?ooo`0Q0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool08@3oool00`000000 +oooo0?ooo`0Q0?ooo`030000003oool0oooo01h0oooo1@000?lj0?ooo`8000002@3oool00`000000 +oooo0?ooo`0B0?ooo`004`3oool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0240oooo +00<000000?ooo`3oool0503oool50?l000H0oooo0`000?lR0?ooo`030000003oool0oooo0240oooo +00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo0240oooo +00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo0240oooo +00<000000?ooo`3oool07`3oool50000ob40oooo00<000000?ooo`3oool0803oool00`000000oooo +0?ooo`0Q0?ooo`030000003oool0oooo0240oooo00<000000?ooo`3oool08@3oool00`000000oooo +0?ooo`0P0?ooo`030000003oool0oooo0240oooo00<000000?ooo`3oool08@3oool00`000000oooo +0?ooo`0O0?ooo`<0003o>P3oool00`000000oooo0?ooo`070?ooo`80000000<0oooo000000000000 +4P3oool001<0oooo00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0Q0?ooo`030000003o +ool0oooo00l0oooo1@3o000<0?ooo`03003o00000?l0oooo0240oooo00<000000?ooo`3oool08@3o +ool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool08@3o +ool00`000000oooo0?ooo`0Q0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool08@3o +ool00`000000oooo0?ooo`0N0?ooo`070000o`3o0000oooo0000003oool0o`000000o`0P0?ooo`03 +0000003oool0oooo0200oooo00<000000?ooo`3oool08@3oool00`000000oooo0?ooo`0Q0?ooo`03 +0000003oool0oooo0240oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0Q0?ooo`03 +0000003oool0oooo0240oooo00<000000?ooo`3oool07P3oool00`000?l0oooo0?l0000j0?ooo`03 +0000003oool0oooo01l0oooo000C0?ooo`030000003oool0oooo0580oooo1@3o000A0?ooo`03003o +00000?l0oooo0240oooo00<000000?ooo`3oool0S03oool00`000000oooo0?ooo`280?ooo`050000 +o`3o0000oooo0?ooo`0000000P3oool00`3o0000003o0?ooo`290?ooo`030000003oool0oooo08`0 +oooo00<000000?ooo`3oool07@3oool010000?l0oooo0?ooo`3o001L0?ooo`004`3oool00`000000 +oooo0?ooo`1=0?ooo`D0o`005P3oool00`00o`00oooo0000o`0Q0?ooo`030000003oool0oooo08`0 +oooo00<000000?ooo`3oool0Q`3oool00`000?l0o`000?ooo`020?ooo`060000003oool0oooo0?oo +o`3o0000003oR@3oool00`000000oooo0?ooo`2<0?ooo`030000003oool0oooo01`0oooo00D0003o +0?ooo`3oool0oooo0?l0001L0?ooo`00GP3oool50?l001/0oooo00<00?l00?ooo`000?l0o`3ooolj +0?ooo`030000o`3o0000oooo00<0oooo00<000000?ooo`3oool00P3oool00`3o0000003o0?ooo`3o +0?ooocH0oooo00D0003o0?ooo`3oool0oooo0?l0001L0?ooo`00F@3oool50?l00200oooo00<00?l0 +0?ooo`000?l0o`3oooli0?ooo`030000o`3o0000oooo00@0oooo00<000000?ooo`3oool00`3oool0 +0`3o0000003o0?ooo`3o0?oooc@0oooo00<0003o0?ooo`3oool00P3oool00`3o0000oooo0?ooo`1J +0?ooo`00E@3oool40?l002D0oooo00@00?l00?ooo`3oool0003oo`3ooolg0?ooo`030000o`3o0000 +oooo00D0oooo00<000000?ooo`3oool00`3oool00`3o00000?l00000o`3o0?oooc<0oooo00<0003o +0?ooo`3oool00`3oool00`3o0000oooo0?ooo`1J0?ooo`00D03oool50?l002T0oooo00@00?l00?oo +o`3oool0003oo`3ooolf0?ooo`030000o`00o`00o`0000H0oooo00<000000?ooo`3oool0103oool0 +0`3o00000?l00000o`3o0?oooc40oooo00<0003o0?ooo`3oool0103oool00`3o0000oooo0?ooo`1J +0?ooo`00C03oool40?l002h0oooo00@00?l007lZ:P3oool0003oo`3ooole0?ooo`030000o`00o`00 +o`0000L0oooo100000040?ooo`030?l00000o`00003o0?l0oooo<03oool00`000?l0oooo0?ooo`04 +0?ooo`030?l0003oool0oooo05X0oooo00170?ooo`D0o`000?ooo`030000003oool0oooo00/0oooo00<0o`00003o0000 +0?l0o`3ooolU0?ooo`030000o`3oool0oooo00T0oooo00<0o`000?ooo`3oool0FP3oool002H0oooo +103o001E0?ooo`03003o003oool0oooo0080oooo00<0003o0?ooo`3oool0o`3ooolX0?ooo`030000 +o`1o:RX0o`0000l0oooo00<000000?ooo`3oool0303oool00`3o00000?l00000o`3o0?ooob<0oooo +00<0003o0?ooo`3oool02P3oool00`3o0000oooo0?ooo`1J0?ooo`008P3oool40?l005T0oooo00<0 +0?l00?ooo`3oool00P3oool00`000?l0oooo0?ooo`3o0?ooobP0oooo00<0003o0?l0003oool03`3o +ool00`000000oooo0?ooo`0=0?ooo`030?l00000o`00003o0?l0oooo8@3oool00`000?l0oooo0?oo +o`0:0?ooo`03003o003o0000oooo05/0oooo000N0?ooo`@0o`00G@3oool00`00o`00oooo0?ooo`03 +0?ooo`030000o`3oool0oooo0?l0oooo9P3oool00`000?l0o`000?ooo`0@0?ooo`@000003@3oool0 +0`3o00000?l00000o`3o0?ooob00oooo00<0003o0?ooo`3oool02P3oool00`00o`00o`000?ooo`1K +0?ooo`006`3oool30?l00640oooo00<00?l00?ooo`3oool00`3oool00`000?l0oooo0?ooo`3o0?oo +obD0oooo00<0003o003o003o00004@3oool00`000000oooo0?ooo`0?0?ooo`030?l00000o`00003o +0?l0oooo7P3oool00`000?l0oooo0?ooo`0;0?ooo`030?l0003oool0oooo05/0oooo000H0?ooo`<0 +o`00I03oool00`00o`00oooo0?ooo`030?ooo`030000o`3oool0oooo0?l0oooo903oool00`000?l0 +0?l00?l0000B0?ooo`030000003oool0oooo0100oooo00<0o`00003o00000?l0o`3ooolL0?ooo`03 +0000o`3oool0oooo00`0oooo00<0o`000?ooo`3oool0F`3oool001D0oooo0`3o001W0?ooo`03003o +003oool0oooo00@0oooo00<0003o0?ooo`3oool0o`3ooolR0?ooo`030000o`00o`00o`0001<0oooo +00<000000?ooo`3oool04@3oool00`3o0000oooo0000o`3o0?oooaX0oooo00<0003o0?ooo`3oool0 +3@3oool00`3o0000oooo0?ooo`1K0?ooo`004`3oool20?l006X0oooo00<00?l007lZ:P3oool0103o +ool00`000?l0oooo0?ooo`3o0?ooob40oooo00<0003o003o003o0000503oool00`000000oooo0?oo +o`0B0?ooo`030?l0003oool0003o0?l0oooo6@3oool00`000?l0oooo0?ooo`0=0?ooo`030?l0003o +ool0oooo05/0oooo001o0?ooo`03003o001o:RX0oooo00@0oooo00<0003o0?ooo`3oool0o`3ooolP +0?ooo`030000o`00o`00o`0001D0oooo00<000000?ooo`3oool04`3oool00`3o0000oooo0000o`3o +0?oooaL0oooo00<0003o0?ooo`3oool03P3oool00`3o0000oooo0?ooo`1K0?ooo`00O`3oool00`00 +o`00ObXZ0?ooo`050?ooo`030000o`3oool0oooo0?l0oooo7P3oool00`000?l00?l00?l0000F0?oo +o`030000003oool0oooo01<0oooo00@0o`00003o003oool0003oo`3ooolE0?ooo`030000o`3oool0 +oooo00l0oooo00<0o`000?ooo`3oool0F`3oool007l0oooo00<00?l007lZ:P3oool01@3oool00`00 +0?l0oooo0?ooo`3o0?oooad0oooo00<0003o003o003o00005`3oool00`000000oooo0?ooo`0D0?oo +o`040?l0003oool0oooo0000ool0oooo4`3oool00`000?l0oooo0?ooo`0@0?ooo`030?l0003oool0 +oooo05/0oooo001o0?ooo`03003o001o:RX0oooo00D0oooo00<0003o0?ooo`3oool0o`3ooolL0?oo +o`040000o`3oool00?l00?l001L0oooo00<000000?ooo`3oool05@3oool0103o0000oooo0?ooo`00 +0?oo0?oooa80oooo00<0003o0?ooo`3oool0403oool00`3o0000oooo0?ooo`1K0?ooo`00O`3oool0 +0`00o`00ObXZ0?ooo`060?ooo`030000o`3oool0oooo0?l0oooo6P3oool010000?l0oooo003o003o +000H0?ooo`030000003oool0oooo01H0oooo00@0o`000?ooo`3oool0003oo`3oool@0?ooo`030000 +o`3oool0oooo0100oooo00<00?l00?l0003oool0G03oool00800oooo00<00?l007lZ:P3oool01@3o +ool00`000?l0oooo0?ooo`3o0?oooaT0oooo00@0003o0?ooo`00o`00o`006@3oool4000001H0oooo +00@0o`000?ooo`3oool0003oo`3oool>0?ooo`030000o`3oool0oooo0140oooo00<00?l00?l0003o +ool0G03oool00800oooo00<00?l007lZ:P3oool01@3oool00`000?l0oooo0?ooo`3o0?oooaP0oooo +00@0003o0?ooo`00o`00o`006P3oool00`000000oooo0?ooo`0H0?ooo`040?l0003oool0ObXZ0000 +ool0oooo3@3oool00`000?l0oooo0?ooo`0A0?ooo`03003o003o0000oooo05`0oooo00200?ooo`03 +003o001o:RX0oooo00H0oooo00<0003o0?ooo`3oool0o`3ooolF0?ooo`040000o`1o:RX00?l00?l0 +01/0oooo00<000000?ooo`3oool06@3oool0103o0000oooo07lZ:P000?oo0?ooo`/0oooo00<0003o +0?ooo`3oool04P3oool00`3o0000oooo0?ooo`1L0?ooo`00P03oool00`00o`00ObXZ0?ooo`060?oo +o`030000o`3oool0oooo0?l0oooo5@3oool010000?l0ObXZ003o003o000L0?ooo`030000003oool0 +oooo01X0oooo00@0o`000?ooo`1o:RX0003oo`3oool90?ooo`030000o`3oool0oooo01<0oooo00<0 +o`000?ooo`3oool0G03oool00800oooo00<00?l007lZ:P3oool01P3oool00`000?l0oooo0?ooo`3o +0?oooa@0oooo00@0003o07lZ:P00o`00o`007@3oool00`000000oooo0?ooo`0K0?ooo`040?l0003o +ool0ObXZ0000ool0oooo1`3oool00`000?l0oooo0?ooo`0C0?ooo`03003o003o0000oooo05d0oooo +00200?ooo`03003o001o:RX0oooo00L0oooo00<0003o0?ooo`3oool0o`3ooolB0?ooo`040000o`1o +:RX00?l00?l001h0oooo00<000000?ooo`3oool0703oool0103o0000oooo07lZ:P000?oo0?ooo`H0 +oooo00<0003o0?ooo`3oool04`3oool00`00o`00o`000?ooo`1M0?ooo`00P03oool00`00o`00ObXZ +0?ooo`070?ooo`030000o`3oool0oooo0?l0oooo4@3oool010000?l0oooo003o003o000O0?ooo`03 +0000003oool0oooo01d0oooo00@0o`000?ooo`3oool0003oo`3oool40?ooo`030000o`3oool0oooo +01@0oooo00<00?l00?l0003oool0G@3oool00800oooo00<00?l00?ooo`1o:RX01`3oool00`000?l0 +oooo0?ooo`3o0?oooa00oooo00@0003o0?ooo`00o`00o`00803oool00`000000oooo0?ooo`0N0?oo +o`040?l0003oool0003o07lZ:_l0oooo0P3oool00`000?l0oooo0?ooo`0E0?ooo`03003o003o0000 +oooo05d0oooo00210?ooo`03003o001o:RX0oooo00L0oooo00<0003o0?ooo`3oool0o`3oool>0?oo +o`040000o`3oool00?l00?l00240oooo00<000000?ooo`3oool07`3oool00`3o0000oooo0000o`3o +0?ooo`80oooo00<0003o0?ooo`3oool05@3oool00`3o0000oooo0?ooo`1M0?ooo`004`3oool20?l0 +06`0oooo00<00?l007lZ:P3oool01`3oool00`000?l0oooo0?ooo`3o0?ooo`d0oooo00@0003o07lZ +:P00o`00o`008P3oool00`000000oooo0?ooo`0P0?ooo`030?l0003oool0003o0?l0oooo00<0003o +0?ooo`3oool05@3oool00`00o`00o`000?ooo`1N0?ooo`005@3oool30?l006T0oooo00<00?l007lZ +:P3oool01`3oool00`000?l0oooo0?ooo`3o0?ooo``0oooo00@0003o07lZ:P00o`00o`008`3oool4 +00000200oooo00<0o`000?ooo`000?l0o@3oool00`000?l0oooo0?ooo`0F0?ooo`03003o003o0000 +oooo05h0oooo000H0?ooo`80o`00I`3oool00`00o`00ObXZ0?ooo`080?ooo`030000o`3oool0oooo +0?l0oooo2P3oool010000?l0ObXZ003o003o000T0?ooo`030000003oool0oooo0280oooo00<0o`00 +0?ooo`000?l0n`3oool00`000?l0oooo0?ooo`0G0?ooo`03003o003o0000oooo05h0oooo000J0?oo +o`80o`00I@3oool00`00o`00ObXZ0?ooo`080?ooo`030000o`3oool0oooo0?l0oooo2@3oool01000 +0?l0ObXZ003o003o000U0?ooo`030000003oool0oooo02<0oooo00<0o`000?ooo`000?l0nP3oool0 +0`000?l0oooo0?ooo`0G0?ooo`03003o003o0000oooo05h0oooo000L0?ooo`<0o`00HP3oool00`00 +o`00ObXZ0?ooo`080?ooo`030000o`3oool0oooo0?l0oooo203oool010000?l0oooo003o003o000V +0?ooo`030000003oool0oooo02@0oooo00<0o`000?ooo`000?l0n03oool00`000?l0oooo0?ooo`0G +0?ooo`03003o003o0000ObXZ05l0oooo000O0?ooo`80o`00H03oool00`00o`00oooo07lZ:P090?oo +o`030000o`3oool0oooo0?l0oooo1P3oool010000?l0oooo003o003o000W0?ooo`030000003oool0 +oooo02D0oooo00<0o`000?ooo`000?l0mP3oool00`000?l0oooo0?ooo`0H0?ooo`03003o003o0000 +oooo05l0oooo000Q0?ooo`80o`00GP3oool00`00o`00oooo07lZ:P090?ooo`030000o`3oool0oooo +0?l0oooo1@3oool010000?l0oooo003o003o000X0?ooo`030000003oool0oooo02D0oooo00@0o`00 +0?ooo`3oool0003om03oool00`000?l0oooo0?ooo`0I0?ooo`03003o003o0000oooo05l0oooo000S +0?ooo`<0o`00G03oool00`00o`00ObXZ0?ooo`080?ooo`030000o`3oool0oooo0?l0oooo103oool0 +10000?l0ObXZ003o003o000Y0?ooo`030000003oool0oooo02H0oooo00@0o`000?ooo`3oool0003o +l`3oool00`000?l0oooo0?ooo`0I0?ooo`03003o003o0000oooo05l0oooo000V0?ooo`<0o`00F@3o +ool00`00o`00oooo07lZ:P090?ooo`030000o`3oool0oooo0?l0oooo0P3oool010000?l0ObXZ003o +003o000Z0?ooo`030000003oool0oooo02L0oooo00@0o`000?ooo`3oool0003ol@3oool00`000?l0 +oooo0?ooo`0J0?ooo`03003o003o0000oooo05l0oooo000Y0?ooo`<0o`00EP3oool00`00o`00oooo +07lZ:P090?ooo`030000o`3oool0oooo0?l0oooo0@3oool010000?l0ObXZ003o003o000L0?ooo`D0 +00002P3oool00`000000oooo0?ooo`0X0?ooo`040?l0003oool0oooo0000onl0oooo00<0003o0?oo +o`3oool06P3oool00`00o`00ObXZ0?l0001P0?ooo`00;03oool30?l005@0oooo00<00?l007lZ:P3o +ool0203oool00`000?l0oooo0?ooo`3o0?ooo`040000o`1o:RX00?l00?l001l0oooo00<000000?oo +o`3oool02P3oool00`000000oooo0?ooo`0Y0?ooo`040?l00000o`00oooo0000onh0oooo00<0003o +0?ooo`3oool06P3oool00`00o`00o`000?ooo`1P0?ooo`00;`3oool30?l00540oooo00<00?l007lZ +:P3oool02@3oool00`000?l0oooo0?ooo`3m0?ooo`050000o`1o:RX0oooo003o003o00007`3oool0 +0`000000oooo0?ooo`0:0?ooo`H000009`3oool0103o00000?l00?ooo`000?o/0?ooo`030000o`3o +ool0oooo01/0oooo00<00?l00?l0003oool0H03oool00380oooo0`3o001>0?ooo`03003o001o:RX0 +oooo00T0oooo00<0003o0?ooo`3oool0o03oool01@000?l0ObXZ0?ooo`00o`00o`000200oooo00<0 +00000?ooo`3oool02P3oool00`000000oooo0?ooo`0[0?ooo`040?l00000o`00oooo0000onX0oooo +00<0003o0?ooo`3oool0703oool00`00o`00o`000?ooo`1P0?ooo`00=@3oool20?l004`0oooo00<0 +0?l007lZ:P3oool02@3oool00`000?l0oooo0?ooo`3k0?ooo`050000o`1o:RX0oooo003o003o0000 +8@3oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo02`0oooo00@0o`00003o001o:RX0 +003oj03oool00`000?l0oooo0?ooo`0L0?ooo`03003o003oool0o`000640oooo000g0?ooo`80o`00 +B`3oool00`00o`00oooo0?ooo`090?ooo`030000o`3oool0oooo0?T0oooo00<0003o07lZ:P00o`00 +0P3o000Q0?ooo`800000303oool00`000000oooo0?ooo`0]0?ooo`040?l00000o`00ObXZ0000onL0 +oooo00<0003o0?ooo`3oool0703oool00`00o`00ObXZ0?l0001Q0?ooo`00>@3oool20?l004T0oooo +00<00?l007lZ:P3oool02@3oool00`000?l0oooo0?ooo`3h0?ooo`040000o`1o:RX00?l00?l00340 +oooo00<000000?ooo`3oool0;P3oool0103o00000?l007lZ:P000?oU0?ooo`030000o`3oool0oooo +01`0oooo00<00?l00?ooo`3o0000HP3oool003/0oooo0P3o00170?ooo`03003o001o:RX0oooo00T0 +oooo00<0003o0?ooo`3oool0m`3oool010000?l0ObXZ003o003o000b0?ooo`030000003oool0oooo +02l0oooo0P3o00000`1o:RX0003o0?ooo`3R0?ooo`030000o`3oool0oooo01d0oooo00<00?l00?oo +o`3o0000HP3oool003d0oooo0`3o00140?ooo`03003o001o:RX0oooo00T0oooo00<0003o0?ooo`3o +ool0m`3oool00`000?l00?l00?l0000c0?ooo`030000003oool0oooo0340oooo00<0o`0007lZ:P00 +0?l0hP3oool00`000?l0oooo0?ooo`0M0?ooo`03003o003oool0o`000680oooo00100?ooo`<0o`00 +@P3oool00`00o`00ObXZ0?ooo`090?ooo`030000o`3oool0oooo0?D0oooo00<0003o003o003o0000 +=03oool00`000000oooo0?ooo`0b0?ooo`030?l0003oool0003o0>00oooo00<0003o0?ooo`3oool0 +7P3oool00`00o`00ObXZ0?l0001R0?ooo`00@`3oool40?l003h0oooo00<00?l007lZ:P3oool02@3o +ool00`000?l0oooo0?ooo`3d0?ooo`030000o`00o`00o`0003D0oooo00<000000?ooo`3oool003oool00`00o`00ObXZ0?ooo`090?oo +o`030000o`3oool0oooo0?00oooo00@0003o003o003oool0o`00=`3oool00`000000oooo0?ooo`0e +0?ooo`040?l0003oool0ObXZ0000omT0oooo00<0003o0?ooo`3oool07`3oool01000o`00oooo07lZ +:P3o001S0?ooo`00CP3oool20?l003H0oooo00<00?l007lZ:P3oool02@3oool00`000?l0oooo0?oo +o`3_0?ooo`040000o`00o`00oooo0?l003P0oooo00<000000?ooo`3oool0=P3oool20?l000030000 +o`3oool0oooo0=H0oooo00<0003o0?ooo`3oool0803oool01000o`00oooo07lZ:P3o001S0?ooo`00 +D03oool20?l003@0oooo00<00?l00?ooo`1o:RX02P3oool00`000?l0oooo0?ooo`3]0?ooo`040000 +o`00o`00o`000?l003T0oooo00<000000?ooo`3oool0>03oool00`3o0000003o07lZ:P3E0?ooo`03 +0000o`3oool0oooo0200oooo00D00?l00?ooo`1o:RX0oooo0?l0001S0?ooo`00DP3oool20?l003<0 +oooo00<00?l007lZ:P3oool02@3oool00`000?l0oooo0?ooo`3/0?ooo`030000o`00o`00o`0003/0 +oooo00<000000?ooo`3oool0>@3oool00`3o0000003o07lZ:P3D0?ooo`030000o`3oool0oooo0200 +oooo00@00?l00?ooo`1o:RX0o`00I03oool005@0oooo0P3o000a0?ooo`03003o001o:RX0oooo00T0 +oooo00<0003o0?ooo`3oool0j`3oool00`000?l00?l00?l0000l0?ooo`030000003oool0oooo03X0 +oooo00<0o`000000o`1o:RX0dP3oool00`000?l0oooo0?ooo`0Q0?ooo`04003o003oool0ObXZ0?l0 +06@0oooo001F0?ooo`80o`00;`3oool00`00o`00oooo07lZ:P0:0?ooo`030000o`3oool0oooo0>T0 +oooo00<0003o0?l0003o0000?@3oool00`000000oooo0?ooo`0k0?ooo`030?l000000?l0oooo0=00 +oooo00<0003o0?ooo`3oool08@3oool01000o`00oooo07lZ:P3o001U0?ooo`00F03oool30?l002`0 +oooo00<00?l00?ooo`1o:RX02P3oool00`000?l0oooo0?ooo`3X0?ooo`030000o`3o0000oooo03h0 +oooo00<000000?ooo`3oool0?03oool00`3o0000003o0?ooo`3?0?ooo`030000o`3oool0oooo0240 +oooo00@00?l00?ooo`1o:RX0o`00I@3oool005/0oooo0P3o000[0?ooo`03003o001o:RX0oooo00T0 +oooo00<0003o0?ooo`3oool0i`3oool00`000?l0o`000?ooo`0o0?ooo`030000003oool0oooo03d0 +oooo00<0o`000000o`3oool0c@3oool00`000?l0oooo0?ooo`0Q0?ooo`05003o003oool0oooo07lZ +:P3o0000I@3oool005d0oooo0P3o000Y0?ooo`03003o003oool0ObXZ00X0oooo00<0003o0?ooo`3o +ool0i@3oool00`000?l0o`000?ooo`100?ooo`@00000?P3oool00`000?l0oooo0?ooo`3:0?ooo`03 +0000o`3oool0oooo0280oooo00D00?l00?ooo`1o:RX0oooo0?l0001U0?ooo`00G`3oool20?l002L0 +oooo00<00?l00?ooo`1o:RX02P3oool00`000?l0oooo0?ooo`3T0?ooo`030000o`1o:RX0o`000440 +oooo00<000000?ooo`3oool0@03oool00`000?l0oooo0?ooo`380?ooo`030000o`3oool0oooo0280 +oooo00D00?l00?ooo`3oool0ObXZ0?l0001V0?ooo`00H@3oool20?l002H0oooo00<00?l007lZ:P3o +ool02@3oool00`000?l0oooo0?ooo`3S0?ooo`030000o`3oool0o`000480oooo00<000000?ooo`3o +ool0@@3oool00`000?l0oooo0?ooo`370?ooo`030000o`3oool0oooo0280oooo00D00?l00?ooo`3o +ool0ObXZ0?l0001V0?ooo`00H`3oool20?l002@0oooo00<00?l007lZ:P3oool02P3oool00`000?l0 +oooo0?ooo`3N0?ooo`@0003o00<0oooo0?l0003oool0@P3oool00`000000oooo0?ooo`120?ooo`@0 +003oa03oool00`000?l0oooo0?ooo`0R0?ooo`06003o003oool0oooo07lZ:P3oool0o`00IP3oool0 +06D0oooo0P3o000S0?ooo`03003o001o:RX0oooo00T0oooo00<0003o0?ooo`3oool0g@3oool50000 +o`030?l0003oool0oooo0480oooo00<000000?ooo`3oool0@P3oool50000ol80oooo00<0003o0?oo +o`3oool08`3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l006H0oooo001W0?ooo`80o`008P3oool0 +0`00o`00oooo0?ooo`080?ooo`030000o`3oool0oooo0=d0oooo1@000?m50?ooo`030000003oool0 +oooo0480oooo1@000?o10?ooo`030000o`3oool0oooo02@0oooo00D00?l00?ooo`3oool0ObXZ0?l0 +001W0?ooo`00J@3oool30?l001l0oooo00<00?l00?ooo`3oool02@3oool00`000?l0oooo0?ooo`3L +0?ooo`D0003oA@3oool00`000000oooo0?ooo`120?ooo`D0003o`@3oool00`000?l0oooo0?ooo`0S +0?ooo`06003o003oool0oooo07lZ:P3oool0o`00I`3oool006`0oooo0P3o000N0?ooo`03003o003o +ool0oooo00P0oooo00<0003o0?ooo`3oool0fP3oool20000o`040?l000000?l0003o0000odH0oooo +00<000000?ooo`3oool0@`3oool30000o`030?l000000?l0003o0;h0oooo00<0003o0?ooo`3oool0 +903oool01@00o`00oooo0?ooo`1o:RX0o`0006P0oooo001^0?ooo`80o`00703oool00`00o`00oooo +0?ooo`080?ooo`030000o`3oool0oooo0=P0oooo0P000?l00`3oool0o`0007lZ:P190?ooo`030000 +003oool0oooo04L0oooo00@0o`000?ooo`000?l0003o^`3oool00`000?l0oooo0?ooo`0T0?ooo`06 +003o003oool0oooo07lZ:P3oool0o`00J03oool00700oooo0P3o000J0?ooo`03003o001o:RX0oooo +00T0oooo00<0003o0?ooo`3oool0e@3oool20000o`80oooo00<0o`0007lZ:P3oool0B@3oool00`00 +0000oooo0?ooo`180?ooo`80o`0000<0oooo0000o`000?l0^@3oool00`000?l0oooo0?ooo`0T0?oo +o`06003o003oool0oooo07lZ:P3oool0o`00J03oool00780oooo0P3o000I0?ooo`03003o003oool0 +oooo00P0oooo00<0003o0?ooo`3oool0d`3oool20000o`<0oooo00<0o`0007lZ:P3oool0BP3oool4 +000004P0oooo00@0ObXZ0?l0003oool0oooo0P000?nf0?ooo`030000o`3oool0oooo02@0oooo00H0 +0?l00?ooo`3oool0ObXZ0?ooo`3o001Y0?ooo`00M03oool20?l001L0oooo00<00?l007lZ:P3oool0 +203oool00`000?l0oooo0?ooo`3A0?ooo`80003o103oool00`3o0000ObXZ0?ooo`1;0?ooo`030000 +003oool0oooo04X0oooo00<0ObXZ0?l0003oool00P3oool20000ok<0oooo00<0003o0?ooo`3oool0 +9@3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l006T0oooo001f0?ooo`80o`005@3oool00`00o`00 +ObXZ0?ooo`090?ooo`030000o`3oool0oooo00?ooo`0307lZ:P00 +o`00o`0000H0oooo0P000?nX0?ooo`030000o`3oool0oooo02H0oooo00H00?l00?ooo`3oool0ObXZ +0?ooo`3o001[0?ooo`00O@3oool20?l00140oooo00<00?l00?ooo`3oool01`3oool00`000?l0oooo +0?ooo`350?ooo`80003o203oool00`3o00000?l007lZ:P1A0?ooo`030000003oool0oooo04l0oooo +00<0ObXZ003o003o00001`3oool20000ojH0oooo00<0003o0?ooo`3oool09@3oool01`00o`00oooo +0?ooo`3oool0ObXZ0?ooo`3o0000J`3oool007l0oooo0P3o000?0?ooo`0307lZ:P00o`00oooo00L0 +oooo00<0003o0?ooo`3oool0a03oool00`000?l0oooo0?ooo`060?ooo`80o`0000<00?l007lZ:P3o +ool0D@3oool00`000000oooo0?ooo`1A0?ooo`0307lZ:P3o0000oooo00L0oooo0P000?nS0?ooo`03 +0000o`3oool0oooo02H0oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1Y0?oo +o`00P@3oool20?l000h0oooo00<0ObXZ003o003oool01`3oool00`000?l0oooo0?ooo`310?ooo`80 +003o203oool0103o0000oooo003o001o:RYC0?ooo`030000003oool0oooo0580oooo00<0ObXZ0?l0 +003oool0203oool20000oj00oooo00<0003o0?ooo`3oool09`3oool01000o`00oooo0?ooo`1o:RX2 +0?ooo`030?l0003oool0oooo06T0oooo00230?ooo`80o`00303oool00`1o:RX00?l00?ooo`070?oo +o`030000o`3oool0oooo0;l0oooo0P000?l90?ooo`040?l0003oool00?l007lZ:U@0oooo00<00000 +0?ooo`3oool0D`3oool00`1o:RX0o`000?l000090?ooo`80003oW@3oool00`000?l0oooo0?ooo`0W +0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0JP3oool008D0oooo0P3o000; +0?ooo`0307lZ:P00o`00oooo00H0oooo00<0003o0?ooo`3oool0_@3oool20000o`T0oooo0P3o0000 +0`3oool00?l007lZ:P1E0?ooo`@00000D`3oool00`1o:RX0oooo0?l0000:0?ooo`030000o`3oool0 +oooo09X0oooo00<0003o0?ooo`3oool09`3oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003o +ool0oooo06X0oooo00270?ooo`80o`002@3oool00`1o:RX00?l00?ooo`070?ooo`030000o`3oool0 +oooo0;X0oooo0P000?l:0?ooo`050?l0003oool00?l0003o001o:RX0EP3oool00`000000oooo0?oo +o`1E0?ooo`0307lZ:P3oool0o`0000X0oooo0P000?nI0?ooo`030000o`3oool0oooo02L0oooo00@0 +0?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1[0?ooo`00R@3oool00`3o0000oooo0?oo +o`070?ooo`0307lZ:P00o`00oooo00H0oooo00<0003o0?ooo`3oool0^03oool20000o`/0oooo00D0 +o`000?ooo`00o`00oooo07lZ:P1G0?ooo`030000003oool0oooo05H0oooo00@0ObXZ0?ooo`3o0000 +o`002P3oool20000oiH0oooo00<0003o0?ooo`3oool0:03oool01000o`00oooo0?ooo`1o:RX20?oo +o`030?l0003oool0oooo06/0oooo002:0?ooo`030?l0003oool0oooo00H0oooo00<0ObXZ0?ooo`00 +o`001P3oool00`000?l0oooo0?ooo`2f0?ooo`80003o303oool01@3o0000oooo003o003oool0ObXZ +05P0oooo00<000000?ooo`3oool0E`3oool0101o:RX0oooo003o003o000;0?ooo`80003oT`3oool0 +0`000?l0oooo0?ooo`0X0?ooo`07003o003oool0oooo0?ooo`1o:RX0oooo0?l0001^0?ooo`00R`3o +ool00`3o0000oooo0?ooo`060?ooo`0307lZ:P00o`00oooo00H0oooo00<0003o0?ooo`3oool0/`3o +ool20000o``0oooo0P3o0000103oool00?l007lZ:P1o:RYI0?ooo`030000003oool0oooo05P0oooo +0P1o:RX00`00o`00o`000?l0000;0?ooo`80003oT@3oool00`000?l0oooo0?ooo`0W0?ooo`07003o +003oool0oooo0?ooo`1o:RX0oooo0?l0001_0?ooo`00S03oool20?l000H0oooo00<0ObXZ0?ooo`00 +o`001P3oool00`000?l0oooo0?ooo`2a0?ooo`80003o3@3oool01@3o0000oooo0?ooo`00o`00ObXZ +05/0oooo00<000000?ooo`3oool0FP3oool00`1o:RX00?l0003o00020?l000/0oooo0P000?n>0?oo +o`030000o`3oool0oooo02P0oooo00L00?l00?ooo`3oool0oooo07lZ:P3oool0o`0006l0oooo002> +0?ooo`030?l0003oool0oooo00@0oooo00<0ObXZ0?ooo`00o`001@3oool00`000?l0oooo0?ooo`2_ +0?ooo`80003o3P3oool01@3o0000oooo0?ooo`00o`00ObXZ05`0oooo00<000000?ooo`3oool0G03o +ool0101o:RX00?l0003o003o000<0?ooo`80003oR`3oool00`000?l0oooo0?ooo`0X0?ooo`07003o +003oool0oooo0?ooo`1o:RX0oooo0?l0001`0?ooo`00S`3oool00`3o0000oooo0?ooo`040?ooo`03 +07lZ:P00o`00oooo00D0oooo00<0003o0?ooo`3oool0[03oool20000o`h0oooo0P3o00020?ooo`03 +003o001o:RX0oooo05`0oooo00<000000?ooo`3oool0G@3oool0101o:RX0oooo003o003o000=0?oo +o`80003oR@3oool00`000?l0oooo0?ooo`0W0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool0 +0`3o0000oooo0?ooo`1^0?ooo`00T03oool20?l000@0oooo00<0ObXZ0?ooo`00o`001@3oool00`00 +0?l0oooo0?ooo`2Z0?ooo`80003o3`3oool00`3o0000oooo0?ooo`02003o0500oooo1000000;0?oo +o`030000003oool0oooo05h0oooo00<0ObXZ0?ooo`00o`000P3o000=0?ooo`80003oQP3oool00`00 +0?l0oooo0?ooo`0X0?ooo`07003o003oool0oooo0?ooo`1o:RX0oooo0?l0001a0?ooo`00TP3oool2 +0?l000<0oooo00<0ObXZ0?ooo`00o`00103oool00`000?l0oooo0?ooo`2X0?ooo`80003o403oool0 +1@3o0000oooo0?ooo`00o`00ObXZ0540oooo00<000000?ooo`3oool0303oool00`000000oooo0?oo +o`1O0?ooo`0507lZ:P3oool00?l0003o003o00003P3oool20000oh<0oooo00<0003o0?ooo`3oool0 +:03oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0K`3oool009@0oooo +0P3o00001@3oool0ObXZ0?ooo`3oool00?l000@0oooo00<0003o0?ooo`3oool0YP3oool00`000?l0 +oooo0?ooo`0>0?ooo`80o`000P3oool00`00o`00ObXZ0?ooo`1B0?ooo`030000003oool0oooo00/0 +oooo1P00001M0?ooo`0507lZ:P3oool0oooo003o003o00003`3oool20000oh00oooo00<0003o0?oo +o`3oool0:@3oool01`00o`00oooo0?ooo`3oool0ObXZ0?ooo`3o0000LP3oool009H0oooo00<0o`00 +0?ooo`1o:RX00P3oool01@00o`00oooo0?ooo`3oool0003o0:H0oooo0P000?l@0?ooo`050?l0003o +ool0oooo0?ooo`00o`00EP3oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo0640oooo +00@0ObXZ0?ooo`3oool00?l00P3o000?0?ooo`80003oOP3oool00`000?l0oooo0?ooo`0X0?ooo`05 +003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1`0?ooo`00U`3oool20?l00004 +07lZ:P3oool0oooo003o0080oooo00<0003o0?ooo`3oool0XP3oool20000oa40oooo00D0o`000?oo +o`3oool0ObXZ003o001E0?ooo`040000003oool0oooo000000/0oooo00<000000?ooo`3oool0HP3o +ool207lZ:P040?ooo`00o`000?l00?l00100oooo0P000?mk0?ooo`030000o`3oool0oooo02P0oooo +00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo0740oooo002I0?ooo`050?l0 +001o:RX0oooo0?ooo`00o`000P3oool00`000?l0oooo0?ooo`2O0?ooo`80003o4P3oool01@3o0000 +oooo0?ooo`1o:RX00?l005L0oooo0P00000<0?ooo`030000003oool0oooo06@0oooo0P1o:RX00`3o +ool00?l00?l0000A0?ooo`80003oN03oool00`000?l0oooo0?ooo`0X0?ooo`05003o003oool0oooo +0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1a0?ooo`00VP3oool20?l000050?ooo`00o`00oooo +0?ooo`000?l0W`3oool20000oa80oooo0P3o00020?ooo`800?l0IP3oool00`000000oooo0?ooo`1V +0?ooo`0407lZ:P3oool00?l00?l00180oooo0P000?mf0?ooo`030000o`3oool0oooo02L0oooo00<0 +0?l00?ooo`3oool00P3oool0101o:RX0oooo0?ooo`3o001d0?ooo`00V`3oool01P1o:RX0o`000?oo +o`00o`00oooo0000oid0oooo0P000?lC0?ooo`030?l0003oool0oooo00800?l0J03oool00`000000 +oooo0?ooo`1W0?ooo`0407lZ:P3oool00?l00?l001<0oooo00<0003o0?ooo`3oool0LP3oool00`00 +0?l0oooo0?ooo`0X0?ooo`05003o003oool0oooo0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1b +0?ooo`00V`3oool01`1o:RX0oooo0?l0003oool00?l00?ooo`000?l0VP3oool20000oa<0oooo0P3o +00020?ooo`03003o003oool0oooo06P0oooo00<000000?ooo`3oool0J03oool0101o:RX0oooo0?oo +o`3o000C0?ooo`80003oL@3oool00`000?l0oooo0?ooo`0X0?ooo`05003o003oool0oooo0?ooo`1o +:RX00`3oool00`3o0000oooo0?ooo`1c0?ooo`00W03oool01P1o:RX0oooo0?l0003o00000?l00000 +oiP0oooo0P000?lC0?ooo`80o`000P3oool00`1o:RX00?l00?ooo`1Z0?ooo`030000003oool0oooo +06T0oooo0P1o:RX00`3oool0o`000?l0000C0?ooo`80003oKP3oool00`000?l0oooo0?ooo`0Y0?oo +o`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1d0?ooo`00W@3oool0101o +:RX0oooo0?ooo`3o00030000oi@0oooo0P000?lD0?ooo`030?l0003oool0oooo0080ObXZ00<00?l0 +0?ooo`3oool0JP3oool00`000000oooo0?ooo`1[0?ooo`0307lZ:P3oool00?l00080o`004`3oool2 +0000of`0oooo00<0003o0?ooo`3oool0:03oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0 +o`000?ooo`3oool0M03oool009d0oooo00<0ObXZ0?ooo`3oool01@000?nA0?ooo`80003o5@3oool0 +1P3o0000oooo07lZ:P1o:RX0oooo003o06d0oooo00<000000?ooo`3oool0K03oool207lZ:P800?l0 +00<0o`000?ooo`3oool04P3oool20000ofT0oooo00<0003o0?ooo`3oool0:03oool00`00o`00oooo +0?ooo`020?ooo`0407lZ:P3oool0oooo0?l007L0oooo002N0?ooo`0307lZ:P3oool0003o00@0003o +S`3oool20000oaD0oooo0P3o00001@3oool0ObXZ0?ooo`3oool00?l006h0oooo1000001]0?ooo`80 +ObXZ00<00?l00?l0003o0000503oool20000ofH0oooo00<0003o0?ooo`3oool0:@3oool01@00o`00 +oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0MP3oool009l0oooo00<0ObXZ0000o`00 +0?l00`000?n=0?ooo`80003o5P3oool0103o0000oooo0?ooo`1o:RX20?ooo`03003o003oool0oooo +06d0oooo00<000000?ooo`3oool0L03oool00`1o:RX00?l0003o00020?l001@0oooo0P000?mS0?oo +o`030000o`3oool0oooo02T0oooo00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`030?l0003oool0 +oooo07H0oooo002P0?ooo`0507lZ:P000?l0003o0000o`00o`000P000?n:0?ooo`030000o`3oool0 +oooo01@0oooo0P3o00020?ooo`0407lZ:P3oool00?l0003o0700oooo00<000000?ooo`3oool0L@3o +ool0101o:RX0oooo003o0000o`020?l001@0oooo0P000?mQ0?ooo`030000o`3oool0oooo02P0oooo +00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`030?l0003oool0oooo07L0oooo002Q0?ooo`0607lZ +:P3oool0oooo0?ooo`00o`00oooo0P000?n60?ooo`80003o5@3oool20?l000<0oooo00<0ObXZ0?oo +o`00o`00LP3oool00`000000oooo0?ooo`1b0?ooo`0507lZ:P3oool0oooo003o003oool00P3o000D +0?ooo`80003oGP3oool00`000?l0oooo0?ooo`0X0?ooo`05003o003oool0oooo0?ooo`1o:RX0103o +ool00`3o0000oooo0?ooo`1g0?ooo`00XP3oool01`1o:RX0oooo0?ooo`3oool00?l00?ooo`3o0000 +0P000?n20?ooo`80003o5P3oool0103o0000oooo0?ooo`3oool207lZ:P030?ooo`00o`00oooo0780 +oooo00<000000?ooo`3oool0L`3oool207lZ:P050?ooo`00o`00oooo0?ooo`3o00005@3oool20000 +oe/0oooo00<0003o0?ooo`3oool0:03oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo00<0o`00 +0?ooo`3oool0N03oool00:80oooo00<0ObXZ0?ooo`3oool00P3oool2003o0080o`000P000?mn0?oo +o`80003o5`3oool00`3o0000oooo0?ooo`0207lZ:P030?ooo`00o`000?l007@0oooo00<000000?oo +o`3oool0M@3oool207lZ:P800?l000<0oooo0?l0003oool05@3oool20000oeT0oooo00<0003o0?oo +o`3oool09`3oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?ooo`3oool0N@3oool0 +0:<0oooo00<0ObXZ0?ooo`3oool00`3oool01@00o`00oooo0?l0003oool0003o07/0oooo0P000?lH +0?ooo`040?l0003oool0ObXZ07lZ:P80oooo00<00?l00?ooo`3oool0M03oool00`000000oooo0?oo +o`1g0?ooo`80ObXZ00@00?l00?ooo`3o0000o`005P3oool20000oeH0oooo00<0003o0?ooo`3oool0 +9`3oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?ooo`3oool0NP3oool00:@0oooo +00<0ObXZ0?ooo`3oool00`3oool01000o`00oooo0?l0003oool20000ogL0oooo0P000?lI0?ooo`03 +0?l0003oool0ObXZ0080oooo0P00o`1g0?ooo`030000003oool0oooo07T0oooo00D0ObXZ003o0000 +o`00oooo0?l0000G0?ooo`80003oD`3oool00`000?l0oooo0?ooo`0X0?ooo`04003o003oool0oooo +07lZ:P@0oooo00<0o`000?ooo`3oool0N`3oool00:@0oooo00<0ObXZ0?ooo`3oool0103oool00`00 +o`00oooo0?l000020?ooo`80003oL`3oool20000oaX0oooo00@0o`0007lZ:P1o:RX0oooo0P00o`1i +0?ooo`030000003oool0oooo07X0oooo0P1o:RX2003o0080o`005`3oool20000oe00oooo00<0003o +0?ooo`3oool0:03oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0O03o +ool00:D0oooo00<0ObXZ0?ooo`3oool0103oool01000o`00oooo0?l0003o00020?ooo`80003oK`3o +ool20000oaX0oooo0P3o0000101o:RX0oooo0?ooo`00o`1k0?ooo`@00000N`3oool0101o:RX0oooo +003o003oool20?l001L0oooo00<0003o0?ooo`3oool0C@3oool00`000?l0oooo0?ooo`0W0?ooo`05 +003o003oool0oooo0?ooo`1o:RX0103oool00`3o0000oooo0?ooo`1l0?ooo`00YP3oool00`1o:RX0 +oooo0?ooo`040?ooo`04003o003oool0oooo0?l000<0oooo0P000?m[0?ooo`80003o6P3oool20?l0 +0080ObXZ0P3oool00`00o`00oooo0?ooo`1j0?ooo`030000003oool0oooo07d0oooo0P1o:RX01000 +o`00oooo0?ooo`3o000G0?ooo`80003oC03oool00`000?l0oooo0?ooo`0W0?ooo`05003o003oool0 +oooo0?ooo`1o:RX0103oool00`3o0000oooo0?ooo`1m0?ooo`00Y`3oool00`1o:RX0oooo0?ooo`04 +0?ooo`800?l000<0oooo0?l0003oool00`3oool20000ofL0oooo0P000?lJ0?ooo`80o`000P1o:RX2 +0?ooo`800?l0O@3oool00`000000oooo0?ooo`1o0?ooo`0407lZ:P00o`000?l00?ooo`80o`005`3o +ool20000odT0oooo00<0003o0?ooo`3oool09`3oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo +00<0o`000?ooo`3oool0OP3oool00:P0oooo00<0ObXZ0?ooo`3oool01@3oool01000o`00oooo0?l0 +003o00040?ooo`80003oH`3oool20000oaX0oooo0P3o000207lZ:P<0oooo00<00?l00?ooo`3oool0 +O@3oool00`000000oooo0?ooo`210?ooo`0407lZ:P00o`000?l00?ooo`80o`005`3oool20000odL0 +oooo00<0003o0?ooo`3oool09P3oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?oo +o`3oool0O`3oool00:T0oooo00<0ObXZ0?ooo`3oool01@3oool00`00o`00oooo0?ooo`020?l000@0 +oooo00<0003o0?ooo`3oool0GP3oool20000oaX0oooo0P3o00000`3oool0ObXZ0?ooo`020?ooo`80 +0?l0P03oool00`000000oooo0?ooo`230?ooo`0407lZ:P00o`000?l00?ooo`80o`005`3oool20000 +od@0oooo00<0003o0?ooo`3oool09P3oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo00<0o`00 +0?ooo`3oool0P03oool00:X0oooo00<0ObXZ0?ooo`3oool01@3oool2003o0080oooo00<0o`000?oo +o`3oool00P3oool20000oed0oooo00<0003o0?ooo`3oool0603oool20?l000030?ooo`1o:RX0ObXZ +0080oooo0P00o`220?ooo`030000003oool0oooo08@0oooo0P1o:RX2003o00030?ooo`3o0000o`00 +01L0oooo0P000?m10?ooo`030000o`3oool0oooo02H0oooo00D00?l00?ooo`3oool0oooo07lZ:P04 +0?ooo`030?l0003oool0oooo0840oooo002[0?ooo`0307lZ:P3oool0oooo00H0oooo00@00?l00?oo +o`3oool0o`001@3oool20000oeT0oooo0P000?lI0?ooo`80o`000P3oool01@1o:RX0oooo0?ooo`3o +ool00?l008@0oooo00<000000?ooo`3oool0QP3oool00`1o:RX0oooo003o00020?ooo`80o`005`3o +ool20000och0oooo00<0003o0?ooo`3oool09P3oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo +00<0o`000?ooo`3oool0PP3oool00:`0oooo00<0ObXZ0?ooo`3oool01P3oool00`00o`00oooo0?oo +o`020?l000D0oooo0P000?mE0?ooo`80003o6P3oool00`3o0000oooo0?ooo`0207lZ:P<0oooo00<0 +0?l00?ooo`3oool0P`3oool00`000000oooo0?ooo`270?ooo`80ObXZ0P00o`020?ooo`80o`005`3o +ool20000oc`0oooo00<0003o0?ooo`3oool0903oool2003o00<0oooo00<0ObXZ0?ooo`3oool00P3o +ool00`3o0000oooo0?ooo`230?ooo`00[@3oool207lZ:PL0oooo0P00o`020?ooo`030?l0003oool0 +oooo00@0oooo0P000?mA0?ooo`80003o6`3oool0103o0000oooo07lZ:P1o:RX30?ooo`800?l0QP3o +ool00`000000oooo0?ooo`290?ooo`80ObXZ0P00o`020?ooo`80o`005`3oool20000ocT0oooo00<0 +003o0?ooo`3oool0903oool00`00o`00oooo0?ooo`020?ooo`0307lZ:P3oool0oooo0080oooo00<0 +o`000?ooo`3oool0Q03oool00:l0oooo0P1o:RX70?ooo`03003o003oool0oooo0080o`001P3oool2 +0000odd0oooo0P000?lK0?ooo`80o`000P1o:RX40?ooo`03003o003oool0oooo08H0oooo00<00000 +0?ooo`3oool0R`3oool207lZ:P800?l00P3oool00`3o0000oooo0?ooo`0F0?ooo`80003o=P3oool0 +0`000?l0oooo0?ooo`0S0?ooo`800?l00`3oool207lZ:P@0oooo00<0o`000?ooo`3oool0Q@3oool0 +0;40oooo00<0ObXZ0?ooo`3oool01@3oool2003o0080oooo0P3o00060?ooo`030000o`3oool0oooo +04P0oooo0P000?lK0?ooo`80o`0000<0oooo07lZ:P3oool00`3oool2003o08T0oooo1000002<0?oo +o`0507lZ:P3oool00?l0003o003oool00P3o000H0?ooo`80003o<`3oool00`000?l0oooo0?ooo`0S +0?ooo`03003o003oool0oooo0080oooo00<0ObXZ0?ooo`3oool00`3oool00`3o0000oooo0?ooo`26 +0?ooo`00/P3oool00`1o:RX0oooo0?ooo`060?ooo`800?l00P3oool00`3o0000oooo0?ooo`040?oo +o`80003oAP3oool20000oa/0oooo0P3o00000`3oool0ObXZ07lZ:P030?ooo`800?l0R`3oool00`00 +0000oooo0?ooo`2>0?ooo`80ObXZ00@0oooo003o0000o`00oooo0P3o000H0?ooo`80003o<@3oool0 +0`000?l0oooo0?ooo`0R0?ooo`03003o003oool0oooo0080oooo00<0ObXZ0?ooo`3oool00`3oool0 +0`3o0000oooo0?ooo`270?ooo`00/`3oool00`1o:RX0oooo0?ooo`070?ooo`04003o003oool0oooo +0?l000L0oooo0P000?m20?ooo`80003o6`3oool20?l000030?ooo`1o:RX0ObXZ00@0oooo00<00?l0 +0?ooo`3oool0R`3oool00`000000oooo0?ooo`2@0?ooo`80ObXZ00@0oooo003o0000o`00oooo0P3o +000H0?ooo`80003o;P3oool00`000?l0oooo0?ooo`0Q0?ooo`800?l0103oool00`1o:RX0oooo0?oo +o`030?ooo`030?l0003oool0oooo08P0oooo002d0?ooo`0307lZ:P3oool0oooo00L0oooo00<00?l0 +0?ooo`3oool00P3o00070?ooo`80003o?P3oool20000oa/0oooo0P3o000307lZ:P@0oooo0P00o`2> +0?ooo`030000003oool0oooo0980oooo0`1o:RX00`00o`00oooo0?ooo`020?l001P0oooo0P000?l[ +0?ooo`030000o`3oool0oooo0240oooo00<00?l00?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`03 +0?ooo`030?l0003oool0oooo08T0oooo002e0?ooo`80ObXZ203oool2003o0080oooo00<0o`000?oo +o`3oool01P3oool20000ocX0oooo0P000?lK0?ooo`80o`000P1o:RX50?ooo`800?l0T03oool00`00 +0000oooo0?ooo`2E0?ooo`0307lZ:P00o`000?l00080oooo0P3o000H0?ooo`80003o:@3oool00`00 +0?l0oooo0?ooo`0O0?ooo`800?l0103oool207lZ:P@0oooo0P3o002<0?ooo`00]`3oool00`1o:RX0 +oooo0?ooo`070?ooo`04003o003oool0oooo0?l000T0oooo0P000?lf0?ooo`80003o703oool00`3o +0000ObXZ07lZ:P050?ooo`800?l0TP3oool00`000000oooo0?ooo`2G0?ooo`0507lZ:P00o`000?l0 +003o003oool00`3o000G0?ooo`030000o`3oool0oooo02D0oooo00<0003o0?ooo`3oool07`3oool0 +0`00o`00oooo0?ooo`020?ooo`80ObXZ1@3oool00`3o0000oooo0?ooo`2<0?ooo`00^03oool207lZ +:PP0oooo0P00o`000`3oool0o`000?l000090?ooo`80003o0?ooo`80ObXZ1`3o +ool01000o`00o`000?l00000o`070?ooo`80003o3@3oool20000oa80oooo0P1o:RX50?l000@0oooo +1@00o`2[0?ooo`030000003oool0oooo0;<0oooo00<0ObXZ003o0000o`000P00o`00101o:RX0oooo +0?ooo`3oool50?l000X0oooo0P000?l90?ooo`030000o`3oool0oooo00l0oooo1000o`00103oool0 +ObXZ07lZ:P1o:RX50?ooo`@0o`00XP3oool00=00oooo1P1o:RX40?ooo`<0o`000`00o`040?ooo`80 +003o2@3oool20000oa40oooo00<0ObXZ0?l0003o00000P3o00050?ooo`@00?l0/03oool00`000000 +oooo0?ooo`2h0?ooo`@00?l01@3oool40?l000P0oooo0P000?l60?ooo`030000o`3oool0oooo00`0 +oooo1000o`0507lZ:P@0oooo103o002V0?ooo`00eP3oool207lZ:PD0oooo103o0003003o0080oooo +0P000?l01@3oool0003o0000o`000?l0oooo0080003o3@3oool307lZ:P@0o`001`3oool2003o0:H0 +oooo0P00000<0?ooo`030000003oool0oooo0;`0oooo1@00o`00101o:RX0oooo0?ooo`3oool50?l0 +00D0oooo0P000?l0103oool0003o0000o`000?l;0?ooo`@00?l000@0oooo07lZ:P1o:RX0ObXZ1@3o +ool40?l00:X0oooo003H0?ooo`T0ObXZ103o0003003o00D0003o1@3oool807lZ:PD0o`000`3oool8 +003o0:L0oooo00@000000?ooo`3oool000002`3oool00`000000oooo0?ooo`310?ooo`T00?l0103o +00030?ooo`D0003o1P3oool4003o00D0ObXZ103oool40?l00:h0oooo003Q0?ooo`@0ObXZ0`3o0005 +0000o`d0o`002000o`2a0?ooo`030000003oool0oooo00X0oooo1P0000370?ooo`@00?l00`3o0005 +0000oa<0o`00/P3oool00>P0oooo1@000?l60?ooo`D00?l0_03oool00`000000oooo0?ooo`090?oo +o`030000003oool0oooo0=40oooo1@000?o50?ooo`00j@3oool30000olD0oooo00@000000?ooo`3o +ool000002`3oool00`000000oooo0?ooo`3B0?ooo`<0003oaP3oool00?l0oooo/`3oool2000000`0 +oooo00<000000?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0oooo +W03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo00<00000 +0?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0ooooW03oool00?l0 +oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo00<000000?ooo`3oool0 +o`3ooonL0?ooo`00o`3oooo10?ooo`@00000o`3ooonK0?ooo`00o`3oooo10?ooo`030000003oool0 +oooo0?l0ooooW03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40 +oooo00<000000?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0oooo +W03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo00<00000 +0?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0ooooW03oool00?l0 +oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo1000003o0?oooi/0oooo +003o0?oool40oooo00<000000?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0 +oooo0?l0ooooW03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40 +oooo00<000000?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0oooo +W03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo00<00000 +0?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0ooooW03oool00?l0 +oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo1000003o0?oooi/0oooo +003o0?oool40oooo00<000000?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0 +oooo0?l0ooooW03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40 +oooo00<000000?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0oooo +W03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo00<00000 +0?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0ooooW03oool00?l0 +oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo1000003o0?oooi/0oooo +003o0?oool40oooo00<000000?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0 +oooo0?l0ooooW03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40 +oooo00<000000?ooo`3oool0o`3ooonL0?ooo`00o`3oooo10?ooo`030000003oool0oooo0?l0oooo +W03oool00?l0oooo`@3oool00`000000oooo0?ooo`3o0?oooi`0oooo003o0?oool40oooo00<00000 +0?ooo`3oool0o`3ooonL0?ooo`00o`3ooond0?ooo`<000002P3oool00`000000oooo0?ooo`3o0?oo +oi`0oooo003o0?oookD0oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`3o0?oooi`0 +oooo003o0?oook80oooo1@00000:0?ooo`H00000o`3ooonI0?ooo`00o`3ooonb0?ooo`040000003o +ool0oooo00000?l0ooooZP3oool00?l0oooo/`3oool00`000000oooo0000003o0?ooojX0oooo003o +0?oook@0oooo0P00003o0?ooojX0oooo003o0?ooool0ooooo`3ooomQ0?ooo`00o`3ooooo0?ooool0 +ooooH@3oool00?l0ooooo`3ooooo0?ooof40oooo003o0?ooool0ooooo`3ooomQ0?ooo`00o`3ooooo +0?ooool0ooooH@3oool00?l0ooooo`3ooooo0?ooof40oooo003o0?ooool0ooooo`3ooomQ0?ooo`00 +o`3ooooo0?ooool0ooooH@3oool00?l0ooooo`3ooooo0?ooof40oooo003o0?ooool0ooooo`3ooomQ +0?ooo`00o`3ooooo0?ooool0ooooH@3oool00?l0ooooo`3ooooo0?ooof40oooo003o0?ooool0oooo +o`3ooomQ0?ooo`00o`3ooooo0?ooool0ooooH@3oool00?l0ooooo`3ooooo0?ooof40oooo003o0?oo +ool0ooooo`3ooomQ0?ooo`00o`3ooooo0?ooool0ooooH@3oool00?l0ooooo`3ooooo0?ooof40oooo +003o0?oool/0oooo0P00003o0?oooi<0oooo003o0?oool`0oooo00<000000?ooo`3oool0o`3ooonA +0?ooo`00o`3oooo=0?ooo`030000003oool0oooo0?l0ooooT03oool00?l0ooooc03oool00`000000 +oooo0000003o0?oooi40oooo003o0?oool/0oooo00@000000?ooo`3oool00000o`3ooonA0?ooo`00 +o`3oooo:0?ooo`<0000000<0oooo000000000000o`3ooon@0?ooo`00o`3ooono0?ooo`040000003o +ool0oooo00000?l0ooooW@3oool00?l0oooo`03oool200000?l0ooooWP3oool00?l0ooooo`3ooooo +0?ooof40oooo003o0?ooool0ooooo`3ooomQ0?ooo`00o`3ooooo0?ooool0ooooH@3oool00001\ +\>"], + ImageRangeCache->{{{0, 861}, {430, 0}} -> {-6.27577, -4.09165, 0.0139959, \ +0.0203577}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]4\ +\[InvisibleSpace]" mit "\[InvisibleSpace]16\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 4, " mit ", 16, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.545455 0.0909091 0.25 0.0625 [ +[0 .2375 -6 -9 ] +[0 .2375 6 0 ] +[.18182 .2375 -6 -9 ] +[.18182 .2375 6 0 ] +[.36364 .2375 -6 -9 ] +[.36364 .2375 6 0 ] +[.72727 .2375 -3 -9 ] +[.72727 .2375 3 0 ] +[.90909 .2375 -3 -9 ] +[.90909 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.53295 0 -12 -4.5 ] +[.53295 0 0 4.5 ] +[.53295 .0625 -12 -4.5 ] +[.53295 .0625 0 4.5 ] +[.53295 .125 -12 -4.5 ] +[.53295 .125 0 4.5 ] +[.53295 .1875 -12 -4.5 ] +[.53295 .1875 0 4.5 ] +[.53295 .3125 -6 -4.5 ] +[.53295 .3125 0 4.5 ] +[.53295 .375 -6 -4.5 ] +[.53295 .375 0 4.5 ] +[.53295 .4375 -6 -4.5 ] +[.53295 .4375 0 4.5 ] +[.53295 .5 -6 -4.5 ] +[.53295 .5 0 4.5 ] +[.54545 .525 -17 0 ] +[.54545 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +0 .25 m +0 .25625 L +s +[(-6)] 0 .2375 0 1 Mshowa +.18182 .25 m +.18182 .25625 L +s +[(-4)] .18182 .2375 0 1 Mshowa +.36364 .25 m +.36364 .25625 L +s +[(-2)] .36364 .2375 0 1 Mshowa +.72727 .25 m +.72727 .25625 L +s +[(2)] .72727 .2375 0 1 Mshowa +.90909 .25 m +.90909 .25625 L +s +[(4)] .90909 .2375 0 1 Mshowa +.125 Mabswid +.04545 .25 m +.04545 .25375 L +s +.09091 .25 m +.09091 .25375 L +s +.13636 .25 m +.13636 .25375 L +s +.22727 .25 m +.22727 .25375 L +s +.27273 .25 m +.27273 .25375 L +s +.31818 .25 m +.31818 .25375 L +s +.40909 .25 m +.40909 .25375 L +s +.45455 .25 m +.45455 .25375 L +s +.5 .25 m +.5 .25375 L +s +.59091 .25 m +.59091 .25375 L +s +.63636 .25 m +.63636 .25375 L +s +.68182 .25 m +.68182 .25375 L +s +.77273 .25 m +.77273 .25375 L +s +.81818 .25 m +.81818 .25375 L +s +.86364 .25 m +.86364 .25375 L +s +.95455 .25 m +.95455 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.54545 0 m +.5517 0 L +s +[(-4)] .53295 0 1 0 Mshowa +.54545 .0625 m +.5517 .0625 L +s +[(-3)] .53295 .0625 1 0 Mshowa +.54545 .125 m +.5517 .125 L +s +[(-2)] .53295 .125 1 0 Mshowa +.54545 .1875 m +.5517 .1875 L +s +[(-1)] .53295 .1875 1 0 Mshowa +.54545 .3125 m +.5517 .3125 L +s +[(1)] .53295 .3125 1 0 Mshowa +.54545 .375 m +.5517 .375 L +s +[(2)] .53295 .375 1 0 Mshowa +.54545 .4375 m +.5517 .4375 L +s +[(3)] .53295 .4375 1 0 Mshowa +.54545 .5 m +.5517 .5 L +s +[(4)] .53295 .5 1 0 Mshowa +.125 Mabswid +.54545 .0125 m +.5492 .0125 L +s +.54545 .025 m +.5492 .025 L +s +.54545 .0375 m +.5492 .0375 L +s +.54545 .05 m +.5492 .05 L +s +.54545 .075 m +.5492 .075 L +s +.54545 .0875 m +.5492 .0875 L +s +.54545 .1 m +.5492 .1 L +s +.54545 .1125 m +.5492 .1125 L +s +.54545 .1375 m +.5492 .1375 L +s +.54545 .15 m +.5492 .15 L +s +.54545 .1625 m +.5492 .1625 L +s +.54545 .175 m +.5492 .175 L +s +.54545 .2 m +.5492 .2 L +s +.54545 .2125 m +.5492 .2125 L +s +.54545 .225 m +.5492 .225 L +s +.54545 .2375 m +.5492 .2375 L +s +.54545 .2625 m +.5492 .2625 L +s +.54545 .275 m +.5492 .275 L +s +.54545 .2875 m +.5492 .2875 L +s +.54545 .3 m +.5492 .3 L +s +.54545 .325 m +.5492 .325 L +s +.54545 .3375 m +.5492 .3375 L +s +.54545 .35 m +.5492 .35 L +s +.54545 .3625 m +.5492 .3625 L +s +.54545 .3875 m +.5492 .3875 L +s +.54545 .4 m +.5492 .4 L +s +.54545 .4125 m +.5492 .4125 L +s +.54545 .425 m +.5492 .425 L +s +.54545 .45 m +.5492 .45 L +s +.54545 .4625 m +.5492 .4625 L +s +.54545 .475 m +.5492 .475 L +s +.54545 .4875 m +.5492 .4875 L +s +.25 Mabswid +.54545 0 m +.54545 .5 L +s +gsave +.54545 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +.5 .165 .165 r +.5 Mabswid +.64109 .34862 m +.63681 .34421 L +.63252 .33979 L +.62824 .33537 L +.62395 .33095 L +.61967 .32653 L +.61539 .32212 L +.6111 .3177 L +.60682 .31328 L +.60253 .30886 L +.59825 .30445 L +.59397 .30003 L +.58968 .29561 L +.5854 .29119 L +.58111 .28677 L +.57683 .28236 L +.57255 .27794 L +.56826 .27352 L +.56398 .2691 L +.55969 .26468 L +.55541 .26027 L +.55113 .25585 L +.54684 .25143 L +.54256 .24701 L +.53827 .2426 L +.53399 .23818 L +.52971 .23376 L +.52542 .22934 L +.52114 .22492 L +.51685 .22051 L +.51257 .21609 L +.50829 .21167 L +.504 .20725 L +.49972 .20283 L +.49543 .19842 L +.49115 .194 L +.48687 .18958 L +.48258 .18516 L +.4783 .18075 L +.47401 .17633 L +.46973 .17191 L +.46545 .16749 L +.46116 .16307 L +.45688 .15866 L +.45259 .15424 L +.44831 .14982 L +.40909 .11742 L +.40481 .11433 L +.40052 .11132 L +.39624 .10838 L +Mistroke +.39197 .10553 L +.38769 .10275 L +.38343 .10006 L +.37916 .09745 L +.37491 .09492 L +.37066 .09248 L +.36643 .09013 L +.3622 .08787 L +.35799 .08569 L +.35379 .08361 L +.3496 .08162 L +.34542 .07972 L +.34127 .07792 L +.33713 .07621 L +.333 .0746 L +.3289 .07309 L +.32481 .07168 L +.32075 .07036 L +.31671 .06915 L +.31269 .06803 L +.30869 .06702 L +.30472 .0661 L +.30078 .06529 L +.29686 .06458 L +.29297 .06398 L +.28911 .06348 L +.28528 .06308 L +.28147 .06278 L +.2777 .06259 L +.27397 .06251 L +.27026 .06252 L +.26659 .06264 L +.26296 .06287 L +.25936 .0632 L +.2558 .06363 L +.25227 .06417 L +.24879 .06481 L +.24534 .06555 L +.24193 .0664 L +.23857 .06734 L +.23525 .06839 L +.23197 .06954 L +.22873 .07079 L +.22554 .07214 L +.2224 .07358 L +.2193 .07513 L +.21624 .07677 L +.21324 .07851 L +.21028 .08034 L +.20737 .08227 L +Mistroke +.20452 .08429 L +.20171 .08641 L +.19895 .08861 L +.19625 .0909 L +.19359 .09329 L +.191 .09575 L +.18845 .09831 L +.18596 .10095 L +.18352 .10367 L +.18114 .10647 L +.17882 .10935 L +.17655 .11231 L +.17434 .11535 L +.17219 .11846 L +.1701 .12165 L +.16806 .1249 L +.16609 .12823 L +.16417 .13162 L +.16232 .13508 L +.16053 .1386 L +.15879 .14219 L +.15712 .14583 L +.15552 .14953 L +.15397 .15329 L +.15249 .1571 L +.15107 .16096 L +.14971 .16488 L +.14842 .16884 L +.14719 .17284 L +.14603 .17689 L +.14493 .18098 L +.1439 .1851 L +.14293 .18927 L +.14203 .19346 L +.14119 .19769 L +.14042 .20195 L +.13972 .20623 L +.13908 .21054 L +.13851 .21487 L +.13801 .21921 L +.13757 .22358 L +.1372 .22796 L +.1369 .23235 L +.13667 .23676 L +.1365 .24117 L +.1364 .24558 L +.13636 .25 L +.1364 .25442 L +.1365 .25883 L +.13667 .26324 L +Mistroke +.1369 .26765 L +.1372 .27204 L +.13757 .27642 L +.13801 .28079 L +.13851 .28513 L +.13908 .28946 L +.13972 .29377 L +.14042 .29805 L +.14119 .30231 L +.14203 .30654 L +.14293 .31073 L +.1439 .3149 L +.14493 .31902 L +.14603 .32311 L +.14719 .32716 L +.14842 .33116 L +.14971 .33512 L +.15107 .33904 L +.15249 .3429 L +.15397 .34671 L +.15552 .35047 L +.15712 .35417 L +.15879 .35781 L +.16053 .3614 L +.16232 .36492 L +.16417 .36838 L +.16609 .37177 L +.16806 .3751 L +.1701 .37835 L +.17219 .38154 L +.17434 .38465 L +.17655 .38769 L +.17882 .39065 L +.18114 .39353 L +.18352 .39633 L +.18596 .39905 L +.18845 .40169 L +.191 .40425 L +.19359 .40671 L +.19625 .4091 L +.19895 .41139 L +.20171 .41359 L +.20452 .41571 L +.20737 .41773 L +.21028 .41966 L +.21324 .42149 L +.21624 .42323 L +.2193 .42487 L +.2224 .42642 L +.22554 .42786 L +Mistroke +.22873 .42921 L +.23197 .43046 L +.23525 .43161 L +.23857 .43266 L +.24193 .4336 L +.24534 .43445 L +.24879 .43519 L +.25227 .43583 L +.2558 .43637 L +.25936 .4368 L +.26296 .43713 L +.26659 .43736 L +.27026 .43748 L +.27397 .43749 L +.2777 .43741 L +.28147 .43722 L +.28528 .43692 L +.28911 .43652 L +.29297 .43602 L +.29686 .43542 L +.30078 .43471 L +.30472 .4339 L +.30869 .43298 L +.31269 .43197 L +.31671 .43085 L +.32075 .42964 L +.32481 .42832 L +.3289 .42691 L +.333 .4254 L +.33713 .42379 L +.34127 .42208 L +.34542 .42028 L +.3496 .41838 L +.35379 .41639 L +.35799 .41431 L +.3622 .41213 L +.36643 .40987 L +.37066 .40752 L +.37491 .40508 L +.37916 .40255 L +.38343 .39994 L +.38769 .39725 L +.39197 .39447 L +.39624 .39162 L +.40052 .38868 L +.40481 .38567 L +.40909 .38258 L +.43268 .3663 L +.43697 .36188 L +.44125 .35746 L +Mistroke +.44553 .35304 L +.44982 .34862 L +.4541 .34421 L +.45839 .33979 L +.46267 .33537 L +.46695 .33095 L +.47124 .32653 L +.47552 .32212 L +.47981 .3177 L +.48409 .31328 L +.48837 .30886 L +.49266 .30445 L +.49694 .30003 L +.50123 .29561 L +.50551 .29119 L +.50979 .28677 L +.51408 .28236 L +.51836 .27794 L +.52265 .27352 L +.52693 .2691 L +.53121 .26468 L +.5355 .26027 L +.53978 .25585 L +.54407 .25143 L +.54835 .24701 L +.55263 .2426 L +.55692 .23818 L +.5612 .23376 L +.56549 .22934 L +.56977 .22492 L +.57405 .22051 L +.57834 .21609 L +.58262 .21167 L +.58691 .20725 L +.59119 .20283 L +.59547 .19842 L +.59976 .194 L +.60404 .18958 L +.60833 .18516 L +.61261 .18075 L +.61689 .17633 L +.62118 .17191 L +.62546 .16749 L +.62975 .16307 L +.63403 .15866 L +.63831 .15424 L +.6426 .14982 L +.6861 .11433 L +.69038 .11132 L +.69467 .10838 L +Mistroke +.69894 .10553 L +.70322 .10275 L +.70748 .10006 L +.71175 .09745 L +.716 .09492 L +.72025 .09248 L +.72448 .09013 L +.72871 .08787 L +.73292 .08569 L +.73712 .08361 L +.74131 .08162 L +.74549 .07972 L +.74964 .07792 L +.75378 .07621 L +.75791 .0746 L +.76201 .07309 L +.7661 .07168 L +.77016 .07036 L +.7742 .06915 L +.77822 .06803 L +.78222 .06702 L +.78619 .0661 L +.79013 .06529 L +.79405 .06458 L +.79794 .06398 L +.8018 .06348 L +.80563 .06308 L +.80944 .06278 L +.81321 .06259 L +.81694 .06251 L +.82065 .06252 L +.82432 .06264 L +.82795 .06287 L +.83155 .0632 L +.83511 .06363 L +.83864 .06417 L +.84212 .06481 L +.84557 .06555 L +.84897 .0664 L +.85234 .06734 L +.85566 .06839 L +.85894 .06954 L +.86218 .07079 L +.86537 .07214 L +.86851 .07358 L +.87161 .07513 L +.87467 .07677 L +.87767 .07851 L +.88063 .08034 L +.88354 .08227 L +Mistroke +.88639 .08429 L +.8892 .08641 L +.89196 .08861 L +.89466 .0909 L +.89732 .09329 L +.89991 .09575 L +.90246 .09831 L +.90495 .10095 L +.90739 .10367 L +.90977 .10647 L +.91209 .10935 L +.91436 .11231 L +.91657 .11535 L +.91872 .11846 L +.92081 .12165 L +.92285 .1249 L +.92482 .12823 L +.92673 .13162 L +.92859 .13508 L +.93038 .1386 L +.93211 .14219 L +.93379 .14583 L +.93539 .14953 L +.93694 .15329 L +.93842 .1571 L +.93984 .16096 L +.9412 .16488 L +.94249 .16884 L +.94372 .17284 L +.94488 .17689 L +.94598 .18098 L +.94701 .1851 L +.94798 .18927 L +.94888 .19346 L +.94971 .19769 L +.95048 .20195 L +.95119 .20623 L +.95182 .21054 L +.95239 .21487 L +.9529 .21921 L +.95334 .22358 L +.9537 .22796 L +.95401 .23235 L +.95424 .23676 L +.95441 .24117 L +.95451 .24558 L +.95455 .25 L +.95451 .25442 L +.95441 .25883 L +.95424 .26324 L +Mistroke +.95401 .26765 L +.9537 .27204 L +.95334 .27642 L +.9529 .28079 L +.95239 .28513 L +.95182 .28946 L +.95119 .29377 L +.95048 .29805 L +.94971 .30231 L +.94888 .30654 L +.94798 .31073 L +.94701 .3149 L +.94598 .31902 L +.94488 .32311 L +.94372 .32716 L +.94249 .33116 L +.9412 .33512 L +.93984 .33904 L +.93842 .3429 L +.93694 .34671 L +.93539 .35047 L +.93379 .35417 L +.93211 .35781 L +.93038 .3614 L +.92859 .36492 L +.92673 .36838 L +.92482 .37177 L +.92285 .3751 L +.92081 .37835 L +.91872 .38154 L +.91657 .38465 L +.91436 .38769 L +.91209 .39065 L +.90977 .39353 L +.90739 .39633 L +.90495 .39905 L +.90246 .40169 L +.89991 .40425 L +.89732 .40671 L +.89466 .4091 L +.89196 .41139 L +.8892 .41359 L +.88639 .41571 L +.88354 .41773 L +.88063 .41966 L +.87767 .42149 L +.87467 .42323 L +.87161 .42487 L +.86851 .42642 L +.86537 .42786 L +Mistroke +.86218 .42921 L +.85894 .43046 L +.85566 .43161 L +.85234 .43266 L +.84897 .4336 L +.84557 .43445 L +.84212 .43519 L +.83864 .43583 L +.83511 .43637 L +.83155 .4368 L +.82795 .43713 L +.82432 .43736 L +.82065 .43748 L +.81694 .43749 L +.81321 .43741 L +.80944 .43722 L +.80563 .43692 L +.8018 .43652 L +.79794 .43602 L +.79405 .43542 L +.79013 .43471 L +.78619 .4339 L +.78222 .43298 L +.77822 .43197 L +.7742 .43085 L +.77016 .42964 L +.7661 .42832 L +.76201 .42691 L +.75791 .4254 L +.75378 .42379 L +.74964 .42208 L +.74549 .42028 L +.74131 .41838 L +.73712 .41639 L +.73292 .41431 L +.72871 .41213 L +.72448 .40987 L +.72025 .40752 L +.716 .40508 L +.71175 .40255 L +.70748 .39994 L +.70322 .39725 L +.69894 .39447 L +.69467 .39162 L +.69038 .38868 L +.6861 .38567 L +.68182 .38258 L +.67753 .37942 L +.67325 .37619 L +.66897 .37289 L +Mistroke +.66469 .36952 L +.66042 .36608 L +.65615 .36258 L +.65189 .35901 L +.64764 .35539 L +.64339 .35171 L +.63915 .34797 L +Mfstroke +0 1 0 r +.13636 .25 m +.13656 .25472 L +.13712 .25945 L +.13798 .26417 L +.13911 .2689 L +.14047 .27363 L +.142 .27837 L +.14368 .28311 L +.14546 .28786 L +.14728 .29261 L +.14913 .29738 L +.15094 .30215 L +.15267 .30693 L +.1543 .31173 L +.15577 .31653 L +.15711 .32135 L +.15834 .32616 L +.15952 .33098 L +.16066 .33579 L +.16181 .34059 L +.163 .34537 L +.16427 .35014 L +.16565 .35487 L +.16717 .35958 L +.16888 .36426 L +.17081 .36889 L +.17299 .37349 L +.17545 .37803 L +.17825 .38252 L +.1814 .38695 L +.18494 .39132 L +.18885 .39561 L +.19312 .3998 L +.1977 .40387 L +.20259 .40781 L +.20775 .41159 L +.21315 .4152 L +.21877 .41862 L +.22459 .42183 L +.23057 .42482 L +.2367 .42755 L +.24294 .43003 L +.24927 .43221 L +.25566 .4341 L +.26209 .43567 L +.26853 .43689 L +.27496 .43776 L +.28135 .43827 L +.28771 .43842 L +.29404 .43823 L +Mistroke +.30033 .43772 L +.30658 .43689 L +.31278 .43576 L +.31895 .43435 L +.32507 .43266 L +.33115 .43071 L +.33718 .42851 L +.34317 .42607 L +.3491 .42341 L +.35498 .42054 L +.36081 .41748 L +.36659 .41423 L +.3723 .41081 L +.37797 .40723 L +.38357 .40351 L +.38911 .39965 L +.39459 .39567 L +.40001 .39159 L +.40536 .38742 L +.41064 .38316 L +.41585 .37884 L +.421 .37446 L +.42607 .37004 L +.43107 .3656 L +.436 .36113 L +.44085 .35667 L +.44562 .35221 L +.45032 .34778 L +.45493 .34338 L +.45946 .33903 L +.46391 .33473 L +.46829 .33047 L +.47259 .32625 L +.47682 .32207 L +.48099 .31792 L +.4851 .31381 L +.48914 .30973 L +.49313 .30568 L +.49707 .30165 L +.50095 .29765 L +.50479 .29367 L +.50858 .28971 L +.51234 .28577 L +.51605 .28185 L +.51974 .27794 L +.52339 .27403 L +.52701 .27014 L +.53061 .26625 L +.53418 .26237 L +.53774 .25848 L +Mistroke +.54128 .2546 L +.54481 .25071 L +.54833 .24682 L +.55185 .24292 L +.55537 .23901 L +.55889 .23509 L +.56243 .23116 L +.56599 .22723 L +.56956 .22328 L +.57317 .21933 L +.57681 .21536 L +.58048 .21138 L +.58421 .20738 L +.58798 .20337 L +.5918 .19935 L +.59569 .19531 L +.59964 .19125 L +.60366 .18718 L +.60776 .18309 L +.61193 .17898 L +.6162 .17486 L +.62056 .17071 L +.62501 .16654 L +.62957 .16236 L +.63423 .15815 L +.63901 .15391 L +.6439 .14966 L +.6489 .14541 L +.654 .14115 L +.65919 .13691 L +.66448 .13269 L +.66984 .1285 L +.67529 .12435 L +.6808 .12025 L +.68639 .11621 L +.69203 .11224 L +.69773 .10836 L +.70347 .10456 L +.70926 .10086 L +.71509 .09727 L +.72095 .0938 L +.72683 .09046 L +.73274 .08726 L +.73866 .08421 L +.74458 .08132 L +.75051 .07859 L +.75644 .07604 L +.76235 .07368 L +.76826 .07152 L +.77414 .06956 L +Mistroke +.77999 .06782 L +.78582 .06631 L +.7916 .06504 L +.79734 .06401 L +.80304 .06323 L +.80867 .06272 L +.81425 .06249 L +.81976 .06254 L +.82519 .06289 L +.83056 .06351 L +.83584 .06442 L +.84105 .06559 L +.84617 .06702 L +.85121 .06872 L +.85616 .07066 L +.86103 .07284 L +.8658 .07527 L +.87047 .07792 L +.87505 .08079 L +.87953 .08388 L +.8839 .08718 L +.88817 .09068 L +.89233 .09438 L +.89638 .09827 L +.90032 .10234 L +.90414 .10658 L +.90784 .11099 L +.91143 .11557 L +.91489 .1203 L +.91822 .12518 L +.92143 .1302 L +.9245 .13536 L +.92744 .14064 L +.93024 .14605 L +.93291 .15157 L +.93543 .1572 L +.93781 .16293 L +.94004 .16875 L +.94213 .17466 L +.94406 .18066 L +.94584 .18672 L +.94746 .19286 L +.94892 .19906 L +.95021 .20531 L +.95135 .2116 L +.95231 .21794 L +.95311 .22431 L +.95373 .23071 L +.95418 .23713 L +.95445 .24356 L +Mistroke +.95455 .25 L +.95445 .25644 L +.95418 .26287 L +.95373 .26929 L +.95311 .27569 L +.95231 .28206 L +.95135 .2884 L +.95021 .29469 L +.94892 .30094 L +.94746 .30714 L +.94583 .31328 L +.94406 .31934 L +.94213 .32534 L +.94004 .33125 L +.93781 .33707 L +.93543 .3428 L +.93291 .34843 L +.93024 .35395 L +.92744 .35936 L +.9245 .36464 L +.92143 .3698 L +.91822 .37482 L +.91489 .3797 L +.91143 .38443 L +.90784 .38901 L +.90414 .39342 L +.90032 .39766 L +.89638 .40173 L +.89233 .40562 L +.88817 .40932 L +.8839 .41282 L +.87953 .41612 L +.87505 .41921 L +.87047 .42208 L +.8658 .42473 L +.86103 .42716 L +.85616 .42934 L +.85121 .43128 L +.84617 .43298 L +.84105 .43441 L +.83584 .43558 L +.83056 .43649 L +.82519 .43711 L +.81976 .43746 L +.81425 .43751 L +.80867 .43728 L +.80304 .43677 L +.79734 .43599 L +.7916 .43496 L +.78582 .43369 L +Mistroke +.77999 .43218 L +.77414 .43044 L +.76826 .42848 L +.76235 .42632 L +.75644 .42396 L +.75051 .42141 L +.74458 .41868 L +.73866 .41579 L +.73274 .41274 L +.72683 .40954 L +.72095 .4062 L +.71509 .40273 L +.70926 .39914 L +.70347 .39544 L +.69773 .39164 L +.69203 .38776 L +.68639 .38379 L +.6808 .37975 L +.67529 .37565 L +.66984 .3715 L +.66448 .36731 L +.65919 .36309 L +.654 .35885 L +.6489 .35459 L +.6439 .35034 L +.63901 .34609 L +.63423 .34185 L +.62957 .33764 L +.62501 .33346 L +.62056 .32929 L +.6162 .32514 L +.61193 .32102 L +.60775 .31691 L +.60366 .31282 L +.59964 .30875 L +.59569 .30469 L +.5918 .30065 L +.58797 .29663 L +.5842 .29262 L +.58048 .28862 L +.57681 .28464 L +.57317 .28067 L +.56956 .27672 L +.56598 .27277 L +.56243 .26884 L +.55889 .26491 L +.55537 .26099 L +.55185 .25708 L +.54833 .25318 L +.54481 .24929 L +Mistroke +.54128 .2454 L +.53774 .24152 L +.53418 .23763 L +.53061 .23375 L +.52701 .22986 L +.52339 .22597 L +.51974 .22206 L +.51606 .21815 L +.51234 .21423 L +.50859 .21029 L +.50479 .20633 L +.50096 .20235 L +.49707 .19835 L +.49314 .19432 L +.48915 .19027 L +.4851 .18619 L +.481 .18208 L +.47683 .17793 L +.47259 .17375 L +.46829 .16953 L +.46391 .16527 L +.45946 .16097 L +.45493 .15662 L +.45031 .15222 L +.44562 .14779 L +.44085 .14333 L +.436 .13887 L +.43107 .1344 L +.42607 .12996 L +.42099 .12554 L +.41584 .12116 L +.41063 .11684 L +.40534 .11258 L +.39999 .10841 L +.39457 .10432 L +.38909 .10035 L +.38355 .09649 L +.37795 .09277 L +.37228 .08919 L +.36656 .08577 L +.36079 .08252 L +.35496 .07945 L +.34908 .07659 L +.34314 .07393 L +.33716 .07149 L +.33113 .06929 L +.32505 .06734 L +.31893 .06565 L +.31277 .06423 L +.30656 .06311 L +Mistroke +.30031 .06228 L +.29403 .06177 L +.28771 .06158 L +.28135 .06173 L +.27496 .06224 L +.26854 .06311 L +.2621 .06434 L +.25567 .0659 L +.24929 .06779 L +.24296 .06998 L +.23672 .07245 L +.2306 .07519 L +.22462 .07817 L +.21881 .08138 L +.21319 .0848 L +.20778 .08841 L +.20262 .0922 L +.19773 .09613 L +.19314 .10021 L +.18887 .1044 L +.18495 .10868 L +.1814 .11305 L +.17823 .11748 L +.17542 .12197 L +.17294 .12651 L +.17074 .1311 L +.1688 .13573 L +.16708 .14041 L +.16554 .14512 L +.16415 .14985 L +.16288 .15462 L +.16169 .1594 L +.16054 .1642 L +.15941 .16901 L +.15825 .17383 L +.15704 .17865 L +.15574 .18347 L +.15429 .18827 L +.15263 .19307 L +.15087 .19785 L +.14904 .20262 L +.14719 .20738 L +.14535 .21214 L +.14358 .21689 L +.14191 .22163 L +.14038 .22637 L +.13904 .2311 L +.13792 .23583 L +.13708 .24055 L +.13654 .24528 L +Mistroke +.13636 .25 L +Mfstroke +1 0 0 r +.13636 .25 m +.1502 .26013 L +.15972 .26841 L +.16581 .27519 L +.1692 .2808 L +.17053 .28551 L +.17033 .28955 L +.16904 .29311 L +.16702 .29637 L +.16459 .29945 L +.16198 .30247 L +.15939 .30552 L +.15698 .30866 L +.15485 .31195 L +.15311 .31543 L +.1518 .31911 L +.15096 .32302 L +.15063 .32714 L +.1508 .33148 L +.15148 .33603 L +.15266 .34075 L +.15431 .34563 L +.1564 .35065 L +.15892 .35577 L +.16184 .36096 L +.16512 .3662 L +.16873 .37144 L +.17264 .37665 L +.17682 .38181 L +.18125 .38688 L +.18589 .39182 L +.19073 .39662 L +.19573 .40125 L +.20088 .40568 L +.20615 .40988 L +.21154 .41384 L +.21702 .41754 L +.22258 .42096 L +.22822 .42409 L +.23391 .42691 L +.23965 .42942 L +.24543 .43161 L +.25125 .43348 L +.2571 .43502 L +.26298 .43622 L +.26887 .4371 L +.27479 .43766 L +.28071 .43788 L +.28665 .4378 L +.2926 .4374 L +Mistroke +.29856 .4367 L +.30452 .43571 L +.31048 .43443 L +.31643 .43288 L +.32239 .43108 L +.32834 .42902 L +.33428 .42673 L +.3402 .42422 L +.34611 .4215 L +.352 .41859 L +.35787 .4155 L +.36371 .41224 L +.36951 .40883 L +.37528 .40528 L +.38102 .40161 L +.38671 .39782 L +.39235 .39393 L +.39794 .38996 L +.40347 .38591 L +.40894 .38179 L +.41435 .37762 L +.41969 .37341 L +.42496 .36916 L +.43016 .36489 L +.43528 .3606 L +.44032 .3563 L +.44528 .35199 L +.45015 .34769 L +.45494 .34339 L +.45965 .33911 L +.46426 .33484 L +.46879 .3306 L +.47324 .32638 L +.4776 .32218 L +.48187 .31801 L +.48607 .31386 L +.49018 .30975 L +.49421 .30567 L +.49817 .30161 L +.50206 .29758 L +.50588 .29358 L +.50963 .2896 L +.51333 .28565 L +.51697 .28171 L +.52057 .2778 L +.52412 .2739 L +.52763 .27002 L +.53111 .26614 L +.53457 .26228 L +.538 .25842 L +Mistroke +.54142 .25456 L +.54483 .2507 L +.54824 .24684 L +.55166 .24298 L +.55509 .2391 L +.55853 .23522 L +.56201 .23132 L +.56551 .2274 L +.56904 .22347 L +.57262 .21952 L +.57624 .21556 L +.57992 .21157 L +.58365 .20756 L +.58745 .20353 L +.59131 .19948 L +.59524 .19541 L +.59925 .19132 L +.60333 .18721 L +.60749 .18308 L +.61173 .17894 L +.61606 .17479 L +.62047 .17063 L +.62497 .16646 L +.62956 .16229 L +.63424 .15812 L +.639 .15396 L +.64385 .1498 L +.64879 .14566 L +.65382 .14155 L +.65893 .13746 L +.66412 .1334 L +.66939 .12938 L +.67473 .1254 L +.68015 .12148 L +.68564 .11762 L +.6912 .11382 L +.69682 .1101 L +.70249 .10645 L +.70822 .1029 L +.714 .09944 L +.71982 .09609 L +.72568 .09284 L +.73157 .08972 L +.73749 .08673 L +.74342 .08387 L +.74938 .08115 L +.75534 .07859 L +.76131 .07618 L +.76727 .07395 L +.77323 .07188 L +Mistroke +.77916 .06999 L +.78508 .0683 L +.79097 .06679 L +.79683 .06549 L +.80265 .06439 L +.80842 .06351 L +.81414 .06284 L +.8198 .0624 L +.8254 .06218 L +.83094 .06219 L +.8364 .06244 L +.84178 .06293 L +.84707 .06366 L +.85228 .06463 L +.8574 .06586 L +.86242 .06732 L +.86733 .06904 L +.87214 .07101 L +.87684 .07323 L +.88143 .07569 L +.8859 .07841 L +.89025 .08137 L +.89447 .08457 L +.89857 .08802 L +.90253 .0917 L +.90637 .09562 L +.91007 .09977 L +.91363 .10415 L +.91706 .10875 L +.92034 .11357 L +.92348 .11859 L +.92647 .12382 L +.92932 .12924 L +.93203 .13485 L +.93458 .14064 L +.93698 .14661 L +.93923 .15273 L +.94133 .15901 L +.94328 .16544 L +.94507 .172 L +.94671 .17868 L +.9482 .18548 L +.94953 .19239 L +.9507 .19938 L +.95172 .20646 L +.95258 .21361 L +.95329 .22082 L +.95384 .22807 L +.95423 .23536 L +.95447 .24267 L +Mistroke +.95455 .25 L +.95447 .25733 L +.95423 .26464 L +.95384 .27193 L +.95329 .27918 L +.95258 .28639 L +.95172 .29354 L +.9507 .30062 L +.94953 .30761 L +.9482 .31452 L +.94671 .32132 L +.94507 .328 L +.94328 .33456 L +.94133 .34099 L +.93923 .34727 L +.93698 .35339 L +.93458 .35936 L +.93203 .36515 L +.92932 .37076 L +.92647 .37618 L +.92348 .38141 L +.92034 .38643 L +.91706 .39125 L +.91363 .39585 L +.91007 .40023 L +.90637 .40438 L +.90253 .4083 L +.89857 .41198 L +.89447 .41543 L +.89025 .41863 L +.8859 .42159 L +.88143 .42431 L +.87684 .42677 L +.87214 .42899 L +.86733 .43096 L +.86242 .43268 L +.8574 .43414 L +.85228 .43537 L +.84707 .43634 L +.84178 .43707 L +.8364 .43756 L +.83094 .43781 L +.8254 .43782 L +.8198 .4376 L +.81414 .43716 L +.80842 .43649 L +.80265 .43561 L +.79683 .43451 L +.79097 .43321 L +.78508 .4317 L +Mistroke +.77916 .43001 L +.77323 .42812 L +.76727 .42605 L +.76131 .42382 L +.75534 .42141 L +.74938 .41885 L +.74342 .41613 L +.73749 .41327 L +.73157 .41028 L +.72568 .40716 L +.71982 .40391 L +.714 .40056 L +.70822 .3971 L +.70249 .39355 L +.69682 .3899 L +.6912 .38618 L +.68564 .38238 L +.68015 .37852 L +.67473 .3746 L +.66939 .37062 L +.66412 .3666 L +.65893 .36254 L +.65382 .35845 L +.64879 .35434 L +.64385 .3502 L +.639 .34604 L +.63424 .34188 L +.62956 .33771 L +.62497 .33354 L +.62047 .32937 L +.61606 .32521 L +.61173 .32106 L +.60749 .31692 L +.60333 .31279 L +.59925 .30868 L +.59524 .30459 L +.59131 .30052 L +.58745 .29647 L +.58365 .29244 L +.57992 .28843 L +.57624 .28444 L +.57262 .28048 L +.56904 .27653 L +.56551 .2726 L +.56201 .26868 L +.55853 .26478 L +.55509 .2609 L +.55166 .25702 L +.54824 .25316 L +.54483 .2493 L +Mistroke +.54142 .24544 L +.538 .24158 L +.53457 .23772 L +.53111 .23386 L +.52763 .22998 L +.52412 .2261 L +.52057 .2222 L +.51697 .21829 L +.51333 .21435 L +.50963 .2104 L +.50588 .20642 L +.50206 .20242 L +.49817 .19839 L +.49421 .19433 L +.49018 .19025 L +.48607 .18614 L +.48187 .18199 L +.4776 .17782 L +.47324 .17362 L +.46879 .1694 L +.46426 .16516 L +.45965 .16089 L +.45494 .15661 L +.45015 .15231 L +.44528 .14801 L +.44032 .1437 L +.43528 .1394 L +.43016 .13511 L +.42496 .13084 L +.41969 .12659 L +.41435 .12238 L +.40894 .11821 L +.40347 .11409 L +.39794 .11004 L +.39235 .10607 L +.38671 .10218 L +.38102 .09839 L +.37528 .09472 L +.36951 .09117 L +.36371 .08776 L +.35787 .0845 L +.352 .08141 L +.34611 .0785 L +.3402 .07578 L +.33428 .07327 L +.32834 .07098 L +.32239 .06892 L +.31643 .06712 L +.31048 .06557 L +.30452 .06429 L +Mistroke +.29856 .0633 L +.2926 .0626 L +.28665 .0622 L +.28071 .06212 L +.27479 .06234 L +.26887 .0629 L +.26298 .06378 L +.2571 .06498 L +.25125 .06652 L +.24543 .06839 L +.23965 .07058 L +.23391 .07309 L +.22822 .07591 L +.22258 .07904 L +.21702 .08246 L +.21154 .08616 L +.20615 .09012 L +.20088 .09432 L +.19573 .09875 L +.19073 .10338 L +.18589 .10818 L +.18125 .11312 L +.17682 .11819 L +.17264 .12335 L +.16873 .12856 L +.16512 .1338 L +.16184 .13904 L +.15892 .14423 L +.1564 .14935 L +.15431 .15437 L +.15266 .15925 L +.15148 .16397 L +.1508 .16852 L +.15063 .17286 L +.15096 .17698 L +.1518 .18089 L +.15311 .18457 L +.15485 .18805 L +.15698 .19134 L +.15939 .19448 L +.16198 .19753 L +.16459 .20055 L +.16702 .20363 L +.16904 .20689 L +.17033 .21045 L +.17053 .21449 L +.1692 .2192 L +.16581 .22481 L +.15972 .23159 L +.1502 .23987 L +Mistroke +.13636 .25 L +Mfstroke +0 0 1 r +.13636 .25 m +.15455 .3125 L +.18182 .3875 L +.27273 .4375 L +.45455 .34375 L +.54545 .25 L +.63636 .15625 L +.81818 .0625 L +.95455 .25 L +.81818 .4375 L +.63636 .34375 L +.54545 .25 L +.45455 .15625 L +.27273 .0625 L +.18182 .1125 L +.15455 .1875 L +.13636 .25 L +s +5 Mabswid +.13636 .25 Mdot +.15455 .3125 Mdot +.18182 .3875 Mdot +.27273 .4375 Mdot +.45455 .34375 Mdot +.54545 .25 Mdot +.63636 .15625 Mdot +.81818 .0625 Mdot +.95455 .25 Mdot +.81818 .4375 Mdot +.63636 .34375 Mdot +.54545 .25 Mdot +.45455 .15625 Mdot +.27273 .0625 Mdot +.18182 .1125 Mdot +.15455 .1875 Mdot +.13636 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{811, 405.5}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`030000o`3oool0oooo01@0oooo0`00o`00103oool0ObXZ07lZ:P1o:RX50?oo +o`<0o`00T`3oool00;T0oooo0P1o:RX40?ooo`<0o`0000<00?l00?ooo`3oool02P3oool00`000?l0 +oooo0?ooo`0G0?ooo`80003o6@3oool207lZ:P80o`001@3oool2003o09H0oooo00<000000?ooo`3o +ool0W03oool207lZ:P030?ooo`00o`000?l00080oooo103o000A0?ooo`80003o4@3oool00`000?l0 +oooo0?ooo`0F0?ooo`800?l00P3oool207lZ:PH0oooo0P3o002A0?ooo`00]P3oool307lZ:P@0oooo +0P3o0002003o00`0oooo0P000?lL0?ooo`80003o6@3oool207lZ:P<0o`00103oool2003o09@0oooo +00<000000?ooo`3oool0VP3oool207lZ:P<00?l000@0oooo0?l0003o0000o`004`3oool20000oa@0 +oooo00<0003o0?ooo`3oool05`3oool2003o0080oooo0P1o:RX60?ooo`80o`00S`3oool00;@0oooo +0P1o:RX50?ooo`80o`000P00o`0<0?ooo`80003o803oool20000oaT0oooo0P1o:RX00`3oool0o`00 +0?l000020?l00080oooo0P00o`2B0?ooo`@00000U`3oool207lZ:P800?l00P3oool20?l001@0oooo +0P000?lG0?ooo`030000o`3oool0oooo01P0oooo0P00o`020?ooo`<0ObXZ1@3oool20?l008d0oooo +002b0?ooo`80ObXZ1P3oool00`3o00000?l00?ooo`0<0?ooo`80003o903oool20000oaT0oooo0`1o +:RX20?ooo`80o`000P3oool2003o0900oooo00<000000?ooo`3oool0U@3oool207lZ:P<00?l000@0 +oooo0?l0003o0000o`00503oool20000oaT0oooo00<0003o0?ooo`3oool06P3oool2003o00<0oooo +0P1o:RX50?ooo`80o`00R`3oool00;00oooo0P1o:RX60?ooo`80o`003@3oool20000obP0oooo0P00 +0?lJ0?ooo`<0ObXZ00<0oooo0?l0003o00000P3oool2003o08h0oooo00<000000?ooo`3oool0TP3o +ool207lZ:P<00?l0103o000E0?ooo`80003o703oool00`000?l0oooo0?ooo`0K0?ooo`03003o003o +ool0oooo0080oooo0P1o:RX50?ooo`030?l0003oool0oooo08P0oooo002_0?ooo`0307lZ:P3oool0 +oooo00D0oooo00<0o`000?ooo`3oool02`3oool20000ob`0oooo0P000?lK0?ooo`80ObXZ00<0oooo +0?l0003oool00P3oool3003o08/0oooo00<000000?ooo`3oool0T03oool207lZ:P800?l000<0oooo +0?l0003o00005`3oool20000oal0oooo00<0003o0?ooo`3oool06`3oool2003o00@0oooo00<0ObXZ +0?ooo`3oool00`3oool00`3o0000oooo0?ooo`270?ooo`00[P3oool00`1o:RX0oooo0?ooo`040?oo +o`80o`00303oool20000oc00oooo0P000?lK0?ooo`80ObXZ0P3o00040?ooo`800?l0R@3oool00`00 +0000oooo0?ooo`2>0?ooo`80ObXZ0P00o`000`3oool0o`000?l0000G0?ooo`80003o8@3oool00`00 +0?l0oooo0?ooo`0M0?ooo`800?l00`3oool00`1o:RX0oooo0?ooo`030?ooo`030?l0003oool0oooo +08H0oooo002/0?ooo`80ObXZ1@3oool20?l000d0oooo00<0003o0?ooo`3oool0`3oool20000oa/0oooo +00@0ObXZ0?l0003o0000o`000`3oool2003o08@0oooo00<000000?ooo`3oool0R03oool207lZ:P04 +0?ooo`00o`00o`000?l001P0oooo0P000?lZ0?ooo`030000o`3oool0oooo01l0oooo00D00?l00?oo +o`3oool0oooo07lZ:P050?ooo`030?l0003oool0oooo0880oooo002W0?ooo`80ObXZ1P3oool00`3o +0000oooo0?ooo`0:0?ooo`80003o?`3oool00`000?l0oooo0?ooo`0J0?ooo`80ObXZ0P3o00030?oo +o`03003o003oool0oooo0840oooo00<000000?ooo`3oool0QP3oool207lZ:P040?ooo`00o`00o`00 +0?l001T0oooo00<0003o0?ooo`3oool0:P3oool00`000?l0oooo0?ooo`0P0?ooo`04003o003oool0 +oooo0?ooo`80ObXZ103oool20?l00880oooo002V0?ooo`0307lZ:P3oool0oooo00@0oooo00<00?l0 +0?l0003oool02P3oool20000od80oooo0P000?lM0?ooo`0307lZ:P3o0000o`000080oooo0P00o`21 +0?ooo`@00000P`3oool207lZ:P040?ooo`00o`000?l00?l001T0oooo0P000?l^0?ooo`030000o`3o +ool0oooo0200oooo00<00?l00?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`030?ooo`030?l0003o +ool0oooo07l0oooo002U0?ooo`0307lZ:P3oool0oooo00@0oooo0P3o000:0?ooo`80003oAP3oool2 +0000oad0oooo00<0ObXZ0?l0003oool00P3oool2003o07l0oooo00<000000?ooo`3oool0PP3oool2 +07lZ:P030?ooo`00o`000?l00080o`00603oool20000oc40oooo00<0003o0?ooo`3oool0803oool2 +003o00<0oooo00<0ObXZ0?ooo`3oool00`3oool00`3o0000oooo0?ooo`1n0?ooo`00Y03oool00`1o +:RX0oooo0?ooo`030?ooo`03003o003o0000oooo00T0oooo0P000?m:0?ooo`80003o7@3oool20?l0 +00<0oooo00<00?l00?ooo`3oool0O03oool00`000000oooo0?ooo`210?ooo`0607lZ:P3oool00?l0 +003o003oool0o`00603oool20000oc<0oooo00<0003o0?ooo`3oool08P3oool2003o0080oooo00<0 +ObXZ0?ooo`3oool00`3oool00`3o0000oooo0?ooo`1m0?ooo`00X`3oool00`1o:RX0oooo0?ooo`02 +0?ooo`800?l000<0o`000?ooo`3oool01`3oool20000odh0oooo0P000?lL0?ooo`0307lZ:P3o0000 +oooo0080oooo0P00o`1l0?ooo`030000003oool0oooo07l0oooo0P1o:RX2003o00030?ooo`3o0000 +o`0001L0oooo0P000?lf0?ooo`030000o`3oool0oooo02<0oooo00@00?l00?ooo`3oool0ObXZ1@3o +ool00`3o0000oooo0?ooo`1l0?ooo`00X@3oool207lZ:P@0oooo00<00?l00?l0003o00002@3oool0 +0`000?l0oooo0?ooo`1@0?ooo`80003o703oool20?l000<0oooo00<00?l00?ooo`3oool0N@3oool0 +0`000000oooo0?ooo`1m0?ooo`80ObXZ0P00o`030?l001L0oooo0P000?li0?ooo`030000o`3oool0 +oooo02<0oooo00<00?l00?ooo`3oool00P1o:RX40?ooo`030?l0003oool0oooo07/0oooo002P0?oo +o`0307lZ:P3oool0oooo0080oooo0P00o`000`3o0000oooo0?ooo`070?ooo`80003oE@3oool20000 +oa`0oooo0P3o00020?ooo`03003o003oool0oooo07P0oooo00<000000?ooo`3oool0N`3oool207lZ +:P040?ooo`00o`00o`000?l001P0oooo0P000?ll0?ooo`030000o`3oool0oooo02<0oooo00D00?l0 +0?ooo`3oool0oooo07lZ:P040?ooo`030?l0003oool0oooo07X0oooo002O0?ooo`0307lZ:P3oool0 +oooo0080oooo00<00?l00?ooo`3o0000203oool20000oeT0oooo0P000?lL0?ooo`80o`0000<0oooo +003o0000o`00N03oool00`000000oooo0?ooo`1i0?ooo`80ObXZ00@0oooo003o003o0000o`00603o +ool20000och0oooo00<0003o0?ooo`3oool0903oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo +00<0o`000?ooo`3oool0N@3oool009h0oooo00<0ObXZ0?ooo`3oool00P3oool00`00o`00o`000?l0 +00070?ooo`80003oG@3oool20000oa`0oooo0P3o00000`3oool00?l0003o001f0?ooo`030000003o +ool0oooo07L0oooo0P1o:RX0103oool00?l0003o003o000H0?ooo`80003o@@3oool00`000?l0oooo +0?ooo`0T0?ooo`05003o003oool0oooo0?ooo`1o:RX0103oool00`3o0000oooo0?ooo`1h0?ooo`00 +WP3oool01P1o:RX0oooo0?ooo`3oool00?l00?l000L0oooo0P000?mQ0?ooo`80003o6`3oool0101o +:RX0o`000?ooo`3oool2003o07@0oooo00<000000?ooo`3oool0M@3oool207lZ:P80oooo00<00?l0 +0?l0003o00005`3oool20000od@0oooo00<0003o0?ooo`3oool0903oool01@00o`00oooo0?ooo`3o +ool0ObXZ00@0oooo00<0o`000?ooo`3oool0M`3oool009d0oooo00H0ObXZ0?ooo`3oool0oooo003o +003o00060?ooo`80003oI@3oool20000oa/0oooo00@0o`000?ooo`3oool0oooo0P00o`1b0?ooo`@0 +0000L`3oool00`1o:RX0oooo0?ooo`02003o00030?l0003oool0oooo01D0oooo0P000?m70?ooo`03 +0000o`3oool0oooo02@0oooo00D00?l00?ooo`3oool0oooo07lZ:P040?ooo`030?l0003oool0oooo +07H0oooo002L0?ooo`0607lZ:P3oool0oooo0?ooo`00o`00o`001@3oool20000ofT0oooo0P000?lJ +0?ooo`80o`000`3oool00`00o`00oooo0?ooo`1_0?ooo`030000003oool0oooo0780oooo0P1o:RX2 +0?ooo`03003o003o0000o`0001H0oooo0P000?m90?ooo`030000o`3oool0oooo02@0oooo00<00?l0 +0?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo07D0oooo002K0?oo +o`0607lZ:P3oool0oooo0?ooo`00o`00o`001@3oool00`000?l0oooo0?ooo`1[0?ooo`80003o6P3o +ool0103o0000oooo0?ooo`3oool2003o06l0oooo00<000000?ooo`3oool0L@3oool0101o:RX0oooo +0?ooo`00o`020?l001H0oooo0P000?m<0?ooo`030000o`3oool0oooo02@0oooo00<00?l00?ooo`3o +ool00P3oool01@1o:RX0oooo0?ooo`3oool0o`0007L0oooo002J0?ooo`0607lZ:P3oool0oooo0?oo +o`00o`00o`00103oool20000og00oooo0P000?lI0?ooo`030?l0001o:RX0oooo0080oooo00<00?l0 +0?ooo`3oool0K03oool00`000000oooo0?ooo`1_0?ooo`80ObXZ00@0oooo003o0000o`00o`005P3o +ool20000odl0oooo00<0003o0?ooo`3oool0903oool00`00o`00oooo0?ooo`020?ooo`0507lZ:P3o +ool0oooo0?ooo`3o0000MP3oool009T0oooo00H0ObXZ0?ooo`3oool0oooo003o003o00030?ooo`80 +003oM03oool20000oaP0oooo0P3o0000101o:RX0oooo0?ooo`00o`1]0?ooo`030000003oool0oooo +06h0oooo00@0ObXZ0?ooo`3oool00?l00P3o000E0?ooo`80003oD@3oool00`000?l0oooo0?ooo`0U +0?ooo`05003o003oool0oooo0?ooo`1o:RX0103oool00`3o0000oooo0?ooo`1c0?ooo`00V03oool0 +1P1o:RX0oooo0?ooo`3oool00?l00?l00080oooo0P000?mh0?ooo`80003o603oool0103o0000ObXZ +07lZ:P3oool2003o06/0oooo00<000000?ooo`3oool0K03oool207lZ:P040?ooo`00o`000?l00?l0 +01D0oooo0P000?mD0?ooo`030000o`3oool0oooo02D0oooo00D00?l00?ooo`3oool0oooo07lZ:P03 +0?ooo`030?l0003oool0oooo07<0oooo002G0?ooo`0307lZ:P3oool0oooo0080oooo00@0o`000?oo +o`000?l0003oO03oool20000oaL0oooo00<0o`000?ooo`1o:RX00P3oool00`00o`00oooo0?ooo`1X +0?ooo`030000003oool0oooo06/0oooo00@0ObXZ0?ooo`00o`000?l00P3o000D0?ooo`80003oE`3o +ool00`000?l0oooo0?ooo`0U0?ooo`05003o003oool0oooo0?ooo`1o:RX00`3oool00`3o0000oooo +0?ooo`1b0?ooo`00UP3oool00`1o:RX0oooo0000o`020000o`030?l000000?l0003o0800oooo00<0 +003o0?ooo`3oool05@3oool20?l0000407lZ:P3oool0oooo003o06T0oooo00<000000?ooo`3oool0 +JP3oool00`1o:RX0oooo003o00020?l001D0oooo00<0003o0?ooo`3oool0F03oool00`000?l0oooo +0?ooo`0U0?ooo`05003o003oool0oooo0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1a0?ooo`00 +U@3oool00`1o:RX0oooo0000o`040000oh<0oooo0P000?lG0?ooo`040?l0001o:RX0oooo003o06T0 +oooo00<000000?ooo`3oool0J@3oool0101o:RX00?l0003o003o000E0?ooo`80003oF`3oool00`00 +0?l0oooo0?ooo`0V0?ooo`05003o003oool0oooo0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1` +0?ooo`00U@3oool00`1o:RX0oooo0000o`040000ohD0oooo0P000?lF0?ooo`040?l0001o:RX0oooo +003o06P0oooo1000001W0?ooo`0407lZ:P00o`00o`000?l001@0oooo0P000?mN0?ooo`030000o`3o +ool0oooo02H0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo0700oooo +002D0?ooo`0307lZ:P3oool0oooo00D0003oQ`3oool20000oaD0oooo0P3o00000`1o:RX00?l00?oo +o`1V0?ooo`030000003oool0oooo06H0oooo0P1o:RX20?l001@0oooo0P000?mQ0?ooo`030000o`3o +ool0oooo02D0oooo00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`030?l0003oool0oooo06l0oooo +002D0?ooo`0407lZ:P3oool0oooo0?l000<0003oRP3oool20000oaD0oooo00<0o`0007lZ:P00o`00 +IP3oool00`000000oooo0?ooo`1U0?ooo`0307lZ:P00o`00o`0001@0oooo0P000?mT0?ooo`030000 +o`3oool0oooo02D0oooo00D00?l00?ooo`3oool0oooo07lZ:P030?ooo`030?l0003oool0oooo06h0 +oooo002C0?ooo`0607lZ:P3oool0oooo0?l00000o`00003oSP3oool20000oa@0oooo00@0o`0007lZ +:P00o`000?l0I03oool00`000000oooo0?ooo`1T0?ooo`0307lZ:P3o0000o`0001<0oooo0P000?mV +0?ooo`030000o`3oool0oooo02H0oooo00@00?l00?ooo`3oool0ObXZ0`3oool00`3o0000oooo0?oo +o`1^0?ooo`00TP3oool01`1o:RX0oooo0?ooo`3oool0o`000?ooo`000?l0T03oool20000oa<0oooo +0P3o00000`1o:RX00?l00?ooo`1R0?ooo`030000003oool0oooo0680oooo0P1o:RX00`3o0000oooo +0?ooo`0A0?ooo`80003oJ@3oool00`000?l0oooo0?ooo`0V0?ooo`04003o003oool0oooo07lZ:P<0 +oooo00<0o`000?ooo`3oool0K@3oool00980oooo00H0ObXZ0?ooo`3oool0o`000?ooo`000?nC0?oo +o`80003o4`3oool00`3o0000ObXZ003o001R0?ooo`030000003oool0oooo0640oooo00<0ObXZ003o +003o00004P3oool20000of`0oooo00<0003o0?ooo`3oool09@3oool01@00o`00oooo0?ooo`3oool0 +ObXZ00<0oooo00<0o`000?ooo`3oool0K03oool00940oooo00L0ObXZ0?ooo`3oool0o`00003o003o +ool0003o09D0oooo0P000?lB0?ooo`040?l0001o:RX00?l0003o0600oooo00<000000?ooo`3oool0 +H03oool00`1o:RX0o`000?l0000A0?ooo`80003oKP3oool00`000?l0oooo0?ooo`0V0?ooo`05003o +003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1/0?ooo`00T03oool01`1o:RX0oooo +0?ooo`3o00000?l00?ooo`000?l0V03oool20000oa40oooo0P3o00000`1o:RX00?l00?ooo`1N0?oo +o`030000003oool0oooo05l0oooo00<0ObXZ0?l0003oool0403oool20000og40oooo00<0003o0?oo +o`3oool09P3oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0J`3oool0 +0900oooo00@0ObXZ0?ooo`3o00000?l00P3oool00`000?l0oooo0?ooo`2H0?ooo`80003o4@3oool0 +0`3o0000ObXZ003o001@0?ooo`@000002P3oool00`000000oooo0?ooo`1M0?ooo`0307lZ:P00o`00 +o`000100oooo0P000?md0?ooo`030000o`3oool0oooo02D0oooo00D00?l00?ooo`3oool0oooo07lZ +:P020?ooo`030?l0003oool0oooo06/0oooo002?0?ooo`0507lZ:P3oool0o`000?ooo`00o`000P3o +ool00`000?l0oooo0?ooo`2J0?ooo`80003o403oool0103o0000ObXZ003o0000o`1>0?ooo`030000 +003oool0oooo00/0oooo00<000000?ooo`3oool0G03oool00`1o:RX0o`000?l0000?0?ooo`80003o +M`3oool00`000?l0oooo0?ooo`0U0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000 +oooo0?ooo`1Z0?ooo`00S`3oool0101o:RX0o`000?ooo`00o`020?ooo`030000o`3oool0oooo09d0 +oooo0P000?l?0?ooo`80o`0000<0oooo003o003oool0C@3oool00`000000oooo0?ooo`0:0?ooo`D0 +0000F@3oool00`1o:RX0o`000?ooo`0>0?ooo`80003oN@3oool00`000?l0oooo0?ooo`0V0?ooo`04 +003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0JP3oool008h0oooo00D0ObXZ0?ooo`3o +0000oooo003o00020?ooo`030000o`3oool0oooo09l0oooo0P000?l?0?ooo`030?l0001o:RX00?l0 +04H0oooo100000040?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool0F@3oool00`1o +:RX00?l00?l0000>0?ooo`80003oO03oool00`000?l0oooo0?ooo`0U0?ooo`05003o003oool0oooo +0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1Y0?ooo`00S@3oool01@1o:RX0oooo0?l0003oool0 +0?l000<0oooo00<0003o0?ooo`3oool0X@3oool20000o`h0oooo00@0o`0007lZ:P00o`000?l0BP3o +ool010000000oooo0?ooo`00000:0?ooo`030000003oool0oooo05P0oooo00<0ObXZ0?l0003o0000 +3@3oool20000ogl0oooo00<0003o0?ooo`3oool09@3oool01`00o`00oooo0?ooo`3oool0ObXZ0?oo +o`3o0000J`3oool008d0oooo00D0ObXZ0?l0003oool0oooo003o00020?ooo`030000o`3oool0oooo +0:@0oooo0P000?l=0?ooo`80o`0000<0oooo003o003oool0B@3oool2000000/0oooo00<000000?oo +o`3oool0E`3oool00`1o:RX0o`000?ooo`0<0?ooo`80003oPP3oool00`000?l0oooo0?ooo`0T0?oo +o`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1X0?ooo`00S03oool01@1o +:RX0o`000?ooo`3oool00?l000<0oooo00<0003o0?ooo`3oool0YP3oool20000o`d0oooo00<0o`00 +0?ooo`00o`00EP3oool00`000000oooo0?ooo`1F0?ooo`03003o003o0000oooo00/0oooo0P000?n4 +0?ooo`030000o`3oool0oooo02D0oooo00L00?l00?ooo`3oool0oooo07lZ:P3oool0o`0006X0oooo +002<0?ooo`0507lZ:P3o0000oooo0?ooo`00o`000`3oool00`000?l0oooo0?ooo`2X0?ooo`80003o +303oool00`3o00000?l00?ooo`1E0?ooo`030000003oool0oooo05@0oooo00<0ObXZ0?l0003o0000 +2`3oool20000ohL0oooo00<0003o0?ooo`3oool09@3oool01000o`00oooo0?ooo`1o:RX20?ooo`03 +0?l0003oool0oooo06L0oooo002;0?ooo`0507lZ:P3o0000oooo0?ooo`00o`000`3oool00`000?l0 +oooo0?ooo`2[0?ooo`030000o`3oool0oooo00X0oooo0P3o001E0?ooo`030000003oool0oooo05<0 +oooo00<0ObXZ0?l0003oool02`3oool00`000?l0oooo0?ooo`280?ooo`030000o`3oool0oooo02@0 +oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1W0?ooo`00RP3oool00`1o:RX0 +o`000?ooo`020?ooo`05003o003oool0oooo0?ooo`000?l0[P3oool20000o``0oooo00<0o`000?oo +o`3oool0DP3oool00`000000oooo0?ooo`1B0?ooo`03003o003o0000oooo00X0oooo0P000?n;0?oo +o`030000o`3oool0oooo02D0oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1V +0?ooo`00RP3oool00`1o:RX0o`000?ooo`020?ooo`05003o003oool0oooo0?ooo`000?l0/03oool2 +0000o`/0oooo00<0o`000?ooo`3oool0D@3oool00`000000oooo0?ooo`1A0?ooo`80o`002P3oool2 +0000ohh0oooo00<0003o0?ooo`3oool0903oool01`00o`00oooo0?ooo`3oool0ObXZ0?ooo`3o0000 +J03oool008T0oooo00<0ObXZ0?l0003oool00`3oool01000o`00oooo0?ooo`000?nc0?ooo`80003o +2P3oool20?l00540oooo1000001>0?ooo`0307lZ:P3o0000oooo00T0oooo0P000?nA0?ooo`030000 +o`3oool0oooo02@0oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1U0?ooo`00 +R@3oool00`1o:RX0o`000?ooo`020?ooo`05003o003oool0oooo0?ooo`000?l0]@3oool20000o`T0 +oooo00<0ObXZ0?l0003oool0C`3oool00`000000oooo0?ooo`1>0?ooo`0307lZ:P3o0000oooo00P0 +oooo0P000?nD0?ooo`030000o`3oool0oooo02<0oooo00L00?l00?ooo`3oool0oooo07lZ:P3oool0 +o`0006L0oooo00280?ooo`0307lZ:P3o0000oooo00<0oooo00@00?l00?ooo`3oool0003o^03oool2 +0000o`P0oooo00<0ObXZ0?l0003oool0CP3oool00`000000oooo0?ooo`1=0?ooo`0307lZ:P3o0000 +oooo00L0oooo0P000?nF0?ooo`030000o`3oool0oooo02@0oooo00@00?l00?ooo`3oool0ObXZ0P3o +ool00`3o0000oooo0?ooo`1T0?ooo`00R03oool00`1o:RX0o`000?ooo`030?ooo`04003o003oool0 +oooo0000okX0oooo0P000?l80?ooo`030?l00000o`00oooo04`0oooo00<000000?ooo`3oool0B`3o +ool207lZ:P030?l0003oool0oooo00D0oooo0P000?nI0?ooo`030000o`3oool0oooo02@0oooo00H0 +0?l00?ooo`3oool0ObXZ0?ooo`3o001V0?ooo`00Q`3oool00`1o:RX0o`000?ooo`030?ooo`05003o +003oool0oooo0?ooo`000?l0_03oool20000o`L0oooo00<0o`00003o003oool0B`3oool00`000000 +oooo0?ooo`1:0?ooo`0307lZ:P3oool0o`0000H0oooo0P000?nL0?ooo`030000o`3oool0oooo02<0 +oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1S0?ooo`00Q`3oool00`1o:RX0 +o`000?ooo`030?ooo`04003o003oool0oooo0000okl0oooo0P000?l60?ooo`030?l00000o`00oooo +04X0oooo00<000000?ooo`3oool0B@3oool00`1o:RX0o`000?l000050?ooo`80003oWP3oool00`00 +0?l0oooo0?ooo`0T0?ooo`06003o003oool0oooo07lZ:P3oool0o`00I@3oool008H0oooo00<0ObXZ +0?l0003oool0103oool01000o`00oooo0?ooo`000?o10?ooo`80003o1@3oool00`3o00000?l00?oo +o`190?ooo`030000003oool0oooo04P0oooo00<0ObXZ0?l0003oool0103oool20000oj40oooo00<0 +003o0?ooo`3oool0903oool00`00o`00oooo07lZ:P020?ooo`030?l0003oool0oooo0680oooo0026 +0?ooo`0307lZ:P3o0000oooo00@0oooo00@00?l00?ooo`3oool0003o``3oool20000o`@0oooo00<0 +o`00003o003oool0B03oool00`000000oooo0?ooo`160?ooo`80ObXZ00<0o`000?ooo`3oool00P3o +ool20000oj@0oooo00<0003o0?ooo`3oool08`3oool00`00o`00oooo07lZ:P020?ooo`030?l0003o +ool0oooo0680oooo00250?ooo`0307lZ:P3o0000oooo00@0oooo00@00?l00?ooo`3oool0003oaP3o +ool20000o`<0oooo00<0o`00003o003oool0A`3oool00`000000oooo0?ooo`150?ooo`0307lZ:P3o +0000o`0000<0oooo0P000?nW0?ooo`030000o`3oool0oooo02<0oooo00D00?l00?ooo`1o:RX0oooo +0?l0001T0?ooo`00Q@3oool00`1o:RX0o`000?ooo`040?ooo`04003o003oool0oooo0000olP0oooo +0P000?l20?ooo`030?l00000o`00oooo04H0oooo100000130?ooo`0307lZ:P3o0000oooo0080oooo +0P000?nY0?ooo`030000o`3oool0oooo02<0oooo00D00?l00?ooo`1o:RX0oooo0?l0001T0?ooo`00 +Q@3oool00`3o0000oooo0?ooo`040?ooo`04003o003oool0oooo0000olX0oooo0P000?l00`3oool0 +o`000?l000160?ooo`030000003oool0oooo04<0oooo00@0ObXZ0?l0003oool0oooo0P000?n/0?oo +o`030000o`3oool0oooo02<0oooo00D00?l007lZ:P3oool0oooo0?l0001S0?ooo`00Q03oool00`1o +:RX0o`000?ooo`040?ooo`04003o003oool0oooo0000old0oooo0P000?l00`3oool0o`000?ooo`14 +0?ooo`030000003oool0oooo0480oooo00<0ObXZ0?l0003oool00P000?n_0?ooo`030000o`3oool0 +oooo0280oooo00D00?l00?ooo`1o:RX0oooo0?l0001S0?ooo`00Q03oool00`3o0000oooo0?ooo`04 +0?ooo`04003o003oool0oooo0000oll0oooo0P000?l0103o0000003o0000o`000?m10?ooo`030000 +003oool0oooo03l0oooo0`000?l00`3o0000003o0000o`2b0?ooo`030000o`3oool0oooo0240oooo +00D00?l00?ooo`1o:RX0oooo0?l0001S0?ooo`00P`3oool00`1o:RX0o`000?ooo`050?ooo`04003o +003oool0oooo0000om40oooo1@000?m00?ooo`030000003oool0oooo03h0oooo1@000?nd0?ooo`03 +0000o`3oool0oooo0280oooo00D00?l00?ooo`1o:RX0oooo0?l0001R0?ooo`00P`3oool00`3o0000 +oooo0?ooo`050?ooo`03003o003oool0003o0=80oooo1@000?m00?ooo`030000003oool0oooo03h0 +oooo1@000?ne0?ooo`030000o`3oool0oooo0240oooo00D00?l00?ooo`3oool0ObXZ0?l0001R0?oo +o`00P`3oool00`3o0000oooo0?ooo`040?ooo`04003o003oool0oooo0000om80oooo1@000?m00?oo +o`030000003oool0oooo03h0oooo1@000?nf0?ooo`030000o`3oool0oooo0200oooo00H00?l00?oo +o`3oool0ObXZ0?ooo`3o001Q0?ooo`00PP3oool00`1o:RX0o`000?ooo`050?ooo`03003o003oool0 +003o0=@0oooo10000?l00`3o0000oooo0?ooo`0m0?ooo`030000003oool0oooo03d0oooo00<0o`00 +0000o`000?l00P000?ng0?ooo`030000o`3oool0oooo0240oooo00D00?l00?ooo`3oool0ObXZ0?l0 +001Q0?ooo`00PP3oool00`1o:RX0o`000?ooo`050?ooo`03003o003oool0003o0=P0oooo00<0003o +0?l0003oool0?@3oool00`000000oooo0?ooo`0l0?ooo`030?l000000?l0oooo0;/0oooo00<0003o +0?ooo`3oool0803oool01@00o`00oooo0?ooo`1o:RX0o`000640oooo00220?ooo`030?l0003oool0 +oooo00@0oooo00@00?l00?ooo`3oool0003of@3oool00`000?l0o`000?ooo`0l0?ooo`@00000>P3o +ool00`3o0000003o0?ooo`2m0?ooo`030000o`3oool0oooo0200oooo00@00?l00?ooo`1o:RX0o`00 +H@3oool00840oooo00<0ObXZ0?l0003oool01@3oool00`00o`00oooo0000o`3K0?ooo`030000o`3o +0000oooo03/0oooo00<000000?ooo`3oool0>P3oool00`3o0000003o0?ooo`2o0?ooo`030000o`3o +ool0oooo01l0oooo00D00?l00?ooo`3oool0ObXZ0?l0001P0?ooo`00P@3oool00`1o:RX0o`000?oo +o`050?ooo`03003o003oool0003o0=`0oooo00<0003o0?l0003oool0>P3oool00`000000oooo0?oo +o`0h0?ooo`80o`0000<0003o0?ooo`3oool0_`3oool00`000?l0oooo0?ooo`0O0?ooo`05003o003o +ool0oooo07lZ:P3o0000H03oool00840oooo00<0ObXZ0?l0003oool01@3oool00`00o`00oooo0000 +o`3M0?ooo`030000o`3o0000oooo03T0oooo00<000000?ooo`3oool0=`3oool00`3o0000oooo0000 +o`330?ooo`030000o`3oool0oooo01l0oooo00@00?l00?ooo`1o:RX0o`00H03oool00800oooo00<0 +ObXZ0?ooo`3o00001@3oool00`00o`00oooo0000o`3O0?ooo`030000o`3o0000oooo03P0oooo00<0 +00000?ooo`3oool0=P3oool00`3o0000oooo0000o`350?ooo`030000o`3oool0oooo01h0oooo00@0 +0?l00?ooo`3oool0o`00H03oool00800oooo00<0ObXZ0?ooo`3o00001@3oool00`00o`00oooo0000 +o`3P0?ooo`030000o`3o0000oooo03L0oooo00<000000?ooo`3oool0=@3oool00`3o0000oooo0000 +o`370?ooo`030000o`3oool0oooo01h0oooo00@00?l00?ooo`1o:RX0o`00G`3oool00800oooo00<0 +ObXZ0?ooo`3o00001@3oool00`00o`00oooo0000o`3Q0?ooo`030000o`3o0000oooo03H0oooo00<0 +00000?ooo`3oool0=03oool00`3o0000oooo0000o`380?ooo`030000o`3oool0oooo01h0oooo00@0 +0?l00?ooo`1o:RX0o`00G`3oool007l0oooo00@0ObXZ0?ooo`3oool0o`00103oool00`00o`00oooo +0000o`3S0?ooo`030000o`3o0000oooo03D0oooo00<000000?ooo`3oool0<`3oool00`3o0000oooo +0000o`3:0?ooo`030000o`3oool0oooo01d0oooo00@00?l00?ooo`1o:RX0o`00G`3oool007l0oooo +00@0ObXZ0?ooo`3oool0o`00103oool00`00o`00oooo0000o`3T0?ooo`030000o`3o0000oooo03@0 +oooo00<000000?ooo`3oool0D0oooo00<0ObXZ0000 +o`3o0000<`3oool4000002l0oooo00<0o`000?ooo`000?l0c`3oool00`000?l0oooo0?ooo`0L0?oo +o`04003o003oool0ObXZ0?l005h0oooo001n0?ooo`0507lZ:P3oool0oooo0?ooo`3o00000`3oool0 +0`00o`00oooo0000o`3W0?ooo`0307lZ:P000?l0o`000380oooo00<000000?ooo`3oool0;`3oool0 +0`3o0000oooo0000o`3A0?ooo`030000o`3oool0oooo01`0oooo00@00?l007lZ:P3oool0o`00G@3o +ool007h0oooo00D0ObXZ0?ooo`3oool0oooo0?l000030?ooo`03003o00000?l0oooo0>P0oooo00<0 +ObXZ0000o`3o0000<@3oool00`000000oooo0?ooo`0^0?ooo`030?l0003oool0003o0=<0oooo00<0 +003o0?ooo`3oool06`3oool01000o`00ObXZ0?ooo`3o001M0?ooo`00O@3oool00`1o:RX0oooo0?oo +o`030?ooo`050?l0003oool0oooo003o00000?l0jP3oool00`1o:RX0003o0?l0000`0?ooo`030000 +003oool0oooo02d0oooo00<0o`000?ooo`000?l0e03oool00`000?l0oooo0?ooo`0L0?ooo`03003o +001o:RX0o`0005d0oooo001m0?ooo`0307lZ:P3oool0oooo00<0oooo00D0o`000?ooo`00o`00oooo +0000o`3[0?ooo`030000o`00o`00o`0002l0oooo00<000000?ooo`3oool0;03oool0103o0000oooo +07lZ:P000?oE0?ooo`030000o`3oool0oooo01/0oooo00<00?l007lZ:P3o0000G@3oool007d0oooo +00<0ObXZ0?ooo`3oool00`3oool0103o0000oooo003o00000?o]0?ooo`030000o`00o`00o`0002h0 +oooo00<000000?ooo`3oool0:`3oool0103o00000?l007lZ:P000?oG0?ooo`030000o`3oool0oooo +01X0oooo00@00?l007lZ:P3oool0o`00G03oool007d0oooo00<0ObXZ0?ooo`3oool00`3oool0103o +0000oooo003o00000?o^0?ooo`030000o`00o`00o`0002d0oooo00<000000?ooo`3oool0:P3oool0 +103o00000?l007lZ:P000?oH0?ooo`030000o`3oool0oooo01X0oooo00@00?l00?ooo`1o:RX0o`00 +G03oool007d0oooo00<0ObXZ0?ooo`3oool00`3oool0103o0000003o0000o`000?o_0?ooo`030000 +o`00o`00o`0001h0oooo1@0000090?ooo`030000003oool0oooo02T0oooo00@0o`00003o001o:RX0 +003ofP3oool00`000?l0oooo0?ooo`0J0?ooo`03003o001o:RX0o`0005`0oooo001m0?ooo`0307lZ +:P3oool0oooo00<0oooo1@000?o_0?ooo`030000o`00o`00o`0001l0oooo00<000000?ooo`3oool0 +2@3oool00`000000oooo0?ooo`0X0?ooo`040?l00000o`00ObXZ0000om`0oooo00<0003o0?ooo`3o +ool06@3oool00`00o`00ObXZ0?l0001L0?ooo`00O03oool00`1o:RX0oooo0?ooo`040?ooo`D0003o +l03oool00`000?l00?l00?l0000N0?ooo`030000003oool0oooo00T0oooo1@00000U0?ooo`040?l0 +0000o`00ObXZ0000omh0oooo00<0003o0?ooo`3oool0603oool00`00o`00oooo0?l0001L0?ooo`00 +O03oool00`1o:RX0oooo0?ooo`040?ooo`D0003ol@3oool00`000?l00?l00?l0000E0?ooo`@00000 +103oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo02H0oooo00@0o`00003o001o:RX0 +003og`3oool00`000?l0oooo0?ooo`0H0?ooo`04003o003oool0ObXZ0?l005/0oooo001l0?ooo`03 +07lZ:P3oool0oooo00@0oooo00@00?l00000o`000?l0003ol`3oool00`000?l00?l00?l0000L0?oo +o`030000003oool0oooo00T0oooo00<000000?ooo`3oool09@3oool0103o00000?l007lZ:P000?oQ +0?ooo`030000o`3oool0oooo01P0oooo00<00?l007lZ:P3o0000F`3oool007/0oooo00<0ObXZ0?oo +o`3oool01@3oool01000o`00003o0?ooo`3o003d0?ooo`030000o`00o`00o`0001X0oooo0P00000; +0?ooo`030000003oool0oooo02@0oooo00@0o`00003o001o:RX0003oh`3oool00`000?l0oooo0?oo +o`0G0?ooo`03003o001o:RX0o`0005/0oooo001k0?ooo`0307lZ:P3oool0oooo00D0oooo00D00?l0 +0000o`3oool0oooo0?l0003d0?ooo`030000o`00o`00o`0002H0oooo00<000000?ooo`3oool08`3o +ool0103o00000?l00?ooo`000?oU0?ooo`030000o`3oool0oooo01H0oooo00<00?l007lZ:P3o0000 +F`3oool007/0oooo00<0ObXZ0?ooo`3oool01@3oool00`000?l0oooo0?ooo`020?ooo`030?l0003o +ool0oooo0?80oooo00<0003o003o003o00009@3oool00`000000oooo0?ooo`0S0?ooo`030?l0003o +ool0003o0>H0oooo00<0003o0?ooo`3oool05P3oool00`00o`00ObXZ0?l0001K0?ooo`00N`3oool0 +0`1o:RX0oooo0?ooo`040?ooo`03003o00000?l0oooo00@0oooo00<0o`000?ooo`3oool0lP3oool0 +0`000?l00?l00?l0000T0?ooo`030000003oool0oooo0280oooo00<0o`000?ooo`000?l0j03oool0 +0`000?l0oooo0?ooo`0E0?ooo`03003o003oool0o`0005/0oooo001k0?ooo`0307lZ:P3oool0oooo +00@0oooo00<00?l00000o`3oool01@3oool00`3o0000oooo0?ooo`3b0?ooo`030000o`00o`00o`00 +02<0oooo00<000000?ooo`3oool0803oool01000o`00o`000?ooo`000?oZ0?ooo`030000o`3oool0 +oooo01D0oooo00<00?l007lZ:P3o0000FP3oool007/0oooo00<0ObXZ0?ooo`3oool00`3oool00`00 +o`00oooo0000o`070?ooo`030?l0003oool0oooo0?80oooo00<0003o003o003o00008P3oool00`00 +0000oooo0?ooo`0O0?ooo`04003o003o0000oooo0000on/0oooo00<0003o0?ooo`3oool05@3oool0 +0`00o`00ObXZ0?l0001J0?ooo`00NP3oool00`1o:RX0oooo0?ooo`040?ooo`03003o00000?l0oooo +00P0oooo00<0o`000?ooo`3oool0lP3oool00`000?l00?l00?l0000Q0?ooo`@000007@3oool01000 +o`00o`000?ooo`000?o]0?ooo`030000o`3oool0oooo01@0oooo00<00?l007lZ:P3o0000FP3oool0 +07X0oooo00<0ObXZ0?ooo`3oool00`3oool00`00o`00oooo0000o`0:0?ooo`030?l0003oool0oooo +0?80oooo00<0003o003o003o0000803oool00`000000oooo0?ooo`0M0?ooo`04003o003o0000oooo +0000onl0oooo00<0003o0?ooo`3oool04`3oool00`00o`00ObXZ0?l0001J0?ooo`00NP3oool00`1o +:RX0oooo0?ooo`030?ooo`03003o003oool0003o00X0oooo00<0o`000?ooo`3oool0l`3oool00`00 +0?l00?l00?l0000O0?ooo`030000003oool0oooo01`0oooo00@00?l00?l0003oool0003ol@3oool0 +0`000?l0oooo0?ooo`0C0?ooo`03003o003o0000oooo05T0oooo001j0?ooo`0307lZ:P3oool0oooo +00<0oooo00<00?l00000o`3oool02`3oool00`3o0000oooo0?ooo`3c0?ooo`030000o`00o`00o`00 +01h0oooo00<000000?ooo`3oool06`3oool01000o`00o`000?ooo`000?ob0?ooo`030000o`3oool0 +oooo01<0oooo00<00?l00?l0003oool0F@3oool007X0oooo00<0ObXZ0?ooo`3oool00P3oool00`00 +o`00oooo0000o`0<0?ooo`030?l0003oool0oooo0?@0oooo00<0003o003o003o00007@3oool00`00 +0000oooo0?ooo`0J0?ooo`04003o003o0000ObXZ0000oo@0oooo00<0003o0?ooo`3oool04P3oool0 +0`00o`00o`000?ooo`1I0?ooo`00NP3oool00`1o:RX0oooo0?ooo`020?ooo`03003o003oool0003o +00d0oooo00<0o`000?ooo`3oool0m03oool00`000?l00?l00?l0000L0?ooo`030000003oool0oooo +01T0oooo00@00?l00?l0001o:RX0003omP3oool00`000?l0oooo0?ooo`0A0?ooo`03003o003o0000 +oooo05T0oooo001j0?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00000o`3oool03@3oool00`3o +0000oooo0?ooo`3e0?ooo`030000o`00o`00o`0001/0oooo00<000000?ooo`3oool0603oool01000 +o`00o`0007lZ:P000?oh0?ooo`030000o`3oool0oooo0100oooo00<00?l00?l0003oool0F@3oool0 +07T0oooo00<0ObXZ0?ooo`3oool00P3oool00`00o`00oooo0000o`0?0?ooo`030?l0003oool0oooo +0?@0oooo00<0ObXZ0000o`3o00006`3oool00`000000oooo0?ooo`0H0?ooo`030?l0001o:RX0003o +0?T0oooo00<0003o0?ooo`3oool04@3oool00`3o0000oooo0?ooo`1H0?ooo`00N@3oool00`1o:RX0 +oooo0?ooo`020?ooo`03003o003oool0003o00l0oooo00<0o`000?ooo`3oool0m@3oool00`1o:RX0 +003o0?l0000J0?ooo`030000003oool0oooo01L0oooo00<0o`000?ooo`000?l0n`3oool00`000?l0 +oooo0?ooo`0@0?ooo`03003o003o0000oooo05P0oooo001i0?ooo`0307lZ:P3oool0oooo0080oooo +00<00?l00?ooo`000?l03`3oool00`3o0000oooo0?ooo`3f0?ooo`0307lZ:P000?l0o`0001T0oooo +1000000E0?ooo`030?l0003oool0003o0?d0oooo00<0003o0?ooo`3oool03`3oool00`00o`00o`00 +0?ooo`1H0?ooo`00N@3oool01`1o:RX0oooo0?ooo`3oool00?l00?ooo`000?l0403oool00`3o0000 +oooo0?ooo`3g0?ooo`0307lZ:P000?l0o`0001P0oooo00<000000?ooo`3oool05@3oool00`3o0000 +oooo0000o`3n0?ooo`030000o`3oool0oooo00l0oooo00<00?l00?l0003oool0F03oool007T0oooo +00L0ObXZ0?ooo`3oool0oooo003o003oool0003o0100oooo00<0o`000?ooo`3oool0n03oool00`1o +:RX0003o0?l0000G0?ooo`030000003oool0oooo01@0oooo00<0o`000?ooo`000?l0o`3oool10?oo +o`030000o`3oool0oooo00h0oooo00<00?l00?l0003oool0F03oool007T0oooo00@0ObXZ0?ooo`3o +ool00?l00P3oool00`000?l0oooo0?ooo`0>0?ooo`030?l0003oool0oooo0?X0oooo00<0003o0?l0 +003o00005@3oool00`000000oooo0?ooo`0C0?ooo`030?l0003oool0003o0?l0oooo0`3oool00`00 +0?l0oooo0?ooo`0>0?ooo`030?l0003oool0oooo05L0oooo001h0?ooo`0707lZ:P3oool0oooo0?oo +o`00o`00oooo0000o`0@0?ooo`030?l0003oool0oooo0?`0oooo00<0003o003o003o0000503oool0 +0`000000oooo0?ooo`0B0?ooo`030?l0003oool0003o0?l0oooo1@3oool00`000?l0oooo0?ooo`0= +0?ooo`03003o003o0000oooo05L0oooo001h0?ooo`0407lZ:P3oool0oooo003o0080oooo00<0003o +0?ooo`3oool03P3oool00`3o0000oooo0?ooo`3m0?ooo`030000o`00o`00o`0001<0oooo00<00000 +0?ooo`3oool04@3oool00`3o0000oooo0000o`3o0?ooo`H0oooo00<0003o0?ooo`3oool03@3oool0 +0`00o`00o`000?ooo`1G0?ooo`00N03oool0101o:RX0oooo0?ooo`00o`020?ooo`030000o`3oool0 +oooo00d0oooo00<0o`000?ooo`3oool0o`3oool00`000?l0o`000?ooo`0B0?ooo`030000003oool0 +oooo0100oooo00<0o`000?ooo`000?l0o`3oool80?ooo`030000o`3oool0oooo00`0oooo00<00?l0 +0?l0003oool0E`3oool007P0oooo00H0ObXZ0?ooo`3oool00?l00?ooo`000?l@0?ooo`030?l0003o +ool0oooo0?l0oooo0@3oool00`000?l0o`000?ooo`0A0?ooo`030000003oool0oooo00l0oooo00<0 +o`00003o00000?l0o`3oool:0?ooo`030000o`3oool0oooo00/0oooo00<00?l00?l0003oool0E`3o +ool007P0oooo00H0ObXZ0?ooo`3oool00?l00?ooo`000?l?0?ooo`030?l0003oool0oooo0?l0oooo +0`3oool00`000?l0o`000?ooo`0@0?ooo`030000003oool0oooo00h0oooo00<0o`00003o00000?l0 +o`3oool<0?ooo`030000o`3oool0oooo00X0oooo00<00?l00?l0003oool0E`3oool007P0oooo00<0 +ObXZ0?ooo`00o`000P3oool00`000?l0oooo0?ooo`0=0?ooo`030?l0003oool0oooo0?l0oooo103o +ool00`000?l0o`000?ooo`0?0?ooo`@00000303oool00`3o00000?l00000o`3o0?ooo`d0oooo00<0 +003o0?ooo`3oool02P3oool00`00o`00o`000?ooo`1G0?ooo`00N03oool01@1o:RX0oooo003o003o +ool0003o00l0oooo00<0o`000?ooo`3oool0o`3oool60?ooo`030000o`3o0000oooo00h0oooo00<0 +00000?ooo`3oool03@3oool00`3o0000003o0?ooo`3o0?ooo`h0oooo00<0003o0?ooo`3oool02@3o +ool00`00o`00o`000?ooo`1G0?ooo`00503oool300000640oooo00D0ObXZ0?ooo`00o`00oooo0000 +o`0>0?ooo`030?l0003oool0oooo00h0oooo0`0000210?ooo`@00000L03oool00`000?l0oooo0?l0 +000>0?ooo`030000003oool0oooo00`0oooo00<0o`0007lZ:P000?l0LP3oool4000008@0oooo0`00 +000B0?ooo`030000o`3oool0oooo00P0oooo00<00?l00?l0003oool0E`3oool001@0oooo00@00000 +0?ooo`3oool00000H03oool01@1o:RX00?l00?ooo`3oool0003o00d0oooo00<0o`000?ooo`3oool0 +403oool00`000000oooo0?ooo`200?ooo`030000003oool0oooo0780oooo00<0003o003o003o0000 +3@3oool00`000000oooo0?ooo`0;0?ooo`030?l0003oool0003o07<0oooo00<000000?ooo`3oool0 +QP3oool00`000000oooo0?ooo`0A0?ooo`030000o`3oool0oooo00T0oooo00<0o`000?ooo`3oool0 +EP3oool001@0oooo00@000000?ooo`3oool00000H03oool01@1o:RX00?l00?ooo`3oool0003o00`0 +oooo00<0o`000?ooo`3oool03P3oool500000880oooo00<000000?ooo`3oool0LP3oool00`000?l0 +0?l00?l0000<0?ooo`030000003oool0oooo00X0oooo00<0o`000?ooo`000?l0M@3oool00`000000 +oooo0?ooo`220?ooo`D000004`3oool00`000?l0oooo0?ooo`080?ooo`030?l0003oool0oooo05H0 +oooo000>0?ooo`@000000P3oool300000640oooo00@0ObXZ003o003oool0003o303oool00`3o0000 +oooo0?ooo`090?ooo`@000000P3oool010000000oooo0?ooo`00001l0?ooo`@00000103oool00`00 +0000oooo0?ooo`1b0?ooo`030000o`00o`00o`0000/0oooo00<000000?ooo`3oool02@3oool00`3o +0000oooo0000o`1g0?ooo`030000003oool0oooo0840oooo00@000000?ooo`3oool000005@3oool0 +0`000?l0oooo0?ooo`070?ooo`030?l0003oool0oooo05H0oooo000E0?ooo`030000003oool0oooo +0600oooo00@0ObXZ003o003oool0003o2`3oool00`3o0000oooo0?ooo`0A0?ooo`030000003oool0 +00000880oooo00@000000?ooo`3oool00000M03oool00`000?l0o`000?ooo`0:0?ooo`030000003o +ool0oooo00P0oooo00<0o`0007lZ:P000?l0MP3oool010000000oooo0?ooo`0000230?ooo`030000 +003oool0000001H0oooo00<0003o0?ooo`3oool01P3oool00`3o0000oooo0?ooo`1F0?ooo`005@3o +ool300000600oooo00@00?l00?ooo`3oool0003o2P3oool00`3o0000oooo0?ooo`0C0?ooo`800000 +P`3oool2000007H0oooo00<0003o0?l0003oool02@3oool00`000000oooo0?ooo`070?ooo`030?l0 +0000o`00003o07P0oooo0P0000250?ooo`8000005P3oool00`000?l0oooo0?ooo`060?ooo`030?l0 +003oool0oooo05H0oooo001g0?ooo`0407lZ:P00o`00oooo0000o`T0oooo0P3o003o0?oooaD0oooo +00<0003o0?l0003oool0203oool00`000000oooo0?ooo`060?ooo`030?l00000o`00003o0?l0oooo +6P3oool00`000?l0oooo0?ooo`050?ooo`030?l0003oool0oooo05H0oooo001g0?ooo`0407lZ:P00 +o`00oooo0000o`P0oooo00<0o`000?ooo`3oool0o`3ooolF0?ooo`030000o`3o0000oooo00L0oooo +00<000000?ooo`3oool01@3oool00`3o00000?l00000o`3o0?oooa`0oooo00<0003o0?ooo`3oool0 +103oool00`3o0000oooo0?ooo`1F0?ooo`00M`3oool0101o:RX00?l00?ooo`000?l70?ooo`030?l0 +003oool0oooo0?l0oooo603oool00`000?l0o`000?ooo`060?ooo`@00000103oool00`3o0000003o +0?ooo`3o0?oooa`0oooo00<0003o0?ooo`3oool0103oool00`3o0000oooo0?ooo`1F0?ooo`00M`3o +ool00`1o:RX00?l00000o`070?ooo`030?l0003oool0oooo0?l0oooo6P3oool00`000?l0o`000?oo +o`050?ooo`030000003oool0oooo00@0oooo00<0o`000000o`3oool0o`3ooolN0?ooo`030000o`3o +ool0oooo00<0oooo00<0o`000?ooo`3oool0EP3oool007L0oooo00<0ObXZ003o00000?l01P3oool0 +0`3o0000oooo0?ooo`3o0?oooa`0oooo00<0003o07lZ:P3oool0103oool00`000000oooo0?ooo`03 +0?ooo`030?l000000?l0oooo0?l0oooo803oool00`000?l0oooo0?ooo`020?ooo`030?l0003oool0 +oooo05H0oooo001g0?ooo`0307lZ:P00o`00003o00@0oooo0P3o003o0?ooob00oooo00<0003o07lZ +:P3oool00`3oool00`000000oooo0?ooo`020?ooo`030?l000000?l0oooo0?l0oooo8P3oool01@00 +0?l0oooo0?ooo`3oool0o`0005P0oooo001g0?ooo`03003o003oool0003o00<0oooo00<0o`000?oo +o`3oool0o`3ooolQ0?ooo`030000o`3o0000oooo0080oooo00H000000?ooo`3oool0oooo0?l00000 +0?oo0?ooob@0oooo00D0003o0?ooo`3oool0oooo0?l0001H0?ooo`00M`3oool00`00o`00003o0?oo +o`020?ooo`030?l0003oool0oooo0?l0oooo8`3oool01@000?l0o`000?ooo`3oool000000080oooo +00<0o`000000o`3oool0o`3ooolU0?ooo`040000o`3oool0oooo0?l005P0oooo001g0?ooo`05003o +00000?l0oooo0?ooo`3o0000o`3ooolW0?ooo`070000o`3o0000oooo0000003oool00?l00000o`3o +0?ooobP0oooo00<0003o0?ooo`3o0000F03oool007H0oooo0`000?l20?l00?l0oooo:@3oool50000 +ool0oooo:P3oool30000ocD0oooo00<000000?ooo`3oool0203oool2000000030?ooo`0000000000 +0180oooo001e0?ooo`D0003oo`3ooolZ0?ooo`D0003oo`3ooolY0?ooo`D0003o=@3oool00`000000 +oooo0?ooo`080?ooo`030000003oool0000001<0oooo000C0?ooof8000001@000?oo000002X00000 +1@000?oo000002T000001@000?lP000001H0oooo0P0000090?ooo`030000003oool0oooo0180oooo +000C0?ooo`030000003oool0oooo01h0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?oo +o`0L0?ooo`D0003o7`3oool00`000000oooo0?ooo`0N0?ooo`030000003oool0oooo01l0oooo00<0 +00000?ooo`3oool07P3oool00`000000oooo0?ooo`0O0?ooo`030000003oool0oooo01h0oooo00<0 +00000?ooo`3oool07`3oool00`000000oooo0?ooo`0N0?ooo`030000003oool0oooo01d0oooo1@00 +0?lN0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07P3oool00`000000oooo0?oo +o`0O0?ooo`030000003oool0oooo01h0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?oo +o`0N0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool0703oool50000ocD0oooo00<0 +00000?ooo`3oool01`3oool2000000030?ooo`00000000000180oooo000C0?ooo`030000003oool0 +oooo01h0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0M0?ooo`<0003o00<0oooo +0?l0003oool07@3oool00`000000oooo0?ooo`0N0?ooo`030000003oool0oooo01l0oooo00<00000 +0?ooo`3oool07P3oool00`000000oooo0?ooo`0O0?ooo`030000003oool0oooo01h0oooo00<00000 +0?ooo`3oool07`3oool00`000000oooo0?ooo`0N0?ooo`030000003oool0oooo01d0oooo1@000?lN +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07P3oool00`000000oooo0?ooo`0O +0?ooo`030000003oool0oooo01h0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0N +0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07@3oool30000ocD0oooo00<00000 +0?ooo`3oool07`3oool001<0oooo00<000000?ooo`3oool07P3oool00`000000oooo0?ooo`0O0?oo +o`030000003oool0oooo01h0oooo00D00?l00000o`3oool0oooo0?l0000M0?ooo`030000003oool0 +oooo01h0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0N0?ooo`030000003oool0 +oooo01l0oooo00<000000?ooo`3oool07P3oool00`000000oooo0?ooo`0O0?ooo`030000003oool0 +oooo01h0oooo00<000000?ooo`3oool0703oool010000?l0oooo0?ooo`0000020?ooo`030000o`3o +ool0oooo01/0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0N0?ooo`030000003o +ool0oooo01l0oooo00<000000?ooo`3oool07P3oool00`000000oooo0?ooo`0O0?ooo`030000003o +ool0oooo01h0oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0L0?ooo`030000o`3o +ool0o`0005P0oooo000C0?ooo`030000003oool0oooo0640oooo00<00?l00000o`3oool00P3oool2 +0?l001/0oooo00<000000?ooo`3oool0P`3oool00`000000oooo0?ooo`1o0?ooo`050000o`3oool0 +oooo0?ooo`0000000P3oool00`3o0000003o0?ooo`200?ooo`030000003oool0oooo08<0oooo00<0 +00000?ooo`3oool06`3oool010000?l0oooo0?ooo`3o001H0?ooo`00M`3oool00`00o`00oooo0000 +o`040?ooo`030?l0003oool0oooo0?l0oooo803oool00`000?l0oooo0?ooo`020?ooo`060000003o +ool0oooo0?ooo`3o0000003oo`3ooolT0?ooo`050000o`3oool0oooo0?ooo`3o0000F03oool007L0 +oooo00<0ObXZ003o00000?l01@3oool20?l00?l0oooo7P3oool00`1o:RX0003o0?ooo`040?ooo`03 +0000003oool0oooo0080oooo00<0o`000000o`3oool0o`3ooolR0?ooo`050000o`3oool0oooo0?oo +o`3o0000F03oool007L0oooo00<0ObXZ003o00000?l01`3oool00`3o0000oooo0?ooo`3o0?oooaX0 +oooo00<0ObXZ0000o`3oool01@3oool00`000000oooo0?ooo`030?ooo`030?l000000?l0oooo0?l0 +oooo803oool00`000?l0oooo0?ooo`020?ooo`030?l0003oool0oooo05H0oooo001g0?ooo`0307lZ +:P00o`00003o00P0oooo00<0o`000?ooo`3oool0o`3ooolH0?ooo`0307lZ:P000?l0o`0000H0oooo +00<000000?ooo`3oool0103oool00`3o0000003o0?ooo`3o0?oooah0oooo00<0003o0?ooo`3oool0 +0`3oool00`3o0000oooo0?ooo`1F0?ooo`00M`3oool0101o:RX00?l00?ooo`000?l80?ooo`030?l0 +003oool0oooo0?l0oooo5P3oool00`1o:RX0003o0?l000070?ooo`@00000103oool00`3o0000003o +0?ooo`3o0?oooa`0oooo00<0003o0?ooo`3oool0103oool00`3o0000oooo0?ooo`1F0?ooo`00M`3o +ool0101o:RX00?l00?ooo`000?l90?ooo`80o`00o`3ooolF0?ooo`030000o`3o0000oooo00L0oooo +00<000000?ooo`3oool01@3oool00`3o00000?l00000o`3o0?oooa`0oooo00<0003o0?ooo`3oool0 +103oool00`3o0000oooo0?ooo`1F0?ooo`00M`3oool0101o:RX00?l00?ooo`000?l;0?ooo`030?l0 +003oool0oooo0?l0oooo4P3oool00`000?l0o`000?ooo`080?ooo`030000003oool0oooo00H0oooo +00<0o`00003o00000?l0o`3ooolJ0?ooo`030000o`3oool0oooo00D0oooo00<0o`000?ooo`3oool0 +EP3oool007P0oooo00@00?l00?ooo`3oool0003o2`3oool00`3o0000oooo0?ooo`3o0?oooa00oooo +00<0003o0?l0003oool02@3oool00`000000oooo0?ooo`070?ooo`030?l00000o`00003o0?l0oooo +603oool00`000?l0oooo0?ooo`060?ooo`030?l0003oool0oooo05H0oooo001h0?ooo`0407lZ:P00 +o`00oooo0000o``0oooo00<0o`000?ooo`3oool0o`3oool>0?ooo`030000o`3o0000oooo00X0oooo +00<000000?ooo`3oool0203oool00`3o0000ObXZ0000o`3o0?oooaL0oooo00<0003o0?ooo`3oool0 +1P3oool00`3o0000oooo0?ooo`1F0?ooo`00N03oool0101o:RX00?l00?ooo`000?l=0?ooo`030?l0 +003oool0oooo0?l0oooo303oool00`000?l00?l00?l0000;0?ooo`030000003oool0oooo00T0oooo +00<0o`0007lZ:P000?l0o`3ooolE0?ooo`030000o`3oool0oooo00L0oooo00<0o`000?ooo`3oool0 +EP3oool007P0oooo00D0ObXZ003o003oool0oooo0000o`0=0?ooo`030?l0003oool0oooo0?l0oooo +2P3oool00`000?l00?l00?l0000<0?ooo`030000003oool0oooo00X0oooo00<0o`0007lZ:P000?l0 +o`3ooolC0?ooo`030000o`3oool0oooo00P0oooo00<0o`000?ooo`3oool0EP3oool007P0oooo00D0 +ObXZ0?ooo`00o`00oooo0000o`0>0?ooo`030?l0003oool0oooo0?l0oooo203oool00`000?l0o`00 +0?l0000=0?ooo`030000003oool0oooo00/0oooo00<0o`0007lZ:P000?l0o`3ooolA0?ooo`030000 +o`3oool0oooo00T0oooo00<0o`000?ooo`3oool0EP3oool007P0oooo00D0ObXZ0?ooo`00o`00oooo +0000o`0?0?ooo`030?l0003oool0oooo0?l0oooo1P3oool00`000?l0o`00003o000>0?ooo`030000 +003oool0oooo00`0oooo00<0o`000?ooo`000?l0o`3oool@0?ooo`030000o`3oool0oooo00P0oooo +00<00?l00?l0003oool0E`3oool007P0oooo00D0ObXZ0?ooo`00o`00oooo0000o`0@0?ooo`030?l0 +003oool0oooo0?l0oooo103oool00`1o:RX0003o003o000?0?ooo`@00000303oool00`3o0000003o +07lZ:P3o0?ooo`h0oooo00<0003o0?ooo`3oool02@3oool00`00o`00o`000?ooo`1G0?ooo`00N03o +ool00`1o:RX0oooo003o00020?ooo`030000o`3oool0oooo00d0oooo00<0o`000?ooo`3oool0o`3o +ool30?ooo`0307lZ:P000?l00?l00100oooo00<000000?ooo`3oool03P3oool00`3o0000003o07lZ +:P3o0?ooo``0oooo00<0003o0?ooo`3oool02P3oool00`00o`00o`000?ooo`1G0?ooo`00N03oool0 +1P1o:RX0oooo0?ooo`00o`00oooo0000oa00oooo00<0o`000?ooo`3oool0o`3oool10?ooo`0307lZ +:P000?l0oooo0140oooo00<000000?ooo`3oool03`3oool00`3o0000003o07lZ:P3o0?ooo`/0oooo +00<0003o0?ooo`3oool02P3oool00`00o`00o`000?ooo`1G0?ooo`00N03oool01P1o:RX0oooo0?oo +o`00o`00oooo0000oa00oooo00<0o`000?ooo`3oool0o`3oool00`1o:RX0003o0?ooo`0B0?ooo`03 +0000003oool0oooo0100oooo00<0o`000000o`1o:RX0o`3oool90?ooo`030000o`3oool0oooo00/0 +oooo00<00?l00?l0003oool0E`3oool007P0oooo00L0ObXZ0?ooo`3oool0oooo003o003oool0003o +0100oooo00<0o`000?ooo`3oool0o@3oool00`1o:RX0003o0?l0000C0?ooo`030000003oool0oooo +0140oooo00<0o`000000o`3oool0o`3oool70?ooo`030000o`3oool0oooo00`0oooo00<00?l00?l0 +003oool0E`3oool007P0oooo00L0ObXZ0?ooo`3oool0oooo003o003oool0003o0100oooo00<0o`00 +0?ooo`3oool0o@3oool00`000?l0o`000?ooo`0C0?ooo`030000003oool0oooo0180oooo00<0o`00 +0000o`3oool0o`3oool50?ooo`030000o`3oool0oooo00d0oooo00<00?l00?l0003oool0E`3oool0 +07P0oooo00<0ObXZ0?ooo`3oool00P3oool00`00o`00003o0?ooo`0?0?ooo`030?l0003oool0oooo +0?`0oooo00<0003o0?l0003oool0503oool00`000000oooo0?ooo`0C0?ooo`030?l000000?l0oooo +0?l0oooo103oool00`000?l0oooo0?ooo`0=0?ooo`030?l0003oool0oooo05L0oooo001i0?ooo`07 +07lZ:P3oool0oooo0?ooo`00o`00oooo0000o`0@0?ooo`030?l0003oool0oooo0?X0oooo00<0003o +0?l0003oool05@3oool00`000000oooo0?ooo`0D0?ooo`030?l000000?l0oooo0?l0oooo0P3oool0 +0`000?l0oooo0?ooo`0>0?ooo`030?l0003oool0oooo05L0oooo001i0?ooo`0707lZ:P3oool0oooo +0?ooo`00o`00oooo0000o`0@0?ooo`030?l0003oool0oooo0?T0oooo00<0003o0?l0003oool05P3o +ool00`000000oooo0?ooo`0E0?ooo`030?l000000?l0oooo0?l0oooo00<0003o0?ooo`3oool03P3o +ool00`00o`00o`000?ooo`1H0?ooo`00N@3oool00`1o:RX0oooo0?ooo`020?ooo`03003o00000?l0 +oooo00l0oooo00<0o`000?ooo`3oool0n03oool00`000?l0o`000?ooo`0G0?ooo`@00000503oool0 +0`3o00000?l00000o`3n0?ooo`030000o`3oool0oooo00l0oooo00<00?l00?l0003oool0F03oool0 +07T0oooo00<0ObXZ0?ooo`3oool00P3oool00`00o`00oooo0000o`0?0?ooo`030?l0003oool0oooo +0?L0oooo00<0003o0?l0003oool0603oool00`000000oooo0?ooo`0F0?ooo`030?l00000o`00003o +0?d0oooo00<0003o0?ooo`3oool03`3oool00`00o`00o`000?ooo`1H0?ooo`00N@3oool00`1o:RX0 +oooo0?ooo`020?ooo`03003o003oool0003o00l0oooo00<0o`000?ooo`3oool0m@3oool00`1o:RX0 +003o0?l0000J0?ooo`030000003oool0oooo01L0oooo00<0o`00003o00000?l0n`3oool00`000?l0 +oooo0?ooo`0@0?ooo`03003o003o0000oooo05P0oooo001i0?ooo`0307lZ:P3oool0oooo00<0oooo +00<00?l00000o`3oool03P3oool00`3o0000oooo0?ooo`3d0?ooo`0307lZ:P000?l0o`0001/0oooo +00<000000?ooo`3oool0603oool00`3o0000oooo0000o`3i0?ooo`030000o`3oool0oooo0140oooo +00<0o`000?ooo`3oool0F03oool007X0oooo00<0ObXZ0?ooo`3oool00P3oool00`00o`00003o0?oo +o`0=0?ooo`030?l0003oool0oooo0?@0oooo00@0ObXZ0000o`00o`00o`006`3oool00`000000oooo +0?ooo`0I0?ooo`030?l0003oool0003o0?P0oooo00<0003o0?ooo`3oool0403oool00`00o`00o`00 +0?ooo`1I0?ooo`00NP3oool00`1o:RX0oooo0?ooo`020?ooo`03003o003oool0003o00d0oooo00<0 +o`000?ooo`3oool0l`3oool0101o:RX0003o003o003o000L0?ooo`030000003oool0oooo01X0oooo +00<0o`000?ooo`000?l0mP3oool00`000?l0oooo0?ooo`0A0?ooo`03003o003o0000oooo05T0oooo +001j0?ooo`0307lZ:P3oool0oooo00<0oooo00<00?l00000o`3oool02`3oool00`3o0000oooo0?oo +o`3c0?ooo`0407lZ:P000?l00?l00?l001d0oooo00<000000?ooo`3oool06`3oool00`3o0000oooo +0000o`3d0?ooo`030000o`3oool0oooo0180oooo00<00?l00?l0003oool0F@3oool007X0oooo00<0 +ObXZ0?ooo`3oool00`3oool00`00o`00003o0?ooo`0;0?ooo`030?l0003oool0oooo0?80oooo00@0 +ObXZ0000o`00o`00o`007P3oool00`000000oooo0?ooo`0L0?ooo`030?l0003oool0003o0?80oooo +00<0003o0?ooo`3oool04`3oool00`00o`00o`000?ooo`1I0?ooo`00NP3oool00`1o:RX0oooo0?oo +o`040?ooo`03003o00000?l0oooo00T0oooo00<0o`000?ooo`3oool0lP3oool0101o:RX0003o003o +003o000O0?ooo`030000003oool0oooo01d0oooo00<0o`000?ooo`000?l0l@3oool00`000?l0oooo +0?ooo`0B0?ooo`03003o001o:RX0o`0005X0oooo001j0?ooo`0307lZ:P3oool0oooo00@0oooo00<0 +0?l00000o`3oool0203oool00`3o0000oooo0?ooo`3c0?ooo`030000o`00o`00o`000200oooo00<0 +00000?ooo`3oool07P3oool00`3o0000oooo0000o`3_0?ooo`030000o`3oool0oooo01<0oooo00<0 +0?l007lZ:P3o0000FP3oool007/0oooo00<0ObXZ0?ooo`3oool0103oool00`000?l0oooo0?ooo`06 +0?ooo`030?l0003oool0oooo0?<0oooo00<0003o003o003o00008@3oool4000001h0oooo00<0o`00 +0?ooo`000?l0k@3oool00`000?l0oooo0?ooo`0D0?ooo`03003o001o:RX0o`0005X0oooo001k0?oo +o`0307lZ:P3oool0oooo00@0oooo00<00?l00000o`3oool01P3oool00`3o0000oooo0?ooo`3b0?oo +o`030000o`00o`00o`000280oooo00<000000?ooo`3oool0803oool00`3o0000oooo0000o`3[0?oo +o`030000o`3oool0oooo01D0oooo00<00?l007lZ:P3o0000FP3oool007/0oooo00<0ObXZ0?ooo`3o +ool0103oool00`00o`00003o0?ooo`050?ooo`030?l0003oool0oooo0?80oooo00<0003o003o003o +00008`3oool00`000000oooo0?ooo`0Q0?ooo`030?l0003oool0003o0>X0oooo00<0003o0?ooo`3o +ool05@3oool00`00o`00ObXZ0?l0001J0?ooo`00N`3oool00`1o:RX0oooo0?ooo`040?ooo`03003o +00000?l0oooo00@0oooo00<0o`000?ooo`3oool0lP3oool00`000?l00?l00?l0000T0?ooo`030000 +003oool0oooo0280oooo00<0o`000?ooo`000?l0j03oool00`000?l0oooo0?ooo`0E0?ooo`03003o +001o:RX0o`0005/0oooo001k0?ooo`0307lZ:P3oool0oooo00D0oooo00<0003o0?ooo`3oool00P3o +ool00`3o0000oooo0?ooo`3b0?ooo`030000o`00o`00o`0002D0oooo00<000000?ooo`3oool08`3o +ool00`3o0000oooo0000o`3V0?ooo`030000o`3oool0oooo01H0oooo00<00?l007lZ:P3o0000F`3o +ool007/0oooo00<0ObXZ0?ooo`3oool01@3oool01@00o`00003o0?ooo`3oool0o`000?@0oooo00<0 +003o003o003o00009P3oool00`000000oooo0?ooo`0S0?ooo`040?l00000o`00oooo0000onD0oooo +00<0003o0?ooo`3oool05P3oool00`00o`00ObXZ0?l0001K0?ooo`00N`3oool00`1o:RX0oooo0?oo +o`050?ooo`04003o00000?l0oooo0?l00?@0oooo00<0003o003o003o00009`3oool00`000000oooo +0?ooo`0T0?ooo`040?l00000o`00oooo0000on<0oooo00<0003o0?ooo`3oool05`3oool00`00o`00 +ObXZ0?l0001K0?ooo`00O03oool00`1o:RX0oooo0?ooo`050?ooo`<0003ol`3oool00`000?l00?l0 +0?l0000J0?ooo`D000002@3oool00`000000oooo0?ooo`0U0?ooo`040?l00000o`00oooo0000on40 +oooo00<0003o0?ooo`3oool0603oool00`00o`00ObXZ0?l0001K0?ooo`00O03oool00`1o:RX0oooo +0?ooo`040?ooo`D0003ol@3oool00`000?l00?l00?l0000M0?ooo`030000003oool0oooo00T0oooo +00<000000?ooo`3oool09P3oool0103o00000?l007lZ:P000?oO0?ooo`030000o`3oool0oooo01P0 +oooo00<00?l00?ooo`3o0000G03oool007`0oooo00<0ObXZ0?ooo`3oool0103oool50000oo00oooo +00<0003o003o003o00007P3oool00`000000oooo0?ooo`090?ooo`D000009@3oool0103o00000?l0 +07lZ:P000?oN0?ooo`030000o`3oool0oooo01P0oooo00<00?l00?ooo`3o0000G03oool007d0oooo +00<0ObXZ0?ooo`3oool00`3oool50000onl0oooo00<0003o003o003o00007`3oool00`000000oooo +0?ooo`090?ooo`030000003oool0oooo02P0oooo00@0o`00003o001o:RX0003og03oool00`000?l0 +oooo0?ooo`0I0?ooo`03003o001o:RX0o`0005`0oooo001m0?ooo`0307lZ:P3oool0oooo00<0oooo +00@0o`000000o`000?l0003ok`3oool00`000?l00?l00?l0000P0?ooo`030000003oool0oooo00T0 +oooo00<000000?ooo`3oool0:@3oool20?l0000307lZ:P000?l0oooo0=T0oooo00<0003o0?ooo`3o +ool06P3oool00`00o`00ObXZ0?l0001L0?ooo`00O@3oool00`1o:RX0oooo0?ooo`030?ooo`040?l0 +003oool00?l00000onh0oooo00<0003o003o003o0000803oool2000000/0oooo00<000000?ooo`3o +ool0:`3oool00`3o0000ObXZ0000o`3H0?ooo`030000o`3oool0oooo01X0oooo00@00?l00?ooo`1o +:RX0o`00G03oool007d0oooo00<0ObXZ0?ooo`3oool00`3oool0103o0000oooo003o00000?o]0?oo +o`030000o`00o`00o`0002h0oooo00<000000?ooo`3oool0;03oool00`3o0000ObXZ0000o`3G0?oo +o`030000o`3oool0oooo01X0oooo00<00?l007lZ:P3o0000G@3oool007d0oooo00<0ObXZ0?ooo`3o +ool00`3oool01@3o0000oooo0?ooo`00o`00003o0>/0oooo00<0003o003o003o0000;`3oool00`00 +0000oooo0?ooo`0]0?ooo`030?l0001o:RX0003o0=D0oooo00<0003o0?ooo`3oool06`3oool00`00 +o`00ObXZ0?l0001M0?ooo`00O@3oool00`1o:RX0oooo0?ooo`030?ooo`050?l0003oool0oooo003o +00000?l0jP3oool00`1o:RX0003o0?l0000`0?ooo`030000003oool0oooo02h0oooo00<0o`000000 +o`3oool0d`3oool00`000?l0oooo0?ooo`0K0?ooo`04003o003oool0ObXZ0?l005d0oooo001n0?oo +o`0507lZ:P3oool0oooo0?ooo`3o00000`3oool00`00o`00oooo0000o`3X0?ooo`0307lZ:P000?l0 +o`000340oooo00<000000?ooo`3oool0;`3oool00`3o0000003o0?ooo`3B0?ooo`030000o`3oool0 +oooo01/0oooo00@00?l007lZ:P3oool0o`00G@3oool007h0oooo00D0ObXZ0?ooo`3oool0oooo0?l0 +00030?ooo`03003o003oool0003o0>L0oooo00<0ObXZ0000o`3o00000?ooo`030000 +o`3oool0oooo01`0oooo00@00?l00?ooo`1o:RX0o`00GP3oool007l0oooo00@0ObXZ0?ooo`3oool0 +o`00103oool00`00o`00oooo0000o`3T0?ooo`0307lZ:P000?l0o`0003@0oooo00<000000?ooo`3o +ool003oool00`3o0000003o0?ooo`320?ooo`030000o`3oool0oooo01l0oooo00@00?l00?ooo`1o:RX0 +o`00H03oool00840oooo00<0ObXZ0?l0003oool01@3oool00`00o`00oooo0000o`3L0?ooo`030000 +o`3oool0oooo03X0oooo00<000000?ooo`3oool0>@3oool00`3o0000003o0?ooo`300?ooo`030000 +o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0ObXZ0?l0001P0?ooo`00P@3oool00`1o:RX0o`00 +0?ooo`050?ooo`04003o003oool0oooo0000omT0oooo00<00?l00000o`3oool0?03oool4000003T0 +oooo00<0o`000000o`3oool0_`3oool00`000?l0oooo0?ooo`0O0?ooo`05003o003oool0ObXZ0?oo +o`3o0000H03oool00880oooo00<0o`000?ooo`3oool0103oool01000o`00oooo0?ooo`000?oH0?oo +o`03003o00000?l0o`0003d0oooo00<000000?ooo`3oool0>`3oool00`3o0000003o0?ooo`2m0?oo +o`030000o`3oool0oooo01l0oooo00D00?l00?ooo`3oool0ObXZ0?l0001Q0?ooo`00PP3oool00`1o +:RX0o`000?ooo`050?ooo`03003o003oool0003o0=L0oooo00<00?l00000o`3o0000?P3oool00`00 +0000oooo0?ooo`0l0?ooo`030?l000000?l0oooo0;/0oooo00<0003o0?ooo`3oool0803oool01@00 +o`00oooo0?ooo`1o:RX0o`000640oooo00230?ooo`030?l0003oool0oooo00@0oooo00@00?l00?oo +o`3oool0003od`3oool40000o`030?l0003oool0oooo03d0oooo00<000000?ooo`3oool0?@3oool0 +0`3o0000003o0000o`020000okL0oooo00<0003o0?ooo`3oool0803oool01P00o`00oooo0?ooo`1o +:RX0oooo0?l00640oooo00230?ooo`030?l0003oool0oooo00@0oooo00@00?l00?ooo`3oool0003o +dP3oool50000od00oooo00<000000?ooo`3oool0?P3oool50000okH0oooo00<0003o0?ooo`3oool0 +803oool01P00o`00oooo0?ooo`1o:RX0oooo0?l00640oooo00230?ooo`0307lZ:P3o0000oooo00D0 +oooo00<00?l00?ooo`000?l0dP3oool50000od00oooo00<000000?ooo`3oool0?P3oool50000okD0 +oooo00<0003o0?ooo`3oool08@3oool01@00o`00oooo07lZ:P3oool0o`000680oooo00240?ooo`03 +0?l0003oool0oooo00@0oooo00@00?l00?ooo`3oool0003od@3oool50000od00oooo00<000000?oo +o`3oool0?P3oool50000ok@0oooo00<0003o0?ooo`3oool08@3oool01P00o`00oooo0?ooo`1o:RX0 +oooo0?l00680oooo00240?ooo`030?l0003oool0oooo00@0oooo00@00?l00?ooo`3oool0003oc`3o +ool20000o`040?l000000?l0003o0000od40oooo00<000000?ooo`3oool0?`3oool30000o`030?l0 +00000?l0003o0;80oooo00<0003o0?ooo`3oool08@3oool01@00o`00oooo07lZ:P3oool0o`0006<0 +oooo00240?ooo`0307lZ:P3o0000oooo00@0oooo00@00?l00?ooo`3oool0003oc@3oool20000o`03 +0?ooo`3o0000oooo04@0oooo00<000000?ooo`3oool0@P3oool00`1o:RX0o`000?ooo`020000ojl0 +oooo00<0003o0?ooo`3oool08P3oool01@00o`00oooo07lZ:P3oool0o`0006<0oooo00250?ooo`03 +0?l0003oool0oooo00@0oooo00@00?l00?ooo`3oool0003obP3oool20000o`80oooo00<0o`000?oo +o`3oool0A03oool00`000000oooo0?ooo`130?ooo`0407lZ:P3o0000oooo0?ooo`80003o[03oool0 +0`000?l0oooo0?ooo`0R0?ooo`03003o003oool0ObXZ0080oooo00<0o`000?ooo`3oool0H@3oool0 +08D0oooo00<0ObXZ0?l0003oool0103oool01000o`00oooo0?ooo`000?o80?ooo`80003o0P3oool2 +0?l004L0oooo100000130?ooo`0307lZ:P3o0000oooo0080oooo0P000?nY0?ooo`030000o`3oool0 +oooo02<0oooo00D00?l00?ooo`1o:RX0oooo0?l0001T0?ooo`00Q@3oool00`1o:RX0o`000?ooo`04 +0?ooo`05003o003oool0oooo0?ooo`000?l0a@3oool20000o`<0oooo00<0o`0007lZ:P3oool0A`3o +ool00`000000oooo0?ooo`150?ooo`0307lZ:P3o0000oooo00<0oooo0P000?nW0?ooo`030000o`3o +ool0oooo0280oooo00H00?l00?ooo`3oool0ObXZ0?ooo`3o001T0?ooo`00QP3oool00`1o:RX0o`00 +0?ooo`040?ooo`04003o003oool0oooo0000ol<0oooo0P000?l40?ooo`030?l0001o:RX0oooo04P0 +oooo00<000000?ooo`3oool0AP3oool00`1o:RX0o`000?l000040?ooo`80003oY03oool00`000?l0 +oooo0?ooo`0S0?ooo`03003o003oool0ObXZ0080oooo00<0o`000?ooo`3oool0HP3oool008H0oooo +00<0ObXZ0?l0003oool0103oool01000o`00oooo0?ooo`000?o10?ooo`80003o103oool20?l00003 +07lZ:P3oool0oooo04P0oooo00<000000?ooo`3oool0A`3oool00`1o:RX0oooo0?l000050?ooo`80 +003oX@3oool00`000?l0oooo0?ooo`0S0?ooo`06003o003oool0oooo07lZ:P3oool0o`00I@3oool0 +08L0oooo00<0ObXZ0?l0003oool00`3oool01@00o`00oooo0?ooo`3oool0003o0;h0oooo0P000?l5 +0?ooo`030?l00000o`00ObXZ04/0oooo00<000000?ooo`3oool0B03oool00`1o:RX0oooo0?l00006 +0?ooo`80003oWP3oool00`000?l0oooo0?ooo`0S0?ooo`04003o003oool0oooo07lZ:P80oooo00<0 +o`000?ooo`3oool0H`3oool008P0oooo00<0o`000?ooo`3oool00P3oool01@00o`00oooo0?ooo`3o +ool0003o0;`0oooo0P000?l60?ooo`030?l00000o`00ObXZ04`0oooo00<000000?ooo`3oool0B@3o +ool207lZ:P80o`001P3oool20000oi`0oooo00<0003o0?ooo`3oool08`3oool01P00o`00oooo0?oo +o`1o:RX0oooo0?l006H0oooo00280?ooo`0307lZ:P3o0000oooo00<0oooo00@00?l00?ooo`3oool0 +003o^P3oool20000o`L0oooo00<0o`00003o001o:RX0C@3oool00`000000oooo0?ooo`1;0?ooo`03 +07lZ:P3oool0o`0000L0oooo0P000?nI0?ooo`030000o`3oool0oooo02<0oooo00L00?l00?ooo`3o +ool0oooo07lZ:P3oool0o`0006H0oooo00290?ooo`030?l0003oool0oooo0080oooo00D00?l00?oo +o`3oool0oooo0000o`2g0?ooo`80003o203oool00`3o00000?l007lZ:P1>0?ooo`030000003oool0 +oooo04`0oooo00<0ObXZ0?ooo`3o0000203oool20000oiH0oooo00<0003o0?ooo`3oool08`3oool0 +1@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0I03oool008T0oooo00<0ObXZ +0?l0003oool00P3oool01@00o`00oooo0?ooo`3oool0003o0;D0oooo0P000?l90?ooo`030?l00000 +o`00ObXZ04l0oooo00<000000?ooo`3oool0C@3oool0101o:RX0oooo0?l00000o`080?ooo`80003o +U03oool00`000?l0oooo0?ooo`0S0?ooo`07003o003oool0oooo0?ooo`1o:RX0oooo0?l0001W0?oo +o`00R@3oool00`1o:RX0o`000?ooo`030?ooo`04003o003oool0oooo0000ok<0oooo0P000?l:0?oo +o`030?l00000o`00ObXZ0500oooo1000001=0?ooo`0407lZ:P3oool0o`00003o00T0oooo0P000?nA +0?ooo`030000o`3oool0oooo02<0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003o +ool0oooo06D0oooo002:0?ooo`0307lZ:P3o0000oooo0080oooo00D00?l00?ooo`3oool0oooo0000 +o`2`0?ooo`80003o2`3oool00`3o00000?l007lZ:P1A0?ooo`030000003oool0oooo04l0oooo0P1o +:RX00`3o00000?l00?ooo`090?ooo`80003oSP3oool00`000?l0oooo0?ooo`0T0?ooo`07003o003o +ool0oooo0?ooo`1o:RX0oooo0?l0001X0?ooo`00RP3oool00`1o:RX0o`000?ooo`020?ooo`05003o +003oool0oooo0?ooo`000?l0[P3oool20000o``0oooo00@0o`000?ooo`3oool0ObXZD@3oool00`00 +0000oooo0?ooo`1A0?ooo`0407lZ:P3o0000o`00003o00X0oooo0P000?n;0?ooo`030000o`3oool0 +oooo02@0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo06H0oooo002; +0?ooo`0307lZ:P3o0000oooo0080oooo00D00?l00?ooo`3oool0oooo0000o`2/0?ooo`030000o`3o +ool0oooo00/0oooo00@0o`000?ooo`3oool0ObXZDP3oool00`000000oooo0?ooo`1C0?ooo`0307lZ +:P3o00000?l000/0oooo00<0003o0?ooo`3oool0R03oool00`000?l0oooo0?ooo`0T0?ooo`04003o +003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0I`3oool008`0oooo00D0ObXZ0?l0003oool0 +oooo003o00030?ooo`030000o`3oool0oooo0:P0oooo0P000?l<0?ooo`80o`0000<0oooo07lZ:P1o +:RX0D`3oool00`000000oooo0?ooo`1D0?ooo`0307lZ:P3o00000?l000/0oooo0P000?n70?ooo`03 +0000o`3oool0oooo02@0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo +06L0oooo002<0?ooo`0307lZ:P3oool0o`000080oooo00@00?l00?ooo`3oool0003oZ03oool20000 +o`d0oooo00@0o`00003o003oool0ObXZE@3oool00`000000oooo0?ooo`1E0?ooo`0407lZ:P3o0000 +o`00003o00/0oooo0P000?n40?ooo`030000o`3oool0oooo02D0oooo00L00?l00?ooo`3oool0oooo +07lZ:P3oool0o`0006X0oooo002=0?ooo`0507lZ:P3oool0o`000?ooo`00o`000`3oool00`000?l0 +oooo0?ooo`2S0?ooo`80003o3P3oool0103o00000?l007lZ:P1o:RYF0?ooo`030000003oool0oooo +05H0oooo0P1o:RX00`3o00000?l00?ooo`0;0?ooo`80003oPP3oool00`000?l0oooo0?ooo`0T0?oo +o`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1X0?ooo`00S@3oool01P1o +:RX0oooo0?ooo`3o0000oooo003o0080oooo00<0003o0?ooo`3oool0X@3oool20000o`h0oooo0P3o +00000`00o`00ObXZ0?ooo`190?ooo`@000002P3oool00`000000oooo0?ooo`1H0?ooo`0307lZ:P3o +00000?l000d0oooo0P000?mo0?ooo`030000o`3oool0oooo02D0oooo00L00?l00?ooo`3oool0oooo +07lZ:P3oool0o`0006/0oooo002>0?ooo`0507lZ:P3oool0o`000?ooo`00o`000P3oool00`000?l0 +oooo0?ooo`2O0?ooo`80003o3`3oool0103o0000oooo003o001o:RY;0?ooo`030000003oool0oooo +00/0oooo00<000000?ooo`3oool0F@3oool0101o:RX0o`000?l00000o`0=0?ooo`80003oO03oool0 +0`000?l0oooo0?ooo`0U0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?oo +o`1Y0?ooo`00S`3oool01@1o:RX0oooo0?l0003oool00?l00080oooo00<0003o0?ooo`3oool0W03o +ool20000oa00oooo00<0o`000?ooo`00o`00CP3oool00`000000oooo0?ooo`0:0?ooo`D00000F03o +ool0101o:RX0oooo0?l00000o`0>0?ooo`80003oN@3oool00`000?l0oooo0?ooo`0V0?ooo`04003o +003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0JP3oool008l0oooo00D0ObXZ0?ooo`3oool0 +o`00003o00020?ooo`030000o`3oool0oooo09X0oooo0P000?l@0?ooo`80o`0000<0ObXZ003o003o +ool0C`3oool00`000000oooo0?ooo`090?ooo`030000003oool0oooo05/0oooo00@0ObXZ0?ooo`3o +00000?l03`3oool20000ogL0oooo00<0003o0?ooo`3oool09@3oool01000o`00oooo0?ooo`1o:RX3 +0?ooo`030?l0003oool0oooo06X0oooo002@0?ooo`0707lZ:P3oool0oooo0?l00000o`00oooo0000 +o`2J0?ooo`80003o4@3oool0103o0000oooo003o0000o`1?0?ooo`040000003oool0oooo000000X0 +oooo00<000000?ooo`3oool0G03oool207lZ:P80o`00403oool20000og@0oooo00<0003o0?ooo`3o +ool09@3oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0J`3oool00940 +oooo00@0ObXZ0?ooo`3o00000?l00P3oool00`000?l0oooo0?ooo`2E0?ooo`80003o4P3oool00`3o +0000ObXZ003o001B0?ooo`8000002`3oool00`000000oooo0?ooo`1N0?ooo`0307lZ:P3oool0o`00 +0140oooo0P000?ma0?ooo`030000o`3oool0oooo02D0oooo00D00?l00?ooo`3oool0oooo07lZ:P03 +0?ooo`030?l0003oool0oooo06/0oooo002A0?ooo`0707lZ:P3oool0oooo0?l00000o`00oooo0000 +o`2E0?ooo`80003o4P3oool20?l0000307lZ:P00o`00oooo05l0oooo00<000000?ooo`3oool0G`3o +ool0101o:RX0oooo0?l0003o000A0?ooo`80003oKP3oool00`000?l0oooo0?ooo`0U0?ooo`03003o +003oool0oooo0080oooo00@0ObXZ0?ooo`3oool0o`00KP3oool00980oooo00@0ObXZ0?ooo`3oool0 +o`000P3oool00`000?l0oooo0?ooo`2@0?ooo`80003o4`3oool0103o0000ObXZ003o0000o`1Q0?oo +o`030000003oool0oooo0600oooo00<0ObXZ0?ooo`00o`000P3o000A0?ooo`80003oK03oool00`00 +0?l0oooo0?ooo`0U0?ooo`05003o003oool0oooo0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1/ +0?ooo`00TP3oool01`1o:RX0oooo0?ooo`3oool0o`000?ooo`000?l0T03oool20000oa@0oooo00<0 +o`0007lZ:P00o`00H`3oool00`000000oooo0?ooo`1Q0?ooo`0507lZ:P3oool0oooo003o003o0000 +4P3oool20000ofT0oooo00<0003o0?ooo`3oool09@3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0 +oooo00<0o`000?ooo`3oool0K@3oool009<0oooo00D0ObXZ0?ooo`3oool0o`00003o00030000oh`0 +oooo0P000?lD0?ooo`80o`0000<0ObXZ003o003oool0H`3oool00`000000oooo0?ooo`1R0?ooo`80 +ObXZ0P3oool20?l00180oooo0P000?mV0?ooo`030000o`3oool0oooo02H0oooo00@00?l00?ooo`3o +ool0ObXZ0`3oool00`3o0000oooo0?ooo`1^0?ooo`00U03oool00`1o:RX0oooo0?ooo`050000ohT0 +oooo0P000?lE0?ooo`040?l0001o:RX00?l0003o06D0oooo00<000000?ooo`3oool0I03oool207lZ +:P030?ooo`00o`00o`0001<0oooo0P000?mT0?ooo`030000o`3oool0oooo02D0oooo00@00?l00?oo +o`3oool0ObXZ0`3oool00`3o0000oooo0?ooo`1_0?ooo`00U@3oool00`1o:RX0oooo0000o`040000 +ohL0oooo0P000?lF0?ooo`030?l0001o:RX00?l006L0oooo1000001U0?ooo`80ObXZ00<0oooo0?l0 +003oool04`3oool20000of40oooo00<0003o0?ooo`3oool09@3oool01@00o`00oooo0?ooo`3oool0 +ObXZ0080oooo00<0o`000?ooo`3oool0L03oool009D0oooo00<0ObXZ0?ooo`000?l010000?n50?oo +o`80003o5P3oool20?l000030?ooo`00o`00oooo06L0oooo00<000000?ooo`3oool0J03oool0101o +:RX0oooo0?l0003o000D0?ooo`80003oGP3oool00`000?l0oooo0?ooo`0U0?ooo`05003o003oool0 +oooo0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1`0?ooo`00UP3oool00`1o:RX0oooo0000o`02 +0000o`030?l000000?l0003o0880oooo00<0003o0?ooo`3oool05@3oool0103o0000ObXZ0?ooo`00 +o`1Y0?ooo`030000003oool0oooo06T0oooo0P1o:RX00`00o`00o`000?ooo`0D0?ooo`030000o`3o +ool0oooo05X0oooo00<0003o0?ooo`3oool09@3oool00`00o`00oooo0?ooo`020?ooo`0407lZ:P3o +ool0oooo0?l007<0oooo002F0?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?l0003oool00P00 +0?mn0?ooo`80003o5`3oool0103o0000oooo0?ooo`00o`1Z0?ooo`030000003oool0oooo06/0oooo +00@0ObXZ0?ooo`3o0000o`00503oool20000oeX0oooo00<0003o0?ooo`3oool0903oool00`00o`00 +oooo0?ooo`020?ooo`0507lZ:P3oool0oooo0?ooo`3o0000L`3oool009L0oooo00<0ObXZ0?ooo`3o +ool00P3oool01000o`00o`000?ooo`3oool20000ogX0oooo0P000?lG0?ooo`80o`000P3oool00`00 +o`00oooo0?ooo`1Y0?ooo`030000003oool0oooo06`0oooo0P1o:RX00`00o`00o`000?l0000D0?oo +o`80003oE`3oool00`000?l0oooo0?ooo`0U0?ooo`05003o003oool0oooo0?ooo`1o:RX00`3oool0 +0`3o0000oooo0?ooo`1b0?ooo`00V03oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo +0080oooo00<0003o0?ooo`3oool0M@3oool20000oaP0oooo00<0o`000?ooo`3oool00P00o`1/0?oo +o`030000003oool0oooo06h0oooo00@0ObXZ003o0000o`00o`005@3oool20000oe@0oooo00<0003o +0?ooo`3oool09@3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0L`3o +ool009T0oooo00<0ObXZ0?ooo`3oool00P3oool00`3o0000oooo0?ooo`020?ooo`80003oL`3oool2 +0000oaP0oooo00D0ObXZ0?l0003oool0oooo003o001^0?ooo`030000003oool0oooo06l0oooo0P1o +:RX00`00o`00o`000?l0000E0?ooo`80003oD@3oool00`000?l0oooo0?ooo`0U0?ooo`05003o003o +ool0oooo0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1d0?ooo`00VP3oool00`1o:RX0oooo0?oo +o`020?ooo`030?l0003oool0oooo00<0oooo0P000?m_0?ooo`80003o603oool00`1o:RX0o`000?l0 +00020?ooo`03003o003oool0oooo06d0oooo00<000000?ooo`3oool0L@3oool00`1o:RX00?l0003o +00020?l001D0oooo0P000?m?0?ooo`030000o`3oool0oooo02@0oooo00<00?l00?ooo`3oool00P3o +ool0101o:RX0oooo0?ooo`3o001g0?ooo`00V`3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003o +ool0oooo00@0oooo0P000?m[0?ooo`80003o603oool207lZ:P030?l0003oool0oooo00800?l0L03o +ool00`000000oooo0?ooo`1b0?ooo`80ObXZ0P00o`000`3o0000oooo0?ooo`0D0?ooo`80003oC03o +ool00`000?l0oooo0?ooo`0T0?ooo`03003o003oool0oooo0080oooo00D0ObXZ0?ooo`3oool0oooo +0?l0001g0?ooo`00W03oool00`1o:RX0oooo0?ooo`020?ooo`80o`001P3oool20000ofL0oooo0P00 +0?lI0?ooo`0307lZ:P3oool0o`000080oooo00<00?l00?ooo`3oool0L03oool4000007<0oooo00<0 +ObXZ0?ooo`00o`000P3o000F0?ooo`80003oB@3oool00`000?l0oooo0?ooo`0T0?ooo`03003o003o +ool0oooo0080oooo00D0ObXZ0?ooo`3oool0oooo0?l0001h0?ooo`00W@3oool00`1o:RX0oooo0?oo +o`020?ooo`03003o003o0000oooo00H0oooo0P000?mS0?ooo`80003o6@3oool207lZ:P80o`0000<0 +oooo003o0000o`00L`3oool00`000000oooo0?ooo`1e0?ooo`80ObXZ0P00o`000`3o0000oooo0?oo +o`0E0?ooo`80003oA`3oool00`000?l0oooo0?ooo`0T0?ooo`05003o003oool0oooo0?ooo`1o:RX0 +103oool00`3o0000oooo0?ooo`1f0?ooo`00WP3oool00`1o:RX0oooo0?ooo`020?ooo`03003o003o +0000oooo00L0oooo00<0003o0?ooo`3oool0GP3oool20000oaX0oooo00@0ObXZ0?l0003o0000oooo +0P00o`1e0?ooo`030000003oool0oooo07L0oooo00<0ObXZ0?ooo`00o`000P3o000G0?ooo`80003o +A03oool00`000?l0oooo0?ooo`0T0?ooo`05003o003oool0oooo0?ooo`1o:RX0103oool00`3o0000 +oooo0?ooo`1g0?ooo`00WP3oool00`1o:RX0oooo0?ooo`030?ooo`03003o003o0000oooo00L0oooo +0P000?mL0?ooo`80003o6P3oool00`1o:RX0o`000?l000020?ooo`03003o003oool0oooo07D0oooo +00<000000?ooo`3oool0N03oool207lZ:P040?ooo`00o`00o`000?l001L0oooo0P000?m10?ooo`03 +0000o`3oool0oooo02@0oooo00D00?l00?ooo`3oool0oooo07lZ:P040?ooo`030?l0003oool0oooo +07P0oooo002O0?ooo`0307lZ:P3oool0oooo00<0oooo00<00?l00?l0003oool0203oool20000oeP0 +oooo0P000?lK0?ooo`80o`000`3oool00`00o`00oooo0?ooo`1f0?ooo`030000003oool0oooo07X0 +oooo0P1o:RX2003o0080o`005`3oool20000och0oooo00<0003o0?ooo`3oool0903oool01@00o`00 +oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?ooo`3oool0N@3oool00:00oooo0P1o:RX40?ooo`03 +003o003o0000oooo00T0oooo0P000?mD0?ooo`80003o6`3oool00`1o:RX0o`000?ooo`020?ooo`80 +0?l0N@3oool00`000000oooo0?ooo`1l0?ooo`80ObXZ0P00o`020?l001L0oooo0P000?ll0?ooo`03 +0000o`3oool0oooo02<0oooo00<00?l00?ooo`3oool00P1o:RX40?ooo`030?l0003oool0oooo07X0 +oooo002R0?ooo`0307lZ:P3oool0oooo00<0oooo00<0o`000?ooo`3oool02@3oool20000oe00oooo +0P000?lL0?ooo`80o`000`3oool00`00o`00oooo0?ooo`1i0?ooo`030000003oool0oooo07h0oooo +00D0ObXZ0?ooo`00o`000?l00?l0000H0?ooo`80003o>@3oool00`000?l0oooo0?ooo`0R0?ooo`80 +0?l00P3oool00`1o:RX0oooo0?ooo`030?ooo`030?l0003oool0oooo07/0oooo002S0?ooo`0307lZ +:P3oool0oooo00<0oooo0P3o000;0?ooo`030000o`3oool0oooo04/0oooo0P000?lL0?ooo`0307lZ +:P3o0000oooo0080oooo0P00o`1l0?ooo`030000003oool0oooo07l0oooo0P1o:RX0103oool00?l0 +0?l0003o000H0?ooo`80003o=P3oool00`000?l0oooo0?ooo`0R0?ooo`05003o003oool0oooo0?oo +o`1o:RX01@3oool00`3o0000oooo0?ooo`1l0?ooo`00Y03oool00`1o:RX0oooo0?ooo`030?ooo`03 +003o003o0000oooo00X0oooo0P000?m90?ooo`80003o703oool00`1o:RX0o`000?l000020?ooo`80 +0?l0OP3oool00`000000oooo0?ooo`210?ooo`80ObXZ00@0oooo003o003o0000o`00603oool20000 +oc<0oooo00<0003o0?ooo`3oool08P3oool01@00o`00oooo0?ooo`3oool0ObXZ00@0oooo0P3o001o +0?ooo`00Y@3oool00`1o:RX0oooo0?ooo`040?ooo`030?l0003oool0oooo00X0oooo0P000?m50?oo +o`80003o703oool00`1o:RX0o`000?l000030?ooo`03003o003oool0oooo07h0oooo00<000000?oo +o`3oool0P`3oool207lZ:P800?l00P3o000H0?ooo`80003o<@3oool00`000?l0oooo0?ooo`0P0?oo +o`800?l00`3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo07l0oooo002V0?ooo`80 +ObXZ1@3oool20?l000`0oooo0P000?m10?ooo`80003o703oool00`1o:RX0o`000?l000030?ooo`80 +0?l0P@3oool4000008@0oooo0P1o:RX00`00o`00oooo0?l000020?l001L0oooo0P000?l^0?ooo`03 +0000o`3oool0oooo0200oooo00@00?l00?ooo`3oool0oooo0P1o:RX40?ooo`030?l0003oool0oooo +0800oooo002X0?ooo`0307lZ:P3oool0oooo00<0oooo00<00?l00?l0003oool0303oool20000och0 +oooo00<0003o0?ooo`3oool06`3oool20?l000@0oooo00<00?l00?ooo`3oool0P@3oool00`000000 +oooo0?ooo`270?ooo`0307lZ:P00o`000?l00080oooo0P3o000G0?ooo`030000o`3oool0oooo02X0 +oooo00<0003o0?ooo`3oool07`3oool2003o00<0oooo00<0ObXZ0?ooo`3oool00`3oool00`3o0000 +oooo0?ooo`210?ooo`00Z@3oool00`1o:RX0oooo0?ooo`040?ooo`80o`003@3oool00`000?l0oooo +0?ooo`0i0?ooo`80003o703oool00`1o:RX0o`000?ooo`030?ooo`800?l0Q03oool00`000000oooo +0?ooo`280?ooo`80ObXZ0`00o`000`3oool0o`000?l0000F0?ooo`80003o:P3oool00`000?l0oooo +0?ooo`0N0?ooo`03003o003oool0oooo0080oooo00<0ObXZ0?ooo`3oool00`3oool00`3o0000oooo +0?ooo`220?ooo`00ZP3oool207lZ:PD0oooo00<00?l00?l0003o0000303oool20000ocL0oooo0P00 +0?lK0?ooo`80ObXZ0P3o00030?ooo`800?l0QP3oool00`000000oooo0?ooo`2:0?ooo`80ObXZ00@0 +oooo003o0000o`00oooo0P3o000F0?ooo`80003o9`3oool00`000?l0oooo0?ooo`0N0?ooo`03003o +003oool0oooo0080oooo00<0ObXZ0?ooo`3oool00P3oool20?l008D0oooo002/0?ooo`0307lZ:P3o +ool0oooo00@0oooo00<00?l00?l0003oool0303oool20000oc<0oooo0P000?lJ0?ooo`<0ObXZ0P3o +00030?ooo`800?l0R03oool00`000000oooo0?ooo`2<0?ooo`<0ObXZ0P00o`00103oool0o`000?l0 +003o000E0?ooo`80003o903oool00`000?l0oooo0?ooo`0N0?ooo`03003o003oool0oooo0080oooo +00<0ObXZ0?ooo`3oool00P3oool00`3o0000oooo0?ooo`250?ooo`00[@3oool207lZ:PH0oooo0P3o +000=0?ooo`80003o;`3oool20000oaX0oooo0P1o:RX00`3oool0o`000?l000030?ooo`800?l0RP3o +ool00`000000oooo0?ooo`2?0?ooo`80ObXZ0P00o`020?ooo`80o`005@3oool20000ob40oooo00<0 +003o0?ooo`3oool07P3oool01000o`00oooo0?ooo`3oool207lZ:P<0oooo0P3o00280?ooo`00[`3o +ool207lZ:PD0oooo00<00?l00?l0003oool03@3oool20000ob/0oooo0P000?lJ0?ooo`80ObXZ0`3o +00040?ooo`03003o003oool0oooo08X0oooo00<000000?ooo`3oool0T@3oool207lZ:P800?l00P3o +ool20?l001D0oooo0P000?lO0?ooo`030000o`3oool0oooo01`0oooo0P00o`020?ooo`80ObXZ103o +ool00`3o0000oooo0?ooo`280?ooo`00/@3oool00`1o:RX0oooo0?ooo`040?ooo`80o`003P3oool0 +0`000?l0oooo0?ooo`0V0?ooo`80003o6P3oool207lZ:P80o`001@3oool2003o08d0oooo00<00000 +0?ooo`3oool0T`3oool207lZ:P800?l00P3oool20?l001D0oooo0P000?lL0?ooo`030000o`3oool0 +oooo01/0oooo0P00o`030?ooo`0307lZ:P3oool0oooo0080oooo0P3o002;0?ooo`00/P3oool00`1o +:RX0oooo0?ooo`050?ooo`80o`003@3oool20000ob@0oooo0P000?lI0?ooo`<0ObXZ0P3o00050?oo +o`800?l0S`3oool00`000000oooo0?ooo`2E0?ooo`80ObXZ0`00o`000`3oool0o`000?l0000E0?oo +o`80003o6@3oool00`000?l0oooo0?ooo`0J0?ooo`800?l00`3oool207lZ:P@0oooo00<0o`000?oo +o`3oool0R`3oool00;<0oooo0`1o:RX60?ooo`80o`003@3oool20000ob00oooo0P000?lH0?ooo`<0 +ObXZ00<0oooo0?l0003o00001@3oool2003o0940oooo1000002G0?ooo`80ObXZ0P00o`000`3oool0 +o`000?l0000E0?ooo`80003o5`3oool00`000?l0oooo0?ooo`0H0?ooo`800?l00`3oool207lZ:P@0 +oooo0P3o002>0?ooo`00]P3oool207lZ:PH0oooo0P3o000=0?ooo`80003o703oool20000oaL0oooo +0`1o:RX20?ooo`80o`000`3oool4003o09<0oooo00<000000?ooo`3oool0V`3oool0101o:RX00?l0 +003o0000o`040?l001<0oooo0P000?lD0?ooo`030000o`3oool0oooo01H0oooo0`00o`030?ooo`80 +ObXZ103oool20?l00900oooo002h0?ooo`80ObXZ1P3oool20?l00003003o003oool0oooo00X0oooo +0P000?lH0?ooo`80003o5P3oool307lZ:P<0oooo0P3o00020?ooo`<00?l0U`3oool00`000000oooo +0?ooo`2N0?ooo`0507lZ:P00o`000?l0003o003oool00`3o000B0?ooo`80003o4@3oool00`000?l0 +oooo0?ooo`0E0?ooo`800?l00`3oool307lZ:P@0oooo0P3o002B0?ooo`00^P3oool307lZ:PD0oooo +0`3o000<0?ooo`80003o503oool20000oaD0oooo0`1o:RX20?ooo`@0o`000P3oool2003o09X0oooo +00<000000?ooo`3oool0X@3oool00`1o:RX00?l0003o00020?ooo`80o`004P3oool20000o`h0oooo +00<0003o0?ooo`3oool05@3oool01000o`00oooo0?ooo`3oool207lZ:PD0oooo0P3o002D0?ooo`00 +_@3oool207lZ:PH0oooo0P3o00000`00o`00oooo0?ooo`090?ooo`030000o`3oool0oooo00l0oooo +0P000?lD0?ooo`<0ObXZ0P3oool30?l000<0oooo0`00o`2L0?ooo`030000003oool0oooo0:@0oooo +1000o`030?l00140oooo0P000?l<0?ooo`030000o`3oool0oooo01<0oooo0P00o`020?ooo`80ObXZ +103oool30?l009H0oooo002o0?ooo`<0ObXZ1@3oool30?l000800?l0203oool20000o`d0oooo0P00 +0?lC0?ooo`<0ObXZ0`3oool20?l000@0oooo0P00o`2O0?ooo`030000003oool0oooo0:L0oooo00@0 +ObXZ003o0000o`000?l01@3o000>0?ooo`80003o2@3oool00`000?l0oooo0?ooo`0A0?ooo`<00?l0 +00@0oooo07lZ:P1o:RX0ObXZ103oool20?l009T0oooo00320?ooo`D0ObXZ0`3oool40?l000P0oooo +0P000?l90?ooo`80003o3`3oool607lZ:P<0oooo0`3o00030?ooo`<00?l0X@3oool00`000000oooo +0?ooo`2Z0?ooo`80ObXZ1000o`040?l000`0oooo0P000?l60?ooo`030000o`3oool0oooo00l0oooo +0`00o`0407lZ:PD0oooo0P3o002K0?ooo`00a`3oool507lZ:P80oooo1@3o00050?ooo`80003o00D0 +oooo0000o`000?l0003o0?ooo`020000o`h0oooo0`1o:RX40?ooo`D0o`0000<0oooo003o0000o`00 +0`00o`2G0?ooo`8000002`3oool00`000000oooo0?ooo`2`0?ooo`@00?l0103o000:0?ooo`80003o +00@0oooo0000o`000?l0003o3P3oool4003o0080ObXZ1P3oool40?l009d0oooo003<0?ooo`D0ObXZ +00<0oooo003o003o00000`3o00030?ooo`D0003o203oool807lZ:P<0oooo103o00020?ooo`@00?l0 +V`3oool010000000oooo0?ooo`00000:0?ooo`030000003oool0oooo0;<0oooo0P1o:RX3003o00T0 +o`000`3oool50000o`D0oooo2000o`00101o:RX0oooo0?ooo`3oool80?l00:40oooo003A0?ooo`H0 +ObXZ0`3o00050000oa<0o`001P00o`2Q0?ooo`030000003oool0oooo00T0oooo1@00002g0?ooo`P0 +0?l00`3o00050000oa40o`00Z@3oool00=X0oooo1@000?l00`3oool00?l0003o000<003o0:`0oooo +00<000000?ooo`3oool0203oool00`000000oooo0?ooo`340?ooo`D0003o^P3oool00=/0oooo0`00 +0?ni0?ooo`040000003oool0oooo000000X0oooo00<000000?ooo`3oool0a@3oool30000ok/0oooo +003o0?oooiT0oooo0P00000;0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooYP3oool0 +0`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0o`3ooon40?oo +o`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooYP3oool00`000000oooo +0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0o`3ooon40?ooo`00o`3ooonV +0?ooo`@00000o`3ooon30?ooo`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0 +ooooYP3oool00`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0 +o`3ooon40?ooo`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooYP3oool0 +0`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0o`3ooon40?oo +o`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooYP3oool00`000000oooo +0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0o`3ooon40?ooo`00o`3ooonV +0?ooo`@00000o`3ooon30?ooo`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0 +ooooYP3oool00`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0 +o`3ooon40?ooo`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooYP3oool0 +0`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0o`3ooon40?oo +o`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooYP3oool00`000000oooo +0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo1000003o0?oooh<0oooo003o0?ooojH0oooo00<00000 +0?ooo`3oool0o`3ooon40?ooo`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0 +ooooYP3oool00`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0 +o`3ooon40?ooo`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooYP3oool0 +0`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0o`3ooon40?oo +o`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooYP3oool400000?l0oooo +P`3oool00?l0ooooYP3oool00`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<00000 +0?ooo`3oool0o`3ooon40?ooo`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0 +ooooYP3oool00`000000oooo0?ooo`3o0?oooh@0oooo003o0?ooojH0oooo00<000000?ooo`3oool0 +o`3ooon40?ooo`00o`3ooonV0?ooo`030000003oool0oooo0?l0ooooQ03oool00?l0ooooVP3oool3 +000000T0oooo00<000000?ooo`3oool0o`3ooon40?ooo`00o`3ooonK0?ooo`030000003oool0oooo +00P0oooo00<000000?ooo`3oool0o`3ooon40?ooo`00o`3ooonH0?ooo`D000002@3oool500000?l0 +ooooPP3oool00?l0ooooV03oool010000000oooo0?ooo`00003o0?oooi40oooo003o0?oooiT0oooo +00<000000?ooo`000000o`3ooonA0?ooo`00o`3ooonJ0?ooo`800000o`3ooonA0?ooo`00o`3ooooo +0?ooool0oooo;P3oool00?l0ooooo`3ooooo0?ooobh0oooo003o0?ooool0ooooo`3oool^0?ooo`00 +o`3ooooo0?ooool0oooo;P3oool00?l0ooooo`3ooooo0?ooobh0oooo003o0?ooool0ooooo`3oool^ +0?ooo`00o`3ooooo0?ooool0oooo;P3oool00?l0ooooo`3ooooo0?ooobh0oooo003o0?ooool0oooo +o`3oool^0?ooo`00o`3ooooo0?ooool0oooo;P3oool00?l0ooooo`3ooooo0?ooobh0oooo003o0?oo +ool0ooooo`3oool^0?ooo`00o`3ooooo0?ooool0oooo;P3oool00?l0ooooo`3ooooo0?ooobh0oooo +003o0?ooool0ooooo`3oool^0?ooo`00o`3ooooo0?ooool0oooo;P3oool00?l0ooooo`3ooooo0?oo +obh0oooo003o0?oook00oooo0P00003o0?ooog/0oooo003o0?oook40oooo00<000000?ooo`3oool0 +o`3ooomi0?ooo`00o`3ooonb0?ooo`030000003oool0oooo0?l0ooooN03oool00?l0oooo/@3oool0 +0`000000oooo0000003o0?ooogT0oooo003o0?oook00oooo00@000000?ooo`3oool00000o`3ooomi +0?ooo`00o`3ooon_0?ooo`<0000000<0oooo000000000000o`3ooomh0?ooo`00o`3ooonT0?ooo`04 +0000003oool0oooo00000?l0ooooQ@3oool00?l0ooooY@3oool200000?l0ooooQP3oool00?l0oooo +o`3ooooo0?ooobh0oooo003o0?ooool0ooooo`3oool^0?ooo`00o`3ooooo0?ooool0oooo;P3oool0 +0001\ +\>"], + ImageRangeCache->{{{0, 810}, {404.5, 0}} -> {-6.28488, -4.09769, 0.0149178, \ +0.0216986}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]5\ +\[InvisibleSpace]" mit "\[InvisibleSpace]8\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 5, " mit ", 8, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.545455 0.0909091 0.25 0.0625 [ +[0 .2375 -6 -9 ] +[0 .2375 6 0 ] +[.18182 .2375 -6 -9 ] +[.18182 .2375 6 0 ] +[.36364 .2375 -6 -9 ] +[.36364 .2375 6 0 ] +[.72727 .2375 -3 -9 ] +[.72727 .2375 3 0 ] +[.90909 .2375 -3 -9 ] +[.90909 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.53295 0 -12 -4.5 ] +[.53295 0 0 4.5 ] +[.53295 .0625 -12 -4.5 ] +[.53295 .0625 0 4.5 ] +[.53295 .125 -12 -4.5 ] +[.53295 .125 0 4.5 ] +[.53295 .1875 -12 -4.5 ] +[.53295 .1875 0 4.5 ] +[.53295 .3125 -6 -4.5 ] +[.53295 .3125 0 4.5 ] +[.53295 .375 -6 -4.5 ] +[.53295 .375 0 4.5 ] +[.53295 .4375 -6 -4.5 ] +[.53295 .4375 0 4.5 ] +[.53295 .5 -6 -4.5 ] +[.53295 .5 0 4.5 ] +[.54545 .525 -17 0 ] +[.54545 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +0 .25 m +0 .25625 L +s +[(-6)] 0 .2375 0 1 Mshowa +.18182 .25 m +.18182 .25625 L +s +[(-4)] .18182 .2375 0 1 Mshowa +.36364 .25 m +.36364 .25625 L +s +[(-2)] .36364 .2375 0 1 Mshowa +.72727 .25 m +.72727 .25625 L +s +[(2)] .72727 .2375 0 1 Mshowa +.90909 .25 m +.90909 .25625 L +s +[(4)] .90909 .2375 0 1 Mshowa +.125 Mabswid +.04545 .25 m +.04545 .25375 L +s +.09091 .25 m +.09091 .25375 L +s +.13636 .25 m +.13636 .25375 L +s +.22727 .25 m +.22727 .25375 L +s +.27273 .25 m +.27273 .25375 L +s +.31818 .25 m +.31818 .25375 L +s +.40909 .25 m +.40909 .25375 L +s +.45455 .25 m +.45455 .25375 L +s +.5 .25 m +.5 .25375 L +s +.59091 .25 m +.59091 .25375 L +s +.63636 .25 m +.63636 .25375 L +s +.68182 .25 m +.68182 .25375 L +s +.77273 .25 m +.77273 .25375 L +s +.81818 .25 m +.81818 .25375 L +s +.86364 .25 m +.86364 .25375 L +s +.95455 .25 m +.95455 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.54545 0 m +.5517 0 L +s +[(-4)] .53295 0 1 0 Mshowa +.54545 .0625 m +.5517 .0625 L +s +[(-3)] .53295 .0625 1 0 Mshowa +.54545 .125 m +.5517 .125 L +s +[(-2)] .53295 .125 1 0 Mshowa +.54545 .1875 m +.5517 .1875 L +s +[(-1)] .53295 .1875 1 0 Mshowa +.54545 .3125 m +.5517 .3125 L +s +[(1)] .53295 .3125 1 0 Mshowa +.54545 .375 m +.5517 .375 L +s +[(2)] .53295 .375 1 0 Mshowa +.54545 .4375 m +.5517 .4375 L +s +[(3)] .53295 .4375 1 0 Mshowa +.54545 .5 m +.5517 .5 L +s +[(4)] .53295 .5 1 0 Mshowa +.125 Mabswid +.54545 .0125 m +.5492 .0125 L +s +.54545 .025 m +.5492 .025 L +s +.54545 .0375 m +.5492 .0375 L +s +.54545 .05 m +.5492 .05 L +s +.54545 .075 m +.5492 .075 L +s +.54545 .0875 m +.5492 .0875 L +s +.54545 .1 m +.5492 .1 L +s +.54545 .1125 m +.5492 .1125 L +s +.54545 .1375 m +.5492 .1375 L +s +.54545 .15 m +.5492 .15 L +s +.54545 .1625 m +.5492 .1625 L +s +.54545 .175 m +.5492 .175 L +s +.54545 .2 m +.5492 .2 L +s +.54545 .2125 m +.5492 .2125 L +s +.54545 .225 m +.5492 .225 L +s +.54545 .2375 m +.5492 .2375 L +s +.54545 .2625 m +.5492 .2625 L +s +.54545 .275 m +.5492 .275 L +s +.54545 .2875 m +.5492 .2875 L +s +.54545 .3 m +.5492 .3 L +s +.54545 .325 m +.5492 .325 L +s +.54545 .3375 m +.5492 .3375 L +s +.54545 .35 m +.5492 .35 L +s +.54545 .3625 m +.5492 .3625 L +s +.54545 .3875 m +.5492 .3875 L +s +.54545 .4 m +.5492 .4 L +s +.54545 .4125 m +.5492 .4125 L +s +.54545 .425 m +.5492 .425 L +s +.54545 .45 m +.5492 .45 L +s +.54545 .4625 m +.5492 .4625 L +s +.54545 .475 m +.5492 .475 L +s +.54545 .4875 m +.5492 .4875 L +s +.25 Mabswid +.54545 0 m +.54545 .5 L +s +gsave +.54545 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +.5 .165 .165 r +.5 Mabswid +.64109 .34862 m +.63681 .34421 L +.63252 .33979 L +.62824 .33537 L +.62395 .33095 L +.61967 .32653 L +.61539 .32212 L +.6111 .3177 L +.60682 .31328 L +.60253 .30886 L +.59825 .30445 L +.59397 .30003 L +.58968 .29561 L +.5854 .29119 L +.58111 .28677 L +.57683 .28236 L +.57255 .27794 L +.56826 .27352 L +.56398 .2691 L +.55969 .26468 L +.55541 .26027 L +.55113 .25585 L +.54684 .25143 L +.54256 .24701 L +.53827 .2426 L +.53399 .23818 L +.52971 .23376 L +.52542 .22934 L +.52114 .22492 L +.51685 .22051 L +.51257 .21609 L +.50829 .21167 L +.504 .20725 L +.49972 .20283 L +.49543 .19842 L +.49115 .194 L +.48687 .18958 L +.48258 .18516 L +.4783 .18075 L +.47401 .17633 L +.46973 .17191 L +.46545 .16749 L +.46116 .16307 L +.45688 .15866 L +.45259 .15424 L +.44831 .14982 L +.40909 .11742 L +.40481 .11433 L +.40052 .11132 L +.39624 .10838 L +Mistroke +.39197 .10553 L +.38769 .10275 L +.38343 .10006 L +.37916 .09745 L +.37491 .09492 L +.37066 .09248 L +.36643 .09013 L +.3622 .08787 L +.35799 .08569 L +.35379 .08361 L +.3496 .08162 L +.34542 .07972 L +.34127 .07792 L +.33713 .07621 L +.333 .0746 L +.3289 .07309 L +.32481 .07168 L +.32075 .07036 L +.31671 .06915 L +.31269 .06803 L +.30869 .06702 L +.30472 .0661 L +.30078 .06529 L +.29686 .06458 L +.29297 .06398 L +.28911 .06348 L +.28528 .06308 L +.28147 .06278 L +.2777 .06259 L +.27397 .06251 L +.27026 .06252 L +.26659 .06264 L +.26296 .06287 L +.25936 .0632 L +.2558 .06363 L +.25227 .06417 L +.24879 .06481 L +.24534 .06555 L +.24193 .0664 L +.23857 .06734 L +.23525 .06839 L +.23197 .06954 L +.22873 .07079 L +.22554 .07214 L +.2224 .07358 L +.2193 .07513 L +.21624 .07677 L +.21324 .07851 L +.21028 .08034 L +.20737 .08227 L +Mistroke +.20452 .08429 L +.20171 .08641 L +.19895 .08861 L +.19625 .0909 L +.19359 .09329 L +.191 .09575 L +.18845 .09831 L +.18596 .10095 L +.18352 .10367 L +.18114 .10647 L +.17882 .10935 L +.17655 .11231 L +.17434 .11535 L +.17219 .11846 L +.1701 .12165 L +.16806 .1249 L +.16609 .12823 L +.16417 .13162 L +.16232 .13508 L +.16053 .1386 L +.15879 .14219 L +.15712 .14583 L +.15552 .14953 L +.15397 .15329 L +.15249 .1571 L +.15107 .16096 L +.14971 .16488 L +.14842 .16884 L +.14719 .17284 L +.14603 .17689 L +.14493 .18098 L +.1439 .1851 L +.14293 .18927 L +.14203 .19346 L +.14119 .19769 L +.14042 .20195 L +.13972 .20623 L +.13908 .21054 L +.13851 .21487 L +.13801 .21921 L +.13757 .22358 L +.1372 .22796 L +.1369 .23235 L +.13667 .23676 L +.1365 .24117 L +.1364 .24558 L +.13636 .25 L +.1364 .25442 L +.1365 .25883 L +.13667 .26324 L +Mistroke +.1369 .26765 L +.1372 .27204 L +.13757 .27642 L +.13801 .28079 L +.13851 .28513 L +.13908 .28946 L +.13972 .29377 L +.14042 .29805 L +.14119 .30231 L +.14203 .30654 L +.14293 .31073 L +.1439 .3149 L +.14493 .31902 L +.14603 .32311 L +.14719 .32716 L +.14842 .33116 L +.14971 .33512 L +.15107 .33904 L +.15249 .3429 L +.15397 .34671 L +.15552 .35047 L +.15712 .35417 L +.15879 .35781 L +.16053 .3614 L +.16232 .36492 L +.16417 .36838 L +.16609 .37177 L +.16806 .3751 L +.1701 .37835 L +.17219 .38154 L +.17434 .38465 L +.17655 .38769 L +.17882 .39065 L +.18114 .39353 L +.18352 .39633 L +.18596 .39905 L +.18845 .40169 L +.191 .40425 L +.19359 .40671 L +.19625 .4091 L +.19895 .41139 L +.20171 .41359 L +.20452 .41571 L +.20737 .41773 L +.21028 .41966 L +.21324 .42149 L +.21624 .42323 L +.2193 .42487 L +.2224 .42642 L +.22554 .42786 L +Mistroke +.22873 .42921 L +.23197 .43046 L +.23525 .43161 L +.23857 .43266 L +.24193 .4336 L +.24534 .43445 L +.24879 .43519 L +.25227 .43583 L +.2558 .43637 L +.25936 .4368 L +.26296 .43713 L +.26659 .43736 L +.27026 .43748 L +.27397 .43749 L +.2777 .43741 L +.28147 .43722 L +.28528 .43692 L +.28911 .43652 L +.29297 .43602 L +.29686 .43542 L +.30078 .43471 L +.30472 .4339 L +.30869 .43298 L +.31269 .43197 L +.31671 .43085 L +.32075 .42964 L +.32481 .42832 L +.3289 .42691 L +.333 .4254 L +.33713 .42379 L +.34127 .42208 L +.34542 .42028 L +.3496 .41838 L +.35379 .41639 L +.35799 .41431 L +.3622 .41213 L +.36643 .40987 L +.37066 .40752 L +.37491 .40508 L +.37916 .40255 L +.38343 .39994 L +.38769 .39725 L +.39197 .39447 L +.39624 .39162 L +.40052 .38868 L +.40481 .38567 L +.40909 .38258 L +.43268 .3663 L +.43697 .36188 L +.44125 .35746 L +Mistroke +.44553 .35304 L +.44982 .34862 L +.4541 .34421 L +.45839 .33979 L +.46267 .33537 L +.46695 .33095 L +.47124 .32653 L +.47552 .32212 L +.47981 .3177 L +.48409 .31328 L +.48837 .30886 L +.49266 .30445 L +.49694 .30003 L +.50123 .29561 L +.50551 .29119 L +.50979 .28677 L +.51408 .28236 L +.51836 .27794 L +.52265 .27352 L +.52693 .2691 L +.53121 .26468 L +.5355 .26027 L +.53978 .25585 L +.54407 .25143 L +.54835 .24701 L +.55263 .2426 L +.55692 .23818 L +.5612 .23376 L +.56549 .22934 L +.56977 .22492 L +.57405 .22051 L +.57834 .21609 L +.58262 .21167 L +.58691 .20725 L +.59119 .20283 L +.59547 .19842 L +.59976 .194 L +.60404 .18958 L +.60833 .18516 L +.61261 .18075 L +.61689 .17633 L +.62118 .17191 L +.62546 .16749 L +.62975 .16307 L +.63403 .15866 L +.63831 .15424 L +.6426 .14982 L +.6861 .11433 L +.69038 .11132 L +.69467 .10838 L +Mistroke +.69894 .10553 L +.70322 .10275 L +.70748 .10006 L +.71175 .09745 L +.716 .09492 L +.72025 .09248 L +.72448 .09013 L +.72871 .08787 L +.73292 .08569 L +.73712 .08361 L +.74131 .08162 L +.74549 .07972 L +.74964 .07792 L +.75378 .07621 L +.75791 .0746 L +.76201 .07309 L +.7661 .07168 L +.77016 .07036 L +.7742 .06915 L +.77822 .06803 L +.78222 .06702 L +.78619 .0661 L +.79013 .06529 L +.79405 .06458 L +.79794 .06398 L +.8018 .06348 L +.80563 .06308 L +.80944 .06278 L +.81321 .06259 L +.81694 .06251 L +.82065 .06252 L +.82432 .06264 L +.82795 .06287 L +.83155 .0632 L +.83511 .06363 L +.83864 .06417 L +.84212 .06481 L +.84557 .06555 L +.84897 .0664 L +.85234 .06734 L +.85566 .06839 L +.85894 .06954 L +.86218 .07079 L +.86537 .07214 L +.86851 .07358 L +.87161 .07513 L +.87467 .07677 L +.87767 .07851 L +.88063 .08034 L +.88354 .08227 L +Mistroke +.88639 .08429 L +.8892 .08641 L +.89196 .08861 L +.89466 .0909 L +.89732 .09329 L +.89991 .09575 L +.90246 .09831 L +.90495 .10095 L +.90739 .10367 L +.90977 .10647 L +.91209 .10935 L +.91436 .11231 L +.91657 .11535 L +.91872 .11846 L +.92081 .12165 L +.92285 .1249 L +.92482 .12823 L +.92673 .13162 L +.92859 .13508 L +.93038 .1386 L +.93211 .14219 L +.93379 .14583 L +.93539 .14953 L +.93694 .15329 L +.93842 .1571 L +.93984 .16096 L +.9412 .16488 L +.94249 .16884 L +.94372 .17284 L +.94488 .17689 L +.94598 .18098 L +.94701 .1851 L +.94798 .18927 L +.94888 .19346 L +.94971 .19769 L +.95048 .20195 L +.95119 .20623 L +.95182 .21054 L +.95239 .21487 L +.9529 .21921 L +.95334 .22358 L +.9537 .22796 L +.95401 .23235 L +.95424 .23676 L +.95441 .24117 L +.95451 .24558 L +.95455 .25 L +.95451 .25442 L +.95441 .25883 L +.95424 .26324 L +Mistroke +.95401 .26765 L +.9537 .27204 L +.95334 .27642 L +.9529 .28079 L +.95239 .28513 L +.95182 .28946 L +.95119 .29377 L +.95048 .29805 L +.94971 .30231 L +.94888 .30654 L +.94798 .31073 L +.94701 .3149 L +.94598 .31902 L +.94488 .32311 L +.94372 .32716 L +.94249 .33116 L +.9412 .33512 L +.93984 .33904 L +.93842 .3429 L +.93694 .34671 L +.93539 .35047 L +.93379 .35417 L +.93211 .35781 L +.93038 .3614 L +.92859 .36492 L +.92673 .36838 L +.92482 .37177 L +.92285 .3751 L +.92081 .37835 L +.91872 .38154 L +.91657 .38465 L +.91436 .38769 L +.91209 .39065 L +.90977 .39353 L +.90739 .39633 L +.90495 .39905 L +.90246 .40169 L +.89991 .40425 L +.89732 .40671 L +.89466 .4091 L +.89196 .41139 L +.8892 .41359 L +.88639 .41571 L +.88354 .41773 L +.88063 .41966 L +.87767 .42149 L +.87467 .42323 L +.87161 .42487 L +.86851 .42642 L +.86537 .42786 L +Mistroke +.86218 .42921 L +.85894 .43046 L +.85566 .43161 L +.85234 .43266 L +.84897 .4336 L +.84557 .43445 L +.84212 .43519 L +.83864 .43583 L +.83511 .43637 L +.83155 .4368 L +.82795 .43713 L +.82432 .43736 L +.82065 .43748 L +.81694 .43749 L +.81321 .43741 L +.80944 .43722 L +.80563 .43692 L +.8018 .43652 L +.79794 .43602 L +.79405 .43542 L +.79013 .43471 L +.78619 .4339 L +.78222 .43298 L +.77822 .43197 L +.7742 .43085 L +.77016 .42964 L +.7661 .42832 L +.76201 .42691 L +.75791 .4254 L +.75378 .42379 L +.74964 .42208 L +.74549 .42028 L +.74131 .41838 L +.73712 .41639 L +.73292 .41431 L +.72871 .41213 L +.72448 .40987 L +.72025 .40752 L +.716 .40508 L +.71175 .40255 L +.70748 .39994 L +.70322 .39725 L +.69894 .39447 L +.69467 .39162 L +.69038 .38868 L +.6861 .38567 L +.68182 .38258 L +.67753 .37942 L +.67325 .37619 L +.66897 .37289 L +Mistroke +.66469 .36952 L +.66042 .36608 L +.65615 .36258 L +.65189 .35901 L +.64764 .35539 L +.64339 .35171 L +.63915 .34797 L +Mfstroke +0 1 0 r +.13636 .25 m +.13655 .25528 L +.13706 .26056 L +.13786 .26583 L +.13896 .2711 L +.14035 .27635 L +.14201 .28158 L +.14394 .28679 L +.14613 .29197 L +.14857 .29712 L +.15126 .30224 L +.15418 .30731 L +.15733 .31234 L +.16069 .31731 L +.16427 .32224 L +.16804 .3271 L +.172 .3319 L +.17615 .33663 L +.18047 .34129 L +.18496 .34588 L +.18961 .35038 L +.1944 .3548 L +.19934 .35912 L +.20441 .36335 L +.20959 .36748 L +.2149 .37151 L +.22031 .37543 L +.22582 .37923 L +.23141 .38292 L +.23709 .38648 L +.24284 .38992 L +.24865 .39323 L +.25451 .3964 L +.26043 .39944 L +.26637 .40232 L +.27235 .40506 L +.27835 .40765 L +.28436 .41007 L +.29037 .41234 L +.29638 .41443 L +.30237 .41636 L +.30834 .41811 L +.31428 .41968 L +.32018 .42106 L +.32603 .42225 L +.33183 .42325 L +.33756 .42405 L +.34321 .42465 L +.34878 .42504 L +.35426 .42522 L +Mistroke +.35965 .42518 L +.36492 .42492 L +.37008 .42443 L +.37513 .42373 L +.38007 .42281 L +.38491 .42169 L +.38965 .42036 L +.3943 .41883 L +.39885 .41711 L +.40332 .4152 L +.4077 .41311 L +.412 .41084 L +.41622 .40839 L +.42038 .40578 L +.42446 .403 L +.42847 .40006 L +.43243 .39697 L +.43632 .39372 L +.44016 .39034 L +.44395 .38681 L +.44769 .38315 L +.45139 .37936 L +.45505 .37544 L +.45867 .37141 L +.46226 .36726 L +.46582 .363 L +.46936 .35864 L +.47287 .35417 L +.47637 .34961 L +.47985 .34496 L +.48332 .34023 L +.48679 .33542 L +.49025 .33053 L +.49372 .32557 L +.49718 .32054 L +.50066 .31546 L +.50415 .31032 L +.50765 .30513 L +.51117 .29989 L +.51472 .29461 L +.51829 .2893 L +.5219 .28395 L +.52553 .27859 L +.52921 .2732 L +.53292 .26779 L +.53669 .26237 L +.5405 .25695 L +.54436 .25152 L +.54828 .2461 L +.55225 .24069 L +Mistroke +.55628 .23529 L +.56037 .22991 L +.5645 .22454 L +.56869 .21919 L +.57292 .21388 L +.5772 .20859 L +.58153 .20333 L +.5859 .19811 L +.59032 .19294 L +.59478 .18781 L +.59928 .18272 L +.60381 .17769 L +.60839 .17271 L +.613 .16779 L +.61764 .16294 L +.62232 .15815 L +.62703 .15343 L +.63177 .14878 L +.63654 .14421 L +.64134 .13972 L +.64616 .13532 L +.651 .131 L +.65587 .12678 L +.66076 .12265 L +.66567 .11862 L +.6706 .1147 L +.67555 .11088 L +.68051 .10717 L +.68548 .10357 L +.69047 .1001 L +.69547 .09674 L +.70048 .09351 L +.7055 .0904 L +.71052 .08743 L +.71555 .08459 L +.72059 .0819 L +.72562 .07934 L +.73066 .07693 L +.7357 .07468 L +.74073 .07257 L +.74577 .07063 L +.75079 .06884 L +.75582 .06722 L +.76083 .06577 L +.76583 .06449 L +.77083 .06339 L +.77581 .06246 L +.78078 .06172 L +.78573 .06117 L +.79067 .06081 L +Mistroke +.79559 .06064 L +.80049 .06066 L +.80537 .06089 L +.81023 .06133 L +.81506 .06197 L +.81987 .06283 L +.82465 .06389 L +.82941 .06517 L +.83412 .06665 L +.8388 .06833 L +.84344 .0702 L +.84803 .07226 L +.85258 .07451 L +.85707 .07693 L +.86151 .07954 L +.86589 .08231 L +.8702 .08525 L +.87445 .08835 L +.87863 .0916 L +.88274 .09501 L +.88677 .09856 L +.89072 .10226 L +.89459 .10609 L +.89837 .11005 L +.90205 .11415 L +.90565 .11836 L +.90914 .1227 L +.91254 .12715 L +.91583 .13171 L +.91901 .13637 L +.92208 .14113 L +.92504 .14599 L +.92787 .15093 L +.93059 .15597 L +.93317 .16108 L +.93563 .16627 L +.93795 .17153 L +.94014 .17686 L +.94219 .18224 L +.94409 .18769 L +.94585 .19319 L +.94746 .19873 L +.94891 .20432 L +.9502 .20995 L +.95134 .21561 L +.9523 .22129 L +.9531 .22701 L +.95373 .23274 L +.95418 .23848 L +.95445 .24424 L +Mistroke +.95455 .25 L +.95445 .25576 L +.95417 .26152 L +.95372 .26727 L +.95309 .273 L +.95228 .27871 L +.95131 .2844 L +.95018 .29007 L +.94888 .2957 L +.94742 .30129 L +.94581 .30684 L +.94405 .31234 L +.94215 .31779 L +.9401 .32318 L +.93791 .32851 L +.93558 .33378 L +.93312 .33897 L +.93053 .34409 L +.92781 .34913 L +.92498 .35408 L +.92202 .35894 L +.91895 .36371 L +.91577 .36837 L +.91247 .37293 L +.90908 .37739 L +.90558 .38173 L +.90199 .38594 L +.8983 .39004 L +.89452 .39401 L +.89065 .39784 L +.8867 .40154 L +.88268 .40509 L +.87857 .4085 L +.87439 .41175 L +.87014 .41485 L +.86583 .41778 L +.86146 .42055 L +.85702 .42315 L +.85253 .42557 L +.84799 .42781 L +.84341 .42986 L +.83877 .43172 L +.8341 .43339 L +.82939 .43486 L +.82465 .43613 L +.81987 .43718 L +.81507 .43802 L +.81024 .43865 L +.80539 .43906 L +.80052 .43928 L +Mistroke +.79563 .43928 L +.79072 .43909 L +.78579 .43871 L +.78085 .43813 L +.77589 .43737 L +.77092 .43642 L +.76594 .4353 L +.76094 .434 L +.75594 .43252 L +.75093 .43088 L +.74591 .42907 L +.74089 .4271 L +.73586 .42497 L +.73084 .42269 L +.72581 .42026 L +.72078 .41769 L +.71576 .41497 L +.71074 .41211 L +.70572 .40912 L +.70071 .406 L +.69571 .40274 L +.69072 .39937 L +.68574 .39588 L +.68077 .39227 L +.67581 .38854 L +.67087 .38471 L +.66595 .38077 L +.66104 .37674 L +.65616 .3726 L +.65129 .36837 L +.64644 .36405 L +.64162 .35965 L +.63683 .35516 L +.63206 .35059 L +.62732 .34595 L +.6226 .34124 L +.61792 .33646 L +.61327 .33162 L +.60865 .32671 L +.60407 .32175 L +.59952 .31674 L +.59501 .31168 L +.59054 .30657 L +.58611 .30142 L +.58173 .29624 L +.57738 .29102 L +.57308 .28577 L +.56883 .28049 L +.56462 .27519 L +.56046 .26988 L +Mistroke +.55636 .26454 L +.5523 .2592 L +.5483 .25385 L +.54435 .24849 L +.54046 .24314 L +.53661 .23779 L +.53282 .23245 L +.52907 .22712 L +.52536 .22181 L +.52168 .21652 L +.51804 .21126 L +.51443 .20603 L +.51085 .20084 L +.50729 .19569 L +.50375 .19058 L +.50022 .18553 L +.49671 .18052 L +.4932 .17558 L +.48971 .1707 L +.48621 .16588 L +.48271 .16114 L +.47921 .15647 L +.4757 .15189 L +.47218 .14739 L +.46864 .14298 L +.46508 .13867 L +.4615 .13445 L +.45789 .13034 L +.45426 .12633 L +.45059 .12244 L +.44688 .11867 L +.44314 .11501 L +.43935 .11148 L +.43551 .10809 L +.43163 .10483 L +.42769 .1017 L +.42369 .09872 L +.41963 .09589 L +.41551 .09322 L +.41132 .0907 L +.40705 .08834 L +.40272 .08615 L +.3983 .08412 L +.3938 .08228 L +.38922 .08061 L +.38455 .07913 L +.37978 .07784 L +.37492 .07674 L +.36996 .07584 L +.36489 .07514 L +Mistroke +.35955 .07498 L +.35405 .07513 L +.34846 .07548 L +.34279 .07603 L +.33704 .07678 L +.33122 .07771 L +.32535 .07882 L +.31942 .08012 L +.31345 .0816 L +.30745 .08324 L +.30142 .08506 L +.29538 .08704 L +.28932 .08918 L +.28327 .09148 L +.27723 .09393 L +.2712 .09653 L +.2652 .09927 L +.25923 .10216 L +.2533 .10518 L +.24743 .10833 L +.24161 .11162 L +.23586 .11502 L +.23019 .11855 L +.2246 .12219 L +.2191 .12595 L +.21371 .12982 L +.20842 .13379 L +.20326 .13786 L +.19821 .14203 L +.19331 .14629 L +.18855 .15063 L +.18394 .15507 L +.17949 .15958 L +.1752 .16417 L +.1711 .16883 L +.16718 .17356 L +.16345 .17836 L +.15993 .18321 L +.15662 .18812 L +.15352 .19309 L +.15066 .1981 L +.14803 .20316 L +.14564 .20825 L +.14351 .21339 L +.14164 .21855 L +.14003 .22375 L +.13871 .22897 L +.13767 .2342 L +.13693 .23946 L +.13649 .24472 L +Mistroke +.13636 .25 L +Mfstroke +1 0 0 r +.13636 .25 m +.12786 .24881 L +.12071 .24831 L +.11483 .24845 L +.11015 .24919 L +.10658 .25048 L +.10406 .25228 L +.10252 .25455 L +.10189 .25726 L +.10212 .26035 L +.10312 .26381 L +.10486 .26759 L +.10728 .27166 L +.11032 .27599 L +.11393 .28055 L +.11806 .2853 L +.12268 .29023 L +.12773 .2953 L +.13317 .30048 L +.13897 .30576 L +.14509 .3111 L +.1515 .31649 L +.15815 .32191 L +.16502 .32733 L +.17208 .33273 L +.1793 .3381 L +.18666 .34342 L +.19412 .34867 L +.20168 .35383 L +.2093 .3589 L +.21696 .36385 L +.22465 .36867 L +.23235 .37336 L +.24004 .3779 L +.24771 .38228 L +.25535 .38649 L +.26293 .39051 L +.27045 .39435 L +.27791 .398 L +.28528 .40144 L +.29256 .40467 L +.29974 .40768 L +.30682 .41048 L +.31379 .41305 L +.32065 .41539 L +.32738 .4175 L +.33399 .41937 L +.34047 .42101 L +.34682 .4224 L +.35304 .42356 L +Mistroke +.35913 .42447 L +.36508 .42514 L +.3709 .42557 L +.37659 .42575 L +.38214 .4257 L +.38756 .4254 L +.39286 .42487 L +.39802 .4241 L +.40306 .42309 L +.40797 .42185 L +.41276 .42039 L +.41744 .4187 L +.422 .41678 L +.42645 .41465 L +.43079 .41231 L +.43504 .40975 L +.43918 .40699 L +.44323 .40403 L +.44719 .40087 L +.45107 .39753 L +.45486 .39399 L +.45858 .39028 L +.46223 .3864 L +.46581 .38235 L +.46934 .37813 L +.4728 .37376 L +.47622 .36924 L +.47959 .36458 L +.48292 .35978 L +.48621 .35486 L +.48948 .3498 L +.49271 .34464 L +.49593 .33936 L +.49912 .33398 L +.50231 .3285 L +.50549 .32293 L +.50866 .31729 L +.51184 .31156 L +.51502 .30577 L +.51821 .29992 L +.52141 .29401 L +.52463 .28805 L +.52787 .28206 L +.53113 .27603 L +.53442 .26997 L +.53774 .2639 L +.5411 .25781 L +.54449 .25171 L +.54793 .24562 L +.5514 .23953 L +Mistroke +.55492 .23346 L +.55849 .2274 L +.5621 .22138 L +.56577 .21538 L +.56949 .20943 L +.57326 .20351 L +.57709 .19765 L +.58098 .19185 L +.58492 .18611 L +.58892 .18044 L +.59299 .17484 L +.59711 .16933 L +.60129 .16389 L +.60554 .15855 L +.60984 .1533 L +.61421 .14816 L +.61864 .14311 L +.62312 .13818 L +.62767 .13336 L +.63228 .12867 L +.63694 .12409 L +.64166 .11964 L +.64643 .11532 L +.65126 .11114 L +.65615 .1071 L +.66108 .10319 L +.66606 .09944 L +.67109 .09583 L +.67616 .09237 L +.68128 .08907 L +.68644 .08592 L +.69164 .08294 L +.69687 .08011 L +.70213 .07745 L +.70743 .07496 L +.71275 .07263 L +.7181 .07048 L +.72347 .0685 L +.72886 .06669 L +.73426 .06505 L +.73968 .06359 L +.74511 .0623 L +.75054 .0612 L +.75597 .06026 L +.7614 .05951 L +.76683 .05894 L +.77224 .05854 L +.77765 .05832 L +.78304 .05828 L +.78841 .05842 L +Mistroke +.79375 .05874 L +.79907 .05923 L +.80436 .05989 L +.80961 .06074 L +.81483 .06175 L +.82 .06294 L +.82512 .0643 L +.8302 .06582 L +.83522 .06752 L +.84018 .06938 L +.84509 .0714 L +.84992 .07359 L +.85469 .07594 L +.85939 .07844 L +.86401 .0811 L +.86855 .0839 L +.87301 .08686 L +.87738 .08997 L +.88166 .09322 L +.88584 .0966 L +.88993 .10013 L +.89392 .10379 L +.89781 .10758 L +.90159 .11149 L +.90526 .11553 L +.90881 .11969 L +.91226 .12396 L +.91558 .12835 L +.91878 .13284 L +.92186 .13744 L +.92482 .14214 L +.92764 .14693 L +.93034 .15181 L +.9329 .15678 L +.93533 .16183 L +.93762 .16696 L +.93977 .17216 L +.94178 .17743 L +.94365 .18277 L +.94538 .18816 L +.94696 .19361 L +.94839 .19911 L +.94968 .20465 L +.95081 .21023 L +.9518 .21585 L +.95264 .22149 L +.95332 .22716 L +.95386 .23286 L +.95424 .23856 L +.95447 .24428 L +Mistroke +.95455 .25 L +.95447 .25572 L +.95424 .26144 L +.95386 .26714 L +.95332 .27284 L +.95264 .27851 L +.9518 .28415 L +.95081 .28977 L +.94968 .29535 L +.94839 .30089 L +.94696 .30639 L +.94538 .31184 L +.94365 .31723 L +.94178 .32257 L +.93977 .32784 L +.93762 .33304 L +.93533 .33817 L +.9329 .34322 L +.93034 .34819 L +.92764 .35307 L +.92482 .35786 L +.92186 .36256 L +.91878 .36716 L +.91558 .37165 L +.91226 .37604 L +.90881 .38031 L +.90526 .38447 L +.90159 .38851 L +.89781 .39242 L +.89392 .39621 L +.88993 .39987 L +.88584 .4034 L +.88166 .40678 L +.87738 .41003 L +.87301 .41314 L +.86855 .4161 L +.86401 .4189 L +.85939 .42156 L +.85469 .42406 L +.84992 .42641 L +.84509 .4286 L +.84018 .43062 L +.83522 .43248 L +.8302 .43418 L +.82512 .4357 L +.82 .43706 L +.81483 .43825 L +.80961 .43926 L +.80436 .44011 L +.79907 .44077 L +Mistroke +.79375 .44126 L +.78841 .44158 L +.78304 .44172 L +.77765 .44168 L +.77224 .44146 L +.76683 .44106 L +.7614 .44049 L +.75597 .43974 L +.75054 .4388 L +.74511 .4377 L +.73968 .43641 L +.73426 .43495 L +.72886 .43331 L +.72347 .4315 L +.7181 .42952 L +.71275 .42737 L +.70743 .42504 L +.70213 .42255 L +.69687 .41989 L +.69164 .41706 L +.68644 .41408 L +.68128 .41093 L +.67616 .40763 L +.67109 .40417 L +.66606 .40056 L +.66108 .39681 L +.65615 .3929 L +.65126 .38886 L +.64643 .38468 L +.64166 .38036 L +.63694 .37591 L +.63228 .37133 L +.62767 .36664 L +.62312 .36182 L +.61864 .35689 L +.61421 .35184 L +.60984 .3467 L +.60554 .34145 L +.60129 .33611 L +.59711 .33067 L +.59299 .32516 L +.58892 .31956 L +.58492 .31389 L +.58098 .30815 L +.57709 .30235 L +.57326 .29649 L +.56949 .29057 L +.56577 .28462 L +.5621 .27862 L +.55849 .2726 L +Mistroke +.55492 .26654 L +.5514 .26047 L +.54793 .25438 L +.54449 .24829 L +.5411 .24219 L +.53774 .2361 L +.53442 .23003 L +.53113 .22397 L +.52787 .21794 L +.52463 .21195 L +.52141 .20599 L +.51821 .20008 L +.51502 .19423 L +.51184 .18844 L +.50866 .18271 L +.50549 .17707 L +.50231 .1715 L +.49912 .16602 L +.49593 .16064 L +.49271 .15536 L +.48948 .1502 L +.48621 .14514 L +.48292 .14022 L +.47959 .13542 L +.47622 .13076 L +.4728 .12624 L +.46934 .12187 L +.46581 .11765 L +.46223 .1136 L +.45858 .10972 L +.45486 .10601 L +.45107 .10247 L +.44719 .09913 L +.44323 .09597 L +.43918 .09301 L +.43504 .09025 L +.43079 .08769 L +.42645 .08535 L +.422 .08322 L +.41744 .0813 L +.41276 .07961 L +.40797 .07815 L +.40306 .07691 L +.39802 .0759 L +.39286 .07513 L +.38756 .0746 L +.38214 .0743 L +.37659 .07425 L +.3709 .07443 L +.36508 .07486 L +Mistroke +.35913 .07553 L +.35304 .07644 L +.34682 .0776 L +.34047 .07899 L +.33399 .08063 L +.32738 .0825 L +.32065 .08461 L +.31379 .08695 L +.30682 .08952 L +.29974 .09232 L +.29256 .09533 L +.28528 .09856 L +.27791 .102 L +.27045 .10565 L +.26293 .10949 L +.25535 .11351 L +.24771 .11772 L +.24004 .1221 L +.23235 .12664 L +.22465 .13133 L +.21696 .13615 L +.2093 .1411 L +.20168 .14617 L +.19412 .15133 L +.18666 .15658 L +.1793 .1619 L +.17208 .16727 L +.16502 .17267 L +.15815 .17809 L +.1515 .18351 L +.14509 .1889 L +.13897 .19424 L +.13317 .19952 L +.12773 .2047 L +.12268 .20977 L +.11806 .2147 L +.11393 .21945 L +.11032 .22401 L +.10728 .22834 L +.10486 .23241 L +.10312 .23619 L +.10212 .23965 L +.10189 .24274 L +.10252 .24545 L +.10406 .24772 L +.10658 .24952 L +.11015 .25081 L +.11483 .25155 L +.12071 .25169 L +.12786 .25119 L +Mistroke +.13636 .25 L +Mfstroke +0 0 1 r +.13636 .25 m +.36364 .425 L +.54545 .25 L +.81818 .0625 L +.95455 .25 L +.81818 .4375 L +.54545 .25 L +.36364 .075 L +.13636 .25 L +s +5 Mabswid +.13636 .25 Mdot +.36364 .425 Mdot +.54545 .25 Mdot +.81818 .0625 Mdot +.95455 .25 Mdot +.81818 .4375 Mdot +.54545 .25 Mdot +.36364 .075 Mdot +.13636 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{842, 421}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`80ObXZ +8P3oool20000oad0oooo00<0003o0?ooo`3oool05P3oool20?l000/0oooo0P1o:RZB0?ooo`00/P3o +ool207lZ:Th0oooo0`00o`080?ooo`@0o`003P3oool207lZ:P80oooo0P000?l:0?ooo`030000o`3o +ool0oooo00d0oooo0`00o`0B0?ooo`80o`00G`3oool00`000000oooo0?ooo`1^0?ooo`80o`00503o +ool00`00o`00oooo0?ooo`0;0?ooo`<0ObXZ8`3oool00`000?l0oooo0?ooo`0N0?ooo`030000o`3o +ool0oooo01L0oooo0P3o000;0?ooo`80ObXZT03oool00;40oooo00<0ObXZ0?ooo`3oool0B@3oool5 +003o00T0oooo0P3o000D0?ooo`0307lZ:P000?l0oooo00`0oooo00<0003o0?ooo`3oool03`3oool2 +003o0180oooo0`3o001L0?ooo`030000003oool0oooo06d0oooo00<0o`000?ooo`3oool04P3oool2 +003o00`0oooo0P1o:RXU0?ooo`030000o`3oool0oooo0200oooo00<0003o0?ooo`3oool05`3oool0 +0`00o`00o`000?ooo`0;0?ooo`0307lZ:P3oool0oooo08d0oooo002`0?ooo`0307lZ:P3oool0oooo +04H0oooo1000o`0;0?ooo`<0o`005P3oool010000?l0oooo07lZ:P1o:RX<0?ooo`030000o`3oool0 +oooo0100oooo0P00o`0C0?ooo`80o`00FP3oool00`000000oooo0?ooo`1[0?ooo`80o`004`3oool2 +003o00`0oooo0P1o:RXU0?ooo`80003o8`3oool00`000?l0oooo0?ooo`0I0?ooo`030?l0003oool0 +oooo00X0oooo00<0ObXZ0?ooo`3oool0S03oool00:h0oooo0P1o:RY70?ooo`800?l03@3oool20?l0 +01L0oooo0P000?l40?ooo`<0ObXZ2P3oool00`000?l0oooo0?ooo`0A0?ooo`<00?l04P3oool20?l0 +05P0oooo00<000000?ooo`3oool0J@3oool20?l001<0oooo0P00o`0<0?ooo`80ObXZ9P3oool00`00 +0?l0oooo0?ooo`0T0?ooo`030000o`3oool0oooo01T0oooo00<0o`000?ooo`3oool02P3oool207lZ +:X`0oooo002]0?ooo`0307lZ:P3oool0oooo04@0oooo0`00o`0<0?ooo`<0o`00603oool00`000?l0 +oooo0?ooo`070?ooo`80ObXZ2@3oool00`000?l0oooo0?ooo`0C0?ooo`800?l04P3oool00`3o0000 +oooo0?ooo`1E0?ooo`@00000IP3oool20?l001<0oooo0P00o`0<0?ooo`80ObXZ9P3oool20000obP0 +oooo00<0003o0?ooo`3oool06@3oool00`3o00000?l00?ooo`0;0?ooo`0307lZ:P3oool0oooo08T0 +oooo002/0?ooo`0307lZ:P3oool0oooo0440oooo1000o`0<0?ooo`<0o`006P3oool00`000?l0oooo +0?ooo`0:0?ooo`80ObXZ203oool00`000?l0oooo0?ooo`0D0?ooo`03003o003oool0oooo0100oooo +0P3o001E0?ooo`030000003oool0oooo06D0oooo0P3o000C0?ooo`800?l0303oool207lZ:RL0oooo +00<0003o0?ooo`3oool0:@3oool00`000?l0oooo0?ooo`0I0?ooo`80o`00303oool00`1o:RX0oooo +0?ooo`280?ooo`00ZP3oool207lZ:T80oooo0P00o`0=0?ooo`<0o`00703oool00`000?l0oooo0?oo +o`0=0?ooo`0307lZ:P3oool0oooo00H0oooo00<0003o0?ooo`3oool0503oool2003o0180oooo0P3o +001C0?ooo`030000003oool0oooo06@0oooo00<0o`000?ooo`3oool04@3oool2003o00d0oooo00<0 +ObXZ0?ooo`3oool09@3oool20000ob`0oooo00<0003o0?ooo`3oool06`3oool20?l000/0oooo00<0 +ObXZ0?ooo`3oool0Q`3oool00:T0oooo00<0ObXZ0?ooo`3oool0@03oool2003o00d0oooo0P3o000M +0?ooo`80003o4@3oool207lZ:PL0oooo00<0003o0?ooo`3oool05@3oool2003o0180oooo0P3o001A +0?ooo`030000003oool0oooo06<0oooo00<0o`000?ooo`3oool04@3oool00`00o`00oooo0?ooo`0; +0?ooo`80ObXZ9`3oool00`000?l0oooo0?ooo`0]0?ooo`030000o`3oool0oooo01`0oooo0P3o000: +0?ooo`0307lZ:P3oool0oooo08H0oooo002X0?ooo`0307lZ:P3oool0oooo03l0oooo0P00o`0<0?oo +o`<0o`007P3oool00`000?l0oooo0?ooo`0C0?ooo`0307lZ:P3oool0oooo00D0oooo0P000?lG0?oo +o`<00?l04@3oool00`3o0000oooo0?ooo`1>0?ooo`030000003oool0oooo0680oooo00<0o`000?oo +o`3oool0403oool2003o00`0oooo0P1o:RXW0?ooo`80003o<@3oool00`000?l0oooo0?ooo`0L0?oo +o`03003o003o0000oooo00T0oooo00<0ObXZ0?ooo`3oool0Q@3oool00:L0oooo00<0ObXZ0?ooo`3o +ool0?@3oool3003o00/0oooo0`3o000P0?ooo`030000o`3oool0oooo01D0oooo0P1o:RX70?ooo`03 +0000o`3oool0oooo01L0oooo00<00?l00?ooo`3oool03`3oool00`3o0000oooo0?ooo`1=0?ooo`03 +0000003oool0oooo0600oooo0P3o000B0?ooo`03003o003oool0oooo00X0oooo0P1o:RXX0?ooo`03 +0000o`3oool0oooo0340oooo00<0003o0?ooo`3oool07@3oool00`00o`00o`000?ooo`090?ooo`03 +07lZ:P3oool0oooo08@0oooo002U0?ooo`80ObXZ?P3oool2003o00`0oooo0P3o000Q0?ooo`80003o +6P3oool00`1o:RX0oooo0?ooo`050?ooo`030000o`3oool0oooo01L0oooo00<00?l00?ooo`3oool0 +3`3oool00`3o0000oooo0?ooo`1<0?ooo`030000003oool0oooo05h0oooo0P3o000B0?ooo`800?l0 +303oool00`1o:RX0oooo0?ooo`0V0?ooo`80003o=@3oool00`000?l0oooo0?ooo`0M0?ooo`03003o +003o0000oooo00T0oooo0P1o:RZ40?ooo`00Y03oool00`1o:RX0oooo0?ooo`0k0?ooo`<00?l0303o +ool20?l00280oooo00<0003o0?ooo`3oool06`3oool207lZ:PH0oooo00<0003o0?ooo`3oool05`3o +ool00`00o`00oooo0?ooo`0?0?ooo`030?l0003oool0oooo04/0oooo00<000000?ooo`3oool0G@3o +ool00`3o0000oooo0?ooo`0@0?ooo`800?l0303oool207lZ:RP0oooo00<0003o0?ooo`3oool0=P3o +ool00`000?l0oooo0?ooo`0M0?ooo`03003o003o0000oooo00X0oooo00<0ObXZ0?ooo`3oool0P@3o +ool00:<0oooo00<0ObXZ0?ooo`3oool0>P3oool2003o00d0oooo0P3o000S0?ooo`030000o`3oool0 +oooo01h0oooo0P1o:RX50?ooo`030000o`3oool0oooo01L0oooo0P00o`0@0?ooo`80o`00B`3oool0 +0`000000oooo0?ooo`1K0?ooo`80o`004P3oool00`00o`00oooo0?ooo`0;0?ooo`0307lZ:P3oool0 +oooo02L0oooo00<0003o0?ooo`3oool0>03oool00`000?l0oooo0?ooo`0M0?ooo`03003o003o0000 +oooo00X0oooo00<0ObXZ0?ooo`3oool0P03oool00:80oooo00<0ObXZ0?ooo`3oool0>@3oool2003o +00d0oooo0P3o000S0?ooo`80003o8`3oool207lZ:P@0oooo00<0003o0?ooo`3oool0603oool00`00 +o`00oooo0?ooo`0?0?ooo`030?l0003oool0oooo04P0oooo00<000000?ooo`3oool0FP3oool00`3o +0000oooo0?ooo`0@0?ooo`800?l0303oool207lZ:RP0oooo0P000?lk0?ooo`030000o`3oool0oooo +01h0oooo00<00?l00?l0003oool02P3oool00`1o:RX0oooo0?ooo`1o0?ooo`00XP3oool00`1o:RX0 +oooo0?ooo`0g0?ooo`800?l0303oool30?l002@0oooo00<0003o0?ooo`3oool09@3oool00`1o:RX0 +oooo0?ooo`020?ooo`030000o`3oool0oooo01P0oooo0P00o`0@0?ooo`030?l0003oool0oooo04L0 +oooo1000001H0?ooo`030?l0003oool0oooo0100oooo00<00?l00?ooo`3oool02`3oool00`1o:RX0 +oooo0?ooo`0W0?ooo`030000o`3oool0oooo03`0oooo00<0003o0?ooo`3oool07P3oool00`00o`00 +o`000?ooo`0:0?ooo`0307lZ:P3oool0oooo07h0oooo002Q0?ooo`0307lZ:P3oool0oooo03H0oooo +0P00o`0<0?ooo`80o`009P3oool00`000?l0oooo0?ooo`0W0?ooo`80ObXZ0`3oool00`000?l0oooo +0?ooo`0I0?ooo`03003o003oool0oooo00h0oooo00<0o`000?ooo`3oool0AP3oool00`000000oooo +0?ooo`1G0?ooo`80o`004@3oool2003o00`0oooo0P1o:RXX0?ooo`80003o@03oool00`000?l0oooo +0?ooo`0O0?ooo`030?l0003oool0oooo00T0oooo00<0ObXZ0?ooo`3oool0O@3oool00:40oooo00<0 +ObXZ0?ooo`3oool0=03oool2003o00`0oooo0P3o000W0?ooo`030000o`3oool0oooo02X0oooo00D0 +ObXZ0?ooo`3oool0oooo0000o`0K0?ooo`800?l03`3oool00`3o0000oooo0?ooo`150?ooo`030000 +003oool0oooo05H0oooo00<0o`000?ooo`3oool0403oool00`00o`00oooo0?ooo`0:0?ooo`80ObXZ +:@3oool00`000?l0oooo0?ooo`110?ooo`030000o`3oool0oooo01l0oooo0P3o00090?ooo`0307lZ +:P3oool0oooo07d0oooo002P0?ooo`0307lZ:P3oool0oooo03<0oooo0P00o`0<0?ooo`80o`009`3o +ool20000obh0oooo0P1o:RX20?ooo`030000o`3oool0oooo01X0oooo00<00?l00?ooo`3oool03@3o +ool20?l004D0oooo00<000000?ooo`3oool0E@3oool00`3o0000oooo0?ooo`0@0?ooo`03003o003o +ool0oooo00T0oooo0P1o:RXY0?ooo`80003oA03oool00`000?l0oooo0?ooo`0P0?ooo`03003o003o +0000oooo00P0oooo00<0ObXZ0?ooo`3oool0O03oool009l0oooo00<0ObXZ0?ooo`3oool0<`3oool0 +0`00o`00oooo0?ooo`0:0?ooo`80o`00:03oool00`000?l0oooo0?ooo`0`0?ooo`80ObXZ00<0oooo +0000o`3oool06`3oool00`00o`00oooo0?ooo`0>0?ooo`030?l0003oool0oooo0480oooo00<00000 +0?ooo`3oool0D`3oool20?l00140oooo0P00o`0;0?ooo`0307lZ:P3oool0oooo02P0oooo00<0003o +0?ooo`3oool0A@3oool00`000?l0oooo0?ooo`0P0?ooo`03003o003o0000oooo00P0oooo00<0ObXZ +0?ooo`3oool0N`3oool009h0oooo00<0ObXZ0?ooo`3oool00?ooo`030?l0003oool0oooo0100oooo00<00?l00?ooo`3oool0203oool207lZ:RX0oooo0P00 +0?m?0?ooo`030000o`3oool0oooo0240oooo00<0o`000?ooo`3oool01`3oool00`1o:RX0oooo0?oo +o`1h0?ooo`00VP3oool00`1o:RX0oooo0?ooo`0_0?ooo`03003o003oool0oooo00X0oooo0P3o000Z +0?ooo`80003o@03oool00`000?l0oooo0?ooo`0K0?ooo`03003o003oool0oooo00`0oooo00<0o`00 +0?ooo`3oool0?P3oool4000004`0oooo00<0o`000?ooo`3oool0403oool00`00o`00oooo0?ooo`08 +0?ooo`0307lZ:P3oool0oooo02T0oooo00<0003o0?ooo`3oool0D03oool00`000?l0oooo0?ooo`0P +0?ooo`03003o003o0000oooo00P0oooo00<0ObXZ0?ooo`3oool0M`3oool009T0oooo00<0ObXZ0?oo +o`3oool0;P3oool2003o00/0oooo0P3o000[0?ooo`030000o`3oool0oooo0440oooo00<0003o0?oo +o`3oool06`3oool00`00o`00oooo0?ooo`0<0?ooo`030?l0003oool0oooo03d0oooo00<000000?oo +o`3oool0C03oool00`3o0000oooo0?ooo`0?0?ooo`800?l02P3oool00`1o:RX0oooo0?ooo`0X0?oo +o`80003oD`3oool00`000?l0oooo0?ooo`0Q0?ooo`03003o003o0000oooo00P0oooo00<0ObXZ0?oo +o`3oool0MP3oool009T0oooo00<0ObXZ0?ooo`3oool0;03oool2003o00/0oooo0P3o000/0?ooo`03 +0000o`3oool0oooo04<0oooo00<0003o0?ooo`3oool06`3oool00`00o`00oooo0?ooo`0<0?ooo`03 +0?l0003oool0oooo03`0oooo00<000000?ooo`3oool0B`3oool00`3o0000oooo0?ooo`0?0?ooo`03 +003o003oool0oooo00T0oooo00<0ObXZ0?ooo`3oool0:03oool00`000?l0oooo0?ooo`1D0?ooo`03 +0000o`3oool0oooo0240oooo00<00?l00?l0003oool0203oool00`1o:RX0oooo0?ooo`1e0?ooo`00 +V03oool00`1o:RX0oooo0?ooo`0[0?ooo`800?l02`3oool20?l002d0oooo00<0003o0?ooo`3oool0 +A@3oool00`000?l0ObXZ0?ooo`0K0?ooo`03003o003oool0oooo00`0oooo00<0o`000?ooo`3oool0 +>`3oool00`000000oooo0?ooo`1:0?ooo`030?l0003oool0oooo00l0oooo00<00?l00?ooo`3oool0 +2@3oool00`1o:RX0oooo0?ooo`0W0?ooo`80003oF03oool00`000?l0oooo0?ooo`0Q0?ooo`03003o +003o0000oooo00P0oooo00<0ObXZ0?ooo`3oool0M03oool009P0oooo00<0ObXZ0?ooo`3oool0:@3o +ool2003o00/0oooo0P3o000]0?ooo`80003oB@3oool00`000?l0ObXZ07lZ:P0K0?ooo`03003o003o +ool0oooo00`0oooo00<0o`000?ooo`3oool0>P3oool00`000000oooo0?ooo`190?ooo`030?l0003o +ool0oooo00h0oooo0P00o`0:0?ooo`80ObXZ:@3oool00`000?l0oooo0?ooo`1I0?ooo`030000o`3o +ool0oooo0240oooo00<00?l00?l0003oool01`3oool00`1o:RX0oooo0?ooo`1d0?ooo`00U`3oool0 +0`1o:RX0oooo0?ooo`0Y0?ooo`03003o003oool0oooo00T0oooo0P3o000^0?ooo`030000o`3oool0 +oooo04X0oooo00<0003o0?ooo`1o:RX06`3oool00`00o`00oooo0?ooo`0<0?ooo`030?l0003oool0 +oooo03T0oooo00<000000?ooo`3oool0B03oool00`3o0000oooo0?ooo`0>0?ooo`03003o003oool0 +oooo00T0oooo00<0ObXZ0?ooo`3oool09`3oool20000oe`0oooo00<0003o0?ooo`3oool08P3oool0 +0`00o`00o`000?ooo`070?ooo`0307lZ:P3oool0oooo07<0oooo002F0?ooo`0307lZ:P3oool0oooo +02T0oooo00<00?l00?ooo`3oool02@3oool00`3o0000oooo0?ooo`0]0?ooo`030000o`3oool0oooo +04`0oooo00<0003o0?ooo`1o:RX06`3oool00`00o`00oooo0?ooo`0<0?ooo`030?l0003oool0oooo +03P0oooo00<000000?ooo`3oool0A`3oool00`3o0000oooo0?ooo`0>0?ooo`03003o003oool0oooo +00T0oooo00<0ObXZ0?ooo`3oool09`3oool00`000?l0oooo0?ooo`1M0?ooo`030000o`3oool0oooo +0280oooo00<00?l00?l0003oool01P3oool00`1o:RX0oooo0?ooo`1c0?ooo`00U@3oool00`1o:RX0 +oooo0?ooo`0X0?ooo`800?l02P3oool20?l002h0oooo0P000?m@0?ooo`040000o`3oool0ObXZ07lZ +:QX0oooo00<00?l00?ooo`3oool0303oool00`3o0000oooo0?ooo`0g0?ooo`030000003oool0oooo +04H0oooo00<0o`000?ooo`3oool03P3oool00`00o`00oooo0?ooo`090?ooo`0307lZ:P3oool0oooo +02H0oooo0P000?mQ0?ooo`030000o`3oool0oooo0240oooo00<00?l00?ooo`3o00001`3oool00`1o +:RX0oooo0?ooo`1b0?ooo`00U@3oool00`1o:RX0oooo0?ooo`0W0?ooo`03003o003oool0oooo00T0 +oooo00<0o`000?ooo`3oool0;@3oool00`000?l0oooo0?ooo`1A0?ooo`040000o`3oool0oooo07lZ +:QX0oooo00<00?l00?ooo`3oool0303oool00`3o0000oooo0?ooo`0X0?ooo`@000002P3oool00`00 +0000oooo0?ooo`140?ooo`80o`00403oool00`00o`00oooo0?ooo`090?ooo`0307lZ:P3oool0oooo +02H0oooo00<0003o0?ooo`3oool0HP3oool00`000?l0oooo0?ooo`0Q0?ooo`03003o003oool0o`00 +00L0oooo00<0ObXZ0?ooo`3oool0L@3oool009@0oooo00<0ObXZ0?ooo`3oool09`3oool00`00o`00 +oooo0?ooo`080?ooo`80o`00;`3oool00`000?l0oooo0?ooo`1C0?ooo`040000o`3oool0oooo07lZ +:QX0oooo00<00?l00?ooo`3oool02`3oool00`3o0000oooo0?ooo`0X0?ooo`030000003oool0oooo +00/0oooo00<000000?ooo`3oool0@`3oool00`3o0000oooo0?ooo`0?0?ooo`03003o003oool0oooo +00P0oooo0P1o:RXX0?ooo`030000o`3oool0oooo06<0oooo00<0003o0?ooo`3oool08P3oool00`00 +o`00oooo0?l000060?ooo`0307lZ:P3oool0oooo0740oooo002D0?ooo`0307lZ:P3oool0oooo02D0 +oooo0P00o`090?ooo`80o`00<03oool00`000?l0oooo0?ooo`1E0?ooo`040000o`3oool0oooo07lZ +:QT0oooo00<00?l00?ooo`3oool0303oool00`3o0000oooo0?ooo`0X0?ooo`030000003oool0oooo +00X0oooo1P00000o0?ooo`030?l0003oool0oooo00h0oooo0P00o`0:0?ooo`0307lZ:P3oool0oooo +02H0oooo0P000?mW0?ooo`030000o`3oool0oooo0240oooo00@00?l00?ooo`3oool0o`001P3oool0 +0`1o:RX0oooo0?ooo`1`0?ooo`00T`3oool00`1o:RX0oooo0?ooo`0U0?ooo`03003o003oool0oooo +00L0oooo0P3o000`0?ooo`80003oF@3oool010000?l0oooo0?ooo`1o:RXI0?ooo`03003o003oool0 +oooo00`0oooo00<0o`000?ooo`3oool0803oool4000000@0oooo00<000000?ooo`3oool02@3oool0 +0`000000oooo0?ooo`110?ooo`030?l0003oool0oooo00h0oooo00<00?l00?ooo`3oool02@3oool0 +0`1o:RX0oooo0?ooo`0V0?ooo`030000o`3oool0oooo06P0oooo00<0003o0?ooo`3oool08@3oool0 +0`00o`00oooo0?l000060?ooo`0307lZ:P3oool0oooo0700oooo002B0?ooo`0307lZ:P3oool0oooo +02D0oooo00<00?l00?ooo`3oool01P3oool20?l00340oooo00<0003o0?ooo`3oool0FP3oool20000 +o`030?ooo`1o:RX0ObXZ01P0oooo00<00?l00?ooo`3oool0303oool00`3o0000oooo0?ooo`0U0?oo +o`040000003oool0oooo000000X0oooo00<000000?ooo`3oool0@@3oool00`3o0000oooo0?ooo`0= +0?ooo`03003o003oool0oooo00T0oooo00<0ObXZ0?ooo`3oool09@3oool20000of/0oooo00<0003o +0?ooo`3oool08P3oool00`00o`00oooo0?l000060?ooo`0307lZ:P3oool0oooo06l0oooo002B0?oo +o`0307lZ:P3oool0oooo02<0oooo0P00o`080?ooo`030?l0003oool0oooo0300oooo00<0003o0?oo +o`3oool0G@3oool010000?l0oooo0?ooo`1o:RXH0?ooo`03003o003oool0oooo00/0oooo00<0o`00 +0?ooo`3oool09P3oool2000000/0oooo00<000000?ooo`3oool0@03oool00`3o0000oooo0?ooo`0< +0?ooo`800?l02P3oool207lZ:RL0oooo00<0003o0?ooo`3oool0K03oool00`000?l0oooo0?ooo`0R +0?ooo`03003o003oool0o`0000H0oooo00<0ObXZ0?ooo`3oool0KP3oool00940oooo00<0ObXZ0?oo +o`3oool08`3oool00`00o`00oooo0?ooo`060?ooo`80o`00<@3oool20000of40oooo00@0003o0?oo +o`3oool0ObXZ603oool00`00o`00oooo0?ooo`0;0?ooo`030?l0003oool0oooo0380oooo00<00000 +0?ooo`3oool0?`3oool00`3o0000oooo0?ooo`0<0?ooo`03003o003oool0oooo00T0oooo00<0ObXZ +0?ooo`3oool09@3oool20000og00oooo00<0003o0?ooo`3oool08@3oool00`00o`00oooo0?l00006 +0?ooo`0307lZ:P3oool0oooo06h0oooo002A0?ooo`0307lZ:P3oool0oooo0280oooo00<00?l00?oo +o`3oool01P3oool00`3o0000oooo0?ooo`0`0?ooo`030000o`3oool0oooo0680oooo00@0003o0?oo +o`3oool0ObXZ603oool00`00o`00oooo0?ooo`0;0?ooo`030?l0003oool0oooo0340oooo00<00000 +0?ooo`3oool0?@3oool20?l000h0oooo00<00?l00?ooo`3oool02@3oool00`1o:RX0oooo0?ooo`0U +0?ooo`030000o`3oool0oooo0740oooo00<0003o0?ooo`3oool08@3oool00`00o`00oooo0?l00006 +0?ooo`0307lZ:P3oool0oooo06d0oooo002@0?ooo`0307lZ:P3oool0oooo0240oooo0P00o`070?oo +o`80o`00P3oool00`3o0000oooo0?ooo`0> +0?ooo`03003o003oool0oooo00L0oooo0P1o:RXU0?ooo`80003oN@3oool00`000?l0oooo0?ooo`0Q +0?ooo`03003o003oool0o`0000D0oooo00<0ObXZ0?ooo`3oool0K03oool008h0oooo00<0ObXZ0?oo +o`3oool07`3oool2003o00D0oooo0P3o000d0?ooo`030000o`3oool0oooo06/0oooo00D0003o0?oo +o`3oool0oooo07lZ:P0G0?ooo`03003o003oool0oooo00T0oooo00<0o`000?ooo`3oool0;`3oool4 +000003T0oooo00<0o`000?ooo`3oool03@3oool00`00o`00oooo0?ooo`070?ooo`0307lZ:P3oool0 +oooo02@0oooo00<0003o0?ooo`3oool0NP3oool00`000?l0oooo0?ooo`0Q0?ooo`03003o003oool0 +o`0000@0oooo00<0ObXZ0?ooo`3oool0K03oool008h0oooo00<0ObXZ0?ooo`3oool07P3oool00`00 +o`00oooo0?ooo`040?ooo`030?l0003oool0oooo03<0oooo00<0003o0?ooo`3oool0K@3oool01@00 +0?l0oooo0?ooo`3oool0ObXZ01L0oooo00<00?l00?ooo`3oool02@3oool00`3o0000oooo0?ooo`0^ +0?ooo`030000003oool0oooo03T0oooo00<0o`000?ooo`3oool0303oool2003o00T0oooo00<0ObXZ +0?ooo`3oool0903oool00`000?l0oooo0?ooo`1k0?ooo`030000o`3oool0oooo0280oooo00<00?l0 +0?l0003oool0103oool00`1o:RX0oooo0?ooo`1[0?ooo`00SP3oool00`1o:RX0oooo0?ooo`0M0?oo +o`03003o003oool0oooo00<0oooo0P3o000d0?ooo`80003oL@3oool01@000?l0oooo0?ooo`3oool0 +ObXZ01H0oooo00<00?l00?ooo`3oool02@3oool00`3o0000oooo0?ooo`0^0?ooo`030000003oool0 +oooo03P0oooo00<0o`000?ooo`3oool0303oool00`00o`00oooo0?ooo`080?ooo`0307lZ:P3oool0 +oooo02<0oooo0P000?mo0?ooo`030000o`3oool0oooo0240oooo00<00?l00?ooo`3o00001@3oool0 +0`1o:RX0oooo0?ooo`1Z0?ooo`00S@3oool00`1o:RX0oooo0?ooo`0L0?ooo`800?l01@3oool00`3o +0000oooo0?ooo`0c0?ooo`030000o`3oool0oooo0780oooo00@0003o0?ooo`3oool0oooo0P1o:RXE +0?ooo`03003o003oool0oooo00T0oooo00<0o`000?ooo`3oool0;@3oool00`000000oooo0?ooo`0g +0?ooo`030?l0003oool0oooo00`0oooo00<00?l00?ooo`3oool01`3oool207lZ:RD0oooo00<0003o +0?ooo`3oool0P03oool00`000?l0oooo0?ooo`0Q0?ooo`03003o003o0000oooo00@0oooo00<0ObXZ +0?ooo`3oool0JP3oool008d0oooo00<0ObXZ0?ooo`3oool06`3oool00`00o`00oooo0?ooo`040?oo +o`030?l0003oool0oooo03<0oooo00<0003o0?ooo`3oool0M03oool00`000?l0oooo0?ooo`020?oo +o`0307lZ:P3oool0oooo0180oooo00<00?l00?ooo`3oool02P3oool00`3o0000oooo0?ooo`0/0?oo +o`030000003oool0oooo03H0oooo00<0o`000?ooo`3oool0303oool00`00o`00oooo0?ooo`070?oo +o`0307lZ:P3oool0oooo02<0oooo0P000?n30?ooo`030000o`3oool0oooo0240oooo00<00?l00?oo +o`3o00001@3oool00`1o:RX0oooo0?ooo`1Y0?ooo`00S03oool00`1o:RX0oooo0?ooo`0K0?ooo`03 +003o003oool0oooo00<0oooo0P3o000d0?ooo`80003oN03oool00`000?l0oooo0?ooo`020?ooo`03 +07lZ:P3oool0oooo0180oooo00<00?l00?ooo`3oool02P3oool00`3o0000oooo0?ooo`0[0?ooo`03 +0000003oool0oooo03D0oooo00<0o`000?ooo`3oool0303oool00`00o`00oooo0?ooo`070?ooo`03 +07lZ:P3oool0oooo02<0oooo00<0003o0?ooo`3oool0Q03oool00`000?l0oooo0?ooo`0Q0?ooo`03 +003o003o0000oooo00@0oooo00<0ObXZ0?ooo`3oool0J@3oool008`0oooo00<0ObXZ0?ooo`3oool0 +6@3oool2003o00D0oooo00<0o`000?ooo`3oool0<`3oool00`000?l0oooo0?ooo`1i0?ooo`030000 +o`3oool0oooo0080oooo00<0ObXZ0?ooo`3oool04P3oool00`00o`00oooo0?ooo`0:0?ooo`030?l0 +003oool0oooo02X0oooo00<000000?ooo`3oool0=03oool00`3o0000oooo0?ooo`0<0?ooo`03003o +003oool0oooo00L0oooo00<0ObXZ0?ooo`3oool08P3oool20000ohP0oooo00<0003o0?ooo`3oool0 +803oool00`00o`00oooo0?l000050?ooo`0307lZ:P3oool0oooo06P0oooo002;0?ooo`0307lZ:P3o +ool0oooo01T0oooo00<00?l00?ooo`3oool0103oool00`3o0000oooo0?ooo`0c0?ooo`030000o`3o +ool0oooo07/0oooo00<0003o0?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`0B0?ooo`03003o003o +ool0oooo00T0oooo00<0o`000?ooo`3oool0:P3oool00`000000oooo0?ooo`0c0?ooo`030?l0003o +ool0oooo00`0oooo00<00?l00?ooo`3oool01`3oool00`1o:RX0oooo0?ooo`0R0?ooo`030000o`3o +ool0oooo08T0oooo00<0003o0?ooo`3oool0803oool00`00o`00o`000?ooo`040?ooo`0307lZ:P3o +ool0oooo06P0oooo002;0?ooo`0307lZ:P3oool0oooo01P0oooo00<00?l00?ooo`3oool00`3oool2 +0?l003@0oooo0P000?mo0?ooo`030000o`3oool0oooo0080oooo0P1o:RXC0?ooo`03003o003oool0 +oooo00T0oooo00<0o`000?ooo`3oool0:@3oool00`000000oooo0?ooo`0c0?ooo`030?l0003oool0 +oooo00X0oooo0P00o`080?ooo`80ObXZ8`3oool20000oh`0oooo00<0003o0?ooo`3oool08@3oool0 +0`00o`00o`000?ooo`030?ooo`0307lZ:P3oool0oooo06P0oooo002:0?ooo`0307lZ:P3oool0oooo +01P0oooo00<00?l00?ooo`3oool00`3oool00`3o0000oooo0?ooo`0c0?ooo`030000o`3oool0oooo +0800oooo00<0003o0?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`0A0?ooo`03003o003oool0oooo +00P0oooo00<0o`000?ooo`3oool0:@3oool00`000000oooo0?ooo`0b0?ooo`030?l0003oool0oooo +00X0oooo00<00?l00?ooo`3oool01`3oool00`1o:RX0oooo0?ooo`0R0?ooo`030000o`3oool0oooo +08d0oooo00<0003o0?ooo`3oool0803oool00`00o`00oooo0?l000040?ooo`0307lZ:P3oool0oooo +06L0oooo002:0?ooo`0307lZ:P3oool0oooo01P0oooo00@00?l00?ooo`3oool0oooo0P3o000e0?oo +o`030000o`3oool0oooo0880oooo00<0003o0?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`0A0?oo +o`03003o003oool0oooo00P0oooo00<0o`000?ooo`3oool0:03oool400000300oooo00<0o`000?oo +o`3oool02P3oool00`00o`00oooo0?ooo`070?ooo`0307lZ:P3oool0oooo0280oooo00<0003o0?oo +o`3oool0S`3oool00`000?l0oooo0?ooo`0P0?ooo`03003o003o0000oooo00<0oooo00<0ObXZ0?oo +o`3oool0I`3oool008X0oooo00<0ObXZ0?ooo`3oool05`3oool01@00o`00oooo0?ooo`3oool0o`00 +03H0oooo00<0003o0?ooo`3oool0Q03oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P3oool0oooo +0140oooo00<00?l00?ooo`3oool0203oool00`3o0000oooo0?ooo`0W0?ooo`030000003oool0oooo +0300oooo00<0o`000?ooo`3oool02P3oool00`00o`00oooo0?ooo`070?ooo`0307lZ:P3oool0oooo +0240oooo0P000?nC0?ooo`030000o`3oool0oooo0200oooo00<00?l00?l0003oool00`3oool00`1o +:RX0oooo0?ooo`1V0?ooo`00R@3oool00`1o:RX0oooo0?ooo`0G0?ooo`03003o003oool0oooo0080 +o`00=@3oool20000ohP0oooo00<0003o0?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`0@0?ooo`03 +003o003oool0oooo00P0oooo00<0o`000?ooo`3oool09`3oool00`000000oooo0?ooo`0`0?ooo`03 +0?l0003oool0oooo00X0oooo00<00?l00?ooo`3oool01@3oool207lZ:R<0oooo00<0003o0?ooo`3o +ool0T`3oool00`000?l0oooo0?ooo`0P0?ooo`03003o003o0000oooo00<0oooo00<0ObXZ0?ooo`3o +ool0IP3oool008T0oooo00<0ObXZ0?ooo`3oool05@3oool2003o0080oooo00<0o`000?ooo`3oool0 +=03oool00`000?l0oooo0?ooo`290?ooo`030000o`3oool0oooo00<0oooo00<0ObXZ0?ooo`3oool0 +403oool00`00o`00oooo0?ooo`080?ooo`030?l0003oool0oooo02H0oooo00<000000?ooo`3oool0 +;`3oool00`3o0000oooo0?ooo`0:0?ooo`03003o003oool0oooo00D0oooo00<0ObXZ0?ooo`3oool0 +8@3oool20000oiL0oooo00<0003o0?ooo`3oool0803oool00`00o`00o`000?ooo`030?ooo`0307lZ +:P3oool0oooo06D0oooo00280?ooo`0307lZ:P3oool0oooo01D0oooo00<00?l00?ooo`3oool00P3o +000f0?ooo`030000o`3oool0oooo08/0oooo00<0003o0?ooo`3oool00`3oool00`1o:RX0oooo0?oo +o`0?0?ooo`03003o003oool0oooo00T0oooo00<0o`000?ooo`3oool09@3oool00`000000oooo0?oo +o`0^0?ooo`030?l0003oool0oooo00X0oooo00<00?l00?ooo`3oool01@3oool00`1o:RX0oooo0?oo +o`0Q0?ooo`030000o`3oool0oooo09P0oooo00<0003o0?ooo`3oool07`3oool00`00o`00o`000?oo +o`030?ooo`0307lZ:P3oool0oooo06D0oooo00280?ooo`0307lZ:P3oool0oooo01@0oooo00@00?l0 +0?ooo`3oool0o`00=P3oool20000ohl0oooo00<0003o0?ooo`3oool00P3oool00`1o:RX0oooo0?oo +o`0@0?ooo`03003o003oool0oooo00P0oooo00<0o`000?ooo`3oool09@3oool00`000000oooo0?oo +o`0]0?ooo`030?l0003oool0oooo00T0oooo0P00o`070?ooo`0307lZ:P3oool0oooo0200oooo0P00 +0?nK0?ooo`030000o`3oool0oooo0200oooo00<00?l00?l0003oool00`3oool00`1o:RX0oooo0?oo +o`1T0?ooo`00R03oool00`1o:RX0oooo0?ooo`0C0?ooo`04003o003oool0o`000?l003H0oooo00<0 +003o0?ooo`3oool0T03oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3oool0oooo0100oooo00<0 +0?l00?ooo`3oool0203oool00`3o0000oooo0?ooo`0T0?ooo`030000003oool0oooo02`0oooo00<0 +o`000?ooo`3oool02@3oool00`00o`00oooo0?ooo`070?ooo`0307lZ:P3oool0oooo01l0oooo00<0 +003o0?ooo`3oool0W03oool00`000?l0oooo0?ooo`0O0?ooo`03003o003o0000oooo00<0oooo00<0 +ObXZ0?ooo`3oool0I03oool008L0oooo00<0ObXZ0?ooo`3oool04`3oool00`00o`00oooo0?l0000g +0?ooo`030000o`3oool0oooo0980oooo00<0003o0?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`0? +0?ooo`03003o003oool0oooo00P0oooo00<0o`000?ooo`3oool0903oool00`000000oooo0?ooo`0[ +0?ooo`030?l0003oool0oooo00T0oooo00<00?l00?ooo`3oool01`3oool00`1o:RX0oooo0?ooo`0N +0?ooo`80003oX03oool00`000?l0oooo0?ooo`0O0?ooo`03003o003o0000oooo00<0oooo00<0ObXZ +0?ooo`3oool0H`3oool008L0oooo00<0ObXZ0?ooo`3oool04P3oool00`00o`00o`000?l0000f0?oo +o`80003oUP3oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3oool0oooo00l0oooo00<00?l00?oo +o`3oool0203oool00`3o0000oooo0?ooo`0S0?ooo`030000003oool0oooo02X0oooo00<0o`000?oo +o`3oool02@3oool00`00o`00oooo0?ooo`070?ooo`0307lZ:P3oool0oooo01h0oooo00<0003o0?oo +o`3oool0X@3oool00`000?l0oooo0?ooo`0N0?ooo`03003o003o0000oooo00<0oooo00<0ObXZ0?oo +o`3oool0H`3oool008L0oooo00<0ObXZ0?ooo`3oool04@3oool00`00o`00o`000?ooo`0f0?ooo`03 +0000o`3oool0oooo09L0oooo00<0003o0?ooo`3oool00P3oool207lZ:Q00oooo00<00?l00?ooo`3o +ool0203oool00`3o0000oooo0?ooo`0R0?ooo`030000003oool0oooo02T0oooo00<0o`000?ooo`3o +ool02P3oool00`00o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo01d0oooo0P000?nT0?ooo`03 +0000o`3oool0oooo01l0oooo00<00?l00?l0003oool00P3oool00`1o:RX0oooo0?ooo`1S0?ooo`00 +QP3oool00`1o:RX0oooo0?ooo`0A0?ooo`03003o003o0000oooo03H0oooo00<0003o0?ooo`3oool0 +V@3oool20000o`@0oooo00<0ObXZ0?ooo`3oool03P3oool00`00o`00oooo0?ooo`070?ooo`030?l0 +003oool0oooo0280oooo1000000X0?ooo`030?l0003oool0oooo00T0oooo00<00?l00?ooo`3oool0 +1P3oool00`1o:RX0oooo0?ooo`0M0?ooo`030000o`3oool0oooo0:D0oooo00<0003o0?ooo`3oool0 +7P3oool00`00o`00o`000?ooo`030?ooo`0307lZ:P3oool0oooo0680oooo00260?ooo`0307lZ:P3o +ool0oooo0100oooo0P3o000g0?ooo`030000o`3oool0oooo09`0oooo00<0003o0?ooo`3oool00P3o +ool00`1o:RX0oooo0?ooo`0>0?ooo`03003o003oool0oooo00L0oooo00<0o`000?ooo`3oool08@3o +ool00`000000oooo0?ooo`0X0?ooo`030?l0003oool0oooo00T0oooo00<00?l00?ooo`3oool01P3o +ool00`1o:RX0oooo0?ooo`0M0?ooo`030000o`3oool0oooo0:L0oooo00<0003o0?ooo`3oool07@3o +ool00`00o`00oooo0?l000030?ooo`0307lZ:P3oool0oooo0680oooo00260?ooo`0307lZ:P3oool0 +oooo00l0oooo00<0o`000?ooo`3oool0=@3oool20000oj00oooo00<0003o0?ooo`3oool00P3oool0 +0`1o:RX0oooo0?ooo`0>0?ooo`03003o003oool0oooo00L0oooo00<0o`000?ooo`3oool0803oool0 +0`000000oooo0?ooo`0W0?ooo`030?l0003oool0oooo00T0oooo00<00?l00?ooo`3oool01P3oool0 +0`1o:RX0oooo0?ooo`0L0?ooo`80003oZ`3oool00`000?l0oooo0?ooo`0M0?ooo`03003o003o0000 +oooo0080oooo00<0ObXZ0?ooo`3oool0HP3oool008D0oooo00<0ObXZ0?ooo`3oool03`3oool00`3o +0000oooo0?ooo`0e0?ooo`030000o`3oool0oooo0:40oooo00<0003o0?ooo`3oool00P3oool00`1o +:RX0oooo0?ooo`0>0?ooo`03003o003oool0oooo00H0oooo00<0o`000?ooo`3oool0803oool00`00 +0000oooo0?ooo`0V0?ooo`030?l0003oool0oooo00T0oooo00<00?l00?ooo`3oool01P3oool00`1o +:RX0oooo0?ooo`0L0?ooo`030000o`3oool0oooo0:/0oooo00<0003o0?ooo`3oool07@3oool00`00 +o`00oooo0?l000030?ooo`0307lZ:P3oool0oooo0640oooo00250?ooo`0307lZ:P3oool0oooo00h0 +oooo00<0o`000?ooo`3oool0=@3oool00`000?l0oooo0?ooo`2S0?ooo`030000o`3oool0oooo0080 +oooo00<0ObXZ0?ooo`3oool03@3oool00`00o`00oooo0?ooo`070?ooo`030?l0003oool0oooo01l0 +oooo00<000000?ooo`3oool09P3oool00`3o0000oooo0?ooo`080?ooo`03003o003oool0oooo00H0 +oooo00<0ObXZ0?ooo`3oool06`3oool20000ojl0oooo00<0003o0?ooo`3oool0703oool00`00o`00 +oooo0?l000030?ooo`0307lZ:P3oool0oooo0640oooo00250?ooo`0307lZ:P3oool0oooo00`0oooo +0P3o000f0?ooo`80003oY`3oool01@000?l0oooo0?ooo`3oool0ObXZ0100oooo00<00?l00?ooo`3o +ool01P3oool00`3o0000oooo0?ooo`0O0?ooo`030000003oool0oooo02D0oooo00<0o`000?ooo`3o +ool0203oool00`00o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo01/0oooo00<0003o0?ooo`3o +ool0/03oool00`000?l0oooo0?ooo`0L0?ooo`03003o003oool0o`000080oooo00<0ObXZ0?ooo`3o +ool0H@3oool008@0oooo00<0ObXZ0?ooo`3oool0303oool00`3o00000?l00?ooo`0e0?ooo`030000 +o`3oool0oooo0:P0oooo00D0003o0?ooo`3oool0oooo07lZ:P0@0?ooo`03003o003oool0oooo00H0 +oooo00<0o`000?ooo`3oool07P3oool00`000000oooo0?ooo`0T0?ooo`030?l0003oool0oooo00P0 +oooo00<00?l00?ooo`3oool01P3oool00`1o:RX0oooo0?ooo`0J0?ooo`80003o]03oool00`000?l0 +oooo0?ooo`0K0?ooo`03003o003oool0o`000080oooo00<0ObXZ0?ooo`3oool0H@3oool008@0oooo +00<0ObXZ0?ooo`3oool02`3oool00`3o0000oooo003o000e0?ooo`030000o`3oool0oooo0:X0oooo +00D0003o0?ooo`3oool0oooo07lZ:P0?0?ooo`03003o003oool0oooo00H0oooo00<0o`000?ooo`3o +ool07P3oool00`000000oooo0?ooo`0S0?ooo`030?l0003oool0oooo00P0oooo00<00?l00?ooo`3o +ool01P3oool00`1o:RX0oooo0?ooo`0J0?ooo`030000o`3oool0oooo0;@0oooo00<0003o0?ooo`3o +ool0703oool00`00o`00oooo0?l000020?ooo`0307lZ:P3oool0oooo0600oooo00240?ooo`0307lZ +:P3oool0oooo00X0oooo00<0o`000?ooo`00o`00=03oool20000ojh0oooo00D0003o0?ooo`3oool0 +oooo07lZ:P0?0?ooo`03003o003oool0oooo00H0oooo00<0o`000?ooo`3oool07@3oool00`000000 +oooo0?ooo`0S0?ooo`030?l0003oool0oooo00L0oooo00<00?l00?ooo`3oool01P3oool00`1o:RX0 +oooo0?ooo`0I0?ooo`80003o^03oool00`000?l0oooo0?ooo`0K0?ooo`03003o003oool0o`000080 +oooo00<0ObXZ0?ooo`3oool0H03oool008@0oooo00<0ObXZ0?ooo`3oool02@3oool00`3o0000oooo +003o000d0?ooo`030000o`3oool0oooo0:l0oooo00D0003o0?ooo`3oool0oooo07lZ:P0>0?ooo`03 +003o003oool0oooo00H0oooo00<0o`000?ooo`3oool07@3oool400000240oooo00<0o`000?ooo`3o +ool01`3oool00`00o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo01T0oooo00<0003o0?ooo`3o +ool0^@3oool00`000?l0oooo0?ooo`0K0?ooo`05003o003o0000oooo0?ooo`1o:RX0HP3oool008<0 +oooo00<0ObXZ0?ooo`3oool0203oool20?l000030?ooo`00o`00oooo03<0oooo00<0003o0?ooo`3o +ool0/@3oool01@000?l0oooo0?ooo`3oool0ObXZ00h0oooo00<00?l00?ooo`3oool01P3oool00`3o +0000oooo0?ooo`0L0?ooo`030000003oool0oooo0240oooo00<0o`000?ooo`3oool01`3oool00`00 +o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo01T0oooo00<0003o0?ooo`3oool0^P3oool00`00 +0?l0oooo0?ooo`0K0?ooo`03003o003oool0o`000080oooo00<0ObXZ0?ooo`3oool0G`3oool008<0 +oooo00<0ObXZ0?ooo`3oool01`3oool01@3o0000oooo0?ooo`3oool00?l003<0oooo00<0003o0?oo +o`3oool0/`3oool01@000?l0oooo0?ooo`3oool0ObXZ00h0oooo00<00?l00?ooo`3oool01P3oool0 +0`3o0000oooo0?ooo`0K0?ooo`030000003oool0oooo0200oooo00<0o`000?ooo`3oool01`3oool0 +0`00o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo01P0oooo0P000?nn0?ooo`030000o`3oool0 +oooo01/0oooo00D00?l00?l0003oool0oooo07lZ:P1Q0?ooo`00P`3oool00`1o:RX0oooo0?ooo`06 +0?ooo`050?l0003oool0oooo0?ooo`00o`000?ooo`03003o003oool0oooo00D0oooo00<0o`000?ooo`3oool06`3oool00`000000oooo +0?ooo`0P0?ooo`030?l0003oool0oooo00H0oooo00<00?l00?ooo`3oool01P3oool00`1o:RX0oooo +0?ooo`0H0?ooo`030000o`3oool0oooo0;l0oooo00<0003o0?ooo`3oool06P3oool01@00o`00o`00 +0?ooo`3oool0ObXZ0640oooo00220?ooo`0307lZ:P3oool0oooo00H0oooo00D0o`000?ooo`3oool0 +oooo003o000b0?ooo`030000o`3oool0oooo0;P0oooo00D0003o0?ooo`3oool0oooo07lZ:P0>0?oo +o`03003o003oool0oooo00D0oooo00<0o`000?ooo`3oool06P3oool00`000000oooo0?ooo`0O0?oo +o`030?l0003oool0oooo00H0oooo00<00?l00?ooo`3oool01`3oool00`1o:RX0oooo0?ooo`0F0?oo +o`80003o``3oool00`000?l0oooo0?ooo`0J0?ooo`04003o003o0000oooo07lZ:V40oooo00220?oo +o`0307lZ:P3oool0oooo00@0oooo0P3o00040?ooo`03003o003oool0oooo02l0oooo00<0003o0?oo +o`3oool0^P3oool01@000?l0oooo0?ooo`3oool0ObXZ00h0oooo00<00?l00?ooo`3oool0103oool0 +0`3o0000oooo0?ooo`0J0?ooo`030000003oool0oooo01h0oooo00<0o`000?ooo`3oool01`3oool0 +0`00o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo01H0oooo00<0003o0?ooo`3oool0``3oool0 +0`000?l0oooo0?ooo`0J0?ooo`04003o003o0000oooo07lZ:V40oooo00220?ooo`0307lZ:P3oool0 +oooo00<0oooo00<0o`000?ooo`3oool00`3oool00`00o`00oooo0?ooo`0^0?ooo`80003o_P3oool0 +1@000?l0oooo0?ooo`3oool0ObXZ00d0oooo00<00?l00?ooo`3oool01@3oool00`3o0000oooo0?oo +o`0I0?ooo`030000003oool0oooo01h0oooo00<0o`000?ooo`3oool01P3oool00`00o`00oooo0?oo +o`060?ooo`0307lZ:P3oool0oooo01D0oooo0P000?o70?ooo`030000o`3oool0oooo01X0oooo00<0 +0?l00?l0001o:RX0H@3oool00840oooo00<0ObXZ0?ooo`3oool00`3oool00`3o0000oooo0?ooo`04 +0?ooo`03003o003oool0oooo02d0oooo00<0003o0?ooo`3oool0_`3oool01@000?l0oooo0?ooo`3o +ool0ObXZ00d0oooo00<00?l00?ooo`3oool0103oool00`3o0000oooo0?ooo`0I0?ooo`030000003o +ool0oooo01d0oooo00<0o`000?ooo`3oool01P3oool00`00o`00oooo0?ooo`050?ooo`80ObXZ5`3o +ool00`000?l0oooo0?ooo`380?ooo`030000o`3oool0oooo01T0oooo00@00?l00?l0003oool0ObXZ +H03oool00840oooo00<0ObXZ0?ooo`3oool00P3oool00`3o0000oooo0?ooo`040?ooo`03003o003o +ool0oooo02d0oooo00<0003o0?ooo`3oool0`@3oool01@000?l0oooo0?ooo`3oool0ObXZ00d0oooo +00<00?l00?ooo`3oool0103oool00`3o0000oooo0?ooo`0:0?ooo`D000002@3oool00`000000oooo +0?ooo`0M0?ooo`030?l0003oool0oooo00D0oooo00<00?l00?ooo`3oool01@3oool00`1o:RX0oooo +0?ooo`0E0?ooo`80003oc03oool00`000?l0oooo0?ooo`0H0?ooo`04003o003o0000oooo07lZ:V00 +oooo00210?ooo`0307lZ:P3oool0oooo0080o`001P3oool00`00o`00oooo0?ooo`0/0?ooo`80003o +a@3oool01@000?l0oooo0?ooo`3oool0ObXZ00`0oooo00<00?l00?ooo`3oool0103oool00`3o0000 +oooo0?ooo`0<0?ooo`030000003oool0oooo00T0oooo00<000000?ooo`3oool0703oool00`3o0000 +oooo0?ooo`050?ooo`03003o003oool0oooo00D0oooo00<0ObXZ0?ooo`3oool05@3oool00`000?l0 +oooo0?ooo`3<0?ooo`030000o`3oool0oooo01T0oooo00<00?l00?l0001o:RX0H03oool00840oooo +00<0ObXZ0?ooo`3o00001`3oool00`00o`00oooo0?ooo`0/0?ooo`030000o`3oool0oooo00?ooo`050000o`3oool0oooo0?ooo`1o:RX02`3o +ool00`00o`00oooo0?ooo`030?ooo`030?l0003oool0oooo00T0oooo0P00000;0?ooo`030000003o +ool0oooo01T0oooo00<0o`000?ooo`3oool01@3oool00`00o`00oooo0?ooo`040?ooo`0307lZ:P3o +ool0oooo01<0oooo0P000?oF0?ooo`030000o`3oool0oooo01L0oooo00@00?l00?l0003oool0ObXZ +GP3oool007l0oooo00<0o`0007lZ:P3oool01`3oool00`00o`00oooo0?ooo`0Y0?ooo`030000o`3o +ool0oooo000oooo00<0003o0?ooo`1o:RX02@3o +ool00`00o`00oooo0?ooo`030?ooo`030?l0003oool0oooo0140oooo00<000000?ooo`3oool0503o +ool00`3o0000oooo0?ooo`030?ooo`03003o003oool0oooo00@0oooo00<0ObXZ0?ooo`3oool03P3o +ool20000onP0oooo00<0003o0?ooo`3oool04`3oool00`3o00000?l007lZ:P1M0?ooo`00MP3oool0 +0`3o0000oooo0?ooo`060?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3oool0903oool0 +0`000?l0oooo0?ooo`3R0?ooo`030000o`3oool0ObXZ00T0oooo00<00?l00?ooo`3oool00`3oool0 +0`3o0000oooo0?ooo`0@0?ooo`030000003oool0oooo01<0oooo00<0o`000?ooo`3oool00`3oool0 +0`00o`00oooo0?ooo`040?ooo`0307lZ:P3oool0oooo00h0oooo00<0003o0?ooo`3oool0j@3oool0 +0`000?l0oooo0?ooo`0C0?ooo`030?l0001o:RX0oooo05`0oooo001e0?ooo`030?l0003oool0oooo +00H0oooo00<0ObXZ0?ooo`3oool00`3oool00`00o`00oooo0?ooo`0R0?ooo`80003oiP3oool00`00 +0?l0oooo07lZ:P080?ooo`03003o003oool0oooo00<0oooo00<0o`000?ooo`3oool0403oool00`00 +0000oooo0?ooo`0B0?ooo`030?l0003oool0oooo00<0oooo00<00?l00?ooo`3oool0103oool00`1o +:RX0oooo0?ooo`0>0?ooo`030000o`3oool0oooo0>X0oooo00<0003o0?ooo`3oool04`3oool00`3o +0000ObXZ0?ooo`1L0?ooo`00M03oool00`3o0000oooo0?ooo`070?ooo`0307lZ:P3oool0oooo0080 +oooo00<00?l00?ooo`3oool08P3oool00`000?l0oooo0?ooo`3W0?ooo`030000o`3oool0ObXZ00P0 +oooo00<00?l00?ooo`3oool00`3oool00`3o0000oooo0?ooo`0?0?ooo`030000003oool0oooo0180 +oooo00<0o`000?ooo`3oool00P3oool00`00o`00oooo0?ooo`040?ooo`0307lZ:P3oool0oooo00d0 +oooo0P000?o^0?ooo`030000o`3oool0oooo0180oooo00<0o`0007lZ:P3oool0G03oool007<0oooo +00<0o`000?ooo`3oool0203oool00`1o:RX0oooo0?ooo`020?ooo`03003o003oool0oooo0240oooo +00<0003o0?ooo`3oool0j@3oool00`000?l0oooo07lZ:P080?ooo`03003o003oool0oooo0080oooo +00<0o`000?ooo`3oool03`3oool00`000000oooo0?ooo`0A0?ooo`030?l0003oool0oooo00<0oooo +00<00?l00?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`0=0?ooo`030000o`3oool0oooo0>l0oooo +00<0003o0?ooo`3oool04@3oool00`3o0000ObXZ0?ooo`1L0?ooo`00LP3oool00`3o0000oooo0?oo +o`090?ooo`0307lZ:P3oool0oooo0080oooo00<00?l00?ooo`3oool07`3oool20000ond0oooo00<0 +003o0?ooo`1o:RX01`3oool00`00o`00oooo0?ooo`030?ooo`030?l0003oool0oooo00h0oooo00<0 +00000?ooo`3oool04@3oool00`3o0000oooo0?ooo`020?ooo`03003o003oool0oooo00<0oooo00<0 +ObXZ0?ooo`3oool0303oool20000oo<0oooo00<0003o0?ooo`3oool04@3oool00`3o0000ObXZ0?oo +o`1K0?ooo`00L@3oool00`3o0000oooo0?ooo`0:0?ooo`0507lZ:P3oool0oooo0?ooo`00o`008@3o +ool00`000?l0oooo0?ooo`3^0?ooo`040000o`3oool0ObXZ07lZ:PH0oooo00<00?l00?ooo`3oool0 +0P3oool00`3o0000oooo0?ooo`0>0?ooo`030000003oool0oooo0100oooo00<0o`000?ooo`3oool0 +0P3oool00`00o`00oooo0?ooo`030?ooo`0307lZ:P3oool0oooo00`0oooo00<0003o0?ooo`3oool0 +l`3oool00`000?l0oooo0?ooo`0A0?ooo`030?l0001o:RX0oooo05/0oooo001`0?ooo`030?l0003o +ool0oooo00/0oooo00D0ObXZ0?ooo`3oool0oooo003o000P0?ooo`030000o`3oool0oooo0?00oooo +00@0003o0?ooo`3oool0ObXZ1P3oool00`00o`00oooo0?ooo`020?ooo`030?l0003oool0oooo00d0 +oooo00<000000?ooo`3oool03`3oool00`3o0000oooo0?ooo`020?ooo`03003o003oool0oooo00<0 +oooo00<0ObXZ0?ooo`3oool02`3oool20000ooL0oooo00<0003o0?ooo`3oool0403oool00`3o0000 +ObXZ0?ooo`1K0?ooo`00K`3oool00`3o0000oooo0?ooo`0;0?ooo`0507lZ:P3oool0oooo0?ooo`00 +o`00803oool00`000?l0oooo0?ooo`3b0?ooo`040000o`3oool0oooo07lZ:PH0oooo00D00?l00?oo +o`3oool0oooo0?l0000?0?ooo`@000003@3oool00`3o0000oooo0?ooo`020?ooo`03003o003oool0 +oooo00<0oooo00<0ObXZ0?ooo`3oool02`3oool00`000?l0oooo0?ooo`3h0?ooo`030000o`3oool0 +oooo00l0oooo00<0o`0007lZ:P3oool0F`3oool006l0oooo00<0o`000?ooo`3oool02`3oool01@1o +:RX0oooo0?ooo`3oool00?l001h0oooo0P000?of0?ooo`030000o`3oool0ObXZ00H0oooo00<00?l0 +0?ooo`3oool00P3oool00`3o0000oooo0?ooo`0<0?ooo`030000003oool0oooo00h0oooo00D0o`00 +0?ooo`3oool0oooo003o00050?ooo`0307lZ:P3oool0oooo00X0oooo0P000?ol0?ooo`030000o`3o +ool0oooo00l0oooo00<0o`000?ooo`3oool0FP3oool006h0oooo00<0o`000?ooo`3oool0303oool0 +1@1o:RX0oooo0?ooo`3oool00?l001d0oooo00<0003o0?ooo`3oool0m`3oool00`000?l0oooo07lZ +:P060?ooo`05003o003oool0oooo0?ooo`3o00003P3oool00`000000oooo0?ooo`0=0?ooo`050?l0 +003oool0oooo0?ooo`00o`001@3oool00`1o:RX0oooo0?ooo`0:0?ooo`030000o`3oool0oooo0?`0 +oooo00<0003o0?ooo`3oool03`3oool00`3o0000oooo0?ooo`1J0?ooo`00K@3oool00`3o0000oooo +0?ooo`0=0?ooo`0407lZ:P3oool0oooo003o01d0oooo00<0003o0?ooo`3oool0n@3oool00`000?l0 +oooo07lZ:P060?ooo`05003o003oool0oooo0?ooo`3o00003@3oool00`000000oooo0?ooo`0<0?oo +o`050?l0003oool0oooo0?ooo`00o`001@3oool00`1o:RX0oooo0?ooo`0:0?ooo`030000o`3oool0 +oooo0?h0oooo00<0003o0?ooo`3oool03P3oool00`3o0000oooo0?ooo`1J0?ooo`00J`3oool20?l0 +0100oooo00@0ObXZ0?ooo`3oool00?l06`3oool20000ood0oooo00<0003o0?ooo`1o:RX01P3oool0 +1@00o`00oooo0?ooo`3oool0o`0000`0oooo00<000000?ooo`3oool0303oool01@3o0000oooo0?oo +o`3oool00?l000@0oooo00<0ObXZ0?ooo`3oool02@3oool20000ool0oooo0`3oool00`000?l0oooo +0?ooo`0=0?ooo`030?l0001o:RX0oooo05X0oooo001Z0?ooo`030?l0003oool0oooo0100oooo00@0 +ObXZ0?ooo`3oool00?l06P3oool00`000?l0oooo0?ooo`3n0?ooo`030000o`3oool0ObXZ00D0oooo +00D00?l00?ooo`3oool0oooo0?l0000<0?ooo`030000003oool0oooo00/0oooo00D0o`000?ooo`3o +ool0oooo003o00040?ooo`0307lZ:P3oool0oooo00T0oooo00<0003o0?ooo`3oool0o`3oool30?oo +o`030000o`3oool0oooo00d0oooo00<0o`0007lZ:P3oool0FP3oool006T0oooo00<0o`000?ooo`3o +ool04@3oool00`1o:RX0oooo003o000J0?ooo`030000o`3oool0oooo0?l0oooo0@3oool00`000?l0 +oooo07lZ:P050?ooo`05003o003oool0oooo0?ooo`3o00002`3oool00`000000oooo0?ooo`0;0?oo +o`040?l0003oool0oooo003o00@0oooo00<0ObXZ0?ooo`3oool0203oool20000ool0oooo1`3oool0 +0`000?l0oooo0?ooo`0<0?ooo`03003o003o0000oooo05X0oooo001Y0?ooo`030?l0003oool0oooo +0100oooo00@0ObXZ0?ooo`3oool00?l0603oool20000ool0oooo1@3oool00`000?l0oooo07lZ:P05 +0?ooo`04003o003oool0oooo0?l000/0oooo00<000000?ooo`3oool02P3oool0103o0000oooo0?oo +o`00o`040?ooo`0307lZ:P3oool0oooo00P0oooo00<0003o0?ooo`3oool0o`3oool80?ooo`030000 +o`3oool0oooo00/0oooo00<00?l00?l0003oool0FP3oool006P0oooo00<0o`000?ooo`3oool04@3o +ool00`1o:RX0oooo003o000H0?ooo`030000o`3oool0oooo0?l0oooo1P3oool010000?l0oooo07lZ +:P1o:RX40?ooo`04003o003oool0oooo0?l000X0oooo00<000000?ooo`3oool02@3oool01@3o0000 +oooo0?ooo`3oool00?l000<0oooo00<0ObXZ0?ooo`3oool01`3oool20000ool0oooo303oool00`00 +0?l0oooo0?ooo`0:0?ooo`03003o003o0000oooo05X0oooo001X0?ooo`030?l0003oool0oooo0140 +oooo00<0ObXZ0?ooo`00o`005`3oool00`000?l0oooo0?ooo`3o0?ooo`P0oooo00@0003o0?ooo`3o +ool0ObXZ0`3oool01000o`00oooo0?ooo`3o000:0?ooo`030000003oool0oooo00P0oooo00D0o`00 +0?ooo`3oool0oooo003o00030?ooo`0307lZ:P3oool0oooo00L0oooo00<0003o0?ooo`3oool0o`3o +ool<0?ooo`030000o`3oool0oooo00X0oooo00<00?l00?l0003oool0FP3oool006L0oooo00<0o`00 +0?ooo`3oool04P3oool00`1o:RX0oooo003o000F0?ooo`030000o`3oool0oooo0?l0oooo2P3oool0 +10000?l0oooo0?ooo`1o:RX30?ooo`04003o003oool0oooo0?l000T0oooo100000070?ooo`040?l0 +003oool0oooo003o00<0oooo00<0ObXZ0?ooo`3oool01P3oool20000ool0oooo403oool00`000?l0 +oooo0?ooo`0:0?ooo`030?l0003oool0oooo05T0oooo000D0?ooo`<00000C`3oool00`3o0000oooo +0?ooo`0C0?ooo`0307lZ:P00o`00oooo01@0oooo0P000?l<0?ooo`<00000Q`3oool4000007<0oooo +00<0003o0?ooo`1o:RX0103oool00`00o`00oooo0?l000090?ooo`030000003oool0oooo00L0oooo +00@0o`000?ooo`3oool00?l00`3oool00`1o:RX0oooo0?ooo`060?ooo`030000o`3oool0oooo06d0 +oooo100000290?ooo`<000004`3oool00`000?l0oooo0?ooo`090?ooo`030?l0003oool0oooo05T0 +oooo000D0?ooo`040000003oool0oooo000004d0oooo00<0o`000?ooo`3oool0503oool00`1o:RX0 +0?l00?ooo`0C0?ooo`030000o`3oool0oooo00d0oooo00<000000?ooo`3oool0QP3oool00`000000 +oooo0?ooo`1e0?ooo`030000o`3oool0ObXZ00@0oooo00<00?l00?ooo`3o0000203oool00`000000 +oooo0?ooo`070?ooo`040?l0003oool0oooo003o00<0oooo00<0ObXZ0?ooo`3oool0103oool20000 +og00oooo00<000000?ooo`3oool0R`3oool00`000000oooo0?ooo`0C0?ooo`030000o`3oool0oooo +00P0oooo00<0o`000?ooo`3oool0F@3oool001@0oooo00@000000?ooo`3oool00000C03oool00`3o +0000oooo0?ooo`0E0?ooo`0307lZ:P00o`00oooo0180oooo00<0003o0?ooo`3oool02`3oool50000 +08P0oooo00<000000?ooo`3oool0M@3oool00`000?l0oooo07lZ:P030?ooo`04003o003oool0oooo +0?l000L0oooo00<000000?ooo`3oool01P3oool0103o0000oooo0?ooo`00o`030?ooo`0307lZ:P3o +ool0oooo00@0oooo00<0003o0?ooo`3oool0L@3oool00`000000oooo0?ooo`270?ooo`D00000503o +ool00`000?l0oooo0?ooo`080?ooo`030?l0003oool0oooo05T0oooo000>0?ooo`@000000P3oool3 +000004d0oooo00<0o`000?ooo`3oool05@3oool00`1o:RX00?l00?ooo`0@0?ooo`80003o203oool4 +00000080oooo00@000000?ooo`3oool00000PP3oool4000000@0oooo00<000000?ooo`3oool0M@3o +ool00`000?l0oooo07lZ:P030?ooo`03003o003oool0o`0000L0oooo00<000000?ooo`3oool01P3o +ool00`3o0000oooo003o00030?ooo`0307lZ:P3oool0oooo00@0oooo00<0003o0?ooo`3oool0L`3o +ool00`000000oooo0?ooo`260?ooo`040000003oool0oooo000001H0oooo00<0003o0?ooo`3oool0 +1`3oool00`3o0000ObXZ0?ooo`1I0?ooo`005@3oool00`000000oooo0?ooo`1;0?ooo`030?l0003o +ool0oooo01H0oooo00<0ObXZ003o003oool03`3oool00`000?l0oooo0?ooo`0?0?ooo`030000003o +ool0000008P0oooo00@000000?ooo`3oool00000M`3oool00`000?l0oooo07lZ:P030?ooo`03003o +003oool0o`0000H0oooo00<000000?ooo`3oool01@3oool00`3o0000oooo003o00020?ooo`80ObXZ +1@3oool20000og@0oooo00@000000?ooo`3oool00000R03oool00`000000oooo0000000G0?ooo`03 +0000o`3oool0oooo00H0oooo00<0o`0007lZ:P3oool0F@3oool001D0oooo0`00001;0?ooo`030?l0 +003oool0oooo01H0oooo00<0ObXZ003o003oool03P3oool00`000?l0oooo0?ooo`0A0?ooo`800000 +R@3oool2000007T0oooo0P000?l01P1o:RX0oooo0?ooo`00o`00oooo0?l000H0oooo00<000000?oo +o`3oool01@3oool01@3o0000oooo003o003oool0ObXZ00H0oooo00<0003o0?ooo`3oool0M@3oool2 +000008X0oooo0P00000H0?ooo`030000o`3oool0oooo00D0oooo00<0o`0007lZ:P3oool0F@3oool0 +0680oooo00<0o`000?ooo`3oool05`3oool00`1o:RX00?l00?ooo`0<0?ooo`80003oo`3ooolM0?oo +o`070000o`1o:RX0oooo0?ooo`00o`00oooo0?l000050?ooo`030000003oool0oooo00@0oooo00D0 +o`000?ooo`00o`00oooo07lZ:P050?ooo`80003oo`3ooolO0?ooo`030000o`3oool0oooo00D0oooo +00<0o`0007lZ:P3oool0F@3oool00680oooo00<0o`000?ooo`3oool05`3oool00`1o:RX00?l00?oo +o`0;0?ooo`030000o`3oool0oooo0?l0oooo7P3oool01P000?l0oooo0?ooo`00o`00oooo0?l000D0 +oooo00<000000?ooo`3oool0103oool0103o00000?l00?ooo`1o:RX50?ooo`030000o`3oool0oooo +0?l0oooo803oool00`000?l0oooo0?ooo`040?ooo`030?l00000o`00oooo05T0oooo001R0?ooo`03 +0?l0003oool0oooo01L0oooo00<00?l00?ooo`3oool02P3oool00`000?l0oooo0?ooo`3o0?ooob00 +oooo00H0003o0?ooo`3oool00?l00?ooo`3o00040?ooo`@000000P3oool01@3o00000?l00?ooo`3o +ool0ObXZ00<0oooo0P000?oo0?ooob@0oooo00<0003o0?ooo`3oool0103oool00`3o0000oooo0?oo +o`1H0?ooo`00H@3oool00`3o0000oooo0?ooo`0H0?ooo`03003o003oool0oooo00T0oooo00<0003o +0?ooo`3oool0o`3ooolR0?ooo`050000o`3oool0oooo003o003o0000103oool00`000000oooo0?oo +o`030?ooo`040?l00000o`00oooo07lZ:P<0oooo00<0003o0?ooo`3oool0o`3ooolT0?ooo`030000 +o`3oool0oooo00@0oooo00<0o`000?ooo`3oool0F03oool00640oooo00<0o`000?ooo`3oool0603o +ool00`00o`00oooo0?ooo`070?ooo`80003oo`3ooolV0?ooo`050000o`3oool00?l00?ooo`3o0000 +0`3oool00`000000oooo0?ooo`020?ooo`040?l00000o`00oooo07lZ:P80oooo0P000?oo0?ooobP0 +oooo00<0003o0?ooo`3oool00`3oool00`3o0000oooo0?ooo`1H0?ooo`00H@3oool00`3o0000oooo +0?ooo`0H0?ooo`03003o003oool0oooo00H0oooo00<0003o0?ooo`3oool0o`3ooolW0?ooo`040000 +o`1o:RX00?l00?l000<0oooo00P000000?ooo`3oool0oooo0?l00000o`00oooo07lZ:P80oooo00<0 +003o0?ooo`3oool0o`3ooolY0?ooo`030000o`3oool0oooo0080oooo00<0o`000?ooo`3oool0F03o +ool00640oooo00<0o`000?ooo`3oool0603oool00`00o`00oooo0?ooo`050?ooo`030000o`3oool0 +oooo0?l0oooo:@3oool010000?l0ObXZ003o003o00020?ooo`080000003oool0oooo0?l00000o`00 +oooo07lZ:P3oool20000ool0oooo;@3oool01@000?l0oooo0?ooo`3oool0o`0005X0oooo001Q0?oo +o`030?l0003oool0oooo01P0oooo00<00?l00?ooo`3oool00`3oool20000ool0oooo;@3oool01P00 +0?l0ObXZ003o003o0000oooo00000080oooo00D0o`000?ooo`1o:RX0oooo0000o`3o0?ooobl0oooo +00D0003o0?ooo`3oool0oooo0?l0001J0?ooo`00HP3oool00`3o0000oooo0?ooo`0G0?ooo`03003o +003oool0oooo0080oooo00<0003o0?ooo`3oool0o`3oool^0?ooo`0;0000o`00o`00o`000?ooo`00 +0000oooo0?l00000o`00ObXZ0?ooo`000?l0o`3ooola0?ooo`040000o`3oool0oooo0?l005X0oooo +001R0?ooo`030?l0003oool0oooo01L0oooo00D00?l00?ooo`3oool0oooo0000o`3o0?oooc80oooo +00L0003o003o003o000000000?ooo`3o0000oooo0080003oo`3ooolc0?ooo`030000o`3oool0o`00 +05X0oooo001S0?ooo`030?l0003oool0oooo00P0oooo1@3o00080?ooo`D0003oo`3ooold0?ooo`@0 +003o00<0oooo0000o`3oool0o`3ooole0?ooo`<0003o=`3oool00`000000oooo0?ooo`080?ooo`80 +000000<0oooo0000000000004P3oool006@0oooo0P3o00000`3oool0o`000?l000050?l000D0oooo +1P3o00000`3oool0003o0000o`030000ool0oooo=@3oool50000ool0oooo=P3oool50000ocL0oooo +00<000000?ooo`3oool0203oool00`000000oooo0000000C0?ooo`004`3ooomB000000@0o`004000 +00000`3o0000003o0000o`030000ool00000=@0000050000ool00000=P0000050000ob4000005`3o +ool2000000T0oooo00<000000?ooo`3oool04P3oool001<0oooo00<000000?ooo`3oool0803oool0 +0`000000oooo0?ooo`0P0?ooo`030000003oool0oooo00L0oooo0P3o00040?oooa00o`0000<0oooo +0000o`000?l00`000?lO0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool0803oool0 +0`000000oooo0?ooo`0P0?ooo`030000003oool0oooo0200oooo00<000000?ooo`3oool0803oool0 +0`000000oooo0?ooo`0P0?ooo`030000003oool0oooo01l0oooo00<000000?ooo`3oool07P3oool5 +0000ob00oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003oool0 +oooo0200oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0O0?ooo`030000003oool0 +oooo0200oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0N0?ooo`D0003o=`3oool0 +0`000000oooo0?ooo`070?ooo`80000000<0oooo0000000000004P3oool001<0oooo00<000000?oo +o`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo00H0oooo00<0o`000?oo +o`3oool05P3oool50000oah0oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0P0?oo +o`030000003oool0oooo0200oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0P0?oo +o`030000003oool0oooo0200oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0N0?oo +o`@0003o00<0o`000000o`3oool07P3oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo +0200oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo +01l0oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo +01l0oooo0`000?lg0?ooo`030000003oool0oooo01l0oooo000C0?ooo`030000003oool0oooo0200 +oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`060?ooo`030?l0003oool0oooo01L0 +oooo00D00?l00?ooo`3oool0oooo0000o`0M0?ooo`030000003oool0oooo0200oooo00<000000?oo +o`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo0200oooo00<000000?oo +o`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003oool0oooo01l0oooo00<000000?oo +o`3oool07@3oool01`000?l0oooo0?l000000000oooo0?l0001o:RX00P000?lM0?ooo`030000003o +ool0oooo0200oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`0P0?ooo`030000003o +ool0oooo0200oooo00<000000?ooo`3oool07`3oool00`000000oooo0?ooo`0P0?ooo`030000003o +ool0oooo0200oooo00<000000?ooo`3oool07P3oool00`000?l0oooo0?l0001J0?ooo`004`3oool0 +0`000000oooo0?ooo`1;0?ooo`030?l0003oool0oooo01P0oooo00<00?l00?ooo`3oool00P3oool0 +0`000?l0oooo0?ooo`0J0?ooo`030000003oool0oooo08T0oooo00<000000?ooo`3oool0Q03oool0 +1@000?l00?l00?l0003oool000000080oooo00@0o`000?ooo`1o:RX0003oQ@3oool00`000000oooo +0?ooo`280?ooo`030000003oool0oooo01d0oooo00@0003o0?ooo`3oool0o`00FP3oool001<0oooo +00<000000?ooo`3oool0B`3oool00`3o0000oooo0?ooo`0H0?ooo`03003o003oool0oooo00<0oooo +0P000?lJ0?ooo`030000003oool0oooo08T0oooo00<000000?ooo`3oool0P`3oool01P000?l00?l0 +0?ooo`3o0000oooo00000080oooo00D0o`00003o003oool0ObXZ0000o`240?ooo`030000003oool0 +oooo08P0oooo00<000000?ooo`3oool0703oool01@000?l0oooo0?ooo`3oool0o`0005X0oooo001Q +0?ooo`030?l0003oool0oooo01P0oooo00<00?l00?ooo`3oool01@3oool00`000?l0oooo0?ooo`3o +0?ooobT0oooo00@0003o003o003oool0o`000P3oool020000000oooo0?ooo`3oool0o`00003o001o +:RX0oooo0P000?oo0?ooobd0oooo00D0003o0?ooo`3oool0oooo0?l0001J0?ooo`00H@3oool00`3o +0000oooo0?ooo`0H0?ooo`03003o003oool0oooo00H0oooo00<0003o0?ooo`3oool0o`3ooolW0?oo +o`040000o`1o:RX00?l00?l000<0oooo00P000000?ooo`3oool0oooo0?l0003oool00?l007lZ:P80 +oooo00<0003o0?ooo`3oool0o`3ooolY0?ooo`030000o`3oool0oooo0080oooo00<0o`000?ooo`3o +ool0F03oool00640oooo00<0o`000?ooo`3oool0603oool00`00o`00oooo0?ooo`070?ooo`80003o +o`3ooolV0?ooo`040000o`1o:RX00?l00?l000@0oooo00<000000?ooo`3oool00P3oool0103o0000 +oooo003o001o:RX20?ooo`80003oo`3ooolX0?ooo`030000o`3oool0oooo00<0oooo00<0o`000?oo +o`3oool0F03oool00640oooo00<0o`000?ooo`3oool0603oool00`00o`00oooo0?ooo`090?ooo`03 +0000o`3oool0oooo0?l0oooo8P3oool01@000?l0ObXZ0?ooo`00o`00o`0000@0oooo100000020?oo +o`040?l00000o`00oooo07lZ:P<0oooo00<0003o0?ooo`3oool0o`3ooolT0?ooo`030000o`3oool0 +oooo00@0oooo00<0o`000?ooo`3oool0F03oool00680oooo00<0o`000?ooo`3oool05`3oool00`00 +o`00oooo0?ooo`0:0?ooo`030000o`3oool0oooo0?l0oooo803oool01@000?l0ObXZ0?ooo`00o`00 +o`0000D0oooo00<000000?ooo`3oool00`3oool01@3o0000oooo003o003oool0ObXZ00<0oooo0P00 +0?oo0?ooob@0oooo00<0003o0?ooo`3oool0103oool00`3o0000oooo0?ooo`1H0?ooo`00HP3oool0 +0`3o0000oooo0?ooo`0G0?ooo`0307lZ:P00o`00oooo00/0oooo00<0003o0?ooo`3oool0o`3ooolN +0?ooo`060000o`3oool0oooo003o003oool0o`001@3oool00`000000oooo0?ooo`040?ooo`050?l0 +003oool00?l00?ooo`1o:RX0103oool00`000?l0oooo0?ooo`3o0?ooob00oooo00<0003o0?ooo`3o +ool0103oool00`3o0000ObXZ0?ooo`1I0?ooo`00H`3oool00`3o0000oooo0?ooo`0F0?ooo`0307lZ +:P00o`00oooo00`0oooo0P000?oo0?oooad0oooo00H0003o0?ooo`3oool0oooo003o003o00060?oo +o`030000003oool0oooo00D0oooo00D0o`000?ooo`00o`00oooo07lZ:P040?ooo`80003oo`3ooolO +0?ooo`030000o`3oool0oooo00D0oooo00<0o`0007lZ:P3oool0F@3oool006<0oooo00<0o`000?oo +o`3oool05P3oool00`1o:RX00?l00?ooo`0>0?ooo`030000o`3oool0oooo0?l0oooo603oool20000 +o`<0oooo00<00?l00?ooo`3o00001P3oool00`000000oooo0?ooo`050?ooo`030?l0003oool00?l0 +0080oooo00<0ObXZ0?ooo`3oool00`3oool00`000?l0oooo0?ooo`3o0?oooa`0oooo00<0003o0?oo +o`3oool01@3oool00`3o0000ObXZ0?ooo`1I0?ooo`00I03oool00`3o0000oooo0?ooo`0E0?ooo`03 +07lZ:P00o`00oooo00l0oooo00<0003o0?ooo`3oool0o`3ooolF0?ooo`030000o`1o:RX0oooo0080 +oooo00<00?l00?ooo`3o00001`3oool00`000000oooo0?ooo`060?ooo`030?l0003oool00?l00080 +oooo00<0ObXZ0?ooo`3oool00`3oool20000ool0oooo6`3oool00`000?l0oooo0?ooo`060?ooo`03 +0?l0001o:RX0oooo05T0oooo001T0?ooo`030?l0003oool0oooo01D0oooo00<0ObXZ0?ooo`00o`00 +403oool20000ool0oooo5@3oool00`000?l0ObXZ0?ooo`030?ooo`03003o003oool0o`0000L0oooo +00<000000?ooo`3oool01P3oool0103o0000oooo0?ooo`00o`020?ooo`0307lZ:P3oool0oooo00@0 +oooo00<0003o0?ooo`3oool0o`3ooolG0?ooo`030000o`3oool0oooo00L0oooo00<0o`000?ooo`3o +ool0F@3oool006D0oooo00<0o`000?ooo`3oool0503oool00`1o:RX0oooo003o000B0?ooo`030000 +o`3oool0oooo0?l0oooo4@3oool00`000?l0ObXZ0?ooo`030?ooo`03003o003oool0o`0000P0oooo +00<000000?ooo`3oool01`3oool0103o0000oooo0?ooo`00o`020?ooo`0307lZ:P3oool0oooo00@0 +oooo00<0003o0?ooo`3oool0o`3ooolE0?ooo`030000o`3oool0oooo00P0oooo00<0o`000?ooo`3o +ool0F@3oool006H0oooo00<0o`000?ooo`3oool04`3oool00`1o:RX0oooo003o000C0?ooo`030000 +o`3oool0oooo0?l0oooo3`3oool00`000?l0oooo07lZ:P040?ooo`03003o003oool0o`0000P0oooo +00<000000?ooo`3oool01`3oool0103o0000oooo0?ooo`00o`030?ooo`0307lZ:P3oool0oooo00@0 +oooo0P000?oo0?oooaD0oooo00<0003o0?ooo`3oool0203oool00`3o0000oooo0?ooo`1I0?ooo`00 +IP3oool00`3o0000oooo0?ooo`0C0?ooo`0307lZ:P3oool00?l001@0oooo0P000?oo0?ooo`h0oooo +00<0003o0?ooo`1o:RX0103oool00`00o`00oooo0?l000090?ooo`030000003oool0oooo00P0oooo +00@0o`000?ooo`3oool00?l00`3oool00`1o:RX0oooo0?ooo`050?ooo`030000o`3oool0oooo0?l0 +oooo4@3oool00`000?l0oooo0?ooo`090?ooo`030?l0003oool0oooo05T0oooo001W0?ooo`030?l0 +003oool0oooo0180oooo00@0ObXZ0?ooo`3oool00?l05@3oool00`000?l0oooo0?ooo`3o0?ooo`X0 +oooo00<0003o0?ooo`1o:RX0103oool01000o`00oooo0?ooo`3o00090?ooo`@000001`3oool01@3o +0000oooo0?ooo`3oool00?l000<0oooo00<0ObXZ0?ooo`3oool01@3oool20000ool0oooo403oool0 +0`000?l0oooo0?ooo`0:0?ooo`030?l0003oool0oooo05T0oooo001X0?ooo`030?l0003oool0oooo +0140oooo00@0ObXZ0?ooo`3oool00?l05P3oool00`000?l0oooo0?ooo`3o0?ooo`P0oooo00<0003o +07lZ:P1o:RX0103oool01000o`00oooo0?ooo`3o000:0?ooo`030000003oool0oooo00T0oooo00D0 +o`000?ooo`3oool0oooo003o00030?ooo`0307lZ:P3oool0oooo00H0oooo00<0003o0?ooo`3oool0 +o`3oool<0?ooo`030000o`3oool0oooo00X0oooo00<00?l00?l0003oool0FP3oool006T0oooo00<0 +o`000?ooo`3oool0403oool0101o:RX0oooo0?ooo`00o`0G0?ooo`030000o`3oool0oooo0?l0oooo +1P3oool00`000?l0ObXZ0?ooo`050?ooo`03003o003oool0o`0000/0oooo00<000000?ooo`3oool0 +2@3oool01@3o0000oooo0?ooo`3oool00?l000@0oooo00<0ObXZ0?ooo`3oool01P3oool20000ool0 +oooo303oool00`000?l0oooo0?ooo`0:0?ooo`03003o003o0000oooo05X0oooo001Y0?ooo`030?l0 +003oool0oooo0140oooo00<0ObXZ0?ooo`00o`00603oool20000ool0oooo1@3oool00`000?l0ObXZ +0?ooo`050?ooo`04003o003oool0oooo0?l000/0oooo00<000000?ooo`3oool02P3oool01@3o0000 +oooo0?ooo`3oool00?l000@0oooo00<0ObXZ0?ooo`3oool01`3oool00`000?l0oooo0?ooo`3o0?oo +o`P0oooo00<0003o0?ooo`3oool02`3oool00`00o`00o`000?ooo`1J0?ooo`00JP3oool00`3o0000 +oooo0?ooo`0@0?ooo`0407lZ:P3oool0oooo003o01T0oooo00<0003o0?ooo`3oool0o`3oool10?oo +o`030000o`1o:RX0oooo00D0oooo00@00?l00?ooo`3oool0o`00303oool00`000000oooo0?ooo`0; +0?ooo`050?l0003oool0oooo0?ooo`00o`000`3oool00`1o:RX0oooo0?ooo`080?ooo`80003oo`3o +ool70?ooo`030000o`3oool0oooo00`0oooo00<00?l00?l0003oool0FP3oool006/0oooo00<0o`00 +0?ooo`3oool03`3oool0101o:RX0oooo0?ooo`00o`0J0?ooo`030000o`3oool0oooo0?h0oooo00<0 +003o0?ooo`1o:RX01@3oool01@00o`00oooo0?ooo`3oool0o`0000`0oooo00<000000?ooo`3oool0 +2`3oool00`3o0000oooo0?ooo`020?ooo`05003o003oool0oooo0?ooo`1o:RX02`3oool00`000?l0 +oooo0?ooo`3o0?ooo`<0oooo00<0003o0?ooo`3oool03@3oool00`3o0000ObXZ0?ooo`1J0?ooo`00 +K03oool00`3o0000oooo0?ooo`0>0?ooo`0407lZ:P3oool0oooo003o01/0oooo0P000?om0?ooo`03 +0000o`3oool0ObXZ00H0oooo00@00?l00?ooo`3oool0o`003@3oool00`000000oooo0?ooo`0<0?oo +o`050?l0003oool0oooo0?ooo`00o`00103oool00`1o:RX0oooo0?ooo`090?ooo`80003oo`3oool3 +0?ooo`030000o`3oool0oooo00d0oooo00<0o`000?ooo`3oool0FP3oool006d0oooo00<0o`000?oo +o`3oool03@3oool0101o:RX0oooo0?ooo`00o`0M0?ooo`030000o`3oool0oooo0?T0oooo00<0003o +0?ooo`1o:RX01P3oool01@00o`00oooo0?ooo`3oool0o`0000d0oooo00<000000?ooo`3oool03@3o +ool01@3o0000oooo0?ooo`3oool00?l000@0oooo00<0ObXZ0?ooo`3oool02P3oool00`000?l0oooo +0?ooo`3n0?ooo`030000o`3oool0oooo00h0oooo00<0o`000?ooo`3oool0FP3oool006h0oooo00<0 +o`000?ooo`3oool0303oool01@1o:RX0oooo0?ooo`3oool00?l001d0oooo00<0003o0?ooo`3oool0 +m`3oool00`000?l0oooo07lZ:P060?ooo`05003o003oool0oooo0?ooo`3o00003P3oool00`000000 +oooo0?ooo`0>0?ooo`050?l0003oool0oooo0?ooo`00o`00103oool207lZ:P/0oooo00<0003o0?oo +o`3oool0o03oool00`000?l0oooo0?ooo`0?0?ooo`030?l0003oool0oooo05X0oooo001_0?ooo`03 +0?l0003oool0oooo00/0oooo00D0ObXZ0?ooo`3oool0oooo003o000N0?ooo`80003omP3oool00`00 +0?l0oooo07lZ:P060?ooo`03003o003oool0oooo0080oooo00<0o`000?ooo`3oool0303oool40000 +00d0oooo00<0o`000?ooo`3oool00P3oool00`00o`00oooo0?ooo`030?ooo`0307lZ:P3oool0oooo +00T0oooo0P000?ol0?ooo`030000o`3oool0oooo00h0oooo00<0o`0007lZ:P3oool0F`3oool006l0 +oooo00<0o`000?ooo`3oool0303oool0101o:RX0oooo0?ooo`00o`0P0?ooo`030000o`3oool0oooo +0?80oooo00<0003o0?ooo`1o:RX01`3oool01@00o`00oooo0?ooo`3oool0o`0000l0oooo00<00000 +0?ooo`3oool03`3oool00`3o0000oooo0?ooo`020?ooo`03003o003oool0oooo00<0oooo00<0ObXZ +0?ooo`3oool02P3oool00`000?l0oooo0?ooo`3h0?ooo`030000o`3oool0oooo00l0oooo00<0o`00 +07lZ:P3oool0F`3oool00700oooo00<0o`000?ooo`3oool02`3oool01@1o:RX0oooo0?ooo`3oool0 +0?l00200oooo00<0003o0?ooo`3oool0l03oool00`000?l0oooo07lZ:P070?ooo`05003o003oool0 +oooo0?ooo`3o0000403oool00`000000oooo0?ooo`0?0?ooo`030?l0003oool0oooo00<0oooo00<0 +0?l00?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`0:0?ooo`80003om`3oool00`000?l0oooo0?oo +o`0@0?ooo`030?l0001o:RX0oooo05/0oooo001a0?ooo`030?l0003oool0oooo00X0oooo00D0ObXZ +0?ooo`3oool0oooo003o000Q0?ooo`030000o`3oool0oooo0>h0oooo00<0003o0?ooo`1o:RX01`3o +ool00`00o`00oooo0?ooo`020?ooo`030?l0003oool0oooo00h0oooo00<000000?ooo`3oool0403o +ool00`3o0000oooo0?ooo`030?ooo`03003o003oool0oooo00<0oooo00<0ObXZ0?ooo`3oool02`3o +ool00`000?l0oooo0?ooo`3c0?ooo`030000o`3oool0oooo0140oooo00<0o`0007lZ:P3oool0F`3o +ool00780oooo00<0o`000?ooo`3oool02@3oool00`1o:RX0oooo0?ooo`020?ooo`03003o003oool0 +oooo01l0oooo0P000?o]0?ooo`030000o`3oool0ObXZ00P0oooo00D00?l00?ooo`3oool0oooo0?l0 +000A0?ooo`030000003oool0oooo0140oooo00<0o`000?ooo`3oool00`3oool00`00o`00oooo0?oo +o`030?ooo`0307lZ:P3oool0oooo00/0oooo0P000?oc0?ooo`030000o`3oool0oooo0140oooo00<0 +o`000?ooo`3oool0F`3oool007<0oooo0P3o00090?ooo`0307lZ:P3oool0oooo0080oooo00<00?l0 +0?ooo`3oool08@3oool00`000?l0oooo0?ooo`3Y0?ooo`030000o`3oool0ObXZ00P0oooo00<00?l0 +0?ooo`3oool00P3oool00`3o0000oooo0?ooo`0?0?ooo`030000003oool0oooo0140oooo00<0o`00 +0?ooo`3oool00`3oool00`00o`00oooo0?ooo`030?ooo`0307lZ:P3oool0oooo00d0oooo00<0003o +0?ooo`3oool0k`3oool00`000?l0oooo0?ooo`0A0?ooo`030?l0001o:RX0oooo05`0oooo001e0?oo +o`030?l0003oool0oooo00H0oooo00<0ObXZ0?ooo`3oool00`3oool00`00o`00oooo0?ooo`0Q0?oo +o`030000o`3oool0oooo0>L0oooo00<0003o0?ooo`1o:RX02@3oool01@00o`00oooo0?ooo`3oool0 +o`000180oooo00<000000?ooo`3oool04P3oool00`3o0000oooo0?ooo`030?ooo`03003o003oool0 +oooo00<0oooo00<0ObXZ0?ooo`3oool03@3oool20000onh0oooo00<0003o0?ooo`3oool04P3oool0 +0`3o0000ObXZ0?ooo`1L0?ooo`00MP3oool00`3o0000oooo0?ooo`050?ooo`0307lZ:P3oool0oooo +00<0oooo00<00?l00?ooo`3oool08P3oool20000onH0oooo00<0003o0?ooo`1o:RX02@3oool00`00 +o`00oooo0?ooo`020?ooo`030?l0003oool0oooo0100oooo00<000000?ooo`3oool04`3oool00`3o +0000oooo0?ooo`030?ooo`03003o003oool0oooo00<0oooo00<0ObXZ0?ooo`3oool03P3oool00`00 +0?l0oooo0?ooo`3Z0?ooo`030000o`3oool0oooo01<0oooo00<0o`0007lZ:P3oool0G03oool007L0 +oooo00<0o`000?ooo`3oool01@3oool00`1o:RX0oooo0?ooo`030?ooo`03003o003oool0oooo02<0 +oooo00<0003o0?ooo`3oool0hP3oool00`000?l0oooo07lZ:P090?ooo`03003o003oool0oooo0080 +oooo00<0o`000?ooo`3oool04@3oool00`000000oooo0?ooo`0D0?ooo`030?l0003oool0oooo00<0 +oooo00<00?l00?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`0>0?ooo`030000o`3oool0oooo0>T0 +oooo00<0003o0?ooo`3oool04`3oool00`3o0000ObXZ0?ooo`1L0?ooo`00N03oool00`3o0000oooo +0?ooo`040?ooo`0307lZ:P3oool0oooo00<0oooo00<00?l00?ooo`3oool0903oool00`000?l0oooo +0?ooo`3P0?ooo`030000o`3oool0ObXZ00X0oooo00<00?l00?ooo`3oool00P3oool00`3o0000oooo +0?ooo`0A0?ooo`030000003oool0oooo01@0oooo00<0o`000?ooo`3oool00`3oool00`00o`00oooo +0?ooo`040?ooo`0307lZ:P3oool0oooo00h0oooo0P000?oX0?ooo`030000o`3oool0oooo01<0oooo +00<0o`000?ooo`1o:RX0G@3oool007T0oooo00<0o`000?ooo`3oool00`3oool00`1o:RX0oooo0?oo +o`040?ooo`03003o003oool0oooo02@0oooo00<0003o0?ooo`3oool0gP3oool00`000?l0oooo07lZ +:P0:0?ooo`03003o003oool0oooo0080oooo00<0o`000?ooo`3oool04P3oool4000001@0oooo00<0 +o`000?ooo`3oool00`3oool00`00o`00oooo0?ooo`040?ooo`0307lZ:P3oool0oooo00l0oooo00<0 +003o0?ooo`3oool0i03oool00`000?l0oooo0?ooo`0D0?ooo`030?l0003oool0ObXZ05d0oooo001j +0?ooo`030?l0003oool0oooo0080oooo00<0ObXZ0?ooo`3oool0103oool00`00o`00oooo0?ooo`0U +0?ooo`80003og@3oool00`000?l0oooo07lZ:P0:0?ooo`03003o003oool0oooo0080oooo00<0o`00 +0?ooo`3oool04`3oool00`000000oooo0?ooo`0E0?ooo`030?l0003oool0oooo00@0oooo00<00?l0 +0?ooo`3oool0103oool00`1o:RX0oooo0?ooo`0?0?ooo`80003oi03oool00`000?l0oooo0?ooo`0D +0?ooo`030?l0001o:RX0oooo05d0oooo001k0?ooo`80o`000P3oool00`1o:RX0oooo0?ooo`050?oo +o`03003o003oool0oooo02H0oooo00<0003o0?ooo`3oool0f03oool20000o`030?ooo`1o:RX0oooo +00T0oooo00<00?l00?ooo`3oool00`3oool00`3o0000oooo0?ooo`0C0?ooo`030000003oool0oooo +01H0oooo00<0o`000?ooo`3oool0103oool00`00o`00oooo0?ooo`040?ooo`80ObXZ4@3oool00`00 +0?l0oooo0?ooo`3P0?ooo`030000o`3oool0oooo01@0oooo00<00?l00?l0001o:RX0GP3oool007d0 +oooo00<0o`000?ooo`1o:RX01`3oool00`00o`00oooo0?ooo`0W0?ooo`030000o`3oool0oooo0=H0 +oooo00@0003o0?ooo`3oool0ObXZ2`3oool00`00o`00oooo0?ooo`020?ooo`030?l0003oool0oooo +01@0oooo00<000000?ooo`3oool05`3oool00`3o0000oooo0?ooo`040?ooo`03003o003oool0oooo +00D0oooo00<0ObXZ0?ooo`3oool03`3oool20000oml0oooo00<0003o0?ooo`3oool05@3oool00`3o +0000oooo07lZ:P1N0?ooo`00OP3oool00`3o0000oooo07lZ:P070?ooo`03003o003oool0oooo02L0 +oooo0P000?oE0?ooo`040000o`3oool0oooo07lZ:P/0oooo00<00?l00?ooo`3oool00`3oool00`3o +0000oooo0?ooo`0D0?ooo`030000003oool0oooo01L0oooo00<0o`000?ooo`3oool01@3oool00`00 +o`00oooo0?ooo`050?ooo`0307lZ:P3oool0oooo0100oooo00<0003o0?ooo`3oool0f`3oool00`00 +0?l0oooo0?ooo`0E0?ooo`04003o003o0000oooo07lZ:Uh0oooo001o0?ooo`030?l0001o:RX0oooo +00H0oooo00<00?l00?ooo`3oool0:@3oool00`000?l0oooo0?ooo`3A0?ooo`040000o`3oool0oooo +07lZ:P/0oooo00<00?l00?ooo`3oool00`3oool00`3o0000oooo0?ooo`0E0?ooo`030000003oool0 +oooo01P0oooo00<0o`000?ooo`3oool01@3oool00`00o`00oooo0?ooo`040?ooo`0307lZ:P3oool0 +oooo0140oooo0P000?oK0?ooo`030000o`3oool0oooo01D0oooo00@00?l00?l0003oool0ObXZGP3o +ool00800oooo00<0o`000?ooo`3oool01P3oool00`00o`00oooo0?ooo`0Y0?ooo`030000o`3oool0 +oooo00?ooo`03003o003oool0oooo00<0oooo00<0o`000?ooo`3oool0303oool00`00 +0000oooo0?ooo`090?ooo`030000003oool0oooo01`0oooo00<0o`000?ooo`3oool01P3oool00`00 +o`00oooo0?ooo`050?ooo`0307lZ:P3oool0oooo01@0oooo00<0003o0?ooo`3oool0c03oool00`00 +0?l0oooo0?ooo`0H0?ooo`04003o003o0000oooo07lZ:V00oooo00210?ooo`0307lZ:P3oool0oooo +0080oooo00<0o`000?ooo`3oool0103oool00`00o`00oooo0?ooo`0]0?ooo`030000o`3oool0oooo +0<40oooo00@0003o0?ooo`3oool0ObXZ3P3oool00`00o`00oooo0?ooo`030?ooo`030?l0003oool0 +oooo00d0oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`0M0?ooo`030?l0003oool0 +oooo00H0oooo00<00?l00?ooo`3oool01@3oool00`1o:RX0oooo0?ooo`0D0?ooo`80003oc03oool0 +0`000?l0oooo0?ooo`0H0?ooo`04003o003o0000oooo07lZ:V00oooo00210?ooo`0307lZ:P3oool0 +oooo00<0oooo00<0o`000?ooo`3oool0103oool00`00o`00oooo0?ooo`0]0?ooo`030000o`3oool0 +oooo0;l0oooo00D0003o0?ooo`3oool0oooo07lZ:P0=0?ooo`03003o003oool0oooo00@0oooo00<0 +o`000?ooo`3oool0303oool2000000/0oooo00<000000?ooo`3oool07@3oool00`3o0000oooo0?oo +o`070?ooo`03003o003oool0oooo00D0oooo00<0ObXZ0?ooo`3oool05@3oool00`000?l0oooo0?oo +o`380?ooo`030000o`3oool0oooo01P0oooo00@00?l00?ooo`3o0000ObXZH@3oool00880oooo00<0 +ObXZ0?ooo`3oool00`3oool00`3o0000oooo0?ooo`040?ooo`03003o003oool0oooo02d0oooo0P00 +0?nn0?ooo`050000o`3oool0oooo0?ooo`1o:RX03@3oool00`00o`00oooo0?ooo`050?ooo`030?l0 +003oool0oooo01T0oooo00<000000?ooo`3oool07P3oool00`3o0000oooo0?ooo`070?ooo`03003o +003oool0oooo00D0oooo00<0ObXZ0?ooo`3oool05@3oool20000olL0oooo00<0003o0?ooo`3oool0 +6@3oool01000o`00o`000?ooo`1o:RYQ0?ooo`00PP3oool00`1o:RX0oooo0?ooo`040?ooo`80o`00 +103oool00`00o`00oooo0?ooo`0_0?ooo`030000o`3oool0oooo0;X0oooo00D0003o0?ooo`3oool0 +oooo07lZ:P0>0?ooo`03003o003oool0oooo00@0oooo00<0o`000?ooo`3oool06P3oool00`000000 +oooo0?ooo`0O0?ooo`030?l0003oool0oooo00H0oooo00<00?l00?ooo`3oool01P3oool00`1o:RX0 +oooo0?ooo`0F0?ooo`030000o`3oool0oooo0<<0oooo00<0003o0?ooo`3oool06P3oool01000o`00 +o`000?ooo`1o:RYQ0?ooo`00PP3oool00`1o:RX0oooo0?ooo`060?ooo`030?l0003oool0oooo0080 +oooo00<00?l00?ooo`3oool0;`3oool00`000?l0oooo0?ooo`2h0?ooo`050000o`3oool0oooo0?oo +o`1o:RX03P3oool00`00o`00oooo0?ooo`050?ooo`030?l0003oool0oooo01X0oooo00<000000?oo +o`3oool0803oool00`3o0000oooo0?ooo`060?ooo`03003o003oool0oooo00H0oooo00<0ObXZ0?oo +o`3oool05P3oool20000ol<0oooo00<0003o0?ooo`3oool06@3oool01@00o`00o`000?ooo`3oool0 +ObXZ0640oooo00230?ooo`0307lZ:P3oool0oooo00H0oooo00<0o`000?ooo`3oool00P3oool00`00 +o`00oooo0?ooo`0_0?ooo`80003o]`3oool01@000?l0oooo0?ooo`3oool0ObXZ00h0oooo00<00?l0 +0?ooo`3oool01@3oool00`3o0000oooo0?ooo`0K0?ooo`030000003oool0oooo0200oooo00<0o`00 +0?ooo`3oool01`3oool00`00o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo01L0oooo00<0003o +0?ooo`3oool0_`3oool00`000?l0oooo0?ooo`0J0?ooo`05003o003o0000oooo0?ooo`1o:RX0H@3o +ool008<0oooo00<0ObXZ0?ooo`3oool01`3oool20?l000<0oooo00<00?l00?ooo`3oool0<03oool0 +0`000?l0oooo0?ooo`2c0?ooo`050000o`3oool0oooo0?ooo`1o:RX03`3oool00`00o`00oooo0?oo +o`050?ooo`030?l0003oool0oooo01/0oooo00<000000?ooo`3oool08@3oool00`3o0000oooo0?oo +o`070?ooo`03003o003oool0oooo00H0oooo00<0ObXZ0?ooo`3oool05`3oool20000okh0oooo00<0 +003o0?ooo`3oool06`3oool01@00o`00o`000?ooo`3oool0ObXZ0640oooo00230?ooo`0307lZ:P3o +ool0oooo00T0oooo00@0o`000?ooo`3oool00?l0<`3oool00`000?l0oooo0?ooo`2a0?ooo`030000 +o`3oool0oooo0080ObXZ3`3oool00`00o`00oooo0?ooo`050?ooo`030?l0003oool0oooo01`0oooo +1000000Q0?ooo`030?l0003oool0oooo00L0oooo00<00?l00?ooo`3oool01P3oool00`1o:RX0oooo +0?ooo`0H0?ooo`030000o`3oool0oooo0;X0oooo00<0003o0?ooo`3oool06`3oool00`00o`00o`00 +0?ooo`020?ooo`0307lZ:P3oool0oooo05l0oooo00240?ooo`0307lZ:P3oool0oooo00T0oooo0P3o +00000`3oool00?l00?ooo`0b0?ooo`030000o`3oool0oooo0:l0oooo00@0003o0?ooo`3oool0ObXZ +4@3oool00`00o`00oooo0?ooo`040?ooo`030?l0003oool0oooo01d0oooo00<000000?ooo`3oool0 +8`3oool00`3o0000oooo0?ooo`070?ooo`03003o003oool0oooo00H0oooo00<0ObXZ0?ooo`3oool0 +603oool00`000?l0oooo0?ooo`2i0?ooo`030000o`3oool0oooo01/0oooo00D00?l00?l0003oool0 +oooo07lZ:P1R0?ooo`00Q03oool00`1o:RX0oooo0?ooo`0;0?ooo`030?l0003oool00?l003<0oooo +0P000?n^0?ooo`040000o`3oool0oooo07lZ:Q40oooo00<00?l00?ooo`3oool01@3oool00`3o0000 +oooo0?ooo`0M0?ooo`030000003oool0oooo02<0oooo00<0o`000?ooo`3oool0203oool00`00o`00 +oooo0?ooo`060?ooo`0307lZ:P3oool0oooo01P0oooo0P000?nh0?ooo`030000o`3oool0oooo01/0 +oooo00<00?l00?ooo`3o00000P3oool00`1o:RX0oooo0?ooo`1P0?ooo`00Q03oool00`1o:RX0oooo +0?ooo`0<0?ooo`030?l0003oool00?l003@0oooo00<0003o0?ooo`3oool0ZP3oool010000?l0oooo +0?ooo`1o:RXA0?ooo`03003o003oool0oooo00D0oooo00<0o`000?ooo`3oool07P3oool00`000000 +oooo0?ooo`0T0?ooo`030?l0003oool0oooo00P0oooo00<00?l00?ooo`3oool01@3oool00`1o:RX0 +oooo0?ooo`0J0?ooo`030000o`3oool0oooo0;@0oooo00<0003o0?ooo`3oool0703oool00`00o`00 +o`000?ooo`020?ooo`0307lZ:P3oool0oooo0600oooo00250?ooo`0307lZ:P3oool0oooo00`0oooo +0P3o000e0?ooo`030000o`3oool0oooo0:P0oooo00D0003o0?ooo`3oool0oooo07lZ:P0@0?ooo`03 +003o003oool0oooo00D0oooo00<0o`000?ooo`3oool07`3oool00`000000oooo0?ooo`0T0?ooo`03 +0?l0003oool0oooo00T0oooo00<00?l00?ooo`3oool01@3oool00`1o:RX0oooo0?ooo`0J0?ooo`80 +003o]03oool00`000?l0oooo0?ooo`0K0?ooo`03003o003oool0o`000080oooo00<0ObXZ0?ooo`3o +ool0H@3oool008D0oooo00<0ObXZ0?ooo`3oool03P3oool00`3o0000oooo0?ooo`0c0?ooo`80003o +Y`3oool01@000?l0oooo0?ooo`3oool0ObXZ0100oooo00<00?l00?ooo`3oool01P3oool00`3o0000 +oooo0?ooo`0O0?ooo`030000003oool0oooo02D0oooo00<0o`000?ooo`3oool02@3oool00`00o`00 +oooo0?ooo`050?ooo`0307lZ:P3oool0oooo01/0oooo00<0003o0?ooo`3oool0/03oool00`000?l0 +oooo0?ooo`0L0?ooo`03003o003o0000oooo0080oooo00<0ObXZ0?ooo`3oool0H@3oool008D0oooo +00<0ObXZ0?ooo`3oool03`3oool00`3o0000oooo0?ooo`0d0?ooo`030000o`3oool0oooo0:<0oooo +00D0003o0?ooo`3oool0oooo07lZ:P0@0?ooo`03003o003oool0oooo00H0oooo00<0o`000?ooo`3o +ool0803oool00`000000oooo0?ooo`0V0?ooo`030?l0003oool0oooo00T0oooo00<00?l00?ooo`3o +ool01@3oool00`1o:RX0oooo0?ooo`0K0?ooo`80003o[`3oool00`000?l0oooo0?ooo`0L0?ooo`03 +003o003oool0o`0000<0oooo00<0ObXZ0?ooo`3oool0H@3oool008H0oooo00<0ObXZ0?ooo`3oool0 +3`3oool00`3o0000oooo0?ooo`0d0?ooo`030000o`3oool0oooo0:40oooo00D0003o0?ooo`3oool0 +oooo07lZ:P0A0?ooo`03003o003oool0oooo00H0oooo00<0o`000?ooo`3oool0803oool00`000000 +oooo0?ooo`0V0?ooo`030?l0003oool0oooo00X0oooo00<00?l00?ooo`3oool01@3oool207lZ:Qd0 +oooo00<0003o0?ooo`3oool0Z`3oool00`000?l0oooo0?ooo`0M0?ooo`03003o003o0000oooo0080 +oooo00<0ObXZ0?ooo`3oool0HP3oool008H0oooo00<0ObXZ0?ooo`3oool0403oool20?l003D0oooo +0P000?nP0?ooo`050000o`3oool0oooo0?ooo`1o:RX04@3oool00`00o`00oooo0?ooo`060?ooo`03 +0?l0003oool0oooo0240oooo00<000000?ooo`3oool09`3oool00`3o0000oooo0?ooo`0:0?ooo`03 +003o003oool0oooo00H0oooo00<0ObXZ0?ooo`3oool06`3oool20000oj/0oooo00<0003o0?ooo`3o +ool07@3oool00`00o`00o`000?ooo`020?ooo`0307lZ:P3oool0oooo0680oooo00260?ooo`0307lZ +:P3oool0oooo0140oooo00<00?l00?l0003oool0=@3oool00`000?l0oooo0?ooo`2L0?ooo`050000 +o`3oool0oooo0?ooo`1o:RX04@3oool00`00o`00oooo0?ooo`060?ooo`030?l0003oool0oooo0280 +oooo00<000000?ooo`3oool0:03oool00`3o0000oooo0?ooo`0:0?ooo`03003o003oool0oooo00H0 +oooo00<0ObXZ0?ooo`3oool0703oool00`000?l0oooo0?ooo`2W0?ooo`030000o`3oool0oooo01d0 +oooo00<00?l00?l0003oool00`3oool00`1o:RX0oooo0?ooo`1R0?ooo`00Q`3oool00`1o:RX0oooo +0?ooo`0A0?ooo`03003o003o0000oooo03D0oooo00<0003o0?ooo`3oool0V@3oool20000o`<0oooo +00<0ObXZ0?ooo`3oool0403oool00`00o`00oooo0?ooo`060?ooo`030?l0003oool0oooo0280oooo +1000000X0?ooo`030?l0003oool0oooo00X0oooo00<00?l00?ooo`3oool01@3oool00`1o:RX0oooo +0?ooo`0M0?ooo`030000o`3oool0oooo0:D0oooo00<0003o0?ooo`3oool07P3oool00`00o`00o`00 +0?ooo`020?ooo`0307lZ:P3oool0oooo06<0oooo00270?ooo`0307lZ:P3oool0oooo0140oooo00@0 +0?l00?ooo`3o0000o`00=@3oool00`000?l0oooo0?ooo`2G0?ooo`030000o`3oool0oooo00<0oooo +00<0ObXZ0?ooo`3oool03`3oool00`00o`00oooo0?ooo`060?ooo`030?l0003oool0oooo02<0oooo +00<000000?ooo`3oool0:@3oool00`3o0000oooo0?ooo`0:0?ooo`03003o003oool0oooo00H0oooo +00<0ObXZ0?ooo`3oool07@3oool20000oj@0oooo00<0003o0?ooo`3oool07`3oool00`3o0000oooo +0?ooo`020?ooo`0307lZ:P3oool0oooo06<0oooo00270?ooo`0307lZ:P3oool0oooo0180oooo00@0 +0?l00?ooo`3oool0o`00=@3oool20000oiH0oooo00<0003o0?ooo`3oool00`3oool00`1o:RX0oooo +0?ooo`0@0?ooo`03003o003oool0oooo00D0oooo00<0o`000?ooo`3oool0903oool00`000000oooo +0?ooo`0Z0?ooo`030?l0003oool0oooo00X0oooo00<00?l00?ooo`3oool01P3oool00`1o:RX0oooo +0?ooo`0N0?ooo`030000o`3oool0oooo0:40oooo00<0003o0?ooo`3oool07P3oool00`00o`00o`00 +0?ooo`030?ooo`0307lZ:P3oool0oooo06<0oooo00280?ooo`0307lZ:P3oool0oooo0180oooo00<0 +0?l00?ooo`3oool00P3o000e0?ooo`030000o`3oool0oooo0980oooo00<0003o0?ooo`3oool00`3o +ool00`1o:RX0oooo0?ooo`0@0?ooo`03003o003oool0oooo00H0oooo00<0o`000?ooo`3oool0903o +ool00`000000oooo0?ooo`0[0?ooo`030?l0003oool0oooo00X0oooo00<00?l00?ooo`3oool01P3o +ool00`1o:RX0oooo0?ooo`0N0?ooo`80003oX03oool00`000?l0oooo0?ooo`0O0?ooo`030?l0003o +ool0oooo0080oooo00<0ObXZ0?ooo`3oool0I03oool008P0oooo00<0ObXZ0?ooo`3oool04`3oool0 +1@00o`00oooo0?ooo`3oool0o`0003D0oooo00<0003o0?ooo`3oool0T03oool00`000?l0oooo0?oo +o`020?ooo`80ObXZ4P3oool00`00o`00oooo0?ooo`060?ooo`030?l0003oool0oooo02D0oooo00<0 +00000?ooo`3oool0;03oool00`3o0000oooo0?ooo`0:0?ooo`03003o003oool0oooo00H0oooo00<0 +ObXZ0?ooo`3oool07`3oool00`000?l0oooo0?ooo`2L0?ooo`030000o`3oool0oooo01l0oooo00<0 +0?l00?l0003oool00`3oool00`1o:RX0oooo0?ooo`1T0?ooo`00R03oool00`1o:RX0oooo0?ooo`0D +0?ooo`800?l00P3oool20?l003@0oooo0P000?n?0?ooo`030000o`3oool0oooo0080oooo00<0ObXZ +0?ooo`3oool04P3oool00`00o`00oooo0?ooo`060?ooo`030?l0003oool0oooo02D0oooo00<00000 +0?ooo`3oool0;@3oool00`3o0000oooo0?ooo`0:0?ooo`800?l01`3oool00`1o:RX0oooo0?ooo`0O +0?ooo`80003oV`3oool00`000?l0oooo0?ooo`0P0?ooo`030?l0003oool0oooo00<0oooo00<0ObXZ +0?ooo`3oool0I03oool008T0oooo00<0ObXZ0?ooo`3oool05@3oool01@00o`00oooo0?ooo`3oool0 +o`0003D0oooo00<0003o0?ooo`3oool0R`3oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3oool0 +oooo0180oooo00<00?l00?ooo`3oool01P3oool00`3o0000oooo0?ooo`0V0?ooo`030000003oool0 +oooo02h0oooo00<0o`000?ooo`3oool02`3oool00`00o`00oooo0?ooo`050?ooo`0307lZ:P3oool0 +oooo0200oooo00<0003o0?ooo`3oool0V03oool00`000?l0oooo0?ooo`0O0?ooo`03003o003o0000 +oooo00<0oooo00<0ObXZ0?ooo`3oool0I@3oool008T0oooo00<0ObXZ0?ooo`3oool05P3oool01000 +o`00oooo0?ooo`3oool20?l003@0oooo00<0003o0?ooo`3oool0R@3oool00`000?l0oooo0?ooo`02 +0?ooo`0307lZ:P3oool0oooo0180oooo00<00?l00?ooo`3oool01P3oool00`3o0000oooo0?ooo`0W +0?ooo`030000003oool0oooo02l0oooo00<0o`000?ooo`3oool02`3oool00`00o`00oooo0?ooo`05 +0?ooo`80ObXZ8@3oool20000oiL0oooo00<0003o0?ooo`3oool0803oool00`3o0000oooo0?ooo`03 +0?ooo`0307lZ:P3oool0oooo06D0oooo00290?ooo`0307lZ:P3oool0oooo01H0oooo00<00?l00?oo +o`3oool00`3oool00`3o0000oooo0?ooo`0b0?ooo`80003oR03oool00`000?l0oooo0?ooo`020?oo +o`0307lZ:P3oool0oooo0180oooo00<00?l00?ooo`3oool01`3oool00`3o0000oooo0?ooo`0W0?oo +o`030000003oool0oooo0300oooo00<0o`000?ooo`3oool02`3oool00`00o`00oooo0?ooo`040?oo +o`0307lZ:P3oool0ObXZ0280oooo00<0003o0?ooo`3oool0T`3oool00`000?l0oooo0?ooo`0P0?oo +o`03003o003o0000oooo00<0oooo00<0ObXZ0?ooo`3oool0IP3oool008X0oooo00<0ObXZ0?ooo`3o +ool05P3oool00`00o`00oooo0?ooo`030?ooo`80o`00=03oool00`000?l0oooo0?ooo`240?ooo`03 +0000o`3oool0oooo0080oooo00<0ObXZ0?ooo`3oool04P3oool00`00o`00oooo0?ooo`070?ooo`03 +0?l0003oool0oooo02P0oooo1000000_0?ooo`030?l0003oool0oooo00`0oooo00<00?l00?ooo`3o +ool0103oool00`1o:RX0oooo0?ooo`0R0?ooo`80003oT`3oool00`000?l0oooo0?ooo`0P0?ooo`03 +0?l0003oool0oooo00<0oooo00<0ObXZ0?ooo`3oool0IP3oool008X0oooo00<0ObXZ0?ooo`3oool0 +5`3oool00`00o`00oooo0?ooo`040?ooo`030?l0003oool0oooo0380oooo00<0003o0?ooo`3oool0 +PP3oool00`000?l0oooo0?ooo`020?ooo`0307lZ:P3oool0oooo0180oooo00<00?l00?ooo`3oool0 +1`3oool00`3o0000oooo0?ooo`0Y0?ooo`030000003oool0oooo0340oooo00<0o`000?ooo`3oool0 +303oool00`00o`00oooo0?ooo`040?ooo`0307lZ:P3oool0oooo02<0oooo00<0003o0?ooo`3oool0 +S`3oool00`000?l0oooo0?ooo`0P0?ooo`03003o003o0000oooo00<0oooo00<0ObXZ0?ooo`3oool0 +I`3oool008X0oooo00<0ObXZ0?ooo`3oool0603oool00`00o`00oooo0?ooo`040?ooo`80o`00<`3o +ool00`000?l0oooo0?ooo`200?ooo`030000o`3oool0oooo00<0oooo00<0ObXZ0?ooo`3oool04P3o +ool00`00o`00oooo0?ooo`070?ooo`030?l0003oool0oooo02T0oooo00<000000?ooo`3oool00?oo +o`0307lZ:P3oool0oooo01d0oooo00<00?l00?ooo`3oool01@3oool00`3o0000oooo0?ooo`0a0?oo +o`80003oL@3oool00`000?l0oooo0?ooo`030?ooo`0307lZ:P3oool0oooo01<0oooo00<00?l00?oo +o`3oool0203oool00`3o0000oooo0?ooo`0^0?ooo`030000003oool0oooo03T0oooo00<0o`000?oo +o`3oool0303oool00`00o`00oooo0?ooo`060?ooo`0307lZ:P3oool0oooo02@0oooo0P000?mo0?oo +o`030000o`3oool0oooo0240oooo00<00?l00?l0003oool0103oool00`1o:RX0oooo0?ooo`1[0?oo +o`00SP3oool00`1o:RX0oooo0?ooo`0N0?ooo`03003o003oool0oooo00D0oooo0P3o000c0?ooo`03 +0000o`3oool0oooo06d0oooo00<0003o0?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`0C0?ooo`03 +003o003oool0oooo00T0oooo00<0o`000?ooo`3oool0;P3oool4000003T0oooo00<0o`000?ooo`3o +ool0303oool2003o00L0oooo00<0ObXZ0?ooo`3oool09@3oool00`000?l0oooo0?ooo`1k0?ooo`03 +0000o`3oool0oooo0240oooo00<00?l00?ooo`3o00001@3oool00`1o:RX0oooo0?ooo`1[0?ooo`00 +S`3oool00`1o:RX0oooo0?ooo`0N0?ooo`03003o003oool0oooo00H0oooo00<0o`000?ooo`3oool0 +<@3oool00`000?l0oooo0?ooo`1[0?ooo`030000o`3oool0oooo00<0oooo00<0ObXZ0?ooo`3oool0 +4`3oool00`00o`00oooo0?ooo`090?ooo`030?l0003oool0oooo02l0oooo00<000000?ooo`3oool0 +>P3oool00`3o0000oooo0?ooo`0>0?ooo`03003o003oool0oooo00D0oooo00<0ObXZ0?ooo`3oool0 +9@3oool00`000?l0oooo0?ooo`1j0?ooo`030000o`3oool0oooo0240oooo00<00?l00?l0003oool0 +103oool00`1o:RX0oooo0?ooo`1/0?ooo`00S`3oool00`1o:RX0oooo0?ooo`0O0?ooo`03003o003o +ool0oooo00H0oooo0P3o000b0?ooo`030000o`3oool0oooo06T0oooo00<0003o0?ooo`3oool00`3o +ool00`1o:RX0oooo0?ooo`0C0?ooo`03003o003oool0oooo00X0oooo00<0o`000?ooo`3oool0;`3o +ool00`000000oooo0?ooo`0k0?ooo`030?l0003oool0oooo00h0oooo00<00?l00?ooo`3oool01@3o +ool00`1o:RX0oooo0?ooo`0U0?ooo`80003oN@3oool00`000?l0oooo0?ooo`0Q0?ooo`03003o003o +ool0o`0000D0oooo00<0ObXZ0?ooo`3oool0K03oool00900oooo00<0ObXZ0?ooo`3oool07`3oool2 +003o00P0oooo00<0o`000?ooo`3oool0<03oool20000ofP0oooo00<0003o0?ooo`3oool00`3oool0 +0`1o:RX0oooo0?ooo`0D0?ooo`03003o003oool0oooo00T0oooo00<0o`000?ooo`3oool0<03oool0 +0`000000oooo0?ooo`0l0?ooo`030?l0003oool0oooo00d0oooo00<00?l00?ooo`3oool01P3oool0 +0`1o:RX0oooo0?ooo`0V0?ooo`030000o`3oool0oooo07D0oooo00<0003o0?ooo`3oool08@3oool0 +0`00o`00oooo0?l000060?ooo`0307lZ:P3oool0oooo06`0oooo002@0?ooo`0307lZ:P3oool0oooo +0240oooo00<00?l00?ooo`3oool01P3oool20?l00380oooo00<0003o0?ooo`3oool0I03oool00`00 +0?l0oooo0?ooo`020?ooo`80ObXZ5P3oool00`00o`00oooo0?ooo`090?ooo`030?l0003oool0oooo +0340oooo00<000000?ooo`3oool0?@3oool00`3o0000oooo0?ooo`0=0?ooo`03003o003oool0oooo +00H0oooo0P1o:RXW0?ooo`80003oM03oool00`000?l0oooo0?ooo`0R0?ooo`03003o003oool0o`00 +00D0oooo00<0ObXZ0?ooo`3oool0K@3oool00940oooo00<0ObXZ0?ooo`3oool08@3oool00`00o`00 +oooo0?ooo`070?ooo`030?l0003oool0oooo0300oooo00<0003o0?ooo`3oool0HP3oool00`000?l0 +oooo0?ooo`020?ooo`0307lZ:P3oool0oooo01D0oooo00<00?l00?ooo`3oool02@3oool00`3o0000 +oooo0?ooo`0b0?ooo`030000003oool0oooo03h0oooo00<0o`000?ooo`3oool03@3oool00`00o`00 +oooo0?ooo`070?ooo`80ObXZ9`3oool00`000?l0oooo0?ooo`1a0?ooo`030000o`3oool0oooo0240 +oooo00<00?l00?ooo`3o00001P3oool00`1o:RX0oooo0?ooo`1]0?ooo`00T@3oool00`1o:RX0oooo +0?ooo`0R0?ooo`800?l0203oool20?l00340oooo0P000?mQ0?ooo`040000o`3oool0oooo0?ooo`80 +ObXZ603oool00`00o`00oooo0?ooo`080?ooo`030?l0003oool0oooo03<0oooo00<000000?ooo`3o +ool0?`3oool00`3o0000oooo0?ooo`0=0?ooo`03003o003oool0oooo00P0oooo00<0ObXZ0?ooo`3o +ool09@3oool20000og00oooo00<0003o0?ooo`3oool08@3oool00`00o`00oooo0?l000060?ooo`03 +07lZ:P3oool0oooo06h0oooo002B0?ooo`0307lZ:P3oool0oooo02<0oooo00<00?l00?ooo`3oool0 +1`3oool20?l00340oooo00<0003o0?ooo`3oool0G@3oool01@000?l0oooo0?ooo`3oool0ObXZ01T0 +oooo00<00?l00?ooo`3oool02@3oool00`3o0000oooo0?ooo`0c0?ooo`030000003oool0oooo0400 +oooo00<0o`000?ooo`3oool03@3oool2003o00T0oooo00<0ObXZ0?ooo`3oool09P3oool00`000?l0 +oooo0?ooo`1/0?ooo`030000o`3oool0oooo0280oooo00<00?l00?l0003oool01@3oool00`1o:RX0 +oooo0?ooo`1_0?ooo`00T`3oool00`1o:RX0oooo0?ooo`0S0?ooo`03003o003oool0oooo00P0oooo +0P3o000`0?ooo`030000o`3oool0oooo05X0oooo0P000?l20?ooo`80ObXZ6@3oool00`00o`00oooo +0?ooo`090?ooo`030?l0003oool0oooo02H0oooo1000000:0?ooo`030000003oool0oooo0440oooo +00<0o`000?ooo`3oool03P3oool00`00o`00oooo0?ooo`070?ooo`0307lZ:P3oool0oooo02H0oooo +0P000?m[0?ooo`030000o`3oool0oooo0280oooo00<00?l00?l0003oool01P3oool00`1o:RX0oooo +0?ooo`1_0?ooo`00T`3oool00`1o:RX0oooo0?ooo`0T0?ooo`800?l02P3oool20?l002l0oooo0P00 +0?mI0?ooo`050000o`3oool0oooo0?ooo`1o:RX06P3oool00`00o`00oooo0?ooo`0:0?ooo`030?l0 +003oool0oooo02H0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`120?ooo`030?l0 +003oool0oooo00h0oooo00<00?l00?ooo`3oool01`3oool207lZ:RP0oooo00<0003o0?ooo`3oool0 +J03oool00`000?l0oooo0?ooo`0Q0?ooo`03003o003oool0o`0000H0oooo00<0ObXZ0?ooo`3oool0 +L03oool009@0oooo00<0ObXZ0?ooo`3oool09@3oool00`00o`00oooo0?ooo`090?ooo`030?l0003o +ool0oooo02h0oooo00<0003o0?ooo`3oool0E@3oool00`000?l0oooo0?ooo`0207lZ:QX0oooo00<0 +0?l00?ooo`3oool02P3oool00`3o0000oooo0?ooo`0X0?ooo`030000003oool0oooo00X0oooo1P00 +00100?ooo`030?l0003oool0oooo00h0oooo0P00o`090?ooo`0307lZ:P3oool0oooo02H0oooo0P00 +0?mW0?ooo`030000o`3oool0oooo0240oooo00<00?l00?ooo`3o00001`3oool00`1o:RX0oooo0?oo +o`1`0?ooo`00U03oool00`1o:RX0oooo0?ooo`0V0?ooo`03003o003oool0oooo00T0oooo0P3o000_ +0?ooo`030000o`3oool0oooo05<0oooo00@0003o0?ooo`3oool0ObXZ6`3oool00`00o`00oooo0?oo +o`0:0?ooo`030?l0003oool0oooo02X0oooo00<000000?ooo`3oool02@3oool00`000000oooo0?oo +o`140?ooo`030?l0003oool0oooo00l0oooo00<00?l00?ooo`3oool01`3oool00`1o:RX0oooo0?oo +o`0W0?ooo`030000o`3oool0oooo06<0oooo00<0003o0?ooo`3oool08@3oool00`00o`00oooo0?l0 +00070?ooo`0307lZ:P3oool0oooo0740oooo002E0?ooo`0307lZ:P3oool0oooo02H0oooo0P00o`0; +0?ooo`030?l0003oool0oooo02d0oooo00<0003o0?ooo`3oool0D@3oool010000?l0oooo07lZ:P1o +:RXK0?ooo`03003o003oool0oooo00X0oooo00<0o`000?ooo`3oool0:@3oool010000000oooo0?oo +o`00000:0?ooo`030000003oool0oooo04D0oooo00<0o`000?ooo`3oool03`3oool00`00o`00oooo +0?ooo`070?ooo`80ObXZ:03oool00`000?l0oooo0?ooo`1R0?ooo`030000o`3oool0oooo0200oooo +00<00?l00?ooo`3o00001`3oool00`1o:RX0oooo0?ooo`1b0?ooo`00UP3oool00`1o:RX0oooo0?oo +o`0W0?ooo`03003o003oool0oooo00T0oooo0P3o000^0?ooo`80003oD03oool00`000?l0oooo07lZ +:P0L0?ooo`03003o003oool0oooo00X0oooo00<0o`000?ooo`3oool0:`3oool2000000/0oooo00<0 +00000?ooo`3oool0AP3oool00`3o0000oooo0?ooo`0?0?ooo`800?l02@3oool00`1o:RX0oooo0?oo +o`0V0?ooo`80003oH@3oool00`000?l0oooo0?ooo`0P0?ooo`04003o003oool0oooo0?l000L0oooo +00<0ObXZ0?ooo`3oool0LP3oool009H0oooo00<0ObXZ0?ooo`3oool0:03oool00`00o`00oooo0?oo +o`0:0?ooo`80o`00;P3oool00`000?l0oooo0?ooo`1<0?ooo`030000o`1o:RX0ObXZ01`0oooo00<0 +0?l00?ooo`3oool02P3oool00`3o0000oooo0?ooo`0i0?ooo`030000003oool0oooo04L0oooo00<0 +o`000?ooo`3oool0403oool00`00o`00oooo0?ooo`070?ooo`80ObXZ:03oool00`000?l0oooo0?oo +o`1M0?ooo`030000o`3oool0oooo0240oooo00<00?l00?ooo`3o00001`3oool00`1o:RX0oooo0?oo +o`1c0?ooo`00U`3oool00`1o:RX0oooo0?ooo`0X0?ooo`800?l0303oool20?l002d0oooo00<0003o +0?ooo`3oool0BP3oool00`000?l0ObXZ0?ooo`0L0?ooo`03003o003oool0oooo00X0oooo00<0o`00 +0?ooo`3oool0>P3oool00`000000oooo0?ooo`180?ooo`030?l0003oool0oooo0100oooo00<00?l0 +0?ooo`3oool0203oool00`1o:RX0oooo0?ooo`0V0?ooo`80003oG03oool00`000?l0oooo0?ooo`0Q +0?ooo`03003o003oool0o`0000P0oooo00<0ObXZ0?ooo`3oool0L`3oool009P0oooo00<0ObXZ0?oo +o`3oool0:@3oool2003o00`0oooo0P3o000/0?ooo`80003oB@3oool00`000?l0ObXZ0?ooo`0L0?oo +o`03003o003oool0oooo00X0oooo00<0o`000?ooo`3oool0>`3oool00`000000oooo0?ooo`190?oo +o`80o`004@3oool00`00o`00oooo0?ooo`080?ooo`0307lZ:P3oool0oooo02L0oooo00<0003o0?oo +o`3oool0F@3oool00`000?l0oooo0?ooo`0P0?ooo`03003o003oool0o`0000P0oooo00<0ObXZ0?oo +o`3oool0M03oool009T0oooo00<0ObXZ0?ooo`3oool0:P3oool2003o00`0oooo0P3o000/0?ooo`03 +0000o`3oool0oooo04D0oooo00<0003o07lZ:P3oool0703oool00`00o`00oooo0?ooo`0:0?ooo`03 +0?l0003oool0oooo03`0oooo00<000000?ooo`3oool0B`3oool00`3o0000oooo0?ooo`0?0?ooo`03 +003o003oool0oooo00P0oooo00<0ObXZ0?ooo`3oool09`3oool20000oeP0oooo00<0003o0?ooo`3o +ool08@3oool00`00o`00o`000?ooo`070?ooo`0307lZ:P3oool0oooo07D0oooo002I0?ooo`0307lZ +:P3oool0oooo02`0oooo0P00o`0<0?ooo`80o`00:`3oool00`000?l0oooo0?ooo`130?ooo`030000 +o`3oool0oooo01`0oooo00<00?l00?ooo`3oool02P3oool00`3o0000oooo0?ooo`0m0?ooo`030000 +003oool0oooo04`0oooo00<0o`000?ooo`3oool03`3oool00`00o`00oooo0?ooo`080?ooo`0307lZ +:P3oool0oooo02P0oooo00<0003o0?ooo`3oool0E03oool00`000?l0oooo0?ooo`0Q0?ooo`03003o +003o0000oooo00L0oooo00<0ObXZ0?ooo`3oool0MP3oool009X0oooo00<0ObXZ0?ooo`3oool0;@3o +ool00`00o`00oooo0?ooo`0;0?ooo`80o`00:P3oool00`000?l0oooo0?ooo`100?ooo`0307lZ:P00 +0?l0oooo01d0oooo00<00?l00?ooo`3oool02P3oool00`3o0000oooo0?ooo`0n0?ooo`@00000C03o +ool00`3o0000oooo0?ooo`0?0?ooo`800?l02@3oool207lZ:RT0oooo0P000?mC0?ooo`030000o`3o +ool0oooo0240oooo00<00?l00?l0003oool01`3oool00`1o:RX0oooo0?ooo`1g0?ooo`00V`3oool0 +0`1o:RX0oooo0?ooo`0]0?ooo`800?l03@3oool20?l002T0oooo0P000?lo0?ooo`0307lZ:P000?l0 +oooo01d0oooo00<00?l00?ooo`3oool02`3oool00`3o0000oooo0?ooo`0n0?ooo`030000003oool0 +oooo04h0oooo00<0o`000?ooo`3oool0403oool00`00o`00oooo0?ooo`080?ooo`0307lZ:P3oool0 +oooo02P0oooo00<0003o0?ooo`3oool0D03oool00`000?l0oooo0?ooo`0P0?ooo`03003o003o0000 +oooo00L0oooo00<0ObXZ0?ooo`3oool0N03oool009/0oooo00<0ObXZ0?ooo`3oool0;`3oool00`00 +o`00oooo0?ooo`0<0?ooo`80o`00:@3oool00`000?l0oooo0?ooo`0j0?ooo`80ObXZ00<0003o0?oo +o`3oool0703oool00`00o`00oooo0?ooo`0;0?ooo`030?l0003oool0oooo03l0oooo00<000000?oo +o`3oool0C`3oool00`3o0000oooo0?ooo`0@0?ooo`03003o003oool0oooo00P0oooo0P1o:RXY0?oo +o`80003oC`3oool00`000?l0oooo0?ooo`0P0?ooo`03003o003o0000oooo00P0oooo00<0ObXZ0?oo +o`3oool0N03oool009`0oooo00<0ObXZ0?ooo`3oool0;`3oool2003o00h0oooo0P3o000X0?ooo`03 +0000o`3oool0oooo03P0oooo00<0ObXZ0?ooo`000?l07P3oool00`00o`00oooo0?ooo`0;0?ooo`03 +0?l0003oool0oooo0400oooo00<000000?ooo`3oool0D03oool20?l00140oooo0P00o`0:0?ooo`80 +ObXZ:@3oool00`000?l0oooo0?ooo`1;0?ooo`030000o`3oool0oooo0200oooo00<00?l00?l0003o +ool0203oool00`1o:RX0oooo0?ooo`1i0?ooo`00W@3oool00`1o:RX0oooo0?ooo`0`0?ooo`800?l0 +3P3oool20?l002L0oooo0P000?lg0?ooo`0307lZ:P3oool0003o01h0oooo00<00?l00?ooo`3oool0 +2`3oool00`3o0000oooo0?ooo`110?ooo`030000003oool0oooo0580oooo00<0o`000?ooo`3oool0 +403oool00`00o`00oooo0?ooo`090?ooo`0307lZ:P3oool0oooo02L0oooo00<0003o0?ooo`3oool0 +BP3oool00`000?l0oooo0?ooo`0O0?ooo`03003o003o0000oooo00P0oooo00<0ObXZ0?ooo`3oool0 +NP3oool009h0oooo00<0ObXZ0?ooo`3oool0<@3oool00`00o`00oooo0?ooo`0=0?ooo`030?l0003o +ool0oooo02H0oooo00<0003o0?ooo`3oool0<`3oool00`1o:RX0oooo0000o`0N0?ooo`03003o003o +ool0oooo00/0oooo00<0o`000?ooo`3oool0@P3oool00`000000oooo0?ooo`1C0?ooo`030?l0003o +ool0oooo0100oooo00<00?l00?ooo`3oool02@3oool00`1o:RX0oooo0?ooo`0W0?ooo`80003oB@3o +ool00`000?l0oooo0?ooo`0O0?ooo`03003o003o0000oooo00T0oooo00<0ObXZ0?ooo`3oool0NP3o +ool009l0oooo00<0ObXZ0?ooo`3oool0<@3oool2003o00h0oooo0P3o000W0?ooo`030000o`3oool0 +oooo0340oooo00<0ObXZ0?ooo`000?l07@3oool2003o00d0oooo00<0o`000?ooo`3oool0@`3oool0 +0`000000oooo0?ooo`1D0?ooo`80o`004@3oool2003o00X0oooo00<0ObXZ0?ooo`3oool0:03oool0 +0`000?l0oooo0?ooo`150?ooo`030000o`3oool0oooo01l0oooo00<00?l00?ooo`3o00002@3oool0 +0`1o:RX0oooo0?ooo`1k0?ooo`00X03oool00`1o:RX0oooo0?ooo`0b0?ooo`<00?l03@3oool20?l0 +02H0oooo0P000?l_0?ooo`80ObXZ00<0oooo0000o`3oool0703oool00`00o`00oooo0?ooo`0<0?oo +o`030?l0003oool0oooo04@0oooo00<000000?ooo`3oool0EP3oool00`3o0000oooo0?ooo`0@0?oo +o`03003o003oool0oooo00P0oooo0P1o:RXY0?ooo`80003oA03oool00`000?l0oooo0?ooo`0O0?oo +o`03003o003oool0o`0000T0oooo00<0ObXZ0?ooo`3oool0O03oool00:40oooo00<0ObXZ0?ooo`3o +ool0=03oool2003o00d0oooo0P3o000V0?ooo`030000o`3oool0oooo02X0oooo0P1o:RX20?ooo`03 +0000o`3oool0oooo01/0oooo00<00?l00?ooo`3oool0303oool00`3o0000oooo0?ooo`150?ooo`03 +0000003oool0oooo05L0oooo00<0o`000?ooo`3oool0403oool2003o00X0oooo00<0ObXZ0?ooo`3o +ool0:03oool00`000?l0oooo0?ooo`110?ooo`030000o`3oool0oooo01h0oooo00<00?l00?ooo`3o +00002@3oool00`1o:RX0oooo0?ooo`1m0?ooo`00XP3oool00`1o:RX0oooo0?ooo`0e0?ooo`800?l0 +3@3oool20?l002D0oooo00<0003o0?ooo`3oool09`3oool207lZ:P<0oooo00<0003o0?ooo`3oool0 +6`3oool00`00o`00oooo0?ooo`0;0?ooo`80o`00B03oool00`000000oooo0?ooo`1H0?ooo`80o`00 +4P3oool2003o00T0oooo0P1o:RXY0?ooo`80003o@03oool00`000?l0oooo0?ooo`0N0?ooo`03003o +003o0000o`0000T0oooo00<0ObXZ0?ooo`3oool0OP3oool00:80oooo00<0ObXZ0?ooo`3oool0=`3o +ool00`00o`00oooo0?ooo`0<0?ooo`80o`00903oool00`000?l0oooo0?ooo`0U0?ooo`0307lZ:P3o +ool0oooo0080oooo00<0003o0?ooo`3oool06`3oool00`00o`00oooo0?ooo`0;0?ooo`030?l0003o +ool0oooo04P0oooo1000001I0?ooo`030?l0003oool0oooo0140oooo00<00?l00?ooo`3oool0203o +ool207lZ:RT0oooo00<0003o0?ooo`3oool0?03oool00`000?l0oooo0?ooo`0N0?ooo`03003o003o +0000oooo00T0oooo00<0ObXZ0?ooo`3oool0O`3oool00:<0oooo00<0ObXZ0?ooo`3oool0=`3oool2 +003o00h0oooo0`3o000R0?ooo`80003o8`3oool207lZ:P@0oooo00<0003o0?ooo`3oool06P3oool2 +003o00d0oooo00<0o`000?ooo`3oool0B@3oool00`000000oooo0?ooo`1K0?ooo`030?l0003oool0 +oooo0140oooo0P00o`0:0?ooo`80ObXZ:03oool20000oc/0oooo00<0003o0?ooo`3oool07P3oool2 +0?l000X0oooo00<0ObXZ0?ooo`3oool0P03oool00:@0oooo00<0ObXZ0?ooo`3oool0>03oool2003o +00l0oooo0P3o000R0?ooo`030000o`3oool0oooo01l0oooo00<0ObXZ0?ooo`3oool00`3oool00`00 +0?l0oooo0?ooo`0I0?ooo`800?l03P3oool00`3o0000oooo0?ooo`1:0?ooo`030000003oool0oooo +05`0oooo0P3o000C0?ooo`03003o003oool0oooo00T0oooo00<0ObXZ0?ooo`3oool09`3oool00`00 +0?l0oooo0?ooo`0h0?ooo`030000o`3oool0oooo01d0oooo00<0o`000?ooo`3oool02@3oool00`1o +:RX0oooo0?ooo`210?ooo`00Y@3oool00`1o:RX0oooo0?ooo`0i0?ooo`800?l03`3oool20?l00240 +oooo00<0003o0?ooo`3oool0703oool207lZ:PD0oooo00<0003o0?ooo`3oool0603oool2003o00l0 +oooo00<0o`000?ooo`3oool0B`3oool00`000000oooo0?ooo`1N0?ooo`030?l0003oool0oooo0140 +oooo0P00o`0:0?ooo`80ObXZ:03oool00`000?l0oooo0?ooo`0f0?ooo`030000o`3oool0oooo01d0 +oooo00<0o`000?ooo`3oool02@3oool00`1o:RX0oooo0?ooo`220?ooo`00YP3oool00`1o:RX0oooo +0?ooo`0j0?ooo`800?l03`3oool20?l00200oooo0P000?lJ0?ooo`80ObXZ1P3oool00`000?l0oooo +0?ooo`0H0?ooo`03003o003oool0oooo00d0oooo0P3o001>0?ooo`030000003oool0oooo05l0oooo +00<0o`000?ooo`3oool04P3oool00`00o`00oooo0?ooo`090?ooo`0307lZ:P3oool0oooo02H0oooo +0P000?le0?ooo`030000o`3oool0oooo01d0oooo00<0o`000?ooo`3oool02@3oool00`1o:RX0oooo +0?ooo`230?ooo`00Y`3oool00`1o:RX0oooo0?ooo`0k0?ooo`800?l03`3oool20?l00200oooo00<0 +003o0?ooo`3oool05@3oool207lZ:PL0oooo00<0003o0?ooo`3oool05`3oool2003o00l0oooo00<0 +o`000?ooo`3oool0CP3oool00`000000oooo0?ooo`1P0?ooo`80o`004`3oool00`00o`00oooo0?oo +o`090?ooo`80ObXZ:03oool00`000?l0oooo0?ooo`0a0?ooo`030000o`3oool0oooo01`0oooo00<0 +0?l00?l0003oool02P3oool00`1o:RX0oooo0?ooo`240?ooo`00Z03oool00`1o:RX0oooo0?ooo`0l +0?ooo`@00?l03@3oool30?l001h0oooo00<0003o0?ooo`3oool04P3oool207lZ:PL0oooo0P000?lI +0?ooo`03003o003oool0oooo00d0oooo0P3o001A0?ooo`030000003oool0oooo0680oooo00<0o`00 +0?ooo`3oool04@3oool2003o00/0oooo0P1o:RXW0?ooo`80003o<@3oool00`000?l0oooo0?ooo`0K +0?ooo`80o`002`3oool00`1o:RX0oooo0?ooo`250?ooo`00Z@3oool207lZ:T00oooo1000o`0<0?oo +o`80o`007@3oool20000oa00oooo0P1o:RX80?ooo`030000o`3oool0oooo01L0oooo0P00o`0?0?oo +o`030?l0003oool0oooo0540oooo00<000000?ooo`3oool0H`3oool20?l001<0oooo00<00?l00?oo +o`3oool02P3oool307lZ:RH0oooo00<0003o0?ooo`3oool0;@3oool00`000?l0oooo0?ooo`0K0?oo +o`030?l0003oool0oooo00X0oooo00<0ObXZ0?ooo`3oool0QP3oool00:/0oooo0P1o:RY20?ooo`80 +0?l0303oool30?l001`0oooo00<0003o0?ooo`3oool02`3oool207lZ:PT0oooo00<0003o0?ooo`3o +ool05`3oool00`00o`00oooo0?ooo`0=0?ooo`80o`00E03oool00`000000oooo0?ooo`1U0?ooo`03 +0?l0003oool0oooo0140oooo0P00o`0=0?ooo`80ObXZ9@3oool20000ob`0oooo00<0003o0?ooo`3o +ool06`3oool00`3o0000oooo0?ooo`090?ooo`80ObXZR@3oool00:d0oooo00<0ObXZ0?ooo`3oool0 +@@3oool2003o00d0oooo0`3o000J0?ooo`030000o`3oool0oooo00T0oooo00<0ObXZ0?ooo`3oool0 +203oool00`000?l0oooo0?ooo`0F0?ooo`800?l03P3oool20?l005H0oooo1000001U0?ooo`030?l0 +003oool0oooo0180oooo0P00o`0=0?ooo`0307lZ:P3oool0oooo02@0oooo00<0003o0?ooo`3oool0 +:@3oool00`000?l0oooo0?ooo`0I0?ooo`80o`002`3oool00`1o:RX0oooo0?ooo`290?ooo`00[P3o +ool00`1o:RX0oooo0?ooo`120?ooo`800?l03P3oool30?l001P0oooo00<0003o0?ooo`3oool01P3o +ool207lZ:PX0oooo00<0003o0?ooo`3oool05@3oool2003o00h0oooo0P3o001H0?ooo`030000003o +ool0oooo06L0oooo0P3o000D0?ooo`800?l0303oool207lZ:RD0oooo0P000?lX0?ooo`030000o`3o +ool0oooo01T0oooo00<0o`00003o003oool02P3oool00`1o:RX0oooo0?ooo`2:0?ooo`00[`3oool0 +0`1o:RX0oooo0?ooo`130?ooo`@00?l03@3oool20?l001L0oooo0P000?l40?ooo`80ObXZ2`3oool0 +0`000?l0oooo0?ooo`0C0?ooo`<00?l03`3oool00`3o0000oooo0?ooo`1H0?ooo`030000003oool0 +oooo06T0oooo00<0o`000?ooo`3oool04`3oool2003o00`0oooo0P1o:RXU0?ooo`030000o`3oool0 +oooo02@0oooo00<0003o0?ooo`3oool0603oool20?l000`0oooo00<0ObXZ0?ooo`3oool0R`3oool0 +0;00oooo00<0ObXZ0?ooo`3oool0AP3oool3003o00`0oooo103o000E0?ooo`040000o`1o:RX0ObXZ +07lZ:P`0oooo00<0003o0?ooo`3oool04P3oool2003o0100oooo0P3o001K0?ooo`030000003oool0 +oooo06X0oooo0P3o000E0?ooo`800?l0303oool207lZ:R@0oooo0P000?lS0?ooo`030000o`3oool0 +oooo01L0oooo00<00?l00?l0003oool0303oool00`1o:RX0oooo0?ooo`2<0?ooo`00/@3oool207lZ +:TT0oooo0P00o`0>0?ooo`@0o`00403oool207lZ:P030000o`3oool0oooo00/0oooo00<0003o0?oo +o`3oool04@3oool2003o0100oooo0P3o001M0?ooo`030000003oool0oooo06`0oooo0P3o000E0?oo +o`800?l0303oool207lZ:R@0oooo00<0003o0?ooo`3oool0803oool00`000?l0oooo0?ooo`0F0?oo +o`80o`00303oool207lZ:Xl0oooo002c0?ooo`0307lZ:P3oool0oooo04P0oooo1000o`0>0?ooo`80 +o`00303oool207lZ:P<0oooo0P000?l:0?ooo`030000o`3oool0oooo00h0oooo1000o`0>0?ooo`@0 +o`00G`3oool00`000000oooo0?ooo`1^0?ooo`80o`005@3oool2003o00`0oooo0P1o:RXS0?ooo`03 +0000o`3oool0oooo01h0oooo00<0003o0?ooo`3oool05P3oool00`3o0000oooo0?ooo`0:0?ooo`80 +ObXZT@3oool00;@0oooo0P1o:RY<0?ooo`D00?l02`3oool40?l000H0oooo0P1o:RX70?ooo`030000 +o`3oool0oooo00H0oooo00<0003o0?ooo`3oool0303oool3003o0100oooo0P3o001S0?ooo`030000 +003oool0oooo0700oooo0P3o000E0?ooo`800?l0303oool307lZ:R40oooo0P000?lM0?ooo`030000 +o`3oool0oooo01D0oooo0P3o000<0?ooo`0307lZ:P3oool0oooo0940oooo002f0?ooo`80ObXZC`3o +ool4003o00/0oooo1@3o00000`1o:RX0oooo0?ooo`080?ooo`030000o`3oool0oooo00@0oooo00<0 +003o0?ooo`3oool02@3oool4003o0140oooo0P3o001U0?ooo`030000003oool0oooo0780oooo0P3o +000E0?ooo`800?l03@3oool207lZ:R40oooo00<0003o0?ooo`3oool06@3oool00`000?l0oooo0?oo +o`0D0?ooo`80o`0000<00?l00?ooo`3oool02@3oool207lZ:Y@0oooo002h0?ooo`0307lZ:P3oool0 +oooo0500oooo1000o`090?ooo`80ObXZ00<0oooo0?l0003o00000`3o00070?ooo`H0003o203oool4 +003o00h0oooo1`3o001W0?ooo`030000003oool0oooo07@0oooo0P3o000E0?ooo`03003o003oool0 +oooo00`0oooo0P1o:RXP0?ooo`80003o6@3oool00`000?l0oooo0?ooo`0B0?ooo`80o`000P00o`0; +0?ooo`0307lZ:P3oool0oooo09@0oooo002i0?ooo`0307lZ:P3oool0oooo05<0oooo2@00o`080?oo +o`@0o`00103oool50000o`030?ooo`00o`000?l000D00?l03P3oool40?l006h0oooo00<000000?oo +o`3oool0MP3oool20?l001@0oooo0P00o`0>0?ooo`<0ObXZ7`3oool00`000?l0oooo0?ooo`0E0?oo +o`030000o`3oool0oooo0140oooo0P3o0002003o00/0oooo0P1o:RZG0?ooo`00^P3oool307lZ:U@0 +oooo101o:RX30?ooo``00?l0103o00050000o`D0o`001@3oool<0?l00780oooo1000001g0?ooo`<0 +o`004`3oool2003o00l0oooo0`1o:RXM0?ooo`80003o503oool00`000?l0oooo0?ooo`0@0?ooo`80 +o`0000<00?l00?ooo`3oool02P3oool207lZ:YT0oooo002m0?ooo`80ObXZC`3oool307lZ:QL0oooo +1@000?l50?ooo`D0o`00OP3oool00`000000oooo0?ooo`1k0?ooo`80o`004`3oool2003o0100oooo +0`1o:RXL0?ooo`030000o`3oool0oooo0140oooo00<0003o0?ooo`3oool03`3oool00`3o00000?l0 +0?ooo`0;0?ooo`80ObXZV`3oool00;l0oooo0P1o:RY:0?ooo`<0ObXZ6`3oool30000ohT0oooo00<0 +00000?ooo`3oool0O@3oool30?l00180oooo0`00o`0@0?ooo`<0ObXZ6P3oool20000oa00oooo00<0 +003o0?ooo`3oool03P3oool20?l000/0oooo0`1o:RZM0?ooo`00`@3oool307lZ:T@0oooo0`1o:RZZ +0?ooo`030000003oool0oooo0800oooo0`3o000B0?ooo`@00?l03`3oool407lZ:QP0oooo00<0003o +0?ooo`3oool0303oool00`000?l0oooo0?ooo`0<0?ooo`<0o`002`3oool207lZ:Z00oooo00340?oo +o`80ObXZ?`3oool307lZ:Zd0oooo00<000000?ooo`3oool0P`3oool20?l001@0oooo0`00o`0@0?oo +o`<0ObXZ5P3oool20000o`/0oooo00<0003o0?ooo`3oool02P3oool30?l00003003o003oool0oooo +00P0oooo0`1o:RZR0?ooo`00aP3oool307lZ:ST0oooo0`1o:RZ`0?ooo`030000003oool0oooo08D0 +oooo0`3o000D0?ooo`800?l04@3oool307lZ:QD0oooo00<0003o0?ooo`3oool0203oool00`000?l0 +oooo0?ooo`080?ooo`80o`000P00o`0:0?ooo`80ObXZY@3oool00"], + ImageRangeCache->{{{0, 841}, {420, 0}} -> {-6.2792, -4.09393, 0.0143435, \ +0.0208633}}], + +Cell[BoxData[ + InterpretationBox[\(" Lauf Nummer "\[InvisibleSpace]6\ +\[InvisibleSpace]" mit "\[InvisibleSpace]18\[InvisibleSpace]" \ +St\[UDoubleDot]tzpunkten "\), + SequenceForm[ + " Lauf Nummer ", 6, " mit ", 18, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Print"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.545455 0.0909091 0.25 0.0625 [ +[0 .2375 -6 -9 ] +[0 .2375 6 0 ] +[.18182 .2375 -6 -9 ] +[.18182 .2375 6 0 ] +[.36364 .2375 -6 -9 ] +[.36364 .2375 6 0 ] +[.72727 .2375 -3 -9 ] +[.72727 .2375 3 0 ] +[.90909 .2375 -3 -9 ] +[.90909 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.53295 0 -12 -4.5 ] +[.53295 0 0 4.5 ] +[.53295 .0625 -12 -4.5 ] +[.53295 .0625 0 4.5 ] +[.53295 .125 -12 -4.5 ] +[.53295 .125 0 4.5 ] +[.53295 .1875 -12 -4.5 ] +[.53295 .1875 0 4.5 ] +[.53295 .3125 -6 -4.5 ] +[.53295 .3125 0 4.5 ] +[.53295 .375 -6 -4.5 ] +[.53295 .375 0 4.5 ] +[.53295 .4375 -6 -4.5 ] +[.53295 .4375 0 4.5 ] +[.53295 .5 -6 -4.5 ] +[.53295 .5 0 4.5 ] +[.54545 .525 -17 0 ] +[.54545 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +0 .25 m +0 .25625 L +s +[(-6)] 0 .2375 0 1 Mshowa +.18182 .25 m +.18182 .25625 L +s +[(-4)] .18182 .2375 0 1 Mshowa +.36364 .25 m +.36364 .25625 L +s +[(-2)] .36364 .2375 0 1 Mshowa +.72727 .25 m +.72727 .25625 L +s +[(2)] .72727 .2375 0 1 Mshowa +.90909 .25 m +.90909 .25625 L +s +[(4)] .90909 .2375 0 1 Mshowa +.125 Mabswid +.04545 .25 m +.04545 .25375 L +s +.09091 .25 m +.09091 .25375 L +s +.13636 .25 m +.13636 .25375 L +s +.22727 .25 m +.22727 .25375 L +s +.27273 .25 m +.27273 .25375 L +s +.31818 .25 m +.31818 .25375 L +s +.40909 .25 m +.40909 .25375 L +s +.45455 .25 m +.45455 .25375 L +s +.5 .25 m +.5 .25375 L +s +.59091 .25 m +.59091 .25375 L +s +.63636 .25 m +.63636 .25375 L +s +.68182 .25 m +.68182 .25375 L +s +.77273 .25 m +.77273 .25375 L +s +.81818 .25 m +.81818 .25375 L +s +.86364 .25 m +.86364 .25375 L +s +.95455 .25 m +.95455 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.54545 0 m +.5517 0 L +s +[(-4)] .53295 0 1 0 Mshowa +.54545 .0625 m +.5517 .0625 L +s +[(-3)] .53295 .0625 1 0 Mshowa +.54545 .125 m +.5517 .125 L +s +[(-2)] .53295 .125 1 0 Mshowa +.54545 .1875 m +.5517 .1875 L +s +[(-1)] .53295 .1875 1 0 Mshowa +.54545 .3125 m +.5517 .3125 L +s +[(1)] .53295 .3125 1 0 Mshowa +.54545 .375 m +.5517 .375 L +s +[(2)] .53295 .375 1 0 Mshowa +.54545 .4375 m +.5517 .4375 L +s +[(3)] .53295 .4375 1 0 Mshowa +.54545 .5 m +.5517 .5 L +s +[(4)] .53295 .5 1 0 Mshowa +.125 Mabswid +.54545 .0125 m +.5492 .0125 L +s +.54545 .025 m +.5492 .025 L +s +.54545 .0375 m +.5492 .0375 L +s +.54545 .05 m +.5492 .05 L +s +.54545 .075 m +.5492 .075 L +s +.54545 .0875 m +.5492 .0875 L +s +.54545 .1 m +.5492 .1 L +s +.54545 .1125 m +.5492 .1125 L +s +.54545 .1375 m +.5492 .1375 L +s +.54545 .15 m +.5492 .15 L +s +.54545 .1625 m +.5492 .1625 L +s +.54545 .175 m +.5492 .175 L +s +.54545 .2 m +.5492 .2 L +s +.54545 .2125 m +.5492 .2125 L +s +.54545 .225 m +.5492 .225 L +s +.54545 .2375 m +.5492 .2375 L +s +.54545 .2625 m +.5492 .2625 L +s +.54545 .275 m +.5492 .275 L +s +.54545 .2875 m +.5492 .2875 L +s +.54545 .3 m +.5492 .3 L +s +.54545 .325 m +.5492 .325 L +s +.54545 .3375 m +.5492 .3375 L +s +.54545 .35 m +.5492 .35 L +s +.54545 .3625 m +.5492 .3625 L +s +.54545 .3875 m +.5492 .3875 L +s +.54545 .4 m +.5492 .4 L +s +.54545 .4125 m +.5492 .4125 L +s +.54545 .425 m +.5492 .425 L +s +.54545 .45 m +.5492 .45 L +s +.54545 .4625 m +.5492 .4625 L +s +.54545 .475 m +.5492 .475 L +s +.54545 .4875 m +.5492 .4875 L +s +.25 Mabswid +.54545 0 m +.54545 .5 L +s +gsave +.54545 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +.5 .165 .165 r +.5 Mabswid +.64109 .34862 m +.63681 .34421 L +.63252 .33979 L +.62824 .33537 L +.62395 .33095 L +.61967 .32653 L +.61539 .32212 L +.6111 .3177 L +.60682 .31328 L +.60253 .30886 L +.59825 .30445 L +.59397 .30003 L +.58968 .29561 L +.5854 .29119 L +.58111 .28677 L +.57683 .28236 L +.57255 .27794 L +.56826 .27352 L +.56398 .2691 L +.55969 .26468 L +.55541 .26027 L +.55113 .25585 L +.54684 .25143 L +.54256 .24701 L +.53827 .2426 L +.53399 .23818 L +.52971 .23376 L +.52542 .22934 L +.52114 .22492 L +.51685 .22051 L +.51257 .21609 L +.50829 .21167 L +.504 .20725 L +.49972 .20283 L +.49543 .19842 L +.49115 .194 L +.48687 .18958 L +.48258 .18516 L +.4783 .18075 L +.47401 .17633 L +.46973 .17191 L +.46545 .16749 L +.46116 .16307 L +.45688 .15866 L +.45259 .15424 L +.44831 .14982 L +.40909 .11742 L +.40481 .11433 L +.40052 .11132 L +.39624 .10838 L +Mistroke +.39197 .10553 L +.38769 .10275 L +.38343 .10006 L +.37916 .09745 L +.37491 .09492 L +.37066 .09248 L +.36643 .09013 L +.3622 .08787 L +.35799 .08569 L +.35379 .08361 L +.3496 .08162 L +.34542 .07972 L +.34127 .07792 L +.33713 .07621 L +.333 .0746 L +.3289 .07309 L +.32481 .07168 L +.32075 .07036 L +.31671 .06915 L +.31269 .06803 L +.30869 .06702 L +.30472 .0661 L +.30078 .06529 L +.29686 .06458 L +.29297 .06398 L +.28911 .06348 L +.28528 .06308 L +.28147 .06278 L +.2777 .06259 L +.27397 .06251 L +.27026 .06252 L +.26659 .06264 L +.26296 .06287 L +.25936 .0632 L +.2558 .06363 L +.25227 .06417 L +.24879 .06481 L +.24534 .06555 L +.24193 .0664 L +.23857 .06734 L +.23525 .06839 L +.23197 .06954 L +.22873 .07079 L +.22554 .07214 L +.2224 .07358 L +.2193 .07513 L +.21624 .07677 L +.21324 .07851 L +.21028 .08034 L +.20737 .08227 L +Mistroke +.20452 .08429 L +.20171 .08641 L +.19895 .08861 L +.19625 .0909 L +.19359 .09329 L +.191 .09575 L +.18845 .09831 L +.18596 .10095 L +.18352 .10367 L +.18114 .10647 L +.17882 .10935 L +.17655 .11231 L +.17434 .11535 L +.17219 .11846 L +.1701 .12165 L +.16806 .1249 L +.16609 .12823 L +.16417 .13162 L +.16232 .13508 L +.16053 .1386 L +.15879 .14219 L +.15712 .14583 L +.15552 .14953 L +.15397 .15329 L +.15249 .1571 L +.15107 .16096 L +.14971 .16488 L +.14842 .16884 L +.14719 .17284 L +.14603 .17689 L +.14493 .18098 L +.1439 .1851 L +.14293 .18927 L +.14203 .19346 L +.14119 .19769 L +.14042 .20195 L +.13972 .20623 L +.13908 .21054 L +.13851 .21487 L +.13801 .21921 L +.13757 .22358 L +.1372 .22796 L +.1369 .23235 L +.13667 .23676 L +.1365 .24117 L +.1364 .24558 L +.13636 .25 L +.1364 .25442 L +.1365 .25883 L +.13667 .26324 L +Mistroke +.1369 .26765 L +.1372 .27204 L +.13757 .27642 L +.13801 .28079 L +.13851 .28513 L +.13908 .28946 L +.13972 .29377 L +.14042 .29805 L +.14119 .30231 L +.14203 .30654 L +.14293 .31073 L +.1439 .3149 L +.14493 .31902 L +.14603 .32311 L +.14719 .32716 L +.14842 .33116 L +.14971 .33512 L +.15107 .33904 L +.15249 .3429 L +.15397 .34671 L +.15552 .35047 L +.15712 .35417 L +.15879 .35781 L +.16053 .3614 L +.16232 .36492 L +.16417 .36838 L +.16609 .37177 L +.16806 .3751 L +.1701 .37835 L +.17219 .38154 L +.17434 .38465 L +.17655 .38769 L +.17882 .39065 L +.18114 .39353 L +.18352 .39633 L +.18596 .39905 L +.18845 .40169 L +.191 .40425 L +.19359 .40671 L +.19625 .4091 L +.19895 .41139 L +.20171 .41359 L +.20452 .41571 L +.20737 .41773 L +.21028 .41966 L +.21324 .42149 L +.21624 .42323 L +.2193 .42487 L +.2224 .42642 L +.22554 .42786 L +Mistroke +.22873 .42921 L +.23197 .43046 L +.23525 .43161 L +.23857 .43266 L +.24193 .4336 L +.24534 .43445 L +.24879 .43519 L +.25227 .43583 L +.2558 .43637 L +.25936 .4368 L +.26296 .43713 L +.26659 .43736 L +.27026 .43748 L +.27397 .43749 L +.2777 .43741 L +.28147 .43722 L +.28528 .43692 L +.28911 .43652 L +.29297 .43602 L +.29686 .43542 L +.30078 .43471 L +.30472 .4339 L +.30869 .43298 L +.31269 .43197 L +.31671 .43085 L +.32075 .42964 L +.32481 .42832 L +.3289 .42691 L +.333 .4254 L +.33713 .42379 L +.34127 .42208 L +.34542 .42028 L +.3496 .41838 L +.35379 .41639 L +.35799 .41431 L +.3622 .41213 L +.36643 .40987 L +.37066 .40752 L +.37491 .40508 L +.37916 .40255 L +.38343 .39994 L +.38769 .39725 L +.39197 .39447 L +.39624 .39162 L +.40052 .38868 L +.40481 .38567 L +.40909 .38258 L +.43268 .3663 L +.43697 .36188 L +.44125 .35746 L +Mistroke +.44553 .35304 L +.44982 .34862 L +.4541 .34421 L +.45839 .33979 L +.46267 .33537 L +.46695 .33095 L +.47124 .32653 L +.47552 .32212 L +.47981 .3177 L +.48409 .31328 L +.48837 .30886 L +.49266 .30445 L +.49694 .30003 L +.50123 .29561 L +.50551 .29119 L +.50979 .28677 L +.51408 .28236 L +.51836 .27794 L +.52265 .27352 L +.52693 .2691 L +.53121 .26468 L +.5355 .26027 L +.53978 .25585 L +.54407 .25143 L +.54835 .24701 L +.55263 .2426 L +.55692 .23818 L +.5612 .23376 L +.56549 .22934 L +.56977 .22492 L +.57405 .22051 L +.57834 .21609 L +.58262 .21167 L +.58691 .20725 L +.59119 .20283 L +.59547 .19842 L +.59976 .194 L +.60404 .18958 L +.60833 .18516 L +.61261 .18075 L +.61689 .17633 L +.62118 .17191 L +.62546 .16749 L +.62975 .16307 L +.63403 .15866 L +.63831 .15424 L +.6426 .14982 L +.6861 .11433 L +.69038 .11132 L +.69467 .10838 L +Mistroke +.69894 .10553 L +.70322 .10275 L +.70748 .10006 L +.71175 .09745 L +.716 .09492 L +.72025 .09248 L +.72448 .09013 L +.72871 .08787 L +.73292 .08569 L +.73712 .08361 L +.74131 .08162 L +.74549 .07972 L +.74964 .07792 L +.75378 .07621 L +.75791 .0746 L +.76201 .07309 L +.7661 .07168 L +.77016 .07036 L +.7742 .06915 L +.77822 .06803 L +.78222 .06702 L +.78619 .0661 L +.79013 .06529 L +.79405 .06458 L +.79794 .06398 L +.8018 .06348 L +.80563 .06308 L +.80944 .06278 L +.81321 .06259 L +.81694 .06251 L +.82065 .06252 L +.82432 .06264 L +.82795 .06287 L +.83155 .0632 L +.83511 .06363 L +.83864 .06417 L +.84212 .06481 L +.84557 .06555 L +.84897 .0664 L +.85234 .06734 L +.85566 .06839 L +.85894 .06954 L +.86218 .07079 L +.86537 .07214 L +.86851 .07358 L +.87161 .07513 L +.87467 .07677 L +.87767 .07851 L +.88063 .08034 L +.88354 .08227 L +Mistroke +.88639 .08429 L +.8892 .08641 L +.89196 .08861 L +.89466 .0909 L +.89732 .09329 L +.89991 .09575 L +.90246 .09831 L +.90495 .10095 L +.90739 .10367 L +.90977 .10647 L +.91209 .10935 L +.91436 .11231 L +.91657 .11535 L +.91872 .11846 L +.92081 .12165 L +.92285 .1249 L +.92482 .12823 L +.92673 .13162 L +.92859 .13508 L +.93038 .1386 L +.93211 .14219 L +.93379 .14583 L +.93539 .14953 L +.93694 .15329 L +.93842 .1571 L +.93984 .16096 L +.9412 .16488 L +.94249 .16884 L +.94372 .17284 L +.94488 .17689 L +.94598 .18098 L +.94701 .1851 L +.94798 .18927 L +.94888 .19346 L +.94971 .19769 L +.95048 .20195 L +.95119 .20623 L +.95182 .21054 L +.95239 .21487 L +.9529 .21921 L +.95334 .22358 L +.9537 .22796 L +.95401 .23235 L +.95424 .23676 L +.95441 .24117 L +.95451 .24558 L +.95455 .25 L +.95451 .25442 L +.95441 .25883 L +.95424 .26324 L +Mistroke +.95401 .26765 L +.9537 .27204 L +.95334 .27642 L +.9529 .28079 L +.95239 .28513 L +.95182 .28946 L +.95119 .29377 L +.95048 .29805 L +.94971 .30231 L +.94888 .30654 L +.94798 .31073 L +.94701 .3149 L +.94598 .31902 L +.94488 .32311 L +.94372 .32716 L +.94249 .33116 L +.9412 .33512 L +.93984 .33904 L +.93842 .3429 L +.93694 .34671 L +.93539 .35047 L +.93379 .35417 L +.93211 .35781 L +.93038 .3614 L +.92859 .36492 L +.92673 .36838 L +.92482 .37177 L +.92285 .3751 L +.92081 .37835 L +.91872 .38154 L +.91657 .38465 L +.91436 .38769 L +.91209 .39065 L +.90977 .39353 L +.90739 .39633 L +.90495 .39905 L +.90246 .40169 L +.89991 .40425 L +.89732 .40671 L +.89466 .4091 L +.89196 .41139 L +.8892 .41359 L +.88639 .41571 L +.88354 .41773 L +.88063 .41966 L +.87767 .42149 L +.87467 .42323 L +.87161 .42487 L +.86851 .42642 L +.86537 .42786 L +Mistroke +.86218 .42921 L +.85894 .43046 L +.85566 .43161 L +.85234 .43266 L +.84897 .4336 L +.84557 .43445 L +.84212 .43519 L +.83864 .43583 L +.83511 .43637 L +.83155 .4368 L +.82795 .43713 L +.82432 .43736 L +.82065 .43748 L +.81694 .43749 L +.81321 .43741 L +.80944 .43722 L +.80563 .43692 L +.8018 .43652 L +.79794 .43602 L +.79405 .43542 L +.79013 .43471 L +.78619 .4339 L +.78222 .43298 L +.77822 .43197 L +.7742 .43085 L +.77016 .42964 L +.7661 .42832 L +.76201 .42691 L +.75791 .4254 L +.75378 .42379 L +.74964 .42208 L +.74549 .42028 L +.74131 .41838 L +.73712 .41639 L +.73292 .41431 L +.72871 .41213 L +.72448 .40987 L +.72025 .40752 L +.716 .40508 L +.71175 .40255 L +.70748 .39994 L +.70322 .39725 L +.69894 .39447 L +.69467 .39162 L +.69038 .38868 L +.6861 .38567 L +.68182 .38258 L +.67753 .37942 L +.67325 .37619 L +.66897 .37289 L +Mistroke +.66469 .36952 L +.66042 .36608 L +.65615 .36258 L +.65189 .35901 L +.64764 .35539 L +.64339 .35171 L +.63915 .34797 L +Mfstroke +0 1 0 r +.13636 .25 m +.13654 .25484 L +.13702 .25967 L +.13772 .26451 L +.13858 .26934 L +.13952 .27417 L +.14048 .27901 L +.14138 .28384 L +.1422 .28867 L +.14295 .2935 L +.14364 .29833 L +.14429 .30317 L +.1449 .308 L +.1455 .31284 L +.14609 .31769 L +.14671 .32253 L +.14738 .32737 L +.14813 .33221 L +.149 .33703 L +.15001 .34184 L +.15119 .34663 L +.15257 .3514 L +.15418 .35614 L +.15605 .36085 L +.1582 .36553 L +.16067 .37018 L +.16349 .37478 L +.16668 .37934 L +.17022 .38384 L +.1741 .38826 L +.1783 .3926 L +.18279 .39683 L +.18756 .40094 L +.19259 .40491 L +.19784 .40874 L +.20332 .4124 L +.20898 .41588 L +.21482 .41917 L +.22082 .42224 L +.22694 .42509 L +.23318 .42769 L +.23951 .43004 L +.2459 .43212 L +.25235 .43391 L +.25883 .4354 L +.26532 .43657 L +.2718 .43741 L +.27825 .4379 L +.28466 .43805 L +.29104 .43788 L +Mistroke +.29738 .43739 L +.30367 .4366 L +.30993 .43551 L +.31614 .43415 L +.32231 .43252 L +.32844 .43063 L +.33451 .42851 L +.34054 .42615 L +.34651 .42358 L +.35244 .4208 L +.35831 .41782 L +.36412 .41467 L +.36988 .41134 L +.37558 .40786 L +.38123 .40423 L +.38681 .40048 L +.39233 .3966 L +.39778 .39261 L +.40317 .38852 L +.40849 .38436 L +.41375 .38012 L +.41893 .37582 L +.42404 .37147 L +.42908 .36709 L +.43405 .36268 L +.43894 .35827 L +.44375 .35385 L +.44849 .34945 L +.45314 .34508 L +.45771 .34074 L +.46221 .33644 L +.46662 .33218 L +.47097 .32796 L +.47524 .32377 L +.47944 .31961 L +.48358 .31548 L +.48766 .31139 L +.49168 .30731 L +.49565 .30327 L +.49956 .29924 L +.50343 .29523 L +.50725 .29125 L +.51103 .28728 L +.51478 .28332 L +.51848 .27938 L +.52216 .27544 L +.5258 .27152 L +.52942 .2676 L +.53301 .26368 L +.53659 .25977 L +Mistroke +.54015 .25586 L +.5437 .25195 L +.54723 .24803 L +.55076 .24411 L +.55429 .24018 L +.55783 .23625 L +.56137 .2323 L +.56493 .22836 L +.56851 .2244 L +.57212 .22043 L +.57576 .21645 L +.57944 .21246 L +.58316 .20846 L +.58693 .20444 L +.59075 .20041 L +.59463 .19637 L +.59857 .1923 L +.60259 .18823 L +.60668 .18413 L +.61085 .18002 L +.6151 .17589 L +.61945 .17174 L +.62389 .16757 L +.62844 .16338 L +.63309 .15917 L +.63786 .15493 L +.64274 .15067 L +.64773 .14641 L +.65282 .14214 L +.65801 .13788 L +.66329 .13364 L +.66865 .12943 L +.6741 .12526 L +.67962 .12114 L +.6852 .11708 L +.69085 .11308 L +.69656 .10916 L +.70231 .10534 L +.70811 .10161 L +.71395 .09798 L +.71982 .09448 L +.72572 .0911 L +.73164 .08786 L +.73758 .08477 L +.74352 .08184 L +.74947 .07907 L +.75541 .07648 L +.76135 .07408 L +.76728 .07188 L +.77318 .06988 L +Mistroke +.77906 .0681 L +.78491 .06654 L +.79072 .06522 L +.79648 .06415 L +.8022 .06333 L +.80787 .06278 L +.81347 .06251 L +.819 .06252 L +.82447 .06282 L +.82986 .06341 L +.83517 .06428 L +.8404 .06542 L +.84556 .06683 L +.85062 .0685 L +.8556 .07042 L +.86049 .07258 L +.86528 .07498 L +.86998 .07762 L +.87459 .08048 L +.87909 .08356 L +.88349 .08685 L +.88778 .09034 L +.89196 .09403 L +.89604 .09791 L +.9 .10198 L +.90384 .10623 L +.90757 .11064 L +.91117 .11522 L +.91465 .11995 L +.918 .12484 L +.92123 .12987 L +.92432 .13503 L +.92727 .14033 L +.9301 .14574 L +.93278 .15127 L +.93531 .15692 L +.93771 .16266 L +.93995 .1685 L +.94205 .17443 L +.94399 .18044 L +.94578 .18652 L +.94741 .19268 L +.94888 .19889 L +.95019 .20516 L +.95133 .21148 L +.9523 .21784 L +.9531 .22423 L +.95373 .23065 L +.95418 .23709 L +.95445 .24354 L +Mistroke +.95455 .25 L +.95445 .25646 L +.95418 .26291 L +.95373 .26935 L +.9531 .27577 L +.9523 .28216 L +.95133 .28852 L +.95019 .29484 L +.94888 .30111 L +.94741 .30732 L +.94578 .31348 L +.94399 .31956 L +.94205 .32557 L +.93995 .3315 L +.93771 .33734 L +.93531 .34308 L +.93278 .34873 L +.9301 .35426 L +.92727 .35967 L +.92432 .36497 L +.92123 .37013 L +.918 .37516 L +.91465 .38005 L +.91117 .38478 L +.90757 .38936 L +.90384 .39377 L +.9 .39802 L +.89604 .40209 L +.89196 .40597 L +.88778 .40966 L +.88349 .41315 L +.87909 .41644 L +.87459 .41952 L +.86998 .42238 L +.86528 .42502 L +.86049 .42742 L +.8556 .42958 L +.85062 .4315 L +.84556 .43317 L +.8404 .43458 L +.83517 .43572 L +.82986 .43659 L +.82447 .43718 L +.819 .43748 L +.81347 .43749 L +.80787 .43722 L +.8022 .43667 L +.79648 .43585 L +.79072 .43478 L +.78491 .43346 L +Mistroke +.77906 .4319 L +.77318 .43012 L +.76728 .42812 L +.76135 .42592 L +.75541 .42352 L +.74947 .42093 L +.74352 .41816 L +.73758 .41523 L +.73164 .41214 L +.72572 .4089 L +.71982 .40552 L +.71395 .40202 L +.70811 .39839 L +.70231 .39466 L +.69656 .39084 L +.69085 .38692 L +.6852 .38292 L +.67962 .37886 L +.6741 .37474 L +.66865 .37057 L +.66329 .36636 L +.65801 .36212 L +.65282 .35786 L +.64773 .35359 L +.64274 .34933 L +.63786 .34507 L +.63309 .34083 L +.62844 .33662 L +.62389 .33243 L +.61945 .32826 L +.6151 .32411 L +.61085 .31998 L +.60668 .31587 L +.60259 .31177 L +.59857 .3077 L +.59463 .30363 L +.59075 .29959 L +.58693 .29556 L +.58316 .29154 L +.57944 .28754 L +.57576 .28355 L +.57212 .27957 L +.56851 .2756 L +.56493 .27164 L +.56137 .2677 L +.55783 .26375 L +.55429 .25982 L +.55076 .25589 L +.54723 .25197 L +.5437 .24805 L +Mistroke +.54015 .24414 L +.53659 .24023 L +.53301 .23632 L +.52942 .2324 L +.5258 .22848 L +.52216 .22456 L +.51848 .22062 L +.51478 .21668 L +.51103 .21272 L +.50725 .20875 L +.50343 .20477 L +.49956 .20076 L +.49565 .19673 L +.49168 .19269 L +.48766 .18861 L +.48358 .18452 L +.47944 .18039 L +.47524 .17623 L +.47096 .17204 L +.46662 .16782 L +.46221 .16356 L +.45771 .15926 L +.45314 .15492 L +.44849 .15055 L +.44375 .14615 L +.43894 .14173 L +.43405 .13732 L +.42909 .13291 L +.42404 .12853 L +.41893 .12418 L +.41375 .11988 L +.40849 .11564 L +.40317 .11148 L +.39778 .10739 L +.39233 .1034 L +.38681 .09952 L +.38123 .09577 L +.37559 .09214 L +.36988 .08866 L +.36412 .08533 L +.35831 .08218 L +.35244 .0792 L +.34651 .07642 L +.34054 .07385 L +.33451 .07149 L +.32844 .06937 L +.32231 .06748 L +.31615 .06585 L +.30993 .06449 L +.30368 .0634 L +Mistroke +.29738 .06261 L +.29104 .06212 L +.28466 .06195 L +.27825 .0621 L +.2718 .06259 L +.26532 .06343 L +.25883 .0646 L +.25235 .06609 L +.2459 .06788 L +.2395 .06996 L +.23317 .07231 L +.22694 .07491 L +.22081 .07776 L +.21482 .08083 L +.20898 .08412 L +.20331 .0876 L +.19784 .09126 L +.19258 .09509 L +.18756 .09906 L +.18279 .10317 L +.1783 .1074 L +.1741 .11174 L +.17022 .11616 L +.16668 .12066 L +.16349 .12522 L +.16067 .12982 L +.1582 .13447 L +.15605 .13915 L +.15418 .14386 L +.15258 .1486 L +.1512 .15337 L +.15002 .15816 L +.14901 .16297 L +.14814 .16779 L +.14739 .17263 L +.14671 .17747 L +.14609 .18231 L +.1455 .18716 L +.1449 .192 L +.14428 .19683 L +.14363 .20167 L +.14294 .2065 L +.14219 .21133 L +.14138 .21616 L +.14047 .22099 L +.13951 .22583 L +.13856 .23066 L +.1377 .23549 L +.137 .24033 L +.13653 .24516 L +Mistroke +.13636 .25 L +Mfstroke +1 0 0 r +.13636 .25 m +.13549 .25429 L +.13567 .25895 L +.1365 .26383 L +.13769 .26883 L +.13902 .27388 L +.14033 .27892 L +.14154 .28393 L +.14259 .28888 L +.14345 .29377 L +.14415 .2986 L +.14469 .30338 L +.14512 .30812 L +.14548 .31283 L +.14582 .31753 L +.14619 .32222 L +.14663 .32692 L +.14721 .33163 L +.14795 .33636 L +.1489 .34112 L +.1501 .3459 L +.15156 .35071 L +.15331 .35553 L +.15537 .36035 L +.15775 .36518 L +.16045 .36999 L +.16348 .37477 L +.16683 .37951 L +.1705 .38418 L +.17447 .38877 L +.17873 .39326 L +.18327 .39763 L +.18807 .40187 L +.19311 .40594 L +.19837 .40984 L +.20383 .41354 L +.20948 .41703 L +.21529 .42029 L +.22124 .42331 L +.22731 .42608 L +.23349 .42857 L +.23975 .43078 L +.24609 .43271 L +.25247 .43434 L +.25889 .43567 L +.26534 .4367 L +.2718 .43742 L +.27826 .43784 L +.28471 .43794 L +.29114 .43775 L +Mistroke +.29755 .43726 L +.30392 .43647 L +.31025 .4354 L +.31653 .43405 L +.32277 .43243 L +.32895 .43056 L +.33508 .42843 L +.34114 .42607 L +.34715 .42349 L +.35309 .42069 L +.35896 .4177 L +.36477 .41452 L +.37052 .41118 L +.3762 .40767 L +.38181 .40403 L +.38735 .40026 L +.39282 .39637 L +.39823 .39238 L +.40356 .3883 L +.40883 .38414 L +.41403 .37992 L +.41916 .37565 L +.42423 .37133 L +.42922 .36699 L +.43414 .36262 L +.439 .35823 L +.44378 .35385 L +.4485 .34946 L +.45314 .34508 L +.45772 .34072 L +.46223 .33638 L +.46667 .33206 L +.47104 .32777 L +.47535 .3235 L +.47959 .31928 L +.48376 .31508 L +.48787 .31092 L +.49192 .3068 L +.49591 .30271 L +.49985 .29866 L +.50372 .29464 L +.50755 .29065 L +.51133 .28669 L +.51506 .28276 L +.51874 .27885 L +.52239 .27496 L +.52601 .27109 L +.52959 .26724 L +.53315 .2634 L +.53668 .25956 L +Mistroke +.5402 .25573 L +.54371 .2519 L +.54722 .24807 L +.55072 .24423 L +.55422 .24039 L +.55774 .23653 L +.56127 .23265 L +.56482 .22876 L +.5684 .22485 L +.57201 .22091 L +.57566 .21696 L +.57935 .21297 L +.58308 .20897 L +.58687 .20493 L +.59072 .20087 L +.59463 .19679 L +.5986 .19268 L +.60264 .18855 L +.60676 .18439 L +.61095 .18022 L +.61522 .17603 L +.61957 .17182 L +.62401 .16761 L +.62853 .16338 L +.63314 .15916 L +.63783 .15494 L +.64262 .15072 L +.64749 .14652 L +.65245 .14234 L +.65749 .13818 L +.66262 .13406 L +.66784 .12997 L +.67314 .12593 L +.67851 .12194 L +.68396 .11801 L +.68949 .11415 L +.69508 .11037 L +.70074 .10667 L +.70646 .10306 L +.71223 .09955 L +.71806 .09615 L +.72393 .09287 L +.72984 .08971 L +.73579 .08668 L +.74176 .0838 L +.74776 .08106 L +.75377 .07848 L +.75979 .07606 L +.76581 .07382 L +.77183 .07175 L +Mistroke +.77784 .06987 L +.78383 .06819 L +.78979 .0667 L +.79573 .06542 L +.80163 .06435 L +.80748 .06349 L +.81329 .06286 L +.81904 .06245 L +.82472 .06228 L +.83034 .06234 L +.83588 .06263 L +.84134 .06317 L +.84671 .06395 L +.85199 .06498 L +.85718 .06625 L +.86226 .06777 L +.86724 .06954 L +.87211 .07156 L +.87686 .07383 L +.8815 .07634 L +.88601 .0791 L +.89039 .08211 L +.89465 .08535 L +.89878 .08884 L +.90277 .09255 L +.90662 .0965 L +.91033 .10068 L +.9139 .10508 L +.91733 .10969 L +.92061 .11451 L +.92375 .11954 L +.92674 .12476 L +.92958 .13018 L +.93226 .13577 L +.9348 .14155 L +.93719 .14749 L +.93942 .15358 L +.9415 .15983 L +.94343 .16621 L +.94521 .17273 L +.94683 .17936 L +.94829 .18611 L +.9496 .19295 L +.95076 .19988 L +.95177 .2069 L +.95262 .21398 L +.95331 .22111 L +.95385 .2283 L +.95424 .23551 L +.95447 .24275 L +Mistroke +.95455 .25 L +.95447 .25725 L +.95424 .26449 L +.95385 .2717 L +.95331 .27889 L +.95262 .28602 L +.95177 .2931 L +.95076 .30012 L +.9496 .30705 L +.94829 .31389 L +.94683 .32064 L +.94521 .32727 L +.94343 .33379 L +.9415 .34017 L +.93942 .34642 L +.93719 .35251 L +.9348 .35845 L +.93226 .36423 L +.92958 .36982 L +.92674 .37524 L +.92375 .38046 L +.92061 .38549 L +.91733 .39031 L +.9139 .39492 L +.91033 .39932 L +.90662 .4035 L +.90277 .40745 L +.89878 .41116 L +.89465 .41465 L +.89039 .41789 L +.88601 .4209 L +.8815 .42366 L +.87686 .42617 L +.87211 .42844 L +.86724 .43046 L +.86226 .43223 L +.85718 .43375 L +.85199 .43502 L +.84671 .43605 L +.84134 .43683 L +.83588 .43737 L +.83034 .43766 L +.82472 .43772 L +.81904 .43755 L +.81329 .43714 L +.80748 .43651 L +.80163 .43565 L +.79573 .43458 L +.78979 .4333 L +.78383 .43181 L +Mistroke +.77784 .43013 L +.77183 .42825 L +.76581 .42618 L +.75979 .42394 L +.75377 .42152 L +.74776 .41894 L +.74176 .4162 L +.73579 .41332 L +.72984 .41029 L +.72393 .40713 L +.71806 .40385 L +.71223 .40045 L +.70646 .39694 L +.70074 .39333 L +.69508 .38963 L +.68949 .38585 L +.68396 .38199 L +.67851 .37806 L +.67314 .37407 L +.66784 .37003 L +.66262 .36594 L +.65749 .36182 L +.65245 .35766 L +.64749 .35348 L +.64262 .34928 L +.63783 .34506 L +.63314 .34084 L +.62853 .33662 L +.62401 .33239 L +.61957 .32818 L +.61522 .32397 L +.61095 .31978 L +.60676 .31561 L +.60264 .31145 L +.5986 .30732 L +.59463 .30321 L +.59072 .29913 L +.58687 .29507 L +.58308 .29103 L +.57935 .28703 L +.57566 .28304 L +.57201 .27909 L +.5684 .27515 L +.56482 .27124 L +.56127 .26735 L +.55774 .26347 L +.55422 .25961 L +.55072 .25577 L +.54722 .25193 L +.54371 .2481 L +Mistroke +.5402 .24427 L +.53668 .24044 L +.53315 .2366 L +.52959 .23276 L +.52601 .22891 L +.52239 .22504 L +.51874 .22115 L +.51506 .21724 L +.51133 .21331 L +.50755 .20935 L +.50372 .20536 L +.49985 .20134 L +.49591 .19729 L +.49192 .1932 L +.48787 .18908 L +.48376 .18492 L +.47959 .18072 L +.47535 .1765 L +.47104 .17223 L +.46667 .16794 L +.46223 .16362 L +.45772 .15928 L +.45314 .15492 L +.4485 .15054 L +.44378 .14615 L +.439 .14177 L +.43414 .13738 L +.42922 .13301 L +.42423 .12867 L +.41916 .12435 L +.41403 .12008 L +.40883 .11586 L +.40356 .1117 L +.39823 .10762 L +.39282 .10363 L +.38735 .09974 L +.38181 .09597 L +.3762 .09233 L +.37052 .08882 L +.36477 .08548 L +.35896 .0823 L +.35309 .07931 L +.34715 .07651 L +.34114 .07393 L +.33508 .07157 L +.32895 .06944 L +.32277 .06757 L +.31653 .06595 L +.31025 .0646 L +.30392 .06353 L +Mistroke +.29755 .06274 L +.29114 .06225 L +.28471 .06206 L +.27826 .06216 L +.2718 .06258 L +.26534 .0633 L +.25889 .06433 L +.25247 .06566 L +.24609 .06729 L +.23975 .06922 L +.23349 .07143 L +.22731 .07392 L +.22124 .07669 L +.21529 .07971 L +.20948 .08297 L +.20383 .08646 L +.19837 .09016 L +.19311 .09406 L +.18807 .09813 L +.18327 .10237 L +.17873 .10674 L +.17447 .11123 L +.1705 .11582 L +.16683 .12049 L +.16348 .12523 L +.16045 .13001 L +.15775 .13482 L +.15537 .13965 L +.15331 .14447 L +.15156 .14929 L +.1501 .1541 L +.1489 .15888 L +.14795 .16364 L +.14721 .16837 L +.14663 .17308 L +.14619 .17778 L +.14582 .18247 L +.14548 .18717 L +.14512 .19188 L +.14469 .19662 L +.14415 .2014 L +.14345 .20623 L +.14259 .21112 L +.14154 .21607 L +.14033 .22108 L +.13902 .22612 L +.13769 .23117 L +.1365 .23617 L +.13567 .24105 L +.13549 .24571 L +Mistroke +.13636 .25 L +Mfstroke +0 0 1 r +.13636 .25 m +.14091 .28125 L +.14545 .3125 L +.16364 .375 L +.27273 .4375 L +.45455 .34375 L +.54545 .25 L +.63636 .15625 L +.81818 .0625 L +.95455 .25 L +.81818 .4375 L +.63636 .34375 L +.54545 .25 L +.45455 .15625 L +.27273 .0625 L +.16364 .125 L +.14545 .1875 L +.14091 .21875 L +.13636 .25 L +s +5 Mabswid +.13636 .25 Mdot +.14091 .28125 Mdot +.14545 .3125 Mdot +.16364 .375 Mdot +.27273 .4375 Mdot +.45455 .34375 Mdot +.54545 .25 Mdot +.63636 .15625 Mdot +.81818 .0625 Mdot +.95455 .25 Mdot +.81818 .4375 Mdot +.63636 .34375 Mdot +.54545 .25 Mdot +.45455 .15625 Mdot +.27273 .0625 Mdot +.16364 .125 Mdot +.14545 .1875 Mdot +.14091 .21875 Mdot +.13636 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{895, 447.5}, + ImageMargins->{{42, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`800000 +303oool00`000000oooo0?ooo`3K0?ooo`<0003oc@3oool00?40oooo1@000?l?0?l00;d0oooo00@0 +00000?ooo`3oool000002`3oool00`000000oooo0?ooo`3J0?ooo`D0003o00<0oooo0?l0003o0000 +1`3o00320?ooo`00i`3oool307lZ:PL0o`001@000?l<07lZ:P80oooo00<00?l00?l0003o0000203o +002e0?ooo`030000003oool0oooo00X0oooo1`00003:0?ooo`@00?l0203o00050000o`030?l00000 +o`000?l000H00?l000<0ObXZ0?l0003o00001`3o002i0?ooo`00gP3oool707lZ:PD0o`001`3oool5 +0000o``0oooo1P1o:RX70?ooo`D0o`00Z03oool4000000D0oooo00<000000?ooo`3oool02@3oool0 +0`000000oooo0?ooo`380?ooo`0307lZ:P00o`000?l000800?l01@3o00080?ooo`D0003o2@3oool5 +003o00D0ObXZ103o002e0?ooo`00f`3oool307lZ:P<0oooo103o00000`00o`00oooo0?ooo`070?oo +o`80003o00D0oooo0000o`000?l0003o0?ooo`020000oa00oooo0`1o:RX90?ooo`@0o`00ZP3oool0 +10000000oooo0?ooo`00000;0?ooo`030000003oool0oooo0<@0oooo1000o`050?l000/0oooo0P00 +0?l0103oool0003o0000o`000?l?0?ooo`@00?l000D0oooo07lZ:P1o:RX0ObXZ0?ooo`040?l00;40 +oooo003I0?ooo`80ObXZ103oool20?l000<00?l02@3oool20000o`T0oooo0P000?lA0?ooo`L0ObXZ +1P3oool20?l00:T0oooo0P00000<0?ooo`030000003oool0oooo0;h0oooo00<0ObXZ003o0000o`00 +0P00o`050?l000h0oooo0P000?l60?ooo`030000o`3oool0oooo0100oooo1000o`0207lZ:P<0oooo +103o002]0?ooo`00d`3oool607lZ:P80oooo103o00000`00o`00oooo0?ooo`0:0?ooo`030000o`3o +ool0oooo00/0oooo0P000?lF0?ooo`<0ObXZ1@3oool40?l00;<0oooo00<000000?ooo`3oool0^`3o +ool0101o:RX00?l0003o0000o`040?l00140oooo0P000?l90?ooo`030000o`3oool0oooo01<0oooo +0`00o`0507lZ:P030?ooo`3o0000o`000080o`00Z@3oool00=40oooo0P1o:RX40?ooo`@0o`0000<0 +0?l00?ooo`3oool0303oool20000oa00oooo0P000?lG0?ooo`<0ObXZ1P3oool40?l00:l0oooo00<0 +00000?ooo`3oool0]`3oool307lZ:P800?l000<0oooo0?l0003o00004`3oool20000o``0oooo00<0 +003o0?ooo`3oool05@3oool2003o00<0oooo0P1o:RX30?ooo`<0o`00YP3oool000?ooo`030000o`3oool0 +oooo01L0oooo0P00o`030?ooo`<0ObXZ0`3oool20?l00:@0oooo003<0?ooo`80ObXZ0`3oool30?l0 +00800?l0403oool20000oaP0oooo0P000?lJ0?ooo`<0ObXZ1@3oool30?l00:X0oooo00<000000?oo +o`3oool0/@3oool00`1o:RX00?l0003o0002003o00<0o`005@3oool20000oa40oooo00<0003o0?oo +o`3oool0603oool2003o00@0oooo0P1o:RX30?ooo`80o`00XP3oool000?ooo`80003oM@3oool20000 +oad0oooo00<0ObXZ0?ooo`00o`000P3o001l0?ooo`030000003oool0oooo07h0oooo0P1o:RX20?oo +o`80o`006@3oool20000oe@0oooo00<0003o0?ooo`3oool0:@3oool00`00o`00oooo0?ooo`020?oo +o`0307lZ:P3oool0oooo0080oooo00<0o`000?ooo`3oool0O`3oool00:P0oooo00<0o`00003o001o +:RX03@3oool20000ogT0oooo0P000?lL0?ooo`0507lZ:P3oool0oooo003o003o0000N`3oool00`00 +0000oooo0?ooo`1m0?ooo`0507lZ:P3oool0oooo0?ooo`3o00006@3oool20000oeL0oooo00<0003o +0?ooo`3oool0:@3oool00`00o`00oooo0?ooo`020?ooo`0307lZ:P3oool0oooo0080oooo00<0o`00 +0?ooo`3oool0OP3oool00:L0oooo00<0o`00003o001o:RX03@3oool00`000?l0oooo0?ooo`1k0?oo +o`80003o6`3oool207lZ:P030?ooo`00o`00o`0007X0oooo00<000000?ooo`3oool0O03oool00`1o +:RX0oooo0?ooo`020?l001P0oooo0P000?mJ0?ooo`030000o`3oool0oooo02T0oooo00<00?l00?oo +o`3oool00P3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo07d0oooo002V0?ooo`04 +003o003o0000oooo07lZ:P/0oooo0P000?n00?ooo`80003o6`3oool00`1o:RX0oooo0?ooo`020?l0 +07P0oooo00<000000?ooo`3oool0N`3oool0101o:RX0oooo0?l0003o000H0?ooo`80003oG@3oool0 +0`000?l0oooo0?ooo`0Y0?ooo`05003o003oool0oooo0?ooo`1o:RX0103oool00`3o0000oooo0?oo +o`1m0?ooo`00Y@3oool01000o`00o`000?ooo`1o:RX:0?ooo`80003oQ03oool20000oaX0oooo0P1o +:RX20?ooo`030?l0003oool0oooo07D0oooo00<000000?ooo`3oool0N@3oool207lZ:P030?ooo`3o +00000?l001L0oooo0P000?mO0?ooo`030000o`3oool0oooo02X0oooo00D00?l00?ooo`3oool0oooo +07lZ:P040?ooo`030?l0003oool0oooo07`0oooo002T0?ooo`04003o003o0000oooo07lZ:PT0oooo +0P000?n80?ooo`80003o6P3oool0101o:RX0oooo0?ooo`3o001f0?ooo`030000003oool0oooo07L0 +oooo0P1o:RX00`3oool00?l00?l0000G0?ooo`80003oHP3oool00`000?l0oooo0?ooo`0Y0?ooo`03 +003o003oool0oooo0080oooo00D0ObXZ0?ooo`3oool0oooo0?l0001n0?ooo`00X`3oool20?l00003 +0?ooo`1o:RX0oooo00P0oooo00<0003o0?ooo`3oool0RP3oool00`000?l0oooo0?ooo`0H0?ooo`80 +ObXZ00<0oooo0?l0003oool0M03oool00`000000oooo0?ooo`1e0?ooo`80ObXZ0P3oool20?l001L0 +oooo00<0003o0?ooo`3oool0H`3oool00`000?l0oooo0?ooo`0Y0?ooo`03003o003oool0oooo0080 +oooo00D0ObXZ0?ooo`3oool0oooo0?l0001m0?ooo`00XP3oool0103o00000?l00?ooo`1o:RX80?oo +o`80003oSP3oool20000oaX0oooo0P1o:RX00`3o0000oooo0?ooo`1b0?ooo`030000003oool0oooo +07@0oooo00D0ObXZ0?ooo`3oool00?l00?l0000G0?ooo`80003oI`3oool00`000?l0oooo0?ooo`0Y +0?ooo`03003o003oool0oooo0080oooo00D0ObXZ0?ooo`3oool0oooo0?l0001l0?ooo`00X@3oool0 +103o00000?l00?ooo`1o:RX70?ooo`80003oTP3oool20000oaX0oooo00<0ObXZ0?l0003oool0LP3o +ool400000780oooo00<0ObXZ0?ooo`00o`000P3o000F0?ooo`80003oJ@3oool00`000?l0oooo0?oo +o`0Z0?ooo`03003o003oool0oooo0080oooo00@0ObXZ0?ooo`3oool0o`00O03oool00:00oooo00@0 +o`00003o003oool0ObXZ1P3oool20000oiH0oooo0P000?lI0?ooo`0307lZ:P3o0000o`000740oooo +00<000000?ooo`3oool0L@3oool207lZ:P030?ooo`3o0000o`0001H0oooo0P000?m/0?ooo`030000 +o`3oool0oooo02T0oooo00<00?l00?ooo`3oool00`3oool0101o:RX0oooo0?ooo`3o001k0?ooo`00 +X03oool0103o0000oooo0?ooo`1o:RX50?ooo`030000o`3oool0oooo09P0oooo0P000?lH0?ooo`04 +07lZ:P00o`00o`000?l006l0oooo00<000000?ooo`3oool0L03oool0101o:RX0oooo0?ooo`3o000F +0?ooo`80003oK`3oool00`000?l0oooo0?ooo`0Y0?ooo`03003o003oool0oooo0080oooo00D0ObXZ +0?ooo`3oool0oooo0?l0001j0?ooo`00W`3oool0103o0000oooo0?ooo`1o:RX40?ooo`80003oW@3o +ool20000oaL0oooo0P1o:RX00`00o`00o`000?ooo`1]0?ooo`030000003oool0oooo06l0oooo00@0 +ObXZ0?ooo`00o`00o`005@3oool20000og40oooo00<0003o0?ooo`3oool0:P3oool00`00o`00oooo +0?ooo`020?ooo`0507lZ:P3oool0oooo0?ooo`3o0000N@3oool009h0oooo00@0o`000?ooo`3oool0 +ObXZ0`3oool20000oj40oooo0P000?lG0?ooo`0307lZ:P00o`00o`0006d0oooo00<000000?ooo`3o +ool0K@3oool207lZ:P030?ooo`3o0000o`0001@0oooo0P000?md0?ooo`030000o`3oool0oooo02X0 +oooo00<00?l00?ooo`3oool00P3oool0101o:RX0oooo0?ooo`3o001i0?ooo`00W@3oool0103o0000 +oooo0?ooo`1o:RX20?ooo`80003oY@3oool20000oaL0oooo00<0ObXZ0?l00000o`00J`3oool00`00 +0000oooo0?ooo`1/0?ooo`0407lZ:P3oool0oooo0?l001@0oooo0P000?mg0?ooo`030000o`3oool0 +oooo02T0oooo00<00?l00?ooo`3oool00`3oool0101o:RX0oooo0?ooo`3o001h0?ooo`00W@3oool0 +103o0000oooo0?ooo`1o:RX20000ojT0oooo0P000?lF0?ooo`0307lZ:P3o00000?l006X0oooo00<0 +00000?ooo`3oool0J`3oool0101o:RX0oooo0?l0003o000C0?ooo`80003oNP3oool00`000?l0oooo +0?ooo`0Y0?ooo`03003o003oool0oooo0080oooo00D0ObXZ0?ooo`3oool0oooo0?l0001g0?ooo`00 +W03oool01@3o0000oooo0?ooo`1o:RX0003o0:d0oooo0P000?lE0?ooo`0307lZ:P3o00000?l006T0 +oooo00<000000?ooo`3oool0JP3oool00`1o:RX0o`000?l0000C0?ooo`80003oO03oool00`000?l0 +oooo0?ooo`0Z0?ooo`03003o003oool0oooo0080oooo00@0ObXZ0?ooo`3oool0o`00M`3oool009/0 +oooo00<0o`000?ooo`3oool00P000?n`0?ooo`80003o5@3oool00`3o00000?l00?ooo`1W0?ooo`03 +0000003oool0oooo06T0oooo00<0ObXZ0?l00000o`004P3oool20000ogl0oooo00<0003o0?ooo`3o +ool0:P3oool01@00o`00oooo0?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0M03oool009P0 +oooo0`000?l0103oool0003o0000o`1o:RZc0?ooo`80003o503oool20?l005P0oooo1000000;0?oo +o`030000003oool0oooo06L0oooo0P1o:RX00`3o00000?l00?ooo`0@0?ooo`80003oPP3oool00`00 +0?l0oooo0?ooo`0Y0?ooo`03003o003oool0oooo0080oooo00@0ObXZ0?ooo`3oool0o`00MP3oool0 +09L0oooo1@000?l20?ooo`0307lZ:P3oool0oooo0;<0oooo0P000?lC0?ooo`0307lZ:P3o0000oooo +05H0oooo00<000000?ooo`3oool0303oool00`000000oooo0?ooo`1V0?ooo`0407lZ:P3o0000o`00 +003o0100oooo0P000?n50?ooo`030000o`3oool0oooo02T0oooo00D00?l00?ooo`3oool0oooo07lZ +:P030?ooo`030?l0003oool0oooo07<0oooo002G0?ooo`D0003o00<0oooo07lZ:P3oool0]`3oool2 +0000oa80oooo00<0ObXZ0?l0003oool0EP3oool00`000000oooo0?ooo`0;0?ooo`L00000H@3oool0 +0`1o:RX0o`00003o000@0?ooo`80003oQ`3oool00`000?l0oooo0?ooo`0Z0?ooo`05003o003oool0 +oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1c0?ooo`00U`3oool50000o`0307lZ:P3oool0 +oooo0;T0oooo0P000?lA0?ooo`0307lZ:P3o0000oooo04h0oooo100000040?ooo`030000003oool0 +oooo00X0oooo00<000000?ooo`3oool0I03oool00`1o:RX0o`00003o000?0?ooo`80003oRP3oool0 +0`000?l0oooo0?ooo`0Z0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?oo +o`1b0?ooo`00V03oool30000o`0307lZ:P3oool0oooo0;`0oooo0P000?lA0?ooo`030?l0003oool0 +oooo0580oooo00@000000?ooo`3oool000002`3oool00`000000oooo0?ooo`1S0?ooo`80o`003`3o +ool20000ohd0oooo00<0003o0?ooo`3oool0:@3oool00`00o`00oooo0?ooo`020?ooo`0307lZ:P3o +ool0o`0007@0oooo002G0?ooo`050?l000000?l0oooo0?ooo`1o:RX0`03oool20000oa00oooo00<0 +o`000?ooo`3oool0DP3oool2000000`0oooo00<000000?ooo`3oool0H@3oool00`1o:RX0o`000?oo +o`0>0?ooo`80003oT03oool00`000?l0oooo0?ooo`0Y0?ooo`05003o003oool0oooo0?ooo`1o:RX0 +0P3oool00`3o0000oooo0?ooo`1a0?ooo`00U`3oool0103o0000003o0?ooo`1o:R[30?ooo`80003o +3`3oool00`3o0000oooo0?ooo`1O0?ooo`030000003oool0oooo0600oooo00<0ObXZ0?l0003oool0 +3@3oool20000oi80oooo00<0003o0?ooo`3oool0:P3oool01`00o`00oooo0?ooo`3oool0ObXZ0?oo +o`3o0000L`3oool009H0oooo00D0o`000?ooo`000?l0oooo07lZ:P350?ooo`80003o3P3oool20?l0 +05l0oooo00<000000?ooo`3oool0G`3oool00`1o:RX0o`000?ooo`0<0?ooo`80003oU@3oool00`00 +0?l0oooo0?ooo`0Y0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1` +0?ooo`00UP3oool0103o0000003o0?ooo`1o:R[80?ooo`030000o`3oool0oooo00`0oooo00<0ObXZ +0?l0003oool0G@3oool00`000000oooo0?ooo`1N0?ooo`80o`003@3oool00`000?l0oooo0?ooo`2F +0?ooo`030000o`3oool0oooo02T0oooo00L00?l00?ooo`3oool0oooo07lZ:P3oool0o`000780oooo +002E0?ooo`050?l0003oool0003o0?ooo`1o:RX0b@3oool20000o`d0oooo00<0ObXZ0?l0003oool0 +G03oool00`000000oooo0?ooo`1M0?ooo`030?l00000o`00oooo00/0oooo0P000?nI0?ooo`030000 +o`3oool0oooo02T0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo06l0 +oooo002D0?ooo`05003o003o0000oooo0000o`1o:RX0c03oool20000o`d0oooo00<0o`000?ooo`3o +ool0FP3oool00`000000oooo0?ooo`1K0?ooo`0307lZ:P3o00000?l000/0oooo0P000?nL0?ooo`03 +0000o`3oool0oooo02T0oooo00D00?l00?ooo`3oool0oooo07lZ:P020?ooo`030?l0003oool0oooo +06h0oooo002D0?ooo`050?l0003oool0003o0?ooo`1o:RX0cP3oool20000o``0oooo00<0o`000?oo +o`3oool0F@3oool00`000000oooo0?ooo`1J0?ooo`80o`002`3oool20000oil0oooo00<0003o0?oo +o`3oool0:@3oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06h0oooo002C0?oo +o`05003o003o0000oooo0000o`1o:RX0d@3oool20000o`/0oooo00<0o`000?ooo`3oool0F03oool4 +000005P0oooo00<0o`000?ooo`3oool02@3oool20000oj80oooo00<0003o0?ooo`3oool0:03oool0 +1@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3oool0K@3oool009<0oooo00D0o`00 +0?ooo`3oool0003o07lZ:P3C0?ooo`80003o2P3oool00`3o0000oooo0?ooo`1G0?ooo`030000003o +ool0oooo05P0oooo00<0o`000?ooo`3oool0203oool20000oj@0oooo00<0003o0?ooo`3oool0:@3o +ool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06d0oooo002C0?ooo`040?l0003o +ool0003o07lZ:]H0oooo0P000?l90?ooo`80o`00E`3oool00`000000oooo0?ooo`1G0?ooo`030?l0 +003oool0oooo00L0oooo0P000?nW0?ooo`030000o`3oool0oooo02T0oooo00<00?l00?ooo`1o:RX0 +0`3oool00`3o0000oooo0?ooo`1/0?ooo`00TP3oool01@3o0000oooo0?ooo`000?l0ObXZ0=P0oooo +0P000?l90?ooo`030?l0003oool0oooo05@0oooo00<000000?ooo`3oool0E@3oool00`1o:RX0o`00 +0?ooo`070?ooo`80003oZP3oool00`000?l0oooo0?ooo`0X0?ooo`04003o003oool0oooo07lZ:P80 +oooo00<0o`000?ooo`3oool0K03oool00980oooo00@0o`000?ooo`3oool0003of`3oool20000o`P0 +oooo00<0o`000?ooo`3oool0D`3oool00`000000oooo0?ooo`1D0?ooo`0307lZ:P3o0000oooo00H0 +oooo0P000?n]0?ooo`030000o`3oool0oooo02P0oooo00<00?l00?ooo`1o:RX00P3oool00`3o0000 +oooo0?ooo`1/0?ooo`00T@3oool01@3o00000?l00?ooo`3oool0003o0=d0oooo0P000?l70?ooo`03 +0?l0003oool0oooo0580oooo00<000000?ooo`3oool0D`3oool00`1o:RX0o`000?ooo`050?ooo`80 +003o[`3oool00`000?l0oooo0?ooo`0X0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?oo +o`3oool0J`3oool00940oooo00@0o`000?ooo`3oool0003oh03oool20000o`H0oooo00<0o`000?oo +o`3oool0D@3oool00`000000oooo0?ooo`1B0?ooo`80o`001@3oool20000ok80oooo00<0003o0?oo +o`3oool0:03oool00`00o`00oooo07lZ:P020?ooo`030?l0003oool0oooo06/0oooo002@0?ooo`05 +0?l00000o`00oooo0?ooo`000?l0hP3oool20000o`D0oooo00<0o`0007lZ:P3oool0D03oool00`00 +0000oooo0?ooo`1A0?ooo`030?l0003oool0oooo00<0oooo0P000?ne0?ooo`030000o`3oool0oooo +02L0oooo00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1Z0?ooo`00T03oool01@3o +0000oooo0?ooo`3oool0003o0>@0oooo0P000?l40?ooo`030?l0001o:RX0oooo04l0oooo00<00000 +0?ooo`3oool0C`3oool00`1o:RX0o`000?ooo`030?ooo`80003o^03oool00`000?l0oooo0?ooo`0V +0?ooo`04003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0JP3oool008l0oooo00D0o`00 +003o003oool0oooo0000o`3W0?ooo`80003o0`3oool00`3o0000ObXZ0?ooo`1>0?ooo`030000003o +ool0oooo04h0oooo00<0ObXZ0?l0003oool00P3oool20000okX0oooo00<0003o0?ooo`3oool09`3o +ool01P00o`00oooo0?ooo`1o:RX0oooo0?l006`0oooo002?0?ooo`050?l00000o`00oooo0?ooo`00 +0?l0j@3oool20000o`80oooo00<0o`0007lZ:P3oool0C@3oool4000004`0oooo00@0ObXZ0?l0003o +ool0oooo0P000?nm0?ooo`030000o`3oool0oooo02H0oooo00H00?l00?ooo`3oool0ObXZ0?ooo`3o +001/0?ooo`00S`3oool01@3o0000oooo0?ooo`1o:RX0003o0>/0oooo0P000?l00`3oool0o`0007lZ +:P1=0?ooo`030000003oool0oooo04`0oooo00<0ObXZ0?l0003oool00P000?o00?ooo`030000o`3o +ool0oooo02H0oooo00<00?l00?ooo`1o:RX00P3oool00`3o0000oooo0?ooo`1Y0?ooo`00SP3oool0 +1P3o00000?l00?ooo`3oool0ObXZ0000ond0oooo0P000?l00`3o0000ObXZ0?ooo`1;0?ooo`030000 +003oool0oooo04/0oooo00@0ObXZ0?l000000?l0003o`P3oool00`000?l0oooo0?ooo`0V0?ooo`06 +003o003oool0oooo07lZ:P3oool0o`00J`3oool008h0oooo00D0o`00003o003oool0ObXZ0000o`3` +0?ooo`80003o00@0o`000000o`000?l0003oB03oool00`000000oooo0?ooo`170?ooo`<0003o00<0 +o`000000o`000?l0a@3oool00`000?l0oooo0?ooo`0V0?ooo`05003o003oool0ObXZ0?ooo`3o0000 +J`3oool008h0oooo00D0o`00003o003oool0ObXZ0000o`3b0?ooo`D0003oA`3oool00`000000oooo +0?ooo`160?ooo`D0003ob03oool00`000?l0oooo0?ooo`0U0?ooo`05003o003oool0oooo07lZ:P3o +0000J`3oool008d0oooo00H0o`00003o003oool0ObXZ0?ooo`000?ob0?ooo`D0003oA`3oool00`00 +0000oooo0?ooo`160?ooo`D0003ob@3oool00`000?l0oooo0?ooo`0U0?ooo`05003o003oool0ObXZ +0?ooo`3o0000JP3oool008d0oooo00D0o`00003o003oool0ObXZ0000o`3c0?ooo`D0003oA`3oool0 +0`000000oooo0?ooo`160?ooo`D0003ob@3oool00`000?l0oooo0?ooo`0U0?ooo`05003o003oool0 +oooo07lZ:P3o0000JP3oool008d0oooo00D0o`00003o003oool0ObXZ0000o`3d0?ooo`@0003oA`3o +ool00`000000oooo0?ooo`160?ooo`@0003ob`3oool00`000?l0oooo0?ooo`0T0?ooo`06003o003o +ool0oooo07lZ:P3oool0o`00J@3oool008d0oooo00D0o`00003o001o:RX0oooo0000o`3h0?ooo`03 +0000o`3oool0oooo04@0oooo00<000000?ooo`3oool0A@3oool00`000?l0oooo0?ooo`3>0?ooo`03 +0000o`3oool0oooo02@0oooo00D00?l00?ooo`3oool0ObXZ0?l0001Y0?ooo`00S@3oool0103o0000 +oooo07lZ:P000?oj0?ooo`030000o`3oool0oooo04<0oooo00<000000?ooo`3oool0A03oool00`00 +0?l0oooo0?ooo`3@0?ooo`030000o`3oool0oooo02<0oooo00D00?l00?ooo`3oool0ObXZ0?l0001Y +0?ooo`00S@3oool0103o0000oooo07lZ:P000?ok0?ooo`030000o`3oool0oooo0480oooo10000011 +0?ooo`030?l000000?l0oooo0=80oooo00<0003o0?ooo`3oool0903oool01@00o`00oooo07lZ:P3o +ool0o`0006P0oooo002=0?ooo`040?l0001o:RX0oooo0000oo`0oooo00<0003o0?ooo`3oool0@@3o +ool00`000000oooo0?ooo`110?ooo`030?l000000?l0oooo0=@0oooo00<0003o0?ooo`3oool08`3o +ool01@00o`00oooo0?ooo`1o:RX0o`0006P0oooo002=0?ooo`040?l0001o:RX0oooo0000ood0oooo +00<0003o0?ooo`3oool0@03oool00`000000oooo0?ooo`100?ooo`030?l000000?l0oooo0=H0oooo +00<0003o0?ooo`3oool08`3oool01@00o`00oooo07lZ:P3oool0o`0006L0oooo002<0?ooo`040?l0 +0000o`00ObXZ0000ool0oooo00<0003o0?ooo`3oool0?`3oool00`000000oooo0?ooo`0o0?ooo`03 +0?l000000?l0oooo0=L0oooo00<0003o0?ooo`3oool08`3oool01@00o`00oooo07lZ:P3oool0o`00 +06L0oooo002<0?ooo`040?l00000o`00oooo0000ool0oooo0@3oool00`000?l0oooo0?ooo`0n0?oo +o`030000003oool0oooo03h0oooo00<00?l00000o`3oool0f@3oool00`000?l0oooo0?ooo`0S0?oo +o`04003o001o:RX0oooo0?l006L0oooo002<0?ooo`040?l00000o`00oooo0000ool0oooo0P3oool0 +0`000?l0oooo0?ooo`0m0?ooo`030000003oool0oooo03d0oooo00<00?l00000o`3oool0f`3oool0 +0`000?l0oooo0?ooo`0R0?ooo`04003o003oool0ObXZ0?l006L0oooo002<0?ooo`030?l00000o`00 +003o0?l0oooo103oool00`000?l0oooo0?ooo`0l0?ooo`030000003oool0oooo03`0oooo00<00?l0 +0000o`3oool0g@3oool00`000?l0oooo0?ooo`0Q0?ooo`04003o003oool0ObXZ0?l006L0oooo002; +0?ooo`040?l00000o`00ObXZ0000ool0oooo1@3oool00`000?l0o`000?ooo`0k0?ooo`030000003o +ool0oooo03/0oooo00<0o`000000o`3oool0gP3oool00`000?l0oooo0?ooo`0R0?ooo`04003o001o +:RX0oooo0?l006H0oooo002;0?ooo`040?l00000o`00oooo0000ool0oooo1@3oool00`000?l0ObXZ +0?l0000k0?ooo`030000003oool0oooo03X0oooo00<0o`000000o`3oool0h03oool00`000?l0oooo +0?ooo`0Q0?ooo`04003o003oool0ObXZ0?l006H0oooo002;0?ooo`040?l00000o`00oooo0000ool0 +oooo1P3oool00`000?l0ObXZ0?l0000j0?ooo`030000003oool0oooo03T0oooo00<0o`000000o`3o +ool0hP3oool00`000?l0oooo0?ooo`0Q0?ooo`03003o001o:RX0o`0006H0oooo002;0?ooo`030?l0 +0000o`00003o0?l0oooo203oool00`000?l0o`000?ooo`0i0?ooo`030000003oool0oooo03L0oooo +0P3o00000`000?l0oooo0?ooo`3S0?ooo`030000o`3oool0oooo0200oooo00<00?l007lZ:P3o0000 +IP3oool008/0oooo00<0o`00003o00000?l0o`3oool90?ooo`030000o`3o0000oooo03P0oooo1000 +000e0?ooo`040?l0003oool0003o07lZ:^D0oooo00<0003o0?ooo`3oool0803oool01000o`00oooo +07lZ:P3o001U0?ooo`00R`3oool00`3o00000?l00000o`3o0?ooo`X0oooo00<0003o0?l0003oool0 +=`3oool00`000000oooo0?ooo`0e0?ooo`040?l0003oool0003o07lZ:^L0oooo00<0003o0?ooo`3o +ool07`3oool01000o`00oooo07lZ:P3o001U0?ooo`00R`3oool00`3o0000003o0?ooo`3o0?ooo`/0 +oooo00<0003o0?l0003oool0=P3oool00`000000oooo0?ooo`0d0?ooo`040?l0003oool0003o07lZ +:^T0oooo00<0003o0?ooo`3oool07`3oool01000o`00ObXZ0?ooo`3o001T0?ooo`00RP3oool00`1o +:RX0o`000000o`3o0?ooo`d0oooo00<0003o0?l0003o0000=@3oool00`000000oooo0?ooo`0d0?oo +o`030?l000000?l0ObXZ0>/0oooo00<0003o0?ooo`3oool07P3oool01000o`00oooo07lZ:P3o001T +0?ooo`00RP3oool00`1o:RX0o`000000o`3o0?ooo`h0oooo00<0003o003o003o0000=03oool00`00 +0000oooo0?ooo`0c0?ooo`030?l0001o:RX0003o0>`0oooo00<0003o0?ooo`3oool07P3oool01000 +o`00oooo07lZ:P3o001T0?ooo`00RP3oool00`1o:RX0003o0?ooo`3o0?ooo`l0oooo00<0003o003o +003o0000<`3oool00`000000oooo0?ooo`0b0?ooo`030?l0001o:RX0003o0>h0oooo00<0003o0?oo +o`3oool07@3oool01000o`00oooo07lZ:P3o001T0?ooo`00R@3oool00`1o:RX0oooo0000o`3o0?oo +oa40oooo00<0003o0?l00000o`000?ooo`030?l0001o:RX0003o0?l0oooo;P3oool0 +0`000?l0oooo0?ooo`0:0?ooo`030?l0003oool0oooo05d0oooo000E0?ooo`<00000K03oool00`3o +00000?l00000o`0T0?ooo`<00000T03oool4000007h0oooo00<0003o0?l0003oool03P3oool00`00 +0000oooo0?ooo`0=0?ooo`030?l0003oool0003o0800oooo1000002C0?ooo`<000005@3oool00`00 +0?l0oooo0?ooo`090?ooo`030?l0003oool0oooo05d0oooo000E0?ooo`040000003oool0oooo0000 +06/0oooo00<0o`00003o00000?l09@3oool00`000000oooo0?ooo`2?0?ooo`030000003oool0oooo +0800oooo00<0003o0?l0003oool03@3oool00`000000oooo0?ooo`0<0?ooo`030?l0003oool0003o +0840oooo00<000000?ooo`3oool0U@3oool00`000000oooo0?ooo`0E0?ooo`030000o`3oool0oooo +00P0oooo00<0o`000?ooo`3oool0G@3oool001D0oooo00@000000?ooo`3oool00000JP3oool00`1o +:RX0o`000000o`0S0?ooo`D00000T@3oool00`000000oooo0?ooo`200?ooo`030000o`3o0000oooo +00`0oooo00<000000?ooo`3oool02`3oool00`3o0000oooo0000o`230?ooo`030000003oool0oooo +0940oooo1@00000F0?ooo`030000o`3oool0oooo00P0oooo00<0o`000?ooo`3oool0G@3oool000l0 +oooo100000020?ooo`<00000J`3oool00`1o:RX0o`000000o`0M0?ooo`@000000P3oool010000000 +oooo0?ooo`00002;0?ooo`@00000103oool00`000000oooo0?ooo`200?ooo`030000o`00o`00oooo +00/0oooo00<000000?ooo`3oool02P3oool00`00o`00o`000000o`250?ooo`030000003oool0oooo +0900oooo00@000000?ooo`3oool00000603oool00`000?l0oooo0?ooo`070?ooo`030?l0003oool0 +oooo05d0oooo000F0?ooo`030000003oool0oooo06X0oooo00<0ObXZ0?l000000?l0903oool00`00 +0000oooo0000002A0?ooo`040000003oool0oooo00000880oooo00<0003o003o003oool02P3oool0 +0`000000oooo0?ooo`090?ooo`03003o003o0000003o08@0oooo00@000000?ooo`3oool00000TP3o +ool00`000000oooo0000000I0?ooo`030000o`3oool0oooo00H0oooo00<00?l00?l0003oool0G@3o +ool001H0oooo0`00001Z0?ooo`030?l00000o`00003o02D0oooo0P00002B0?ooo`800000Q03oool0 +0`000?l0oooo0?ooo`090?ooo`030000003oool0oooo00T0oooo00<0o`000000o`3oool0Q@3oool2 +000009@0oooo0P00000I0?ooo`030000o`3oool0oooo00H0oooo00<0ObXZ0?l0003oool0G@3oool0 +08<0oooo00<0o`00003o00000?l0o`3ooom00?ooo`030000o`3o0000oooo00T0oooo00<000000?oo +o`3oool0203oool00`3o0000003o0?ooo`3o0?ooocT0oooo00<0003o0?ooo`3oool01P3oool00`3o +0000oooo0?ooo`1L0?ooo`00P`3oool00`3o00000?l00000o`3o0?oood40oooo00<0003o0?l0003o +ool0203oool00`000000oooo0?ooo`070?ooo`030?l000000?l0oooo0?l0oooo>`3oool00`000?l0 +oooo0?ooo`050?ooo`030?l0003oool0oooo05`0oooo00230?ooo`030?l00000o`00003o0?l0oooo +@P3oool00`000?l0o`000?ooo`070?ooo`@000001@3oool00`3o0000003o0?ooo`3o0?ooocd0oooo +00<0003o0?ooo`3oool0103oool00`3o0000oooo0?ooo`1L0?ooo`00PP3oool00`3o0000ObXZ0000 +o`3o0?oood@0oooo00<0003o0?l0003oool01P3oool00`000000oooo0?ooo`060?ooo`030000o`3o +ool0oooo0?l0oooo?@3oool00`000?l0oooo0?ooo`040?ooo`030?l0003oool0oooo05`0oooo0022 +0?ooo`030?l0001o:RX0003o0?l0ooooA@3oool00`000?l0o`000?ooo`050?ooo`030000003oool0 +oooo00D0oooo00<0003o0?ooo`3oool0o`3ooolo0?ooo`030000o`3oool0oooo00<0oooo00<0o`00 +0?ooo`3oool0G03oool00880oooo00<0o`0007lZ:P000?l0o`3ooom60?ooo`030000o`3o0000oooo +00@0oooo00<000000?ooo`3oool0103oool00`000?l0oooo0?ooo`3o0?oood40oooo00<0003o0?oo +o`3oool00P3oool00`3o0000oooo0?ooo`1L0?ooo`00PP3oool00`3o00000?l00000o`3o0?ooodL0 +oooo00<0003o0?l0003oool00`3oool00`000000oooo0?ooo`030?ooo`030000o`3oool0oooo0?l0 +oooo@`3oool01@000?l0oooo0?ooo`3oool0o`0005h0oooo00220?ooo`030?l00000o`00003o0?l0 +ooooB03oool00`000?l0o`000?ooo`020?ooo`030000003oool0oooo0080oooo00<0003o0?ooo`3o +ool0o`3ooom40?ooo`050000o`3oool0oooo0?ooo`3o0000GP3oool00880oooo00<0o`00003o0000 +0?l0o`3ooom90?ooo`050000o`3o0000oooo0?ooo`0000000`3oool00`000?l0oooo0?ooo`3o0?oo +odH0oooo00@0003o0?ooo`3oool0o`00GP3oool00880oooo00<0o`000000o`3oool0o`3ooom:0?oo +o`040000o`3o0000oooo00000080oooo00<0003o0?ooo`3oool0o`3ooom80?ooo`030000o`3oool0 +o`0005h0oooo00220?ooo`<0003oo`3ooom;0?ooo`D0003oo`3ooom<0?ooo`<0003o>P3oool00`00 +0000oooo0?ooo`080?ooo`80000000<0oooo0000000000004`3oool00840oooo1@000?oo0?ooodX0 +oooo1@000?oo0?oood/0oooo1@000?lj0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`00 +0000503oool001@0ooooK@0000050000ool00000BP0000050000ool00000B`0000050000ob<00000 +603oool2000000T0oooo00<000000?ooo`3oool04`3oool001@0oooo00<000000?ooo`3oool08P3o +ool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo0200oooo1@000?lR0?ooo`030000003o +ool0oooo0280oooo00<000000?ooo`3oool08`3oool00`000000oooo0?ooo`0R0?ooo`030000003o +ool0oooo0280oooo00<000000?ooo`3oool08P3oool00`000000oooo0?ooo`0R0?ooo`030000003o +ool0oooo0280oooo00<000000?ooo`3oool0803oool50000ob<0oooo00<000000?ooo`3oool08P3o +ool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool08P3o +ool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo02<0oooo00<000000?ooo`3oool08P3o +ool00`000000oooo0?ooo`0P0?ooo`D0003o>P3oool00`000000oooo0?ooo`070?ooo`80000000<0 +oooo0000000000004`3oool001@0oooo00<000000?ooo`3oool08P3oool00`000000oooo0?ooo`0R +0?ooo`030000003oool0oooo0240oooo0`000?lS0?ooo`030000003oool0oooo0280oooo00<00000 +0?ooo`3oool08`3oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<00000 +0?ooo`3oool08P3oool00`000000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<00000 +0?ooo`3oool0803oool50000o`030?l0003oool0oooo0200oooo00<000000?ooo`3oool08P3oool0 +0`000000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool08P3oool0 +0`000000oooo0?ooo`0R0?ooo`030000003oool0oooo02<0oooo00<000000?ooo`3oool08P3oool0 +0`000000oooo0?ooo`0Q0?ooo`<0003o>P3oool00`000000oooo0?ooo`0P0?ooo`00503oool00`00 +0000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool08@3oool00`3o +0000003o0?ooo`0S0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool08`3oool00`00 +0000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool08P3oool00`00 +0000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool07`3oool01000 +0?l0oooo0?ooo`0000020?ooo`030000o`3oool0oooo0200oooo00<000000?ooo`3oool08P3oool0 +0`000000oooo0?ooo`0R0?ooo`030000003oool0oooo0280oooo00<000000?ooo`3oool08P3oool0 +0`000000oooo0?ooo`0R0?ooo`030000003oool0oooo02<0oooo00<000000?ooo`3oool08P3oool0 +0`000000oooo0?ooo`0P0?ooo`030000o`3oool0o`0005h0oooo000D0?ooo`030000003oool0oooo +06/0oooo00<0o`00003o00000?l08`3oool00`000000oooo0?ooo`2B0?ooo`030000003oool0oooo +08d0oooo00D0003o0?l0003oool0oooo000000030?ooo`030000o`3oool0oooo08h0oooo00<00000 +0?ooo`3oool0TP3oool00`000000oooo0?ooo`0O0?ooo`040000o`3oool0oooo0?l005h0oooo000D +0?ooo`030000003oool0oooo06/0oooo00<0o`00003o00000?l08`3oool00`000000oooo0?ooo`2B +0?ooo`030000003oool0oooo08`0oooo00<0003o0?l0003oool00P3oool00`000000oooo0?ooo`02 +0?ooo`030000o`3oool0oooo08d0oooo00<000000?ooo`3oool0TP3oool00`000000oooo0?ooo`0N +0?ooo`050000o`3oool0oooo0?ooo`3o0000GP3oool00880oooo00<0o`00003o00000?l0o`3ooom7 +0?ooo`030000o`3o0000oooo00<0oooo00<000000?ooo`3oool00`3oool00`000?l0oooo0?ooo`3o +0?oood<0oooo00D0003o0?ooo`3oool0oooo0?l0001N0?ooo`00PP3oool00`3o0000ObXZ0000o`3o +0?ooodH0oooo00<0003o0?l0003oool0103oool00`000000oooo0?ooo`040?ooo`030000o`1o:RX0 +oooo0?l0oooo@@3oool00`000?l0oooo0?ooo`020?ooo`030?l0003oool0oooo05`0oooo00220?oo +o`030?l0001o:RX0003o0?l0ooooA@3oool00`000?l0o`000?ooo`050?ooo`030000003oool0oooo +00D0oooo00<0003o07lZ:P3oool0o`3ooolo0?ooo`030000o`3oool0oooo00<0oooo00<0o`000?oo +o`3oool0G03oool00880oooo00<0o`0007lZ:P000?l0o`3ooom40?ooo`030000o`3o0000oooo00H0 +oooo00<000000?ooo`3oool01P3oool00`000?l0ObXZ0?ooo`3o0?ooocd0oooo00<0003o0?ooo`3o +ool0103oool00`3o0000oooo0?ooo`1L0?ooo`00P`3oool00`3o00000?l00000o`3o0?oood80oooo +00<0003o0?l0003oool01`3oool4000000D0oooo00<0o`000000o`3oool0o`3ooolm0?ooo`030000 +o`3oool0oooo00@0oooo00<0o`000?ooo`3oool0G03oool008<0oooo00<0o`00003o00000?l0o`3o +oom10?ooo`030000o`3o0000oooo00P0oooo00<000000?ooo`3oool01`3oool00`3o0000003o0?oo +o`3o0?oooc/0oooo00<0003o0?ooo`3oool01@3oool00`3o0000oooo0?ooo`1L0?ooo`00P`3oool0 +0`3o00000?l00000o`3o0?oood00oooo00<0003o0?l0003oool02@3oool00`000000oooo0?ooo`08 +0?ooo`030?l000000?l0oooo0?l0oooo>@3oool00`000?l0oooo0?ooo`060?ooo`030?l0003oool0 +oooo05`0oooo00230?ooo`030?l00000o`00003o0?l0oooo?`3oool00`000?l0o`000?ooo`0:0?oo +o`030000003oool0oooo00T0oooo00<0o`000000o`3oool0o`3ooolg0?ooo`030000o`3oool0oooo +00H0oooo00<00?l00?l0003oool0G@3oool008<0oooo00<0ObXZ0?l000000?l0o`3oooln0?ooo`03 +0000o`3o0000oooo00/0oooo00<000000?ooo`3oool02P3oool00`3o0000003o07lZ:P3o0?ooocH0 +oooo00<0003o0?ooo`3oool01P3oool00`00o`00o`000?ooo`1M0?ooo`00P`3oool00`1o:RX0o`00 +0000o`3o0?ooocd0oooo00<0003o0?l0003oool0303oool00`000000oooo0?ooo`0;0?ooo`030?l0 +00000?l0ObXZ0?l0oooo=03oool00`000?l0oooo0?ooo`070?ooo`030?l0003oool0oooo05d0oooo +00230?ooo`0407lZ:P3o00000?l00000ool0oooo>`3oool00`000?l00?l00?l0000=0?ooo`030000 +003oool0oooo00/0oooo00@00?l00?l000000?l0ObXZo`3ooolb0?ooo`030000o`3oool0oooo00P0 +oooo00<0o`000?ooo`3oool0G@3oool008@0oooo00<0o`00003o00000?l0o`3ooolj0?ooo`030000 +o`00o`00o`0000h0oooo00<000000?ooo`3oool0303oool00`00o`00o`000000o`3o0?oooc80oooo +00<0003o0?ooo`3oool0203oool00`3o0000oooo0?ooo`1M0?ooo`00Q03oool00`1o:RX0o`000000 +o`3o0?ooocT0oooo00<0003o003o003o00003`3oool00`000000oooo0?ooo`0=0?ooo`03003o003o +0000003o0?l0oooo<03oool00`000?l0oooo0?ooo`090?ooo`030?l0003oool0oooo05d0oooo0024 +0?ooo`0307lZ:P3o0000003o0?l0oooo>03oool00`000?l00?l00?l0000@0?ooo`030000003oool0 +oooo00h0oooo00<00?l00?l000000?l0o`3oool^0?ooo`030000o`3oool0oooo00X0oooo00<0o`00 +0?ooo`3oool0G@3oool008@0oooo00<0ObXZ0?l000000?l0o`3ooolh0?ooo`030000o`3o0000oooo +0100oooo1000000>0?ooo`03003o003o0000003o0?l0oooo;03oool00`000?l0oooo0?ooo`0;0?oo +o`030?l0003oool0oooo05d0oooo00240?ooo`0307lZ:P3o0000003o0?l0oooo=`3oool00`000?l0 +o`000?ooo`0A0?ooo`030000003oool0oooo0100oooo00<00?l00?l000000?l0o`3oool[0?ooo`03 +0000o`3oool0oooo00/0oooo00<0o`000?ooo`3oool0G@3oool008@0oooo00@0ObXZ0?ooo`3o0000 +003oo`3ooole0?ooo`030000o`3o0000oooo0180oooo00<000000?ooo`3oool04@3oool00`3o0000 +oooo0000o`3o0?ooobT0oooo00<0003o0?ooo`3oool0303oool00`3o0000oooo0?ooo`1M0?ooo`00 +Q03oool00`1o:RX0oooo0000o`020000ool0oooo<`3oool00`000?l0o`000?ooo`0C0?ooo`030000 +003oool0oooo0180oooo00<0o`000?ooo`000?l0o`3ooolW0?ooo`030000o`3oool0oooo00`0oooo +00<0ObXZ0?l0003oool0GP3oool008@0oooo00<0ObXZ0000o`000?l00`000?oo0?oooc40oooo00<0 +003o0?l0003oool0503oool00`000000oooo0?ooo`0C0?ooo`030?l0003oool0003o0?l0oooo9@3o +ool00`000?l0oooo0?ooo`0=0?ooo`03003o003o0000oooo05h0oooo00240?ooo`0307lZ:P000?l0 +003o00<0003oo`3oool`0?ooo`030000o`3o0000oooo01D0oooo00<000000?ooo`3oool0503oool0 +0`3o0000oooo0000o`3o0?ooob@0oooo00<0003o0?ooo`3oool03@3oool00`00o`00o`000?ooo`1N +0?ooo`00Q03oool00`1o:RX0003o0000o`030000ool0oooo;`3oool00`000?l00?l00?l0000F0?oo +o`030000003oool0oooo01D0oooo00<0o`000?ooo`000?l0o`3ooolR0?ooo`030000o`3oool0oooo +00h0oooo00<0o`000?ooo`3oool0GP3oool008@0oooo00<0ObXZ0?ooo`000?l00P000?oo0?ooobl0 +oooo00<0003o003o003o00005`3oool00`000000oooo0?ooo`0F0?ooo`030?l0003oool0003o0?l0 +oooo803oool00`000?l0oooo0?ooo`0?0?ooo`030?l0003oool0oooo05h0oooo00250?ooo`0307lZ +:P3oool0003o0?l0oooo;`3oool00`000?l00?l00?l0000H0?ooo`030000003oool0oooo01L0oooo +00<0o`000?ooo`000?l0o`3ooolO0?ooo`030000o`3oool0oooo00l0oooo00<0o`000?ooo`3oool0 +GP3oool008D0oooo00<0ObXZ0?ooo`000?l0o`3oool^0?ooo`030000o`00o`00o`0001T0oooo00<0 +00000?ooo`3oool05`3oool01000o`00o`000?ooo`000?oo0?oooad0oooo00<0003o0?ooo`3oool0 +3`3oool00`00o`00o`000?ooo`1O0?ooo`00Q@3oool0101o:RX0oooo0?l000000?oo0?ooob`0oooo +00<0003o003o003o00006P3oool4000001L0oooo00@00?l00?l0003oool0003oo`3ooolK0?ooo`03 +0000o`3oool0oooo0100oooo00<00?l00?l0003oool0G`3oool008D0oooo00@0ObXZ0?ooo`3oool0 +003oo`3oool[0?ooo`030000o`00o`00o`0001/0oooo00<000000?ooo`3oool06@3oool01000o`00 +o`000?ooo`000?oo0?oooaT0oooo00<0003o0?ooo`3oool04@3oool00`00o`00o`000?ooo`1O0?oo +o`00Q@3oool0101o:RX0oooo0?ooo`000?oo0?ooobX0oooo00<0003o0?l0003o0000703oool00`00 +0000oooo0?ooo`0J0?ooo`04003o003o0000ObXZ0000ool0oooo603oool00`000?l0oooo0?ooo`0A +0?ooo`03003o003o0000oooo05l0oooo00250?ooo`0407lZ:P3oool0oooo0000ool0oooo:@3oool0 +0`000?l0o`00003o000M0?ooo`030000003oool0oooo01/0oooo00@00?l00?l0001o:RX0003oo`3o +oolF0?ooo`030000o`3oool0oooo0180oooo00<00?l00?l0003oool0G`3oool008D0oooo00@0ObXZ +0?ooo`3oool0003oo`3ooolX0?ooo`030000o`3o00000?l001h0oooo00<000000?ooo`3oool0703o +ool01000o`00o`0007lZ:P000?oo0?oooa@0oooo00<0003o0?ooo`3oool04P3oool00`00o`00ObXZ +0?l0001P0?ooo`00QP3oool0101o:RX0oooo0000o`3o003o0?ooobH0oooo00<0003o0?l00000o`00 +7`3oool00`000000oooo0?ooo`0M0?ooo`040?l0003oool0ObXZ0000ool0oooo4P3oool00`000?l0 +oooo0?ooo`0C0?ooo`03003o001o:RX0o`000600oooo00260?ooo`0407lZ:P3oool0003o0?l00?l0 +oooo9@3oool00`000?l0o`00003o000P0?ooo`030000003oool0oooo01h0oooo00@0o`000?ooo`1o +:RX0003oo`3ooolA0?ooo`030000o`3oool0oooo01<0oooo00<00?l007lZ:P3o0000H03oool008H0 +oooo00@0ObXZ0?ooo`000?l0o`00o`3ooolT0?ooo`030000o`3o00000?l00240oooo00<000000?oo +o`3oool07`3oool0103o0000oooo0?ooo`000?oo0?ooo`l0oooo00<0003o0?ooo`3oool0503oool0 +0`00o`00ObXZ0?l0001P0?ooo`00QP3oool0101o:RX0oooo0000o`3o003o0?ooob<0oooo00<0003o +0?l00000o`008P3oool00`000000oooo0?ooo`0P0?ooo`040?l0003oool0003o07lZ:_l0oooo3@3o +ool00`000?l0oooo0?ooo`0E0?ooo`03003o003o0000oooo0600oooo00260?ooo`0407lZ:P3oool0 +oooo0000ool0oooo8P3oool00`000?l0oooo0?l0000S0?ooo`030000003oool0oooo0240oooo00<0 +o`000?ooo`000?l0o`3oool<0?ooo`030000o`3oool0oooo01D0oooo00<00?l007lZ:P3o0000H@3o +ool008H0oooo00@0ObXZ0?ooo`3oool0003oo`3ooolQ0?ooo`030000o`1o:RX0o`0002@0oooo00<0 +00000?ooo`3oool08P3oool00`3o0000oooo0000o`3o0?ooo`/0oooo00<0003o0?ooo`3oool05@3o +ool00`00o`00ObXZ0?l0001Q0?ooo`00QP3oool0101o:RX0oooo0?ooo`000?oo0?ooob00oooo00<0 +003o07lZ:P3o00009@3oool400000280oooo00<0o`000?ooo`000?l0o`3oool90?ooo`030000o`3o +ool0oooo01H0oooo00<00?l007lZ:P3o0000H@3oool008L0oooo00@0ObXZ0?ooo`000?l0o`00o`3o +oolN0?ooo`030000o`1o:RX0o`0002H0oooo00<000000?ooo`3oool0903oool20?l000030000o`3o +ool0oooo0?l0oooo1@3oool00`000?l0oooo0?ooo`0G0?ooo`03003o001o:RX0o`000640oooo0027 +0?ooo`0407lZ:P3oool0003o0?l00?l0oooo7@3oool00`000?l0ObXZ0?l0000W0?ooo`030000003o +ool0oooo02D0oooo00@00?l00?l000000?l0ObXZo`3oool50?ooo`030000o`3oool0oooo01L0oooo +00<00?l007lZ:P3o0000H@3oool008L0oooo00@0ObXZ0?ooo`000?l0o`00o`3ooolL0?ooo`030000 +o`3oool0o`0002P0oooo00<000000?ooo`3oool09P3oool01000o`00o`000000o`1o:R[o0?ooo`<0 +oooo00<0003o0?ooo`3oool0603oool00`00o`00o`000?ooo`1Q0?ooo`00R03oool00`1o:RX0003o +0?l0003o0?oooa/0oooo00<0003o0?ooo`3o0000:@3oool00`000000oooo0?ooo`0W0?ooo`040?l0 +003oool0003o07lZ:_l0oooo0@3oool00`000?l0oooo0?ooo`0H0?ooo`03003o001o:RX0o`000680 +oooo00280?ooo`0307lZ:P000?l0o`000?l0oooo6P3oool00`000?l0oooo0?l0000Z0?ooo`030000 +003oool0oooo02P0oooo00<0o`000?ooo`000?l0o`3oool00`000?l0oooo0?ooo`0I0?ooo`03003o +001o:RX0o`000680oooo00280?ooo`0307lZ:P3oool0003o0?l0oooo6@3oool00`000?l0ObXZ0?l0 +000[0?ooo`030000003oool0oooo02T0oooo00<0o`000?ooo`000?l0oP3oool00`000?l0oooo0?oo +o`0I0?ooo`03003o001o:RX0o`000680oooo00280?ooo`0307lZ:P3oool0003o0?l0oooo603oool0 +0`000?l0ObXZ0?l0000/0?ooo`030000003oool0oooo02X0oooo00<0o`000?ooo`000?l0o03oool0 +0`000?l0oooo0?ooo`0J0?ooo`03003o003oool0o`000680oooo00280?ooo`0407lZ:P000?l0003o +0000ool0oooo5P3oool00`000?l0ObXZ0?l0000N0?ooo`D000002P3oool00`000000oooo0?ooo`0[ +0?ooo`030?l0003oool0003o0?X0oooo00<0003o0?ooo`3oool06`3oool00`00o`00o`000?ooo`1R +0?ooo`00R03oool50000ool0oooo503oool00`000?l0ObXZ0?l0000Q0?ooo`030000003oool0oooo +00X0oooo00<000000?ooo`3oool0;03oool00`3o0000oooo0000o`3h0?ooo`030000o`3oool0oooo +01/0oooo00<00?l007lZ:P3o0000H`3oool008P0oooo1@000?oo0?oooa<0oooo00<0003o07lZ:P3o +00008P3oool00`000000oooo0?ooo`0:0?ooo`L00000:@3oool00`3o0000oooo0000o`3g0?ooo`03 +0000o`3oool0oooo01/0oooo00<00?l007lZ:P3o0000H`3oool008P0oooo1@000?oo0?oooa80oooo +00<0003o07lZ:P3o00008`3oool00`000000oooo0?ooo`0:0?ooo`030000003oool0oooo02d0oooo +00@00?l00?l0003o0000003om@3oool00`000?l0oooo0?ooo`0L0?ooo`03003o001o:RX0o`0006<0 +oooo00290?ooo`<0003oo`3ooolB0?ooo`030000o`1o:RX0o`0002@0oooo00<000000?ooo`3oool0 +2P3oool00`000000oooo0?ooo`0^0?ooo`04003o003oool0o`000000oo<0oooo00<0003o0?ooo`3o +ool07@3oool00`00o`00ObXZ0?l0001S0?ooo`00R@3oool00`1o:RX0oooo0000o`3o0?oooa40oooo +00<0003o07lZ:P3o0000903oool2000000`0oooo00<000000?ooo`3oool0;`3oool01000o`00oooo +0?l000000?oa0?ooo`030000o`3oool0oooo01d0oooo00@00?l00?ooo`1o:RX0o`00H`3oool008X0 +oooo00<0ObXZ0000o`3oool0o`3oool?0?ooo`030000o`1o:RX0o`0003<0oooo00<000000?ooo`3o +ool0<03oool01000o`00o`000?ooo`000?o`0?ooo`030000o`3oool0oooo01d0oooo00<00?l007lZ +:P3o0000I03oool008X0oooo00<0ObXZ0000o`3oool0o`3oool>0?ooo`030000o`1o:RX0o`0003@0 +oooo00<000000?ooo`3oool0<@3oool01000o`00o`000?ooo`000?o^0?ooo`030000o`3oool0oooo +01d0oooo00@00?l00?ooo`1o:RX0o`00I03oool008X0oooo00<0ObXZ0?l000000?l0o`3oool=0?oo +o`030000o`1o:RX0o`0003D0oooo00<000000?ooo`3oool0<`3oool00`3o0000oooo0000o`3/0?oo +o`030000o`3oool0oooo01h0oooo00@00?l00?ooo`1o:RX0o`00I03oool008X0oooo00<0ObXZ0?l0 +00000?l0o`3oool=0?ooo`030000o`3o0000oooo03D0oooo00<000000?ooo`3oool0=03oool00`3o +0000oooo0000o`3[0?ooo`030000o`3oool0oooo01h0oooo00@00?l007lZ:P3oool0o`00I03oool0 +08/0oooo00<0o`000000o`3oool0o`3oool;0?ooo`030000o`3o0000oooo03H0oooo00<000000?oo +o`3oool0=@3oool00`3o0000oooo0000o`3Y0?ooo`030000o`3oool0oooo01l0oooo00@00?l007lZ +:P3oool0o`00I03oool008/0oooo00<0o`00003o00000?l0o`3oool:0?ooo`030000o`3o0000oooo +03L0oooo00<000000?ooo`3oool0=P3oool00`3o0000oooo0000o`3W0?ooo`030000o`3oool0oooo +01l0oooo00@00?l00?ooo`1o:RX0o`00I@3oool008/0oooo00<0o`00003o00000?l0o`3oool90?oo +o`030000o`3o0000oooo03P0oooo1000000f0?ooo`030?l0003oool0003o0>D0oooo00<0003o0?oo +o`3oool0803oool01000o`00oooo07lZ:P3o001U0?ooo`00R`3oool00`3o00000?l00000o`3o0?oo +o`P0oooo00<0003o0?l0003oool0>@3oool00`000000oooo0?ooo`0h0?ooo`030?l0003oool0003o +0>@0oooo00<0003o0?ooo`3oool0803oool00`00o`00ObXZ0?l0001V0?ooo`00R`3oool0103o0000 +0?l00?ooo`000?oo0?ooo`H0oooo00<0003o0?l00000o`00>P3oool00`000000oooo0?ooo`0i0?oo +o`030?l0003oool0003o0>80oooo00<0003o0?ooo`3oool0803oool01000o`00oooo07lZ:P3o001V +0?ooo`00R`3oool0103o00000?l00?ooo`000?oo0?ooo`D0oooo00<0003o0?l00000o`00>`3oool0 +0`000000oooo0?ooo`0j0?ooo`030?l0003oool0003o0>00oooo00<0003o0?ooo`3oool08@3oool0 +1000o`00oooo07lZ:P3o001V0?ooo`00R`3oool0103o00000?l007lZ:P000?oo0?ooo`@0oooo00<0 +003o0?l00000o`00?03oool00`000000oooo0?ooo`0k0?ooo`030?l0003oool0003o0=h0oooo00<0 +003o0?ooo`3oool08@3oool01@00o`00oooo07lZ:P3oool0o`0006H0oooo002<0?ooo`030?l00000 +o`00003o0?l0oooo0`3oool00`000?l0o`00003o000m0?ooo`030000003oool0oooo03`0oooo0P3o +00000`000?l0oooo0?ooo`3K0?ooo`030000o`3oool0oooo0240oooo00@00?l00?ooo`1o:RX0o`00 +I`3oool008`0oooo00@0o`00003o003oool0003oo`3oool10?ooo`030000o`3o0000oooo03h0oooo +00<000000?ooo`3oool0?P3oool00`3o0000003o0?ooo`3J0?ooo`030000o`3oool0oooo0280oooo +00@00?l00?ooo`1o:RX0o`00I`3oool008`0oooo00@0o`00003o001o:RX0003oo`3oool00`000?l0 +o`000?ooo`0o0?ooo`030000003oool0oooo03l0oooo00<0o`000000o`3oool0f03oool00`000?l0 +oooo0?ooo`0R0?ooo`05003o003oool0ObXZ0?ooo`3o0000I`3oool008d0oooo00<0o`0007lZ:P00 +0?l0oP3oool00`000?l0o`000?ooo`100?ooo`030000003oool0oooo03l0oooo00<0o`0007lZ:P00 +0?l0e`3oool00`000?l0oooo0?ooo`0S0?ooo`05003o003oool0ObXZ0?ooo`3o0000I`3oool008d0 +oooo00@0o`0007lZ:P3oool0003oo03oool00`000?l0ObXZ0?ooo`110?ooo`030000003oool0oooo +0400oooo00<0o`0007lZ:P000?l0eP3oool00`000?l0oooo0?ooo`0R0?ooo`05003o003oool0oooo +07lZ:P3o0000J03oool008d0oooo00@0o`0007lZ:P3oool0003on`3oool00`000?l0ObXZ0?ooo`12 +0?ooo`@00000@03oool00`3o0000ObXZ0000o`3D0?ooo`030000o`3oool0oooo02<0oooo00D00?l0 +0?ooo`1o:RX0oooo0?l0001X0?ooo`00S@3oool0103o0000oooo07lZ:P000?oj0?ooo`030000o`1o +:RX0oooo04<0oooo00<000000?ooo`3oool0@P3oool00`3o0000ObXZ0000o`3B0?ooo`030000o`3o +ool0oooo02@0oooo00D00?l00?ooo`1o:RX0oooo0?l0001X0?ooo`00S@3oool0103o0000oooo07lZ +:P000?oi0?ooo`030000o`3o0000oooo04@0oooo00<000000?ooo`3oool0@`3oool20?l000030000 +o`3oool0oooo00?ooo`050?l0003o +ool0ObXZ0?ooo`000?l0lP3oool50000odL0oooo00<000000?ooo`3oool0AP3oool50000olT0oooo +00<0003o0?ooo`3oool09@3oool01@00o`00oooo07lZ:P3oool0o`0006X0oooo002>0?ooo`050?l0 +0000o`00oooo07lZ:P000?l0l03oool20000o`040?ooo`000?l0003o0000odP0oooo00<000000?oo +o`3oool0A`3oool30000o`030?ooo`000?l0003o00?ooo`050?l00000o`00oooo07lZ:P000?l0kP3oool2 +0000o`030?ooo`1o:RX0o`0004/0oooo00<000000?ooo`3oool0BP3oool00`3o0000ObXZ0?ooo`02 +0000ol<0oooo00<0003o0?ooo`3oool09P3oool01@00o`00oooo07lZ:P3oool0o`0006/0oooo002> +0?ooo`060?l00000o`00oooo0?ooo`1o:RX0003oj`3oool20000o`80oooo0P3o001<0?ooo`030000 +003oool0oooo04X0oooo00<0ObXZ0?l0003o00000P3oool20000ol00oooo00<0003o0?ooo`3oool0 +9P3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l006/0oooo002?0?ooo`050?l0003oool0oooo07lZ +:P000?l0j@3oool20000o`<0oooo00<0o`000?ooo`3oool0C03oool00`000000oooo0?ooo`1;0?oo +o`0307lZ:P3oool0o`0000<0oooo0P000?nn0?ooo`030000o`3oool0oooo02H0oooo00<00?l00?oo +o`1o:RX00P3oool00`3o0000oooo0?ooo`1Y0?ooo`00S`3oool01@3o00000?l00?ooo`3oool0003o +0>L0oooo0P000?l40?ooo`030?l0003oool0oooo04d0oooo1000001;0?ooo`0307lZ:P3oool0o`00 +00@0oooo0P000?nk0?ooo`030000o`3oool0oooo02H0oooo00H00?l00?ooo`3oool0ObXZ0?ooo`3o +001/0?ooo`00S`3oool01@3o00000?l00?ooo`3oool0003o0>D0oooo0P000?l50?ooo`030?l0001o +:RX0oooo04h0oooo00<000000?ooo`3oool0C@3oool0101o:RX0oooo0?l0003o00040?ooo`80003o +^03oool00`000?l0oooo0?ooo`0W0?ooo`06003o003oool0oooo07lZ:P3oool0o`00K03oool00900 +oooo00D0o`000?ooo`3oool0oooo0000o`3R0?ooo`80003o1P3oool00`3o0000ObXZ0?ooo`1?0?oo +o`030000003oool0oooo04h0oooo00@0ObXZ0?ooo`00o`00o`001@3oool20000okH0oooo00<0003o +0?ooo`3oool09P3oool01000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06X0oooo002@ +0?ooo`050?l00000o`00oooo0?ooo`000?l0h03oool20000o`L0oooo00<0o`0007lZ:P3oool0D03o +ool00`000000oooo0?ooo`1?0?ooo`80ObXZ00<00?l00?l0003oool01@3oool20000ok<0oooo00<0 +003o0?ooo`3oool09`3oool01P00o`00oooo0?ooo`1o:RX0oooo0?l006d0oooo002A0?ooo`040?l0 +003oool0oooo0000omh0oooo0P000?l80?ooo`030?l0001o:RX0oooo0540oooo00<000000?ooo`3o +ool0D@3oool00`1o:RX00?l00?l000070?ooo`80003o/03oool00`000?l0oooo0?ooo`0W0?ooo`04 +003o003oool0oooo07lZ:P80oooo00<0o`000?ooo`3oool0J`3oool00940oooo00D0o`00003o003o +ool0oooo0000o`3K0?ooo`80003o203oool20?l0000307lZ:P3oool0oooo0540oooo00<000000?oo +o`3oool0DP3oool00`1o:RX00?l00?l000080?ooo`80003o[@3oool00`000?l0oooo0?ooo`0X0?oo +o`06003o003oool0oooo07lZ:P3oool0o`00KP3oool00980oooo00@0o`000?ooo`3oool0003of@3o +ool20000o`T0oooo00<0o`000?ooo`1o:RX0E03oool00`000000oooo0?ooo`1C0?ooo`0307lZ:P3o +ool0o`0000T0oooo0P000?n[0?ooo`030000o`3oool0oooo02L0oooo00@00?l00?ooo`3oool0ObXZ +0P3oool00`3o0000oooo0?ooo`1/0?ooo`00TP3oool01@3o00000?l00?ooo`000?l0ObXZ0=L0oooo +00<0003o0?ooo`3oool0203oool00`3o0000oooo07lZ:P1E0?ooo`030000003oool0oooo05@0oooo +00<0ObXZ0?ooo`3o00002P3oool00`000?l0oooo0?ooo`2W0?ooo`030000o`3oool0oooo02P0oooo +00@00?l00?ooo`3oool0ObXZ0P3oool00`3o0000oooo0?ooo`1/0?ooo`00T`3oool0103o0000oooo +0000o`1o:R[E0?ooo`80003o2P3oool00`3o0000oooo07lZ:P1F0?ooo`030000003oool0oooo05D0 +oooo00@0ObXZ0?ooo`3o0000o`002@3oool20000ojH0oooo00<0003o0?ooo`3oool0:03oool01000 +o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06d0oooo002C0?ooo`050?l0003oool0oooo +0000o`1o:RX0dP3oool20000o`/0oooo00<0o`000?ooo`1o:RX0E`3oool00`000000oooo0?ooo`1F +0?ooo`80ObXZ00<0oooo0?l0003oool02@3oool20000oj<0oooo00<0003o0?ooo`3oool0:@3oool0 +1000o`00oooo0?ooo`1o:RX20?ooo`030?l0003oool0oooo06d0oooo002D0?ooo`040?l0003oool0 +003o07lZ:]00oooo0P000?l<0?ooo`030?l0003oool0ObXZ05P0oooo1000001G0?ooo`0307lZ:P3o +ool0o`0000/0oooo0P000?nQ0?ooo`030000o`3oool0oooo02P0oooo00L00?l00?ooo`3oool0oooo +07lZ:P3oool0o`000700oooo002D0?ooo`050?l0003oool0003o0?ooo`1o:RX0c@3oool20000o`d0 +oooo00<0o`000?ooo`1o:RX0F@3oool00`000000oooo0?ooo`1I0?ooo`0407lZ:P3oool0o`00003o +00/0oooo0P000?nN0?ooo`030000o`3oool0oooo02T0oooo00@00?l00?ooo`3oool0ObXZ0P3oool0 +0`3o0000oooo0?ooo`1^0?ooo`00U@3oool0103o0000oooo0000o`1o:R[;0?ooo`80003o3@3oool2 +0?l000030?ooo`1o:RX0oooo05T0oooo00<000000?ooo`3oool0FP3oool0101o:RX0oooo0?l00000 +o`0<0?ooo`80003oV`3oool00`000?l0oooo0?ooo`0Y0?ooo`07003o003oool0oooo0?ooo`1o:RX0 +oooo0?l0001a0?ooo`00U@3oool01@3o0000oooo0000o`3oool0ObXZ00?ooo`04 +0?l00000o`00oooo07lZ:U/0oooo00<000000?ooo`3oool0F`3oool0101o:RX0oooo0?l00000o`0= +0?ooo`80003oV03oool00`000?l0oooo0?ooo`0Y0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3o +ool00`3o0000oooo0?ooo`1_0?ooo`00UP3oool0103o0000003o0?ooo`1o:R[60?ooo`80003o3`3o +ool0103o00000?l007lZ:P1o:RYL0?ooo`030000003oool0oooo05`0oooo00@0ObXZ0?ooo`3o0000 +0?l03P3oool20000oiH0oooo00<0003o0?ooo`3oool0:@3oool01`00o`00oooo0?ooo`3oool0ObXZ +0?ooo`3o0000LP3oool009H0oooo00D0o`000?ooo`000?l0oooo07lZ:P330?ooo`80003o403oool0 +0`3o00000?l007lZ:P1N0?ooo`030000003oool0oooo05d0oooo0P1o:RX20?l00003003o003oool0 +oooo00`0oooo0P000?nC0?ooo`030000o`3oool0oooo02T0oooo00D00?l00?ooo`3oool0oooo07lZ +:P020?ooo`030?l0003oool0oooo0700oooo002G0?ooo`040?l000000?l0oooo07lZ:/40oooo0P00 +0?lA0?ooo`030?l00000o`00ObXZ05l0oooo00<000000?ooo`3oool0G`3oool0101o:RX0oooo0?l0 +0000o`0?0?ooo`80003oT03oool00`000?l0oooo0?ooo`0Z0?ooo`04003o003oool0oooo07lZ:P80 +oooo00<0o`000?ooo`3oool0L@3oool009L0oooo00D0o`000000o`3oool0oooo07lZ:P2n0?ooo`80 +003o4P3oool00`3o0000ObXZ0?ooo`1P0?ooo`030000003oool0oooo0600oooo0P1o:RX20?l00100 +oooo0P000?n>0?ooo`030000o`3oool0oooo02T0oooo00L00?l00?ooo`3oool0oooo07lZ:P3oool0 +o`0007@0oooo002H0?ooo`<0003o00<0oooo07lZ:P3oool0^P3oool20000oa<0oooo00<0o`0007lZ +:P3oool0DP3oool4000000/0oooo00<000000?ooo`3oool0HP3oool0101o:RX0oooo0?l0003o000@ +0?ooo`80003oR`3oool00`000?l0oooo0?ooo`0Y0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3o +ool00`3o0000oooo0?ooo`1b0?ooo`00U`3oool50000o`0307lZ:P3oool0oooo0;L0oooo0P000?lD +0?ooo`030?l0003oool0oooo05<0oooo00<000000?ooo`3oool0303oool00`000000oooo0?ooo`1S +0?ooo`0407lZ:P3oool0oooo0?l00140oooo0P000?n80?ooo`030000o`3oool0oooo02X0oooo00L0 +0?l00?ooo`3oool0oooo07lZ:P3oool0o`0007D0oooo002G0?ooo`D0003o00<0oooo07lZ:P3oool0 +]P3oool00`000?l0oooo0?ooo`0C0?ooo`030?l0003oool0oooo05D0oooo00<000000?ooo`3oool0 +2`3oool700000600oooo0P1o:RX00`3oool0o`000?ooo`0A0?ooo`030000o`3oool0oooo08@0oooo +00<0003o0?ooo`3oool0:P3oool01@00o`00oooo0?ooo`3oool0ObXZ0080oooo00<0o`000?ooo`3o +ool0L`3oool009L0oooo1@000?l20?ooo`0307lZ:P3oool0oooo0;80oooo0P000?lD0?ooo`0307lZ +:P3o0000oooo05P0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`1V0?ooo`0307lZ +:P3oool0o`000180oooo0P000?n40?ooo`030000o`3oool0oooo02T0oooo00D00?l00?ooo`3oool0 +oooo07lZ:P020?ooo`030?l0003oool0oooo07@0oooo002H0?ooo`<0003o00@0oooo0000o`000?l0 +ObXZ/P3oool20000oaD0oooo00<0ObXZ0?l0003oool0E`3oool010000000oooo0?ooo`00000;0?oo +o`030000003oool0oooo06L0oooo00@0ObXZ0?ooo`3o00000?l04P3oool20000oh40oooo00<0003o +0?ooo`3oool0:@3oool00`00o`00oooo0?ooo`020?ooo`0407lZ:P3oool0oooo0?l007H0oooo002K +0?ooo`030?l0003oool0oooo0080003o[`3oool20000oaD0oooo00<0ObXZ0?l0003o0000FP3oool2 +000000`0oooo00<000000?ooo`3oool0J03oool0101o:RX0oooo0?l00000o`0C0?ooo`80003oOP3o +ool00`000?l0oooo0?ooo`0Z0?ooo`05003o003oool0oooo0?ooo`1o:RX00P3oool00`3o0000oooo +0?ooo`1e0?ooo`00W03oool01@3o0000oooo0?ooo`1o:RX0003o0:`0oooo0P000?lF0?ooo`0307lZ +:P3o0000oooo06T0oooo00<000000?ooo`3oool0J@3oool01@1o:RX0oooo0?l0003o00000?l001<0 +oooo0P000?mk0?ooo`030000o`3oool0oooo02X0oooo00D00?l00?ooo`3oool0oooo07lZ:P030?oo +o`030?l0003oool0oooo07D0oooo002M0?ooo`040?l0003oool0oooo07lZ:P80003oZ03oool20000 +oaH0oooo0P1o:RX00`3o0000oooo0?ooo`1Y0?ooo`030000003oool0oooo06X0oooo0P1o:RX0103o +ool0o`000?l00000o`0C0?ooo`80003oN@3oool00`000?l0oooo0?ooo`0Y0?ooo`03003o003oool0 +oooo0080oooo00@0ObXZ0?ooo`3oool0o`00N03oool009d0oooo00H0o`00003o003oool0oooo07lZ +:P3oool20000oj@0oooo0P000?lG0?ooo`0307lZ:P3o0000o`0006`0oooo00<000000?ooo`3oool0 +K03oool207lZ:P030?ooo`3o00000?l001@0oooo0P000?mf0?ooo`030000o`3oool0oooo02T0oooo +00<00?l00?ooo`3oool00P3oool01@1o:RX0oooo0?ooo`3oool0o`0007P0oooo002N0?ooo`040?l0 +0000o`00oooo07lZ:P<0oooo0P000?nP0?ooo`80003o603oool00`1o:RX0o`000?ooo`1]0?ooo`03 +0000003oool0oooo06h0oooo00@0ObXZ0?ooo`3o00000?l05@3oool20000og<0oooo00<0003o0?oo +o`3oool0:P3oool00`00o`00oooo0?ooo`020?ooo`0407lZ:P3oool0oooo0?l007T0oooo002O0?oo +o`040?l00000o`00oooo07lZ:P@0oooo00<0003o0?ooo`3oool0V`3oool20000oaP0oooo0P1o:RX0 +0`3o0000oooo0?ooo`1]0?ooo`030000003oool0oooo06l0oooo00@0ObXZ0?ooo`3o0000o`005P3o +ool20000og00oooo00<0003o0?ooo`3oool0:P3oool00`00o`00oooo0?ooo`020?ooo`0507lZ:P3o +ool0oooo0?ooo`3o0000N@3oool00:00oooo00@0o`000?ooo`3oool0ObXZ103oool20000oiT0oooo +0P000?lI0?ooo`0307lZ:P3o0000o`000700oooo00<000000?ooo`3oool0L03oool0101o:RX0oooo +0?ooo`3o000G0?ooo`80003oKP3oool00`000?l0oooo0?ooo`0Y0?ooo`03003o003oool0oooo0080 +oooo00D0ObXZ0?ooo`3oool0oooo0?l0001j0?ooo`00X@3oool0103o0000oooo0?ooo`1o:RX50?oo +o`80003oU@3oool20000oaT0oooo0P1o:RX00`3o00000?l00?ooo`1`0?ooo`@00000L03oool207lZ +:P030?ooo`3o0000o`0001L0oooo0P000?m[0?ooo`030000o`3oool0oooo02T0oooo00<00?l00?oo +o`3oool00P3oool01@1o:RX0oooo0?ooo`3oool0o`0007/0oooo002R0?ooo`040?l0003oool0oooo +07lZ:PH0oooo0P000?nA0?ooo`80003o6P3oool00`1o:RX0oooo0?l0001c0?ooo`030000003oool0 +oooo07<0oooo0P1o:RX00`00o`00o`000?l0000G0?ooo`80003oJ03oool00`000?l0oooo0?ooo`0Z +0?ooo`05003o003oool0oooo0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`1j0?ooo`00X`3oool0 +0`3o0000oooo07lZ:P080?ooo`80003oSP3oool00`000?l0oooo0?ooo`0I0?ooo`0307lZ:P3oool0 +o`0007@0oooo00<000000?ooo`3oool0M@3oool0101o:RX0oooo003o003o000H0?ooo`030000o`3o +ool0oooo06D0oooo00<0003o0?ooo`3oool0:@3oool00`00o`00oooo0?ooo`020?ooo`0507lZ:P3o +ool0oooo0?ooo`3o0000O03oool00:@0oooo00<0o`000?ooo`1o:RX02@3oool00`000?l0oooo0?oo +o`290?ooo`80003o6P3oool207lZ:P80o`00M@3oool00`000000oooo0?ooo`1f0?ooo`0407lZ:P3o +ool0oooo0?l001P0oooo0P000?mT0?ooo`030000o`3oool0oooo02T0oooo00<00?l00?ooo`3oool0 +0P3oool01@1o:RX0oooo0?ooo`3oool0o`0007d0oooo002U0?ooo`030?l0003oool0ObXZ00T0oooo +0P000?n70?ooo`80003o6`3oool00`1o:RX0oooo0?l0001g0?ooo`030000003oool0oooo07L0oooo +00<0ObXZ0?ooo`3oool00P3o000H0?ooo`80003oH@3oool00`000?l0oooo0?ooo`0Y0?ooo`03003o +003oool0oooo0080oooo00D0ObXZ0?ooo`3oool0oooo0?l0001n0?ooo`00YP3oool00`3o0000oooo +07lZ:P0:0?ooo`80003oP`3oool20000oa/0oooo0P1o:RX00`3oool0o`000?ooo`1g0?ooo`030000 +003oool0oooo07P0oooo0P1o:RX20?ooo`030?l00000o`00oooo01L0oooo0P000?mN0?ooo`030000 +o`3oool0oooo02T0oooo00<00?l00?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0 +003oool0oooo07`0oooo002W0?ooo`030?l0003oool0ObXZ00/0oooo0P000?mo0?ooo`80003o703o +ool0101o:RX0oooo0?l0003o001i0?ooo`030000003oool0oooo07X0oooo0P1o:RX00`3oool0o`00 +0?l0000I0?ooo`80003oG03oool00`000?l0oooo0?ooo`0X0?ooo`03003o003oool0oooo0080oooo +00<0ObXZ0?ooo`3oool00P3oool00`3o0000oooo0?ooo`1m0?ooo`00Y`3oool0103o00000?l00?oo +o`1o:RX<0?ooo`030000o`3oool0oooo07X0oooo0P000?lL0?ooo`80ObXZ00<0oooo0?l0003oool0 +NP3oool00`000000oooo0?ooo`1l0?ooo`80ObXZ00<0oooo0?l0003o00006@3oool20000oeT0oooo +00<0003o0?ooo`3oool0:03oool00`00o`00oooo0?ooo`020?ooo`0307lZ:P3oool0oooo0080oooo +00<0o`000?ooo`3oool0OP3oool00:P0oooo00@0o`00003o003oool0ObXZ303oool20000ogP0oooo +0P000?lL0?ooo`80ObXZ0P3oool00`3o0000oooo0?ooo`1j0?ooo`030000003oool0oooo07h0oooo +00@0ObXZ0?ooo`00o`00o`006P3oool20000oeH0oooo00<0003o0?ooo`3oool0:@3oool01@00o`00 +oooo0?ooo`3oool0ObXZ00@0oooo00<0o`000?ooo`3oool0O`3oool00:T0oooo00<0o`00003o001o +:RX03P3oool20000og@0oooo0P000?lL0?ooo`80ObXZ0P3oool20?l007d0oooo00<000000?ooo`3o +ool0O`3oool207lZ:P030?ooo`3o0000o`0001X0oooo0P000?mC0?ooo`030000o`3oool0oooo02T0 +oooo00<00?l00?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo07l0 +oooo002Z0?ooo`030?l00000o`000?l000l0oooo0P000?m`0?ooo`80003o7@3oool01P1o:RX0oooo +0?ooo`3oool0o`00003o07h0oooo100000200?ooo`80ObXZ00<00?l00?l0003o00006P3oool20000 +oe40oooo00<0003o0?ooo`3oool0:03oool00`00o`00oooo0?ooo`020?ooo`0307lZ:P3oool0oooo +0080oooo00<0o`000?ooo`3oool0P03oool00:/0oooo0P3o00000`00o`00oooo0?ooo`0>0?ooo`03 +0000o`3oool0oooo06/0oooo0P000?lN0?ooo`0507lZ:P3oool0oooo0?ooo`3o0000P03oool00`00 +0000oooo0?ooo`230?ooo`0407lZ:P3oool00?l00?l001/0oooo0P000?m>0?ooo`030000o`3oool0 +oooo02P0oooo00<00?l00?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0 +oooo0840oooo002]0?ooo`030?l00000o`00oooo00l0oooo0P000?mY0?ooo`80003o7`3oool01@1o +:RX0oooo0?ooo`00o`00o`000840oooo00<000000?ooo`3oool0Q03oool00`1o:RX0oooo0?ooo`02 +0?l001/0oooo0P000?m;0?ooo`030000o`3oool0oooo02P0oooo00<00?l00?ooo`3oool00P3oool0 +0`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo0880oooo002^0?ooo`030?l00000o`000?l0 +0100oooo0P000?mU0?ooo`80003o803oool00`1o:RX0oooo003o00020?l00880oooo00<000000?oo +o`3oool0Q@3oool0101o:RX0oooo0?ooo`00o`020?l001/0oooo0P000?m80?ooo`030000o`3oool0 +oooo02P0oooo00<00?l00?ooo`3oool00P3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0 +oooo08<0oooo002_0?ooo`80o`0000<00?l00?ooo`3oool03`3oool20000of40oooo0P000?lP0?oo +o`80ObXZ00<0oooo003o003o0000Q03oool00`000000oooo0?ooo`260?ooo`80ObXZ0P3oool00`00 +o`00o`000?ooo`0K0?ooo`80003oAP3oool00`000?l0oooo0?ooo`0W0?ooo`03003o003oool0oooo +0080oooo00<0ObXZ0?ooo`3oool00P3oool00`3o0000oooo0?ooo`240?ooo`00/@3oool00`3o0000 +0?l00?ooo`0A0?ooo`030000o`3oool0oooo05d0oooo00<0003o0?ooo`3oool07P3oool207lZ:P80 +oooo0P3o00250?ooo`030000003oool0oooo08P0oooo0P1o:RX20?ooo`80o`00703oool00`000?l0 +oooo0?ooo`120?ooo`030000o`3oool0oooo02L0oooo00<00?l00?ooo`3oool00P3oool00`1o:RX0 +oooo0?ooo`020?ooo`030?l0003oool0oooo08D0oooo002b0?ooo`80o`004P3oool20000oe/0oooo +0P000?lO0?ooo`80ObXZ0P3oool20?l008L0oooo00<000000?ooo`3oool0RP3oool207lZ:P040?oo +o`00o`00o`000?l001/0oooo0P000?m10?ooo`030000o`3oool0oooo02L0oooo00<00?l00?ooo`3o +ool00P3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo08H0oooo002c0?ooo`0307lZ +:P3o0000o`000180oooo0P000?mG0?ooo`80003o803oool01@1o:RX0oooo0?ooo`3oool0o`0008T0 +oooo00<000000?ooo`3oool0S03oool0101o:RX0oooo0?ooo`00o`020?l001/0oooo0P000?lo0?oo +o`030000o`3oool0oooo02D0oooo0P00o`040?ooo`0307lZ:P3oool0oooo0080oooo00<0o`000?oo +o`3oool0Q`3oool00;@0oooo00<0ObXZ003o003o00004`3oool20000oe<0oooo0P000?lP0?ooo`80 +ObXZ0P3oool20?l008X0oooo00<000000?ooo`3oool0S@3oool207lZ:P80oooo00<00?l00?l0003o +00006`3oool20000oc`0oooo00<0003o0?ooo`3oool09@3oool00`00o`00oooo0?ooo`030?ooo`03 +07lZ:P3oool0oooo0080oooo00<0o`000?ooo`3oool0R03oool00;D0oooo00<0ObXZ003o003o0000 +503oool20000odl0oooo0P000?lO0?ooo`<0ObXZ0P3oool20?l008`0oooo00<000000?ooo`3oool0 +S`3oool307lZ:P040?ooo`00o`00o`000?l001/0oooo0P000?li0?ooo`030000o`3oool0oooo02D0 +oooo00<00?l00?ooo`3oool00`3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo08T0 +oooo002f0?ooo`0407lZ:P3oool0o`00003o01@0oooo00<0003o0?ooo`3oool0BP3oool20000oal0 +oooo0P1o:RX30?ooo`03003o003o0000oooo08d0oooo00<000000?ooo`3oool0TP3oool207lZ:P04 +0?ooo`00o`00o`000?l001/0oooo0P000?lf0?ooo`030000o`3oool0oooo02D0oooo00<00?l00?oo +o`3oool00`3oool00`1o:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo08X0oooo002g0?ooo`04 +07lZ:P3oool0o`00003o01@0oooo0P000?m80?ooo`80003o7`3oool207lZ:P<0oooo00<00?l00?l0 +003o0000S`3oool4000009<0oooo0P1o:RX0103oool00?l00?l0003o000K0?ooo`80003o=03oool0 +0`000?l0oooo0?ooo`0T0?ooo`03003o003oool0oooo0080oooo0P1o:RX30?ooo`80o`00S@3oool0 +0;P0oooo0P1o:RX20?l00003003o003oool0oooo0180oooo0P000?m40?ooo`80003o7`3oool207lZ +:P<0oooo00<00?l00?l0003o0000T@3oool00`000000oooo0?ooo`2F0?ooo`80ObXZ0P00o`020?l0 +01/0oooo0P000?la0?ooo`030000o`3oool0oooo02@0oooo00<00?l00?ooo`3oool00P3oool00`1o +:RX0oooo0?ooo`020?ooo`030?l0003oool0oooo08d0oooo002j0?ooo`80ObXZ0P3o00000`00o`00 +oooo0?ooo`0B0?ooo`80003o@03oool20000oal0oooo0P1o:RX30?ooo`03003o003o0000o`0009<0 +oooo00<000000?ooo`3oool0V03oool207lZ:P800?l00P3o000K0?ooo`80003o;P3oool00`000?l0 +oooo0?ooo`0S0?ooo`800?l00`3oool207lZ:P@0oooo00<0o`000?ooo`3oool0SP3oool00;`0oooo +00D0ObXZ0?ooo`3o0000o`00003o000D0?ooo`030000o`3oool0oooo03/0oooo0P000?lO0?ooo`80 +ObXZ0`3oool00`00o`00o`000?l0002E0?ooo`030000003oool0oooo09X0oooo0P1o:RX2003o0080 +o`006`3oool20000ob/0oooo00<0003o0?ooo`3oool08`3oool00`00o`00oooo0?ooo`020?ooo`03 +07lZ:P3oool0oooo0080oooo0P3o002A0?ooo`00_@3oool00`1o:RX0oooo0?ooo`020?l00003003o +003oool0oooo0140oooo0P000?li0?ooo`80003o7P3oool307lZ:P@0oooo0P3o002G0?ooo`030000 +003oool0oooo09`0oooo0P1o:RX2003o0080o`006`3oool20000obT0oooo00<0003o0?ooo`3oool0 +8@3oool2003o00@0oooo00<0ObXZ0?ooo`3oool00P3oool00`3o0000oooo0?ooo`2A0?ooo`00_P3o +ool0101o:RX0oooo0?ooo`3oool20?l001@0oooo0P000?le0?ooo`80003o7P3oool207lZ:PD0oooo +0P3o002I0?ooo`030000003oool0oooo09l0oooo00<0ObXZ003o0000o`000`3o000J0?ooo`80003o +9P3oool00`000?l0oooo0?ooo`0P0?ooo`800?l0103oool207lZ:P@0oooo00<0o`000?ooo`3oool0 +TP3oool00;l0oooo0P1o:RX30?ooo`030?l00000o`00oooo01<0oooo0P000?la0?ooo`80003o7P3o +ool207lZ:PD0oooo0P3o002K0?ooo`030000003oool0oooo0:40oooo00@0ObXZ003o0000o`00oooo +0P3o000J0?ooo`80003o8`3oool00`000?l0oooo0?ooo`0P0?ooo`03003o003oool0oooo00<0oooo +00<0ObXZ0?ooo`3oool00`3oool00`3o0000oooo0?ooo`2C0?ooo`00`@3oool207lZ:P80oooo00<0 +o`00003o0000o`00503oool00`000?l0oooo0?ooo`0]0?ooo`030000o`3oool0oooo01`0oooo0P1o +:RX50?ooo`80o`00W@3oool00`000000oooo0?ooo`2S0?ooo`0407lZ:P00o`000?l00?ooo`<0o`00 +6@3oool00`000?l0oooo0?ooo`0P0?ooo`030000o`3oool0oooo01l0oooo00<00?l00?ooo`3oool0 +0P3oool207lZ:PD0oooo00<0o`000?ooo`3oool0U03oool00<<0oooo0P1o:RX00`3oool0o`000?l0 +0002003o01<0oooo0P000?l[0?ooo`80003o7@3oool207lZ:PD0oooo0P3o002O0?ooo`030000003o +ool0oooo0:D0oooo00<0ObXZ003o0000o`000P3oool20?l001P0oooo0P000?lO0?ooo`030000o`3o +ool0oooo01l0oooo00@00?l00?ooo`3oool0oooo0P1o:RX50?ooo`80o`00U`3oool000?ooo`80 +003o1P3oool00`000?l0oooo0?ooo`0A0?ooo`<00?l00`1o:RX30?ooo`@0o`00[03oool00=/0oooo +1P1o:RX40?l000D00?l01@3oool20000o`050?ooo`000?l0003o0000o`3oool00P000?l=0?ooo`L0 +ObXZ0`3oool50?l00:l0oooo0P00000<0?ooo`030000003oool0oooo0<@0oooo1000o`050?l000/0 +oooo0P000?l0103oool0003o0000o`000?l?0?ooo`D00?l00`1o:RX20?ooo`@0o`00/03oool00>40 +oooo101o:RX:0?l00080oooo1@000?l90?ooo`H0ObXZ1@3oool50?l00;<0oooo00@000000?ooo`3o +ool000002`3oool00`000000oooo0?ooo`390?ooo`@00?l02@3o00040?ooo`D0003o1@3oool9003o +0080ObXZ0`3oool50?l00;@0oooo003W0?ooo`P0ObXZ0P3o00050000oa@0o`00^P3oool00`000000 +oooo0?ooo`0:0?ooo`L00000c@3oool00`1o:RX00?l0003o0002003o00@0o`001@000?lC0?l00;T0 +oooo003a0?ooo`D0003o103oool5003o0"], + ImageRangeCache->{{{0, 894}, {446.5, 0}} -> {-6.27046, -4.08813, 0.0134578, \ +0.0195749}}] +}, Open ]] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1016, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ + +Cell[CellGroupData[{ +Cell[1776, 53, 443, 11, 94, "Input"], +Cell[2222, 66, 303, 6, 25, "Print"], +Cell[2528, 74, 63264, 2087, 331, 22032, 1573, "GraphicsData", "PostScript", \ +"Graphics"], +Cell[65795, 2163, 303, 6, 25, "Print"], +Cell[66101, 2171, 59094, 2039, 382, 22070, 1577, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[125198, 4212, 303, 6, 25, "Print"], +Cell[125504, 4220, 70286, 2179, 338, 22096, 1579, "GraphicsData", \ +"PostScript", "Graphics"] +}, Open ]], + +Cell[CellGroupData[{ +Cell[195827, 6404, 441, 11, 94, "Input"], +Cell[196271, 6417, 303, 6, 25, "Print"], +Cell[196577, 6425, 64261, 2128, 388, 25642, 1647, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[260841, 8555, 303, 6, 25, "Print"], +Cell[261147, 8563, 70732, 2207, 398, 25608, 1645, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[331882, 10772, 303, 6, 25, "Print"], +Cell[332188, 10780, 69076, 2184, 419, 25599, 1643, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[401267, 12966, 303, 6, 25, "Print"], +Cell[401573, 12974, 73682, 2240, 445, 25573, 1641, "GraphicsData", \ +"PostScript", "Graphics"] +}, Open ]], + +Cell[CellGroupData[{ +Cell[475292, 15219, 437, 11, 94, "Input"], +Cell[475732, 15232, 303, 6, 25, "Print"], +Cell[476038, 15240, 108389, 2754, 358, 27633, 1752, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[584430, 17996, 303, 6, 25, "Print"], +Cell[584736, 18004, 95368, 2594, 371, 27793, 1755, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[680107, 20600, 303, 6, 25, "Print"], +Cell[680413, 20608, 110178, 2775, 439, 27653, 1752, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[790594, 23385, 303, 6, 25, "Print"], +Cell[790900, 23393, 103271, 2695, 414, 27861, 1759, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[894174, 26090, 301, 6, 25, "Print"], +Cell[894478, 26098, 135758, 3083, 429, 27585, 1743, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[1030239, 29183, 303, 6, 25, "Print"], +Cell[1030545, 29191, 104510, 2713, 456, 27942, 1763, "GraphicsData", \ +"PostScript", "Graphics"] +}, Open ]] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/Num05Aufg5.nb b/Bachelor/Numerische Mathematik/Num05Aufg5.nb new file mode 100644 index 0000000..c1a2095 --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg5.nb @@ -0,0 +1,1115 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.0' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 36654, 1018]*) +(*NotebookOutlinePosition[ 37298, 1040]*) +(* CellTagsIndexPosition[ 37254, 1036]*) +(*WindowFrame->Normal*) + + + +Notebook[{ +Cell[BoxData[ + StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Numerik\ - \ + Aufgabe\ \ +5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ +S\ 2005\ \ \ *) \)\(\ \)\), + "Subtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(Off[General::spell]\)\(\ \)\); \ \ \ \ \ \ Off[ + General::spell1]\ \ ; \ \ \ \ \ Off[General::luc];\)], "Input"], + +Cell[BoxData[ + \( (*\ \ \ \ \ \ Rechengenauigkeit\ gen\ \(festlegen\ \ +!\)\ \ Voreingestellt\ ist\ gen\ = \ 16\ \ \ \ *) \)], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + RowBox[{ + RowBox[{ + StyleBox["Rechengenauigkeit", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["vorgeben", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], + StyleBox["ipl", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["=", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["1", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["2", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["3", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(4\ \ oder\ 5\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ ipl1, \ ipl2, \ ... , \ + ipl5\ \ ist\ f\[UDoubleDot]r\ die\ \ Gesamtgraphik\ erforderlich, \ + wenn\ das\ Programm\ \[IndentingNewLine]ipl\ = \ 1, \ 2, \ 3, \ + 4\ , \ 5\ \ mal\ gelaufen\ ist, \ + werden\ verschiedene\ Zahlen\ eingesetzt\ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + RowBox[{\(ipl = \ 1;\), " ", "\[IndentingNewLine]", + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(Nummern \(\(\ \)\(\ \)\) + der\ \ auszugebenden\ Kurven\ festlegen\), + "Subsubsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]}]}], "\n", \(If\ [\ + ipl\ == \ 1, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 1; \ \ ipl3\ = \ 1; \ \ ipl4\ = \ 1, + ipl5\ = \ 1\ }];\), "\n", \(If\ [\ + ipl\ == \ 2, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 2; \ \ ipl3\ = \ 1; \ \ ipl4\ = \ 1, + ipl5\ = \ 1\ }];\), "\n", \(If\ [\ + ipl\ == \ 3, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 2; \ \ ipl3\ = \ 3; \ \ ipl4\ = \ 1, + ipl5\ = \ 1\ }];\), "\n", \(If\ [\ + ipl\ == \ 4, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 2; \ \ ipl3\ = \ 3; \ \ ipl4\ = \ 4, + ipl5\ = \ 1\ }];\), "\n", \(If\ [\ + ipl\ == \ 5, \ {\ ipl1\ = \ 1; \ + ipl2\ = \ 2; \ \ ipl3\ = \ 3; \ \ ipl4\ = \ 4, + ipl5\ = \ 5\ }];\)}], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + RowBox[{ + RowBox[{"listgen", "=", " ", + RowBox[{"{", " ", + RowBox[{"8", + StyleBox[",", + Background->None], + StyleBox["12", + Background->None], + StyleBox[",", + Background->None], + StyleBox["16", + Background->None], + StyleBox[",", + Background->None], "24", + StyleBox[" ", + Background->None], + StyleBox[",", + Background->None], "32"}], + StyleBox["}", + Background->None]}]}], + StyleBox[";", + Background->None]}], + StyleBox[ + RowBox[{ + StyleBox[" ", + Background->RGBColor[1, 1, 0]], " "}]], + "\[IndentingNewLine]", + " ", \($MaxPrecision = \(gen = \ listgen[\([ipl]\)]\);\), + "\[IndentingNewLine]", " ", \($MinPrecision = gen;\)}]}]], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["Approximation", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["(", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(Methode\ der\ kleinsten\ Quadrate\ nach\ Gau\[SZ]\), + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section"]}]]}]}], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\n", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["Approximationsfunktionen", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["(", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[\(Polynome\ vom\ Grade\ \ m\), + "Subsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[")", + "Section", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}], "\n", + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox[\(f\[UDoubleDot]r\ n\), + "Subsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox["+", + "Subsection", + FontColor->RGBColor[1, 0, 0]], + RowBox[{ + StyleBox["1", + "Subsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox["vorgegene", + "Subsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Subsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Knotenpunkte", + "Subsection", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["mit", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Hilfe", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["der", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["Normalgleichungen", + "Section", + FontColor->RGBColor[1, 0, 0]]}]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0]]}]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ +Anzahl\ \ der\ \ St\[UDoubleDot]tzpunkte\ \ \ 0, \ \(\(.\)\(\ \)\(.\)\)\ , \ + n\ \ \ \ angeben\ \ \ *) \), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(n = 20;\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ Funktion\ f\[UDoubleDot]r\ \ +die\ \ St\[UDoubleDot]tzwerte\ \ definieren\ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(SeedRandom[1243]\), "\[IndentingNewLine]", + \(f5[x_] := \(\(0.01 x\^5\)\(-\)\(0.525 x\^4\)\(+\)\(10.41 + x\^3\)\(-\)\(96.47 x\^2\)\(+\)\(411.17 + x\)\(-\)\(530.26\)\(+\)\(10* + Random[]\)\(-\)\(5\)\(\ \)\)\)}], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ \ xp[ + j]\ \ und\ \ St\[UDoubleDot]tzwerte\ \ yp[ + j]\ , \ \ \ \ j\ = \ \ 0, \ \(\(.\)\(\ \)\(.\)\(\ \)\(.\)\)\ , + n\ \ \ erzeugen\ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[{xp[j] = SetPrecision[j, gen], \ yp[j] = f5[j]}, {j, 0, + n}]\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ Graphische\ Darstellung\ der\ Knotenpunkte\ \ \ \ *) \), + + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[{ + \(<< Graphics`Colors`\), "\n", + \(\(liste1 = {Red, HotPink, Green, Apricot, Brown, DarkGreen, Cobalt, + Brick, Orange, Magenta, IndianRed, ForestGreen, Red, HotPink, + Green, Apricot, Brown, DarkGreen, Cobalt, Brick, + Orange};\)\)}], "Input"], + +Cell[BoxData[ + \(linienplot = + ListPlot[Table[{xp[j], yp[j]}, {j, 0, n}], PlotJoined\ -> \ True, \t + PlotRange -> {{0, 21}, {\(-210\), 210}}, \n\tPlotStyle -> Blue, + AspectRatio -> 0.6, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(punktplot = + ListPlot[Table[{xp[j], yp[j]}, {j, 0, n}], PlotJoined\ -> \ False, \t + PlotRange -> {{0, 21}, {\(-210\), 210}}, \n\tPlotStyle -> Blue, + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.6, + AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"], + +Cell[BoxData[ + \(Show[linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Erstellen \(\(\ \)\(\ \)\) + der\ \ St\[UDoubleDot]tzmatrizen\ \ A\ \ \ f\[UDoubleDot]r\ \ k = \ +\ 1, \ \(\(.\)\(\ \)\(.\)\(\ \)\(.\)\)\ , \ m\ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(m\ = \ 20;\)\)], "Input"], + +Cell[BoxData[ + \(\(\(Do[{A[j, 0] = SetPrecision[1, gen], + Do[A[j, i] = SetPrecision[xp[j]^i, gen], {i, 1, m}]}, {j, 0, n}]\n + \(Do[Amat[k]\ = \ Table[A[j, i], {j, 0, n}, {i, 0, k}], {k, 1, + m}];\)\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], " ", + StyleBox[\(Amat[5]\ // \ MatrixForm\ \ , \(\(\ \)\(\ \)\) + Kontrollausgabe\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(\(Do[ATmat[k] = Transpose[Amat[k]], {k, 1, m}];\)\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], " ", + StyleBox[\(ATmat[5]\ // \ MatrixForm\ , \ \ Kontrollausgabe\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + StyleBox[\( (*\(\(\ \ \)\(\ \)\) + Erstellen\ \ \ der\ \ rechten\ Seite\ \ y\ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(\(yvek = \ + Table[SetPrecision[yp[j], gen], {j, 0, n}];\)\(\ \)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\(yvek\ // \ MatrixForm\ \ \ , \(\(\ \)\(\ \)\) + Kontrollausgabe\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Berechnen \(\(\ \)\(\ \)\) + der\ \ Normalgleichungen\ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Erstellen \(\(\ \)\(\ \)\) + der\ \ Normalmatrix\ \ Nmat\ \ \ f\[UDoubleDot]r\ \ k = \ + 1, \ \(\(.\)\(\ \)\(.\)\(\ \)\(.\)\)\ , \ m\ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[Nmat[k]\ = \ SetPrecision[ATmat[k] . Amat[k], gen], {k, 1, + m}]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], " ", + StyleBox[\(Nmat[5]\ // \ MatrixForm\ \ , \(\(\ \)\(\ \)\) + Kontrollausgabe\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + StyleBox[\( (*\(\(\ \ \)\(\ \)\) Erstellen \(\(\ \)\(\ \)\) + der\ \ rechten\ Seite\ \ b\ \ \ f\[UDoubleDot]r\ \ k\ = \ + 1, \ \(\(.\)\(\ \)\(.\)\(\ \)\(.\)\)\ , \ m\ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(Do[bvek[k]\ = SetPrecision[ATmat[k] . yvek, gen], {k, 1, + m}]\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 1]], " ", + StyleBox[\(bvek[5]\ // \ MatrixForm\ \ \ \ , \(\(\ \)\(\ \)\) + Kontrollausgabe\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ +L\[ODoubleDot]\ +sen\ \ der\ \ Normalgleichungen\ \ mit\ \ Hilfe\ \ der\ \ internen\ \ Inversen\ +\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(Do[ + Ninv[k] = SetPrecision[Inverse[Nmat[k]], gen], {k, 1, + m}];\)\)], "Input"], + +Cell[BoxData[ + RowBox[{" ", + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 0]], " ", + StyleBox[\(Ninv[5]\ // \ MatrixForm\ , \ \ Kontrollausgabe\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(Do[cvek[k] = SetPrecision[Ninv[k] . bvek[k], gen], {k, 1, + m}]\)], "Input"], + +Cell[BoxData[ + RowBox[{ + StyleBox["(*", + FontColor->RGBColor[1, 0, 0]], " ", + StyleBox[\(cvek[9]\ // \ MatrixForm\ \ \ , \ \ \ Kontrollausgabe\), + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox[" ", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]], + StyleBox["*)", + "Subsubsection", + FontColor->RGBColor[1, 0, 1]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + \(poly[kk_, + xx_] := \[Sum]\+\(i = 1\)\%kk\( cvek[kk]\)[\([i + 1]\)]*xx^i + \(cvek[ + kk]\)[\([1]\)]\)], "Input"], + +Cell[BoxData[ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"{", + + RowBox[{\(Dquad[ipl, + k] = \[Sum]\+\(j = 0\)\%n\((yp[j] - poly[k, xp[j]])\)^2\), + ",", \(Print["\", + k, "\<, Abweichungsquadrate: \>", + ScientificForm[Dquad[ipl, k]], "\< Gauss\>"]\), ",", + RowBox[{\(Kurv[k]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(poly[k, xx], {xx, 0, 21}, + PlotRange -> {{0, 21}, {\(-210\), 210}}, + AspectRatio \[Rule] + 0.6, \[IndentingNewLine]PlotPoints \[Rule] 40, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ + PlotStyle \[Rule] liste1[\([k]\)]\), "]"}]}]}], "}"}], + ",", \({k, 1, m}\)}], "]"}]], "Input"], + +Cell[BoxData[ + \(Do[{Print["\", + k, "\<, Abweichungsquadrate: \>", + ScientificForm[Dquad[ipl, k]], "\< Gauss\>"], + Show[Kurv[k], linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]}, {k, 1, 20}]\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ +L\[ODoubleDot]\ +sen\ \ der\ \ Normalgleichungen\ \ mit\ \ Hilfe\ \ der\ \ Cholesky - + Zerlegung\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[\( (*\ \ \ \ \ \ Cholesky - Zerlegung\ der\ Matrix\ A\ = \ + Nmat\ [l]\ \((\ verketteter\ Algorithmus\ )\)\ \ \ \ \ \ \ *) \), + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + " \ + "}]], + RowBox[{ + StyleBox["(*", + "Section", + FontColor->RGBColor[1, 0, 0]], " ", + StyleBox[\(f\[UDoubleDot]r\ l\ = \ + 1, \ \(\(.\)\(\ \)\(.\)\(\ \)\(.\)\)\ , \ m\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[ + RowBox[{" ", + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + StyleBox["*)", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + RowBox[{ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Cholesky\ - \ + Zerlegung\ \ der\ \ Matrix\ \ A\ \ = \ \ Nmat\ \ \ \((\ + erste\ k - Schleife\ )\)\ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "\n", + RowBox[{ + StyleBox["(*", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[ + RowBox[{ + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], + RowBox[{ + + StyleBox[\(Vorw\[ADoubleDot]rtsrechnung\ \((\ + erste\ i - Schleife\ \ \ )\)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]], + StyleBox[",", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[ + RowBox[{ + StyleBox[" ", + "Section", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}]], + + StyleBox[\(R\[UDoubleDot]ckw\[ADoubleDot]rtsrechnung\ \((\ + zweite\ i - Schleife\ )\)\), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None], + StyleBox["*)", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->None]}], + StyleBox[" ", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[0, 1, 0]]}]], "Input", + Background->RGBColor[1, 1, 0]], + +Cell[BoxData[ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"{", + + RowBox[{\(nl = l + 1\), ",", "\n", + " \t", \(Do[ + Do[\ Achol[i, j] = \(Nmat[l]\)[\([i, j]\)], {i, 1, nl}], {j, 1, + nl}]\), ",", "\n", + "\t\t", \(Do[{Do[{sumAjiAjk = SetPrecision[0. , gen], + Do[sumAjiAjk = sumAjiAjk + Achol[j, i]*Achol[j, k], {j, + 1, i - + 1}], \n\t\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tAchol[ + i, k] = \((Achol[i, k] - sumAjiAjk)\)/ + Achol[i, i]}, {i, 1, k - 1}], + sumAjk2 = + SetPrecision[0. , + gen], \n\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Do[ + sumAjk2 = sumAjk2 + Achol[j, k]*Achol[j, k], {j, 1, + k - 1}], \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +AkkminsumAjk2 = SetPrecision[Achol[k, k] - sumAjk2, gen], + Achol[k, k] = + SetPrecision[Sqrt[AkkminsumAjk2], + gen]}, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +{k, 1, nl}]\), ",", "\t\t", "\n", + "\t", \(Do[{sumAb = SetPrecision[0. , gen], + zwb[i] = SetPrecision[\(bvek[l]\)[\([i]\)], gen], \ + Do[sumAb = sumAb + Achol[j, i]*zwb[j], {j, 1, i - 1}], + zwb[i] = + SetPrecision[\((zwb[i] - sumAb)\)/Achol[i, i], gen]}, {i, + 1, nl}]\), ",", "\n", + "\t ", \(Do[{sumAX = SetPrecision[0. , gen], + Do[sumAX = sumAX + Achol[i, j]*zwc[j], {j, i + 1, + nl}], \n\t\ \ zwc[i] = + SetPrecision[\((zwb[i] - sumAX)\)/Achol[i, i], gen]}, {i, + nl, 1, \(-1\)}]\), " ", ",", + " ", \(cvec[l] = Table[zwc[i], {i, 1, nl}]\), ",", + "\[IndentingNewLine]", + StyleBox[ + RowBox[{" ", + StyleBox[" ", + Background->RGBColor[1, 1, 0]], + StyleBox[" ", + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]]}]], + + StyleBox[\( (*\ \ \(Print[\ "\", l, "\< \>", + AkkminsumAjk2, "\< \>", Achol[nl, nl]]\)\(,\)\ \ *) \), + FontColor->RGBColor[1, 0, 0], + Background->RGBColor[1, 1, 0]], "\[IndentingNewLine]", + " ", \(If[ + AkkminsumAjk2\ \[LessEqual] \ 0, {\ + Print["\< Die Matrix ist bei der Ordnung n = \>", + nl, "\< nicht mehr positiv definit !!! \>"]}]\)}], "}"}], + ",", " ", "\n", " ", \({l, 1, m}\)}], "]"}]], "Input"], + +Cell[BoxData[ + \(\(\(\ \)\(polychol[kk_, + xx_] := \[Sum]\+\(i = 1\)\%kk\( cvec[kk]\)[\([i + 1]\)]*xx^i + \(cvec[ + kk]\)[\([1]\)]\)\)\)], "Input"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Do", "[", + RowBox[{ + RowBox[{"{", + + RowBox[{\(Dquadchol[ipl, + k] = \[Sum]\+\(j = 0\)\%n\((yp[j] - + polychol[k, xp[j]])\)^2\), + ",", \(Print["\", + k, "\<, Abweichungsquadrate: \>", + ScientificForm[Dquadchol[ipl, k]], "\< Cholesky\>"]\), ",", + + RowBox[{\(Kurvchol[k]\), "=", + RowBox[{ + StyleBox["Plot", + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]], "[", + " ", \(polychol[k, xx], {xx, 0, 21}, + PlotRange -> {{0, 21}, {\(-210\), 210}}, + AspectRatio \[Rule] + 0.6, \[IndentingNewLine]PlotPoints \[Rule] 40, + AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ + PlotStyle \[Rule] liste1[\([k]\)]\), "]"}]}]}], "}"}], + ",", \({k, 1, m}\)}], "]"}], " "}]], "Input"], + +Cell[BoxData[ + \(Do[{Print["\", + k, "\<, Abweichungsquadrate: \>", + ScientificForm[Dquadchol[ipl, k]], \ "\< Cholesky\>"], + Show[Kurvchol[k], linienplot, punktplot, + Prolog\ -> \ AbsolutePointSize[5]]}, {k, 1, m}]\)], "Input", + AnimationDisplayTime->3.02875], + +Cell[BoxData[ + StyleBox[\( (*\ \ Graphische\ Darstellung\ der\ Abweichungsquadrate\ \ y\ \ + = \ log \((Dquad \((k)\))\)\ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(liste2 = {Red, HotPink, Green, DarkGreen, Cobalt, Blue, Brick, Brown, + Orange, Magenta, Apricot, IndianRed, ForestGreen, };\)\)], "Input"], + +Cell[BoxData[{ + \(Print["\< Logarithmus der Abweichungsquadrate bei Gau\ +\[SZ]\>"]\), "\[IndentingNewLine]", + \(quadlinien[ipl] = + ListPlot[Table[{k, Log[10, Dquad[ipl, k]]}, {k, 1, m}], + PlotJoined\ -> \ True, \tPlotRange -> {{0, 21}, {\(-1\), 11}}, \n\t + PlotStyle \[Rule] liste2[\([2 ipl - 1]\)], AspectRatio -> 0.7, + PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> k\>", "\< ^ y\>"}]\)}], "Input"], + +Cell[BoxData[{ + \(\(Print["\< Logarithmus der Abweichungsquadrate bei \ +Gau\[SZ]\>"];\)\), "\[IndentingNewLine]", + \(\(quadpunkte[ipl] = + ListPlot[Table[{k, Log[10, Dquad[ipl, k]]}, {k, 1, m}], + PlotJoined\ -> \ False, \t + PlotRange -> {{0, 21}, {\(-1\), 11}}, \n\t + PlotStyle \[Rule] liste2[\([2 ipl - 1]\)], + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.7, + PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> k\>", "\< ^ y\>"}];\)\)}], "Input"], + +Cell[BoxData[{ + \(\(Print["\< Logarithmus der Abweichungsquadrate bei \ +Cholesky\>"];\)\), "\[IndentingNewLine]", + \(\(quadlinienchol[ipl] = + ListPlot[Table[{k, Log[10, Dquadchol[ipl, k]]}, {k, 1, m}], + PlotJoined\ -> \ True, \tPlotRange -> {{0, 21}, {\(-1\), 11}}, \n\t + PlotStyle \[Rule] liste2[\([2*ipl]\)], AspectRatio -> 0.7, + PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> k\>", "\< ^ y\>"}];\)\)}], "Input"], + +Cell[BoxData[ + \(\(quadpunktechol[ipl] = + ListPlot[Table[{k, Log[10, Dquadchol[ipl, k]]}, {k, 1, m}], + PlotJoined\ -> \ False, \t + PlotRange -> {{0, 21}, {\(-1\), 11}}, \n\t + PlotStyle \[Rule] liste2[\([2 ipl]\)], + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.7, + PlotLabel \[Rule] "\", + AxesLabel -> {"\<> k\>", "\< ^ y\>"}];\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ Gesamtgraphik : \ wenn\ das\ Programm\ ipl\ = \ 1, \ + 2, \ 3, \ 4, \ + 5\ \ mal\ gelaufen\ ist, \ \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ m\[UDoubleDot]ssen\ ipl1, + ipl2, \ ... , ipl5\ \ verschiedene\ Zahlen\ enthalten\ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(Show[quadlinien[ipl1], quadpunkte[ipl1], quadlinienchol[ipl1], + quadpunktechol[ipl1], quadlinien[ipl2], quadpunkte[ipl2], + quadlinienchol[ipl2], quadpunktechol[ipl2], quadlinien[ipl3], + quadpunkte[ipl3], quadlinienchol[ipl3], quadpunktechol[ipl3], + quadlinien[ipl4], quadpunkte[ipl4], quadlinienchol[ipl4], + quadpunktechol[ipl4], \[IndentingNewLine]quadlinien[ipl5], + quadpunkte[ipl5], quadlinienchol[ipl5], + quadpunktechol[ipl5], \[IndentingNewLine]Prolog\ -> \ + AbsolutePointSize[5]];\)\)], "Input"], + +Cell[BoxData[ + StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Nur\ \ \ f\[UDoubleDot]r\ \ \ \ \ \ ipl\ +\ = \ 5\ \ \ \ \ \ \(interessant\ \ \ !\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + "Subsubtitle", + FontColor->RGBColor[1, 0, 0]]], "Input", + Background->RGBColor[0, 1, 0]], + +Cell[BoxData[ + \(\(If[ + ipl \[Equal] \ + 5, {Print["\< Logarithmus der Abweichungsquadrate \ +bei Gau\[SZ]\>"]; \[IndentingNewLine]quadlinien[ipl] = + ListPlot[Table[{k, Log[10, Dquad[ipl, k]]}, {k, 1, m}], + PlotJoined\ -> \ True, \t + PlotRange -> {{0, 21}, {\(-21\), 7}}, \n\t + PlotStyle \[Rule] liste2[\([2*ipl - 1]\)], AspectRatio -> 0.7, + PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> k\>", "\< ^ y\>"}]}];\)\)], "Input"], + +Cell[BoxData[ + \(\(If[ + ipl \[Equal] \ + 5, {Print["\< Logarithmus der Abweichungsquadrate \ +bei Cholesky\>"]; + quadpunkte[ipl] = + ListPlot[Table[{k, Log[10, Dquad[ipl, k]]}, {k, 1, m}], + PlotJoined\ -> \ False, + PlotRange -> {{0, 21}, {\(-21\), + 7}}, \[IndentingNewLine]PlotStyle \[Rule] + liste2[\([2*ipl - 1]\)], Prolog\ -> \ AbsolutePointSize[5], + AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> k\>", "\< ^ y\>"}]}];\)\)], "Input"], + +Cell[BoxData[ + \(\(If[ + ipl \[Equal] \ + 5, {Print["\< Logarithmus der Abweichungsquadrate \ +bei Cholesky\>"]; \[IndentingNewLine]quadlinienchol[pil] = + ListPlot[Table[{k, Log[10, Dquadchol[ipl, k]]}, {k, 1, m}], + PlotJoined\ -> \ True, PlotRange -> {{0, 21}, {\(-21\), 7}}, \n + PlotStyle \[Rule] liste2[\([2*ipl]\)], AspectRatio -> 0.7, + PlotLabel \[Rule] "\< \>", + AxesLabel -> {"\<> k\>", "\< ^ y\>"}]}];\)\)], "Input"], + +Cell[BoxData[ + \(\(If[ipl \[Equal] \ 5, + quadpunktechol[ipl] = + ListPlot[Table[{k, Log[10, Dquadchol[ipl, k]]}, {k, 1, m}], + PlotJoined\ -> \ False, \t + PlotRange -> {{0, 21}, {\(-21\), 7}}, \n\t + PlotStyle \[Rule] liste2[\([2*ipl]\)], + Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.7, + PlotLabel \[Rule] "\", + AxesLabel -> {"\<> k\>", "\< ^ y\>"}]];\)\)], "Input"], + +Cell[BoxData[ + \(\(If[ipl \[Equal] \ 5, + Show[quadlinien[ipl5], quadpunkte[ipl5], quadlinienchol[ipl5], + quadpunktechol[ipl5], + Prolog\ -> \ AbsolutePointSize[5]]];\)\)], "Input"] +}, +FrontEndVersion->"5.0 for Microsoft Windows", +ScreenRectangle->{{0, 1024}, {0, 685}}, +WindowSize->{1014, 651}, +WindowMargins->{{0, Automatic}, {Automatic, 0}} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ +Cell[1754, 51, 323, 7, 59, "Input"], +Cell[2080, 60, 141, 2, 30, "Input"], +Cell[2224, 64, 171, 3, 46, "Input"], +Cell[2398, 69, 2262, 73, 46, "Input"], +Cell[4663, 144, 419, 8, 73, "Input"], +Cell[5085, 154, 1398, 33, 150, "Input"], +Cell[6486, 189, 1085, 31, 70, "Input"], +Cell[7574, 222, 4313, 132, 97, "Input"], +Cell[11890, 356, 263, 6, 45, "Input"], +Cell[12156, 364, 44, 1, 30, "Input"], +Cell[12203, 367, 235, 5, 49, "Input"], +Cell[12441, 374, 275, 5, 50, "Input"], +Cell[12719, 381, 350, 7, 49, "Input"], +Cell[13072, 390, 104, 2, 30, "Input"], +Cell[13179, 394, 200, 5, 49, "Input"], +Cell[13382, 401, 293, 5, 70, "Input"], +Cell[13678, 408, 262, 4, 50, "Input"], +Cell[13943, 414, 307, 5, 50, "Input"], +Cell[14253, 421, 103, 2, 30, "Input"], +Cell[14359, 425, 300, 6, 49, "Input"], +Cell[14662, 433, 48, 1, 30, "Input"], +Cell[14713, 436, 244, 4, 50, "Input"], +Cell[14960, 442, 496, 15, 46, "Input"], +Cell[15459, 459, 82, 1, 30, "Input"], +Cell[15544, 462, 493, 14, 46, "Input"], +Cell[16040, 478, 216, 5, 49, "Input"], +Cell[16259, 485, 108, 2, 30, "Input"], +Cell[16370, 489, 601, 19, 46, "Input"], +Cell[16974, 510, 213, 5, 49, "Input"], +Cell[17190, 517, 299, 6, 49, "Input"], +Cell[17492, 525, 108, 2, 30, "Input"], +Cell[17603, 529, 516, 15, 46, "Input"], +Cell[18122, 546, 313, 6, 49, "Input"], +Cell[18438, 554, 103, 2, 30, "Input"], +Cell[18544, 558, 520, 15, 46, "Input"], +Cell[19067, 575, 247, 7, 49, "Input"], +Cell[19317, 584, 118, 3, 30, "Input"], +Cell[19438, 589, 489, 14, 46, "Input"], +Cell[19930, 605, 103, 2, 30, "Input"], +Cell[20036, 609, 450, 13, 46, "Input"], +Cell[20489, 624, 149, 3, 51, "Input"], +Cell[20641, 629, 953, 21, 114, "Input"], +Cell[21597, 652, 289, 5, 50, "Input"], +Cell[21889, 659, 264, 7, 49, "Input"], +Cell[22156, 668, 1535, 42, 71, "Input"], +Cell[23694, 712, 2411, 72, 66, "Input"], +Cell[26108, 786, 2752, 54, 290, "Input"], +Cell[28863, 842, 167, 3, 51, "Input"], +Cell[29033, 847, 1079, 24, 114, "Input"], +Cell[30115, 873, 334, 6, 50, "Input"], +Cell[30452, 881, 233, 5, 49, "Input"], +Cell[30688, 888, 170, 2, 30, "Input"], +Cell[30861, 892, 465, 8, 70, "Input"], +Cell[31329, 902, 544, 10, 70, "Input"], +Cell[31876, 914, 488, 8, 90, "Input"], +Cell[32367, 924, 454, 8, 90, "Input"], +Cell[32824, 934, 439, 8, 73, "Input"], +Cell[33266, 944, 590, 9, 110, "Input"], +Cell[33859, 955, 388, 7, 49, "Input"], +Cell[34250, 964, 543, 10, 70, "Input"], +Cell[34796, 976, 608, 12, 90, "Input"], +Cell[35407, 990, 528, 9, 90, "Input"], +Cell[35938, 1001, 498, 9, 90, "Input"], +Cell[36439, 1012, 211, 4, 30, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/docu0020.jpg b/Bachelor/Numerische Mathematik/docu0020.jpg new file mode 100644 index 0000000..90ed935 Binary files /dev/null and b/Bachelor/Numerische Mathematik/docu0020.jpg differ diff --git a/Bachelor/Numerische Mathematik/docu0022.jpg b/Bachelor/Numerische Mathematik/docu0022.jpg new file mode 100644 index 0000000..8ecbd48 Binary files /dev/null and b/Bachelor/Numerische Mathematik/docu0022.jpg differ diff --git a/Bachelor/Numerische Mathematik/docu0023.jpg b/Bachelor/Numerische Mathematik/docu0023.jpg new file mode 100644 index 0000000..048b1d0 Binary files /dev/null and b/Bachelor/Numerische Mathematik/docu0023.jpg differ diff --git a/Bachelor/Numerische Mathematik/docu0024.jpg b/Bachelor/Numerische Mathematik/docu0024.jpg new file mode 100644 index 0000000..c6b147e Binary files /dev/null and b/Bachelor/Numerische Mathematik/docu0024.jpg differ diff --git a/Bachelor/Numerische Mathematik/docu0025.jpg b/Bachelor/Numerische Mathematik/docu0025.jpg new file mode 100644 index 0000000..bef6131 Binary files /dev/null and b/Bachelor/Numerische Mathematik/docu0025.jpg differ diff --git a/Bachelor/Numerische Mathematik/docu0026.jpg b/Bachelor/Numerische Mathematik/docu0026.jpg new file mode 100644 index 0000000..5d89f64 Binary files /dev/null and b/Bachelor/Numerische Mathematik/docu0026.jpg differ diff --git "a/Bachelor/Numerische Mathematik/faberPr\303\274fung.GIF" "b/Bachelor/Numerische Mathematik/faberPr\303\274fung.GIF" new file mode 100644 index 0000000..647328b Binary files /dev/null and "b/Bachelor/Numerische Mathematik/faberPr\303\274fung.GIF" differ diff --git a/Bachelor/Numerische Mathematik/numerische_mathematik_faber_nmfaw992.pdf b/Bachelor/Numerische Mathematik/numerische_mathematik_faber_nmfaw992.pdf new file mode 100644 index 0000000..295b9c2 Binary files /dev/null and b/Bachelor/Numerische Mathematik/numerische_mathematik_faber_nmfaw992.pdf differ diff --git a/Bachelor/Numerische Mathematik/sei_aufg4.nb b/Bachelor/Numerische Mathematik/sei_aufg4.nb new file mode 100644 index 0000000..fe89bb6 --- /dev/null +++ b/Bachelor/Numerische Mathematik/sei_aufg4.nb @@ -0,0 +1,11474 @@ +(************** Content-type: application/mathematica ************** + CreatedBy='Mathematica 5.1' + + Mathematica-Compatible Notebook + +This notebook can be used with any Mathematica-compatible +application, such as Mathematica, MathReader or Publicon. The data +for the notebook starts with the line containing stars above. + +To get the notebook into a Mathematica-compatible application, do +one of the following: + +* Save the data starting with the line of stars above into a file + with a name ending in .nb, then open the file inside the + application; + +* Copy the data starting with the line of stars above to the + clipboard, then use the Paste menu command inside the application. + +Data for notebooks contains only printable 7-bit ASCII and can be +sent directly in email or through ftp in text mode. Newlines can be +CR, LF or CRLF (Unix, Macintosh or MS-DOS style). + +NOTE: If you modify the data for this notebook not in a Mathematica- +compatible application, you must delete the line below containing +the word CacheID, otherwise Mathematica-compatible applications may +try to use invalid cache data. + +For more information on notebooks and Mathematica-compatible +applications, contact Wolfram Research: + web: http://www.wolfram.com + email: info@wolfram.com + phone: +1-217-398-0700 (U.S.) + +Notebook reader applications are available free of charge from +Wolfram Research. +*******************************************************************) + +(*CacheID: 232*) + + +(*NotebookFileLineBreakTest +NotebookFileLineBreakTest*) +(*NotebookOptionsPosition[ 383905, 11415]*) +(*NotebookOutlinePosition[ 384548, 11437]*) +(* CellTagsIndexPosition[ 384504, 11433]*) +(*WindowFrame->Normal*) + + + +Notebook[{ + +Cell[CellGroupData[{ +Cell[BoxData[ + InterpretationBox[\("\< Lauf Nummer \>"\[InvisibleSpace]4\ +\[InvisibleSpace]"\< mit \>"\[InvisibleSpace]12\[InvisibleSpace]"\< St\ +\[UDoubleDot]tzpunkten \>"\), + SequenceForm[ + " Lauf Nummer ", 4, " mit ", 12, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Input"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.1 0.1 [ +[.1 .0875 -6 -9 ] +[.1 .0875 6 0 ] +[.3 .0875 -6 -9 ] +[.3 .0875 6 0 ] +[.7 .0875 -3 -9 ] +[.7 .0875 3 0 ] +[.9 .0875 -3 -9 ] +[.9 .0875 3 0 ] +[1.025 .1 0 -6.28125 ] +[1.025 .1 22 6.28125 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .2 -6 -4.5 ] +[.4875 .2 0 4.5 ] +[.4875 .3 -6 -4.5 ] +[.4875 .3 0 4.5 ] +[.4875 .4 -6 -4.5 ] +[.4875 .4 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.5625 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .1 m +.1 .10625 L +s +[(-4)] .1 .0875 0 1 Mshowa +.3 .1 m +.3 .10625 L +s +[(-2)] .3 .0875 0 1 Mshowa +.7 .1 m +.7 .10625 L +s +[(2)] .7 .0875 0 1 Mshowa +.9 .1 m +.9 .10625 L +s +[(4)] .9 .0875 0 1 Mshowa +.125 Mabswid +.15 .1 m +.15 .10375 L +s +.2 .1 m +.2 .10375 L +s +.25 .1 m +.25 .10375 L +s +.35 .1 m +.35 .10375 L +s +.4 .1 m +.4 .10375 L +s +.45 .1 m +.45 .10375 L +s +.55 .1 m +.55 .10375 L +s +.6 .1 m +.6 .10375 L +s +.65 .1 m +.65 .10375 L +s +.75 .1 m +.75 .10375 L +s +.8 .1 m +.8 .10375 L +s +.85 .1 m +.85 .10375 L +s +.05 .1 m +.05 .10375 L +s +.95 .1 m +.95 .10375 L +s +.25 Mabswid +0 .1 m +1 .1 L +s +gsave +1.025 .1 -61 -10.2813 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.5625 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 12.813 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-1)] .4875 0 1 0 Mshowa +.5 .2 m +.50625 .2 L +s +[(1)] .4875 .2 1 0 Mshowa +.5 .3 m +.50625 .3 L +s +[(2)] .4875 .3 1 0 Mshowa +.5 .4 m +.50625 .4 L +s +[(3)] .4875 .4 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .02 m +.50375 .02 L +s +.5 .04 m +.50375 .04 L +s +.5 .06 m +.50375 .06 L +s +.5 .08 m +.50375 .08 L +s +.5 .12 m +.50375 .12 L +s +.5 .14 m +.50375 .14 L +s +.5 .16 m +.50375 .16 L +s +.5 .18 m +.50375 .18 L +s +.5 .22 m +.50375 .22 L +s +.5 .24 m +.50375 .24 L +s +.5 .26 m +.50375 .26 L +s +.5 .28 m +.50375 .28 L +s +.5 .32 m +.50375 .32 L +s +.5 .34 m +.50375 .34 L +s +.5 .36 m +.50375 .36 L +s +.5 .38 m +.50375 .38 L +s +.5 .42 m +.50375 .42 L +s +.5 .44 m +.50375 .44 L +s +.5 .46 m +.50375 .46 L +s +.5 .48 m +.50375 .48 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.5625 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 12.813 moveto +(^) show +87.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .1 m +.102 .12071 L +.104 .14061 L +.106 .15891 L +.108 .17525 L +.11 .18973 L +.112 .20245 L +.114 .21352 L +.116 .22304 L +.118 .23111 L +.12 .23784 L +.122 .24335 L +.124 .24772 L +.126 .25107 L +.128 .25351 L +.13 .25514 L +.132 .25606 L +.134 .25638 L +.136 .2562 L +.138 .25564 L +.14 .25479 L +.142 .25377 L +.144 .25267 L +.146 .25161 L +.148 .25068 L +.15 .25 L +.152 .24965 L +.154 .24963 L +.156 .24992 L +.158 .25051 L +.16 .25138 L +.162 .25251 L +.164 .25388 L +.166 .25548 L +.168 .25728 L +.17 .25928 L +.172 .26145 L +.174 .26377 L +.176 .26623 L +.178 .26881 L +.18 .27149 L +.182 .27426 L +.184 .27709 L +.186 .27997 L +.188 .28288 L +.19 .2858 L +.192 .28872 L +.194 .29162 L +.196 .29448 L +.198 .29728 L +Mistroke +.2 .3 L +.202 .30263 L +.204 .30518 L +.206 .30763 L +.208 .31 L +.21 .31228 L +.212 .31448 L +.214 .3166 L +.216 .31864 L +.218 .32061 L +.22 .3225 L +.222 .32431 L +.224 .32606 L +.226 .32773 L +.228 .32934 L +.23 .33089 L +.232 .33237 L +.234 .33379 L +.236 .33516 L +.238 .33646 L +.24 .33772 L +.242 .33892 L +.244 .34007 L +.246 .34117 L +.248 .34222 L +.25 .34323 L +.252 .3442 L +.254 .34513 L +.256 .34602 L +.258 .34687 L +.26 .34769 L +.262 .34848 L +.264 .34923 L +.266 .34996 L +.268 .35066 L +.27 .35134 L +.272 .352 L +.274 .35263 L +.276 .35325 L +.278 .35385 L +.28 .35444 L +.282 .35502 L +.284 .35558 L +.286 .35614 L +.288 .3567 L +.29 .35724 L +.292 .35779 L +.294 .35834 L +.296 .35889 L +.298 .35944 L +Mistroke +.3 .36 L +.302 .36057 L +.304 .36114 L +.306 .36173 L +.308 .36232 L +.31 .36291 L +.312 .36352 L +.314 .36413 L +.316 .36474 L +.318 .36536 L +.32 .36598 L +.322 .36661 L +.324 .36724 L +.326 .36788 L +.328 .36852 L +.33 .36916 L +.332 .3698 L +.334 .37045 L +.336 .37109 L +.338 .37174 L +.34 .37239 L +.342 .37304 L +.344 .37368 L +.346 .37433 L +.348 .37498 L +.35 .37562 L +.352 .37626 L +.354 .3769 L +.356 .37754 L +.358 .37817 L +.36 .3788 L +.362 .37943 L +.364 .38005 L +.366 .38066 L +.368 .38128 L +.37 .38188 L +.372 .38248 L +.374 .38307 L +.376 .38366 L +.378 .38424 L +.38 .38481 L +.382 .38537 L +.384 .38593 L +.386 .38647 L +.388 .38701 L +.39 .38753 L +.392 .38805 L +.394 .38855 L +.396 .38905 L +.398 .38953 L +Mistroke +.4 .39 L +.402 .39046 L +.404 .3909 L +.406 .39134 L +.408 .39176 L +.41 .39217 L +.412 .39257 L +.414 .39296 L +.416 .39333 L +.418 .3937 L +.42 .39405 L +.422 .39439 L +.424 .39472 L +.426 .39504 L +.428 .39535 L +.43 .39564 L +.432 .39593 L +.434 .3962 L +.436 .39647 L +.438 .39672 L +.44 .39697 L +.442 .3972 L +.444 .39743 L +.446 .39764 L +.448 .39784 L +.45 .39804 L +.452 .39822 L +.454 .3984 L +.456 .39856 L +.458 .39872 L +.46 .39887 L +.462 .399 L +.464 .39913 L +.466 .39925 L +.468 .39936 L +.47 .39946 L +.472 .39956 L +.474 .39964 L +.476 .39972 L +.478 .39978 L +.48 .39984 L +.482 .39989 L +.484 .39994 L +.486 .39997 L +.488 .4 L +.49 .40002 L +.492 .40003 L +.494 .40003 L +.496 .40003 L +.498 .40002 L +Mistroke +.5 .4 L +.502 .39997 L +.504 .39994 L +.506 .3999 L +.508 .39986 L +.51 .3998 L +.512 .39974 L +.514 .39967 L +.516 .3996 L +.518 .39951 L +.52 .39943 L +.522 .39933 L +.524 .39922 L +.526 .39911 L +.528 .39899 L +.53 .39887 L +.532 .39874 L +.534 .3986 L +.536 .39845 L +.538 .3983 L +.54 .39814 L +.542 .39797 L +.544 .39779 L +.546 .39761 L +.548 .39742 L +.55 .39722 L +.552 .39702 L +.554 .39681 L +.556 .39659 L +.558 .39637 L +.56 .39613 L +.562 .39589 L +.564 .39565 L +.566 .3954 L +.568 .39513 L +.57 .39487 L +.572 .39459 L +.574 .39431 L +.576 .39402 L +.578 .39372 L +.58 .39342 L +.582 .39311 L +.584 .39279 L +.586 .39247 L +.588 .39214 L +.59 .3918 L +.592 .39145 L +.594 .3911 L +.596 .39074 L +.598 .39037 L +Mistroke +.6 .39 L +.602 .38962 L +.604 .38923 L +.606 .38883 L +.608 .38843 L +.61 .38802 L +.612 .3876 L +.614 .38718 L +.616 .38674 L +.618 .3863 L +.62 .38585 L +.622 .38539 L +.624 .38493 L +.626 .38445 L +.628 .38397 L +.63 .38348 L +.632 .38298 L +.634 .38247 L +.636 .38195 L +.638 .38142 L +.64 .38089 L +.642 .38034 L +.644 .37979 L +.646 .37922 L +.648 .37865 L +.65 .37806 L +.652 .37747 L +.654 .37687 L +.656 .37625 L +.658 .37563 L +.66 .375 L +.662 .37435 L +.664 .3737 L +.666 .37303 L +.668 .37236 L +.67 .37167 L +.672 .37097 L +.674 .37026 L +.676 .36954 L +.678 .36881 L +.68 .36807 L +.682 .36732 L +.684 .36655 L +.686 .36577 L +.688 .36499 L +.69 .36419 L +.692 .36337 L +.694 .36255 L +.696 .36171 L +.698 .36086 L +Mistroke +.7 .36 L +.702 .35913 L +.704 .35824 L +.706 .35734 L +.708 .35643 L +.71 .3555 L +.712 .35456 L +.714 .35361 L +.716 .35265 L +.718 .35167 L +.72 .35069 L +.722 .34968 L +.724 .34867 L +.726 .34764 L +.728 .3466 L +.73 .34554 L +.732 .34448 L +.734 .3434 L +.736 .3423 L +.738 .34119 L +.74 .34007 L +.742 .33894 L +.744 .33779 L +.746 .33663 L +.748 .33545 L +.75 .33427 L +.752 .33306 L +.754 .33185 L +.756 .33062 L +.758 .32937 L +.76 .32812 L +.762 .32685 L +.764 .32556 L +.766 .32426 L +.768 .32295 L +.77 .32162 L +.772 .32028 L +.774 .31893 L +.776 .31756 L +.778 .31617 L +.78 .31477 L +.782 .31336 L +.784 .31194 L +.786 .31049 L +.788 .30904 L +.79 .30757 L +.792 .30608 L +.794 .30459 L +.796 .30307 L +.798 .30154 L +Mistroke +.8 .3 L +.802 .29844 L +.804 .29687 L +.806 .29527 L +.808 .29365 L +.81 .29201 L +.812 .29034 L +.814 .28864 L +.816 .28691 L +.818 .28514 L +.82 .28333 L +.822 .28149 L +.824 .2796 L +.826 .27766 L +.828 .27568 L +.83 .27365 L +.832 .27157 L +.834 .26943 L +.836 .26723 L +.838 .26497 L +.84 .26265 L +.842 .26026 L +.844 .2578 L +.846 .25528 L +.848 .25268 L +.85 .25 L +.852 .24724 L +.854 .24437 L +.856 .24137 L +.858 .23819 L +.86 .23481 L +.862 .2312 L +.864 .22733 L +.866 .22317 L +.868 .21868 L +.87 .21384 L +.872 .20862 L +.874 .20298 L +.876 .1969 L +.878 .19038 L +.88 .18345 L +.882 .17616 L +.884 .16853 L +.886 .16061 L +.888 .15243 L +.89 .14403 L +.892 .13544 L +.894 .12671 L +.896 .11787 L +.898 .10895 L +Mistroke +.9 .1 L +Mfstroke +1 0 0 r +.1 .1 m +.102 .12207 L +.104 .14133 L +.106 .15808 L +.108 .17257 L +.11 .18506 L +.112 .19576 L +.114 .20488 L +.116 .21261 L +.118 .21913 L +.12 .22458 L +.122 .22911 L +.124 .23286 L +.126 .23594 L +.128 .23846 L +.13 .2405 L +.132 .24216 L +.134 .24352 L +.136 .24464 L +.138 .24558 L +.14 .24639 L +.142 .24713 L +.144 .24783 L +.146 .24852 L +.148 .24923 L +.15 .25 L +.152 .25083 L +.154 .25175 L +.156 .25277 L +.158 .2539 L +.16 .25514 L +.162 .25651 L +.164 .25799 L +.166 .25959 L +.168 .26132 L +.17 .26316 L +.172 .26512 L +.174 .26718 L +.176 .26934 L +.178 .27159 L +.18 .27393 L +.182 .27634 L +.184 .27882 L +.186 .28136 L +.188 .28395 L +.19 .28658 L +.192 .28924 L +.194 .29192 L +.196 .29461 L +.198 .29731 L +Mistroke +.2 .3 L +.202 .30268 L +.204 .30533 L +.206 .30796 L +.208 .31056 L +.21 .31311 L +.212 .31561 L +.214 .31806 L +.216 .32045 L +.218 .32278 L +.22 .32504 L +.222 .32723 L +.224 .32935 L +.226 .33139 L +.228 .33335 L +.23 .33523 L +.232 .33703 L +.234 .33874 L +.236 .34038 L +.238 .34192 L +.24 .34339 L +.242 .34477 L +.244 .34608 L +.246 .3473 L +.248 .34844 L +.25 .34951 L +.252 .3505 L +.254 .35142 L +.256 .35227 L +.258 .35306 L +.26 .35378 L +.262 .35444 L +.264 .35504 L +.266 .35559 L +.268 .35609 L +.27 .35654 L +.272 .35695 L +.274 .35731 L +.276 .35764 L +.278 .35794 L +.28 .35821 L +.282 .35845 L +.284 .35867 L +.286 .35887 L +.288 .35905 L +.29 .35922 L +.292 .35938 L +.294 .35954 L +.296 .35969 L +.298 .35985 L +Mistroke +.3 .36 L +.302 .36016 L +.304 .36033 L +.306 .3605 L +.308 .36069 L +.31 .3609 L +.312 .36112 L +.314 .36135 L +.316 .36161 L +.318 .36188 L +.32 .36218 L +.322 .3625 L +.324 .36285 L +.326 .36322 L +.328 .36361 L +.33 .36403 L +.332 .36447 L +.334 .36495 L +.336 .36544 L +.338 .36597 L +.34 .36652 L +.342 .36709 L +.344 .36769 L +.346 .36832 L +.348 .36896 L +.35 .36963 L +.352 .37033 L +.354 .37104 L +.356 .37177 L +.358 .37253 L +.36 .37329 L +.362 .37408 L +.364 .37488 L +.366 .37569 L +.368 .37652 L +.37 .37735 L +.372 .37819 L +.374 .37904 L +.376 .3799 L +.378 .38076 L +.38 .38162 L +.382 .38248 L +.384 .38334 L +.386 .3842 L +.388 .38506 L +.39 .3859 L +.392 .38674 L +.394 .38758 L +.396 .3884 L +.398 .3892 L +Mistroke +.4 .39 L +.402 .39078 L +.404 .39154 L +.406 .39229 L +.408 .39302 L +.41 .39373 L +.412 .39442 L +.414 .39508 L +.416 .39572 L +.418 .39634 L +.42 .39694 L +.422 .39751 L +.424 .39805 L +.426 .39856 L +.428 .39905 L +.43 .39952 L +.432 .39995 L +.434 .40036 L +.436 .40073 L +.438 .40108 L +.44 .4014 L +.442 .4017 L +.444 .40196 L +.446 .40219 L +.448 .4024 L +.45 .40258 L +.452 .40273 L +.454 .40286 L +.456 .40296 L +.458 .40303 L +.46 .40308 L +.462 .4031 L +.464 .4031 L +.466 .40308 L +.468 .40303 L +.47 .40296 L +.472 .40287 L +.474 .40276 L +.476 .40264 L +.478 .40249 L +.48 .40233 L +.482 .40215 L +.484 .40196 L +.486 .40175 L +.488 .40153 L +.49 .4013 L +.492 .40106 L +.494 .4008 L +.496 .40054 L +.498 .40027 L +Mistroke +.5 .4 L +.502 .39972 L +.504 .39944 L +.506 .39915 L +.508 .39886 L +.51 .39856 L +.512 .39827 L +.514 .39798 L +.516 .39768 L +.518 .39739 L +.52 .3971 L +.522 .39682 L +.524 .39654 L +.526 .39626 L +.528 .39599 L +.53 .39572 L +.532 .39546 L +.534 .39521 L +.536 .39496 L +.538 .39472 L +.54 .39448 L +.542 .39426 L +.544 .39404 L +.546 .39383 L +.548 .39363 L +.55 .39343 L +.552 .39324 L +.554 .39306 L +.556 .39289 L +.558 .39273 L +.56 .39257 L +.562 .39242 L +.564 .39227 L +.566 .39213 L +.568 .39199 L +.57 .39186 L +.572 .39174 L +.574 .39161 L +.576 .39149 L +.578 .39138 L +.58 .39126 L +.582 .39114 L +.584 .39103 L +.586 .39091 L +.588 .39079 L +.59 .39067 L +.592 .39055 L +.594 .39042 L +.596 .39029 L +.598 .39015 L +Mistroke +.6 .39 L +.602 .38985 L +.604 .38968 L +.606 .38951 L +.608 .38932 L +.61 .38913 L +.612 .38892 L +.614 .3887 L +.616 .38847 L +.618 .38822 L +.62 .38795 L +.622 .38767 L +.624 .38737 L +.626 .38705 L +.628 .38671 L +.63 .38636 L +.632 .38598 L +.634 .38558 L +.636 .38517 L +.638 .38473 L +.64 .38427 L +.642 .38378 L +.644 .38328 L +.646 .38275 L +.648 .38219 L +.65 .38162 L +.652 .38102 L +.654 .38039 L +.656 .37975 L +.658 .37907 L +.66 .37838 L +.662 .37766 L +.664 .37692 L +.666 .37615 L +.668 .37536 L +.67 .37455 L +.672 .37372 L +.674 .37286 L +.676 .37198 L +.678 .37108 L +.68 .37017 L +.682 .36923 L +.684 .36827 L +.686 .36729 L +.688 .3663 L +.69 .36529 L +.692 .36426 L +.694 .36322 L +.696 .36216 L +.698 .36109 L +Mistroke +.7 .36 L +.702 .3589 L +.704 .35779 L +.706 .35667 L +.708 .35554 L +.71 .3544 L +.712 .35326 L +.714 .3521 L +.716 .35094 L +.718 .34977 L +.72 .3486 L +.722 .34742 L +.724 .34624 L +.726 .34506 L +.728 .34388 L +.73 .34269 L +.732 .3415 L +.734 .34031 L +.736 .33912 L +.738 .33793 L +.74 .33674 L +.742 .33556 L +.744 .33437 L +.746 .33318 L +.748 .332 L +.75 .33082 L +.752 .32963 L +.754 .32845 L +.756 .32727 L +.758 .32609 L +.76 .32491 L +.762 .32373 L +.764 .32255 L +.766 .32136 L +.768 .32018 L +.77 .31899 L +.772 .3178 L +.774 .3166 L +.776 .31539 L +.778 .31418 L +.78 .31296 L +.782 .31173 L +.784 .31049 L +.786 .30924 L +.788 .30798 L +.79 .3067 L +.792 .3054 L +.794 .30408 L +.796 .30274 L +.798 .30138 L +Mistroke +.8 .3 L +.802 .29859 L +.804 .29715 L +.806 .29568 L +.808 .29418 L +.81 .29264 L +.812 .29107 L +.814 .28946 L +.816 .2878 L +.818 .2861 L +.82 .28435 L +.822 .28255 L +.824 .2807 L +.826 .27879 L +.828 .27682 L +.83 .27478 L +.832 .27268 L +.834 .27051 L +.836 .26826 L +.838 .26593 L +.84 .26352 L +.842 .26102 L +.844 .25842 L +.846 .25572 L +.848 .25292 L +.85 .25 L +.852 .24696 L +.854 .24379 L +.856 .24049 L +.858 .23703 L +.86 .23342 L +.862 .22964 L +.864 .22568 L +.866 .22153 L +.868 .21716 L +.87 .21257 L +.872 .20774 L +.874 .20265 L +.876 .19728 L +.878 .1916 L +.88 .18559 L +.882 .17922 L +.884 .17247 L +.886 .1653 L +.888 .15768 L +.89 .14956 L +.892 .14091 L +.894 .13168 L +.896 .12182 L +.898 .11128 L +Mistroke +.9 .1 L +Mfstroke +.5 .165 .165 r +.1 .1 m +.102 .12996 L +.104 .14232 L +.106 .15177 L +.108 .1597 L +.11 .16666 L +.112 .17293 L +.114 .17867 L +.116 .184 L +.118 .18898 L +.12 .19367 L +.122 .19812 L +.124 .20235 L +.126 .20639 L +.128 .21027 L +.13 .21399 L +.132 .21758 L +.134 .22104 L +.136 .22438 L +.138 .22762 L +.14 .23077 L +.142 .23382 L +.144 .23679 L +.146 .23968 L +.148 .24249 L +.15 .24524 L +.152 .24792 L +.154 .25053 L +.156 .25309 L +.158 .25559 L +.16 .25803 L +.162 .26043 L +.164 .26278 L +.166 .26507 L +.168 .26733 L +.17 .26954 L +.172 .27171 L +.174 .27384 L +.176 .27593 L +.178 .27798 L +.18 .28 L +.182 .28198 L +.184 .28393 L +.186 .28585 L +.188 .28773 L +.19 .28959 L +.192 .29141 L +.194 .29321 L +.196 .29498 L +.198 .29672 L +Mistroke +.2 .29843 L +.202 .30012 L +.204 .30178 L +.206 .30342 L +.208 .30503 L +.21 .30662 L +.212 .30819 L +.214 .30974 L +.216 .31126 L +.218 .31276 L +.22 .31424 L +.222 .3157 L +.224 .31714 L +.226 .31856 L +.228 .31996 L +.23 .32135 L +.232 .32271 L +.234 .32405 L +.236 .32538 L +.238 .32669 L +.24 .32798 L +.242 .32925 L +.244 .33051 L +.246 .33175 L +.248 .33298 L +.25 .33419 L +.252 .33538 L +.254 .33656 L +.256 .33772 L +.258 .33887 L +.26 .34 L +.262 .34112 L +.264 .34222 L +.266 .34331 L +.268 .34438 L +.27 .34545 L +.272 .34649 L +.274 .34753 L +.276 .34855 L +.278 .34956 L +.28 .35055 L +.282 .35153 L +.284 .3525 L +.286 .35346 L +.288 .3544 L +.29 .35533 L +.292 .35625 L +.294 .35716 L +.296 .35805 L +.298 .35894 L +Mistroke +.3 .35981 L +.302 .36067 L +.304 .36152 L +.306 .36235 L +.308 .36318 L +.31 .364 L +.312 .3648 L +.314 .36559 L +.316 .36638 L +.318 .36715 L +.32 .36791 L +.322 .36866 L +.324 .3694 L +.326 .37013 L +.328 .37085 L +.33 .37156 L +.332 .37226 L +.334 .37295 L +.336 .37363 L +.338 .3743 L +.34 .37495 L +.342 .3756 L +.344 .37624 L +.346 .37687 L +.348 .3775 L +.35 .37811 L +.352 .37871 L +.354 .3793 L +.356 .37989 L +.358 .38046 L +.36 .38102 L +.362 .38158 L +.364 .38213 L +.366 .38267 L +.368 .38319 L +.37 .38371 L +.372 .38423 L +.374 .38473 L +.376 .38522 L +.378 .38571 L +.38 .38618 L +.382 .38665 L +.384 .38711 L +.386 .38756 L +.388 .388 L +.39 .38843 L +.392 .38886 L +.394 .38927 L +.396 .38968 L +.398 .39008 L +Mistroke +.4 .39047 L +.402 .39086 L +.404 .39123 L +.406 .3916 L +.408 .39196 L +.41 .39231 L +.412 .39265 L +.414 .39298 L +.416 .39331 L +.418 .39363 L +.42 .39394 L +.422 .39424 L +.424 .39454 L +.426 .39482 L +.428 .3951 L +.43 .39537 L +.432 .39563 L +.434 .39589 L +.436 .39614 L +.438 .39637 L +.44 .39661 L +.442 .39683 L +.444 .39705 L +.446 .39725 L +.448 .39745 L +.45 .39765 L +.452 .39783 L +.454 .39801 L +.456 .39818 L +.458 .39834 L +.46 .3985 L +.462 .39864 L +.464 .39878 L +.466 .39891 L +.468 .39904 L +.47 .39916 L +.472 .39926 L +.474 .39937 L +.476 .39946 L +.478 .39955 L +.48 .39962 L +.482 .3997 L +.484 .39976 L +.486 .39982 L +.488 .39986 L +.49 .39991 L +.492 .39994 L +.494 .39997 L +.496 .39998 L +.498 .4 L +Mistroke +.5 .4 L +.502 .4 L +.504 .39998 L +.506 .39997 L +.508 .39994 L +.51 .39991 L +.512 .39986 L +.514 .39982 L +.516 .39976 L +.518 .3997 L +.52 .39962 L +.522 .39955 L +.524 .39946 L +.526 .39937 L +.528 .39926 L +.53 .39916 L +.532 .39904 L +.534 .39891 L +.536 .39878 L +.538 .39864 L +.54 .3985 L +.542 .39834 L +.544 .39818 L +.546 .39801 L +.548 .39783 L +.55 .39765 L +.552 .39745 L +.554 .39725 L +.556 .39705 L +.558 .39683 L +.56 .39661 L +.562 .39637 L +.564 .39614 L +.566 .39589 L +.568 .39563 L +.57 .39537 L +.572 .3951 L +.574 .39482 L +.576 .39454 L +.578 .39424 L +.58 .39394 L +.582 .39363 L +.584 .39331 L +.586 .39298 L +.588 .39265 L +.59 .39231 L +.592 .39196 L +.594 .3916 L +.596 .39123 L +.598 .39086 L +Mistroke +.6 .39047 L +.602 .39008 L +.604 .38968 L +.606 .38927 L +.608 .38886 L +.61 .38843 L +.612 .388 L +.614 .38756 L +.616 .38711 L +.618 .38665 L +.62 .38618 L +.622 .38571 L +.624 .38522 L +.626 .38473 L +.628 .38423 L +.63 .38371 L +.632 .38319 L +.634 .38267 L +.636 .38213 L +.638 .38158 L +.64 .38102 L +.642 .38046 L +.644 .37989 L +.646 .3793 L +.648 .37871 L +.65 .37811 L +.652 .3775 L +.654 .37687 L +.656 .37624 L +.658 .3756 L +.66 .37495 L +.662 .3743 L +.664 .37363 L +.666 .37295 L +.668 .37226 L +.67 .37156 L +.672 .37085 L +.674 .37013 L +.676 .3694 L +.678 .36866 L +.68 .36791 L +.682 .36715 L +.684 .36638 L +.686 .36559 L +.688 .3648 L +.69 .364 L +.692 .36318 L +.694 .36235 L +.696 .36152 L +.698 .36067 L +Mistroke +.7 .35981 L +.702 .35894 L +.704 .35805 L +.706 .35716 L +.708 .35625 L +.71 .35533 L +.712 .3544 L +.714 .35346 L +.716 .3525 L +.718 .35153 L +.72 .35055 L +.722 .34956 L +.724 .34855 L +.726 .34753 L +.728 .34649 L +.73 .34545 L +.732 .34438 L +.734 .34331 L +.736 .34222 L +.738 .34112 L +.74 .34 L +.742 .33887 L +.744 .33772 L +.746 .33656 L +.748 .33538 L +.75 .33419 L +.752 .33298 L +.754 .33175 L +.756 .33051 L +.758 .32925 L +.76 .32798 L +.762 .32669 L +.764 .32538 L +.766 .32405 L +.768 .32271 L +.77 .32135 L +.772 .31996 L +.774 .31856 L +.776 .31714 L +.778 .3157 L +.78 .31424 L +.782 .31276 L +.784 .31126 L +.786 .30974 L +.788 .30819 L +.79 .30662 L +.792 .30503 L +.794 .30342 L +.796 .30178 L +.798 .30012 L +Mistroke +.8 .29843 L +.802 .29672 L +.804 .29498 L +.806 .29321 L +.808 .29141 L +.81 .28959 L +.812 .28773 L +.814 .28585 L +.816 .28393 L +.818 .28198 L +.82 .28 L +.822 .27798 L +.824 .27593 L +.826 .27384 L +.828 .27171 L +.83 .26954 L +.832 .26733 L +.834 .26507 L +.836 .26278 L +.838 .26043 L +.84 .25803 L +.842 .25559 L +.844 .25309 L +.846 .25053 L +.848 .24792 L +.85 .24524 L +.852 .24249 L +.854 .23968 L +.856 .23679 L +.858 .23382 L +.86 .23077 L +.862 .22762 L +.864 .22438 L +.866 .22104 L +.868 .21758 L +.87 .21399 L +.872 .21027 L +.874 .20639 L +.876 .20235 L +.878 .19812 L +.88 .19367 L +.882 .18898 L +.884 .184 L +.886 .17867 L +.888 .17293 L +.89 .16666 L +.892 .1597 L +.894 .15177 L +.896 .14232 L +.898 .12996 L +Mistroke +.9 .1 L +Mfstroke +0 0 1 r +.1 .1 m +.105 .15 L +.15 .25 L +.2 .3 L +.3 .36 L +.4 .39 L +.5 .4 L +.6 .39 L +.7 .36 L +.8 .3 L +.85 .25 L +.875 .2 L +.9 .1 L +s +5 Mabswid +.1 .1 Mdot +.105 .15 Mdot +.15 .25 Mdot +.2 .3 Mdot +.3 .36 Mdot +.4 .39 Mdot +.5 .4 Mdot +.6 .39 Mdot +.7 .36 Mdot +.8 .3 Mdot +.85 .25 Mdot +.875 .2 Mdot +.9 .1 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{756, 378}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`030000o`3o0000ObXZ07`0oooo001D0?ooo`030000o`00o`00oooo +0?l0oooo3`3oool00`000000oooo0?ooo`3o0?ooo`h0oooo00<0003o0?ooo`1o:RX0O03oool005@0 +oooo00<0003o0?l0003oool0o`3oool?0?ooo`030000003oool0oooo0?l0oooo3P3oool00`000?l0 +oooo07lZ:P1l0?ooo`00E03oool00`1o:RX0003o0?ooo`3o0?ooo`l0oooo1000003o0?ooo`d0oooo +00<0003o0?ooo`1o:RX0O03oool005@0oooo00<0ObXZ0000o`3oool0o`3oool?0?ooo`030000003o +ool0oooo0?l0oooo3@3oool010000?l0o`000?ooo`1o:RYl0?ooo`00E03oool00`1o:RX0003o0?oo +o`3o0?ooo`l0oooo00<000000?ooo`3oool0o`3oool=0?ooo`030000o`3o0000ObXZ07d0oooo001E +0?ooo`030000o`3oool0oooo0?l0oooo3P3oool00`000000oooo0?ooo`3o0?ooo`d0oooo00<0003o +0?l0001o:RX0O@3oool005D0oooo00<0003o0?ooo`3oool0o`3oool>0?ooo`030000003oool0oooo +0?l0oooo3@3oool00`000?l0o`0007lZ:P1m0?ooo`00E@3oool00`000?l0oooo0?ooo`3o0?ooo`h0 +oooo00<000000?ooo`3oool0o`3oool<0?ooo`040000o`3o0000oooo07lZ:Wd0oooo001E0?ooo`03 +0000o`3oool0oooo0?l0oooo3P3oool00`000000oooo0?ooo`3o0?ooo``0oooo00@0003o0?l0003o +ool0ObXZO@3oool005D0oooo00<0003o0?ooo`3oool0o`3oool>0?ooo`030000003oool0oooo0?l0 +oooo303oool010000?l0o`000?ooo`1o:RYm0?ooo`00E@3oool00`000?l00?l00?ooo`3o0?ooo`h0 +oooo00<000000?ooo`3oool0o`3oool<0?ooo`040000o`3o0000oooo07lZ:Wd0oooo001E0?ooo`03 +07lZ:P000?l0oooo0?l0oooo3P3oool00`000000oooo0?ooo`3o0?ooo`/0oooo00D0003o003o003o +0000oooo07lZ:P1m0?ooo`00E@3oool00`1o:RX0003o0?ooo`3o0?ooo`h0oooo00<000000?ooo`3o +ool0o`3oool;0?ooo`050000o`3o0000oooo0?ooo`1o:RX0O@3oool005D0oooo00<0ObXZ0000o`3o +ool0o`3oool>0?ooo`030000003oool0oooo0?l0oooo2`3oool01@000?l0o`000?ooo`3oool0ObXZ +07d0oooo001F0?ooo`030000o`3oool0oooo0?l0oooo3@3oool00`000000oooo0?ooo`3o0?ooo`/0 +oooo00@0003o0?l0003oool0ObXZOP3oool005H0oooo00<0003o0?ooo`3oool0o`3oool=0?ooo`03 +0000003oool0oooo0?l0oooo2P3oool01@000?l00?l00?l0003oool0ObXZ07h0oooo001F0?ooo`03 +0000o`3oool0oooo0?l0oooo3@3oool400000?l0oooo2@3oool01@000?l0o`000?ooo`3oool0ObXZ +07h0oooo001F0?ooo`030000o`3oool0oooo0?l0oooo3@3oool00`000000oooo0?ooo`3o0?ooo`X0 +oooo00D0003o0?l0003oool0oooo07lZ:P1n0?ooo`00EP3oool00`000?l0oooo0?ooo`3o0?ooo`d0 +oooo00<000000?ooo`3oool0o`3oool:0?ooo`050000o`3o0000oooo0?ooo`1o:RX0OP3oool005H0 +oooo00<0ObXZ0000o`3oool0o`3oool=0?ooo`030000003oool0oooo0?l0oooo2@3oool00`000?l0 +0?l00?l000020?ooo`0307lZ:P3oool0oooo07`0oooo001F0?ooo`0307lZ:P000?l0oooo0?l0oooo +3@3oool00`000000oooo0?ooo`3o0?ooo`T0oooo00<0003o0?l0003oool00P3oool00`1o:RX0oooo +0?ooo`1l0?ooo`00EP3oool30000ool0oooo3@3oool00`000000oooo0?ooo`3o0?ooo`T0oooo00D0 +003o0?l0003oool0oooo07lZ:P1o0?ooo`00E@3oool50000ool0oooo303oool00`000000oooo0?oo +o`3o0?ooo`T0oooo00D0003o0?l0003oool0oooo07lZ:P1o0?ooo`00E@3oool50000ool0oooo303o +ool00`000000oooo0?ooo`3o0?ooo`P0oooo00<0003o003o003o00000P3oool00`1o:RX0oooo0?oo +o`1m0?ooo`00E@3oool50000ool0oooo303oool00`000000oooo0?ooo`3o0?ooo`P0oooo00<0003o +0?ooo`3o00000P3oool00`1o:RX0oooo0?ooo`1m0?ooo`00EP3oool30000ool0oooo3@3oool00`00 +0000oooo0?ooo`3o0?ooo`P0oooo00<0003o0?l0003oool00P3oool00`1o:RX0oooo0?ooo`1m0?oo +o`00E`3oool00`3o0000003o0?ooo`3o0?ooo``0oooo00<000000?ooo`3oool0o`3oool80?ooo`05 +0000o`3o0000oooo0?ooo`1o:RX0P03oool005L0oooo00<0o`0007lZ:P000?l0o`3oool<0?ooo`03 +0000003oool0oooo0?l0oooo1`3oool00`000?l0o`000?ooo`020?ooo`0307lZ:P3oool0oooo07h0 +oooo001G0?ooo`030?l0003oool0003o0?l0oooo303oool00`000000oooo0?ooo`3o0?ooo`L0oooo +00D0003o0?l0003oool0oooo07lZ:P210?ooo`00E`3oool0103o0000oooo07lZ:P000?oo0?ooo`/0 +oooo00<000000?ooo`3oool0o`3oool70?ooo`050000o`3o0000oooo0?ooo`1o:RX0P@3oool005L0 +oooo00@0o`000?ooo`1o:RX0003oo`3oool;0?ooo`@00000o`3oool60?ooo`050000o`3o0000oooo +0?ooo`1o:RX0P@3oool005L0oooo00D00?l00?l0001o:RX0oooo0000o`3o0?ooo`X0oooo00<00000 +0?ooo`3oool0o`3oool60?ooo`030000o`3o0000oooo0080oooo00<0ObXZ0?ooo`3oool0O`3oool0 +05P0oooo00@0o`000?ooo`1o:RX0003oo`3oool:0?ooo`030000003oool0oooo0?l0oooo1P3oool0 +1@000?l0o`000?ooo`3oool0ObXZ0880oooo001H0?ooo`040?l0003oool0ObXZ0000ool0oooo2P3o +ool00`000000oooo0?ooo`3o0?ooo`H0oooo00D0003o0?l0003oool0oooo07lZ:P220?ooo`00F03o +ool01@3o0000oooo07lZ:P3oool0003o0?l0oooo2@3oool00`000000oooo0?ooo`3o0?ooo`H0oooo +00D0003o0?l0003oool0oooo07lZ:P220?ooo`00F03oool01@3o0000oooo07lZ:P3oool0003o0?l0 +oooo2@3oool00`000000oooo0?ooo`3o0?ooo`D0oooo00<0003o003o003o00000P3oool00`1o:RX0 +oooo0?ooo`200?ooo`00F03oool00`00o`00o`0007lZ:P020?ooo`030000o`3oool0oooo0?l0oooo +1P3oool00`000000oooo0?ooo`3o0?ooo`D0oooo00D0003o0?l0003oool0oooo07lZ:P230?ooo`00 +F03oool01P00o`00o`000?ooo`1o:RX0oooo0000ool0oooo203oool00`000000oooo0?ooo`3o0?oo +o`D0oooo00D0003o0?l0003oool0oooo07lZ:P230?ooo`00F@3oool00`3o0000oooo07lZ:P020?oo +o`030000o`3oool0oooo0?l0oooo1@3oool00`000000oooo0?ooo`3o0?ooo`D0oooo00@0003o0?l0 +003oool0ObXZQ03oool005T0oooo00<0o`000?ooo`1o:RX00P3oool00`000?l0oooo0?ooo`3o0?oo +o`D0oooo00<000000?ooo`3oool0o`3oool40?ooo`050000o`00o`00o`000?ooo`1o:RX0Q03oool0 +05T0oooo00H0o`000?ooo`3oool0ObXZ0?ooo`000?oo0?ooo`L0oooo00<000000?ooo`3oool0o`3o +ool40?ooo`050000o`3o0000oooo0?ooo`1o:RX0Q03oool005T0oooo00@0o`000?ooo`3oool0ObXZ +0P3oool00`000?l0oooo0?ooo`3o0?ooo`@0oooo00<000000?ooo`3oool0o`3oool40?ooo`040000 +o`3o0000oooo07lZ:XD0oooo001I0?ooo`070?l0003oool0oooo0?ooo`1o:RX0oooo0000o`3o0?oo +o`H0oooo00<000000?ooo`3oool0o`3oool40?ooo`040000o`3oool0oooo07lZ:XD0oooo001I0?oo +o`05003o003o0000oooo0?ooo`1o:RX00P3oool00`000?l0oooo0?ooo`3o0?ooo`<0oooo1000003o +0?ooo`80oooo00D0003o0?l0003oool0oooo07lZ:P250?ooo`00F@3oool01@00o`00o`000?ooo`3o +ool0ObXZ0080oooo00<0003o0?ooo`3oool0o`3oool30?ooo`030000003oool0oooo0?l0oooo0`3o +ool010000?l0o`000?ooo`1o:RZ60?ooo`00F@3oool00`00o`00o`000?ooo`020?ooo`0407lZ:P3o +ool0oooo0000ool0oooo103oool00`000000oooo0?ooo`3o0?ooo`<0oooo00@0003o0?ooo`3oool0 +ObXZQP3oool005X0oooo00D0o`000?ooo`3oool0oooo07lZ:P020?ooo`030000o`3oool0oooo0?l0 +oooo0P3oool00`000000oooo0?ooo`3o0?ooo`<0oooo00@0003o0?ooo`3oool0ObXZQP3oool005X0 +oooo00D0o`000?ooo`3oool0oooo07lZ:P030?ooo`030000o`3oool0oooo0?l0oooo0@3oool00`00 +0000oooo0?ooo`3o0?ooo`80oooo00@0003o0?l0003oool0ObXZQ`3oool005X0oooo00<0o`000?oo +o`3oool00P3oool0101o:RX0oooo0?ooo`000?oo0?ooo`<0oooo00<000000?ooo`3oool0o`3oool2 +0?ooo`040000o`3o0000oooo07lZ:XL0oooo001J0?ooo`030?l0003oool0oooo0080oooo00@0ObXZ +0?ooo`3oool0003oo`3oool30?ooo`030000003oool0oooo0?l0oooo0P3oool00`000?l0oooo07lZ +:P280?ooo`00FP3oool00`3o0000oooo0?ooo`030?ooo`0407lZ:P3oool0oooo0000ool0oooo0P3o +ool00`000000oooo0?ooo`3o0?ooo`80oooo00<0003o0?ooo`1o:RX0R03oool005X0oooo00<00?l0 +0?l0003oool00`3oool0101o:RX0oooo0?ooo`000?oo0?ooo`80oooo00<000000?ooo`3oool0o`3o +ool10?ooo`040000o`3o0000oooo07lZ:XP0oooo001J0?ooo`03003o003o0000oooo00@0oooo00@0 +ObXZ0?ooo`3oool0003oo`3oool10?ooo`030000003oool0oooo0?l0oooo0@3oool00`000?l0oooo +07lZ:P290?ooo`00FP3oool00`00o`00o`000?ooo`040?ooo`0407lZ:P3oool0oooo0000ool0oooo +0@3oool00`000000oooo0?ooo`3o0?ooo`40oooo00<0003o0?ooo`1o:RX0R@3oool005X0oooo00<0 +0?l00?l0003oool0103oool01@1o:RX0oooo0?ooo`3oool0003o0?l0oooo00<000000?ooo`3oool0 +o`3oool0103o0000003o0?ooo`1o:RZ90?ooo`00F`3oool00`3o0000oooo0?ooo`040?ooo`0407lZ +:P3oool0oooo0000oo80oooo1@0000080?ooo`030000003oool0oooo0?h0oooo0`000?l00`1o:RX0 +oooo0?ooo`280?ooo`00F`3oool00`00o`00o`000?ooo`040?ooo`0507lZ:P3oool0oooo0?ooo`00 +0?l0l`3oool00`000000oooo0?ooo`080?ooo`030000003oool0oooo0?d0oooo1@000?n:0?ooo`00 +F`3oool00`00o`00o`000?ooo`050?ooo`0407lZ:P3oool0oooo0000oo<0oooo00<000000?ooo`3o +ool0203oool600000?X0oooo1@000?n:0?ooo`00F`3oool00`00o`00o`000?ooo`050?ooo`0407lZ +:P3oool0oooo0000oo<0oooo00<000000?ooo`3oool0203oool00`000000oooo0?ooo`3m0?ooo`D0 +003oRP3oool005/0oooo00<00?l00?ooo`3o00001P3oool0101o:RX0oooo0?ooo`000?ob0?ooo`03 +0000003oool0oooo00P0oooo00<000000?ooo`3oool0oP3oool30000oh/0oooo001K0?ooo`03003o +003oool0o`0000H0oooo00@0ObXZ0?ooo`3oool0003ol@3oool2000000X0oooo00<000000?ooo`3o +ool0o@3oool00`000?l0ObXZ0?ooo`2<0?ooo`00G03oool00`00o`00o`000?ooo`060?ooo`0407lZ +:P3oool0oooo0000oo`0oooo00<000000?ooo`3oool0o@3oool00`000?l0ObXZ0?ooo`2<0?ooo`00 +G03oool00`00o`00o`000?ooo`060?ooo`0407lZ:P3oool0oooo0000oo`0oooo00<000000?ooo`3o +ool0o03oool00`000?l0ObXZ0?ooo`2=0?ooo`00G03oool00`00o`00o`000?ooo`070?ooo`0407lZ +:P3oool0oooo0000oo/0oooo00<000000?ooo`3oool0o03oool00`000?l0ObXZ0?ooo`2=0?ooo`00 +G03oool00`00o`00oooo0?l000070?ooo`0407lZ:P3oool0oooo0000oo/0oooo00<000000?ooo`3o +ool0n`3oool00`000?l0ObXZ0?ooo`2>0?ooo`00G@3oool00`00o`00o`000?ooo`070?ooo`0407lZ +:P3oool0oooo0000ooX0oooo00<000000?ooo`3oool0n`3oool00`000?l0ObXZ0?ooo`2>0?ooo`00 +G@3oool00`00o`00o`000?ooo`070?ooo`0407lZ:P3oool0oooo0000ooX0oooo00<000000?ooo`3o +ool0nP3oool00`000?l0ObXZ0?ooo`2?0?ooo`00G@3oool00`00o`00o`000?ooo`080?ooo`0307lZ +:P3oool0003o0?X0oooo00<000000?ooo`3oool0nP3oool00`000?l0ObXZ0?ooo`2?0?ooo`00G@3o +ool00`00o`00oooo0?l000080?ooo`0407lZ:P3oool0oooo0000ooT0oooo00<000000?ooo`3oool0 +n@3oool00`000?l0ObXZ003o002@0?ooo`00G@3oool00`00o`00oooo0?l000090?ooo`0307lZ:P3o +ool0003o0?T0oooo00<000000?ooo`3oool0n@3oool00`000?l0ObXZ0?ooo`2@0?ooo`00GP3oool0 +0`00o`00oooo0?l000090?ooo`0307lZ:P3oool0003o0?P0oooo00<000000?ooo`3oool0n03oool0 +0`000?l0ObXZ003o002A0?ooo`00GP3oool00`00o`00oooo0?l000090?ooo`0307lZ:P3oool0003o +0?P0oooo1000003g0?ooo`030000o`1o:RX0oooo0940oooo001N0?ooo`03003o003oool0o`0000X0 +oooo00<0ObXZ0?ooo`000?l0m`3oool00`000000oooo0?ooo`3g0?ooo`030000o`1o:RX00?l00980 +oooo001N0?ooo`04003o003oool0oooo0?l000T0oooo00<0ObXZ0?ooo`000?l0m`3oool00`000000 +oooo0?ooo`3g0?ooo`030000o`3o0000oooo0980oooo001N0?ooo`04003o003oool0oooo0?l000X0 +oooo00<0ObXZ0000o`3oool0mP3oool00`000000oooo0?ooo`3f0?ooo`030000o`1o:RX00?l009<0 +oooo001O0?ooo`03003o003oool0o`0000X0oooo00<0ObXZ0?ooo`000?l0mP3oool00`000000oooo +0?ooo`3e0?ooo`030000o`1o:RX0o`0009@0oooo001O0?ooo`04003o003oool0oooo0?l000X0oooo +00<0ObXZ0000o`3oool0m@3oool00`000000oooo0?ooo`3e0?ooo`030000o`1o:RX00?l009@0oooo +001P0?ooo`03003o003oool0o`0000/0oooo00<0ObXZ0000o`3oool0m03oool00`000000oooo0?oo +o`3d0?ooo`040000o`1o:RX0o`00003o09@0oooo001P0?ooo`04003o003oool0oooo0?l000/0oooo +00<0003o0?ooo`3oool0l`3oool00`000000oooo0?ooo`3d0?ooo`030000o`3o00000?l009D0oooo +001P0?ooo`04003o003oool0oooo0?l000/0oooo00<0ObXZ0000o`3oool0l`3oool00`000000oooo +0?ooo`3c0?ooo`040000o`3oool0o`00003o09D0oooo001P0?ooo`05003o003oool0oooo0?ooo`3o +00002`3oool00`000?l0oooo0?ooo`3b0?ooo`030000003oool0oooo0?<0oooo00<0003o0?l00000 +o`00UP3oool00640oooo00@00?l00?ooo`3oool0o`002`3oool00`1o:RX0003o0?ooo`3b0?ooo`03 +0000003oool0oooo0?80oooo00<0003o0?ooo`3o0000U`3oool00640oooo00D00?l00?ooo`3oool0 +oooo0?l0000;0?ooo`030000o`3oool0oooo0?40oooo00<000000?ooo`3oool0lP3oool00`000?l0 +o`000?ooo`2G0?ooo`00H@3oool00`00o`00oooo0?ooo`020?ooo`030?l0003oool0oooo00P0oooo +00<0003o07lZ:P3oool0l@3oool00`000000oooo0?ooo`3a0?ooo`030000o`3oool0o`0009P0oooo +001Q0?ooo`03003o003oool0oooo00<0oooo00<0o`000?ooo`3oool0203oool00`000?l0ObXZ0?oo +o`3`0?ooo`030000003oool0oooo0?00oooo00<0ObXZ0000o`3o0000V@3oool00640oooo00<00?l0 +0?ooo`3oool0103oool00`3o0000oooo0?ooo`070?ooo`030000o`1o:RX0oooo0?00oooo1000003^ +0?ooo`0407lZ:P000?l0oooo0?l009T0oooo001R0?ooo`03003o003oool0oooo00@0oooo00<0o`00 +0?ooo`3oool01`3oool00`000?l0ObXZ0?ooo`3_0?ooo`030000003oool0oooo0>l0oooo00<0ObXZ +0000o`3o0000VP3oool00680oooo00<00?l00?ooo`3oool01@3oool20?l000L0oooo00<0003o07lZ +:P3oool0k`3oool00`000000oooo0?ooo`3^0?ooo`0407lZ:P000?l0o`00003o09X0oooo001S0?oo +o`03003o003oool0oooo00H0oooo0P3o00060?ooo`030000o`1o:RX0oooo0>h0oooo00<000000?oo +o`3oool0k@3oool0101o:RX0oooo0000o`00o`2K0?ooo`00H`3oool00`00o`00oooo0?ooo`080?oo +o`<0o`000`3oool30000onh0oooo00<000000?ooo`3oool0k03oool30000o`030?l0003oool0oooo +09X0oooo001T0?ooo`03003o003oool0oooo00X0oooo0P3o00050000ond0oooo00<000000?ooo`3o +ool0j`3oool50000oi`0oooo001T0?ooo`03003o003oool0oooo00`0oooo1@000?l3003o0>X0oooo +00<000000?ooo`3oool0j`3oool50000oi`0oooo001U0?ooo`03003o003oool0oooo00/0oooo1@00 +0?l00`1o:RX0oooo0?ooo`02003o0>P0oooo00<000000?ooo`3oool0j`3oool50000oi`0oooo001U +0?ooo`03003o003oool0oooo00T0oooo0`00o`040000o`030?l0001o:RX0o`000080oooo0P00o`3V +0?ooo`030000003oool0oooo0>X0oooo00<0ObXZ0000o`000?l00P000?nM0?ooo`00IP3oool00`00 +o`00oooo0?ooo`070?ooo`03003o003oool0oooo00D0oooo00@0003o0?ooo`1o:RX0o`000`3oool0 +0`00o`00oooo0?ooo`3S0?ooo`030000003oool0oooo0>T0oooo00<0ObXZ0000o`3o0000X03oool0 +06L0oooo0P00o`040?ooo`<00?l02@3oool010000?l0oooo07lZ:P3o00030?ooo`03003o003oool0 +oooo0>80oooo00<000000?ooo`3oool0j03oool0101o:RX0003o0?ooo`3o002P0?ooo`00J@3oool4 +003o00d0oooo00<0003o07lZ:P3oool00P3o00020?ooo`800?l0hP3oool00`000000oooo0?ooo`3W +0?ooo`0407lZ:P000?l0oooo0?l00:40oooo001k0?ooo`050000o`1o:RX0oooo0?ooo`3o00000P3o +ool00`00o`00oooo0?ooo`3P0?ooo`030000003oool0oooo0>L0oooo00<0003o0?ooo`3o0000XP3o +ool007`0oooo00D0003o07lZ:P3oool0oooo0?l000020?ooo`03003o003oool0oooo0=l0oooo1000 +003U0?ooo`030000o`3oool0o`000:<0oooo001m0?ooo`040000o`1o:RX0oooo0?ooo`80o`0000<0 +oooo003o0000o`00g`3oool00`000000oooo0?ooo`3U0?ooo`040000o`3oool00?l00?l00:<0oooo +001n0?ooo`030000o`1o:RX0oooo0080oooo00<0o`000?ooo`00o`00g`3oool00`000000oooo0?oo +o`3T0?ooo`040000o`3oool0oooo0?l00:@0oooo001o0?ooo`030000o`3oool0oooo0080oooo00<0 +o`000?ooo`00o`00gP3oool00`000000oooo0?ooo`3S0?ooo`050000o`3oool0oooo003o003o0000 +Y03oool00800oooo00<0003o0?ooo`3oool00P3oool00`3o00000?l00?ooo`3M0?ooo`030000003o +ool0oooo0>80oooo00<0003o0?ooo`3oool00P3o002U0?ooo`00P@3oool00`000?l0ObXZ0?ooo`02 +0?ooo`030?l00000o`00oooo0=`0oooo00<000000?ooo`3oool0h@3oool010000?l0oooo0?ooo`3o +002W0?ooo`00PP3oool01P000?l0oooo0?ooo`3oool0o`000?ooo`800?l0f`3oool00`000000oooo +0?ooo`3P0?ooo`050000o`3oool0oooo003o003o0000Y`3oool008<0oooo00L0003o0?ooo`3oool0 +oooo0?l0003oool00?l00=/0oooo00<000000?ooo`3oool0g`3oool00`000?l0ObXZ0?ooo`020?l0 +0:P0oooo00240?ooo`040000o`1o:RX0oooo0?ooo`80o`0000<00?l00?ooo`3oool0f03oool00`00 +0000oooo0?ooo`3N0?ooo`040000o`1o:RX0oooo0?l00:X0oooo00250?ooo`060000o`3oool0oooo +0?ooo`3o00000?l0fP3oool00`000000oooo0?ooo`3M0?ooo`050000o`3oool0oooo003o003o0000 +ZP3oool008H0oooo00H0003o0?ooo`3oool0oooo0?l00000o`3I0?ooo`030000003oool0oooo0=`0 +oooo00D0003o07lZ:P3oool0oooo0?l0002[0?ooo`00Q`3oool01P000?l0oooo0?ooo`3oool0o`00 +003o0=P0oooo00<000000?ooo`3oool0g03oool010000?l0oooo003o003o002/0?ooo`00R03oool0 +1P000?l0oooo0?ooo`3oool0o`00003o0=L0oooo00<000000?ooo`3oool0f`3oool010000?l0oooo +003o003o002]0?ooo`00R@3oool01@000?l0oooo0?ooo`3oool0o`000=L0oooo00<000000?ooo`3o +ool0fP3oool010000?l0oooo003o003o002^0?ooo`00RP3oool01@000?l0oooo0?ooo`3o00000?l0 +0=H0oooo1000003H0?ooo`040000o`3oool0oooo0?l00:l0oooo002;0?ooo`050000o`3oool0oooo +0?l00000o`00e@3oool00`000000oooo0?ooo`3G0?ooo`0507lZ:P000?l0oooo003o003o0000/03o +ool008`0oooo00D0003o0?ooo`3oool0o`00003o003D0?ooo`030000003oool0oooo0=H0oooo00D0 +ObXZ0000o`3oool00?l00?l0002a0?ooo`00S@3oool010000?l0oooo0?ooo`3o003D0?ooo`030000 +003oool0oooo0=H0oooo00@0003o003o0000o`00o`00/P3oool008h0oooo00@0003o0?ooo`3oool0 +o`00d`3oool00`000000oooo0?ooo`3E0?ooo`040000o`00o`00o`000?l00;<0oooo002?0?ooo`03 +0000o`1o:RX0o`000=<0oooo00<000000?ooo`3oool0d`3oool0101o:RX0003o0?ooo`3o002e0?oo +o`00T03oool00`000?l0oooo0?l0003B0?ooo`030000003oool0oooo0=80oooo00@0ObXZ0000o`3o +ool0o`00]P3oool00940oooo00<0003o0?ooo`3o0000d@3oool00`000000oooo0?ooo`3B0?ooo`03 +0000o`00o`00o`000;L0oooo002B0?ooo`030000o`3oool0o`000=00oooo00<000000?ooo`3oool0 +d@3oool00`000?l00?l00?l0002h0?ooo`00T`3oool00`000?l0ObXZ0?ooo`3?0?ooo`030000003o +ool0oooo00?ooo`0407lZ:P000?l00?l00?l00;X0oooo002E0?ooo`030000o`1o +:RX0oooo080oooo002/0?ooo`050?l0003oool0 +oooo0?ooo`00o`002P3oool0101o:RX0oooo0?ooo`3oool20000oj@0oooo00<000000?ooo`3oool0 +X`3oool20000o`80oooo0P1o:R[S0?ooo`00[@3oool20?l00080oooo0P00o`090?ooo`80ObXZ0`3o +ool20000oj80oooo00<000000?ooo`3oool0X@3oool20000o`<0oooo00<0ObXZ0?ooo`3oool0h`3o +ool00:l0oooo00@0o`000?ooo`3oool0oooo0`00o`080?ooo`<0ObXZ0P3oool00`000?l0oooo0?oo +o`2O0?ooo`030000003oool0oooo09l0oooo00@0o`000000o`3o0000oooo0`1o:R[V0?ooo`00/03o +ool00`3o0000oooo0?ooo`030?ooo`03003o003oool0oooo00P0oooo00<0ObXZ0?ooo`3oool00P00 +0?nO0?ooo`@00000W@3oool20000o`80oooo00<0ObXZ0?ooo`3oool0i`3oool00;40oooo0P3o0004 +0?ooo`03003o003oool0oooo00P0oooo00@0ObXZ0?ooo`3oool0oooo0P000?nM0?ooo`030000003o +ool0oooo09`0oooo0P000?l30?ooo`0307lZ:P3oool0oooo0>P0oooo002c0?ooo`030?l0003oool0 +oooo0080oooo0`00o`080?ooo`<0ObXZ0P3oool00`000?l0oooo0?ooo`2J0?ooo`030000003oool0 +oooo09/0oooo00<0003o0?ooo`3oool00`1o:R[[0?ooo`00]03oool20?l000D0oooo00<00?l00?oo +o`3oool0203oool00`1o:RX0oooo0?ooo`020000oiX0oooo00<000000?ooo`3oool0V@3oool20000 +o`030?ooo`1o:RX0ObXZ0>h0oooo002f0?ooo`030?l0003oool0oooo00<0oooo0`00o`080?ooo`80 +ObXZ0P3oool20000oiP0oooo00<000000?ooo`3oool0U`3oool20000o`030?l0003oool0ObXZ0?00 +oooo002g0?ooo`030?l0003oool0oooo00D0oooo0`00o`070?ooo`80ObXZ0P3oool00`000?l0oooo +0?ooo`2E0?ooo`030000003oool0oooo09H0oooo00<0003o0?ooo`1o:RX00P1o:R[a0?ooo`00^03o +ool20?l000P0oooo0`00o`060?ooo`80ObXZ00<0oooo0000o`000?l0U@3oool00`000000oooo0?oo +o`2D0?ooo`80003o00<0oooo07lZ:P3oool0l`3oool00;X0oooo0P3o00090?ooo`800?l01P3oool3 +07lZ:P80003oT`3oool00`000000oooo0?ooo`2B0?ooo`80003o0`1o:R[e0?ooo`00_03oool20?l0 +00T0oooo0`00o`060?ooo`0307lZ:P3oool0003o0980oooo00<000000?ooo`3oool0T03oool0103o +0000003o0?l0001o:R[h0?ooo`00_P3oool30?l000T0oooo0`00o`040?ooo`80ObXZ0P000?n@0?oo +o`030000003oool0oooo08l0oooo0P000?l207lZ:_T0oooo00310?ooo`@0o`00203oool4003o00<0 +oooo00<0ObXZ0000o`000?l0SP3oool00`000000oooo0?ooo`2=0?ooo`80003o00<0ObXZ0?ooo`3o +ool0nP3oool00P0 +oooo0`1o:RX0103oool0003o0000o`000?l:0?ooo`80o`00JP3oool00`000000oooo0?ooo`1e0?oo +o`<0003o00@0oooo07lZ:P1o:RX0ObXZ0P3o003o0?ooo`l0oooo003[0?ooo`<0ObXZ00<0oooo0000 +o`000?l00P000?l80?ooo`D0o`00I@3oool00`000000oooo0?ooo`1a0?ooo`@0003o00D0oooo07lZ +:P1o:RX0ObXZ0?ooo`020?l00?l0oooo4@3oool00>h0oooo0`1o:RX00`3oool00?l00000o`020000 +o`X0oooo0P3o001S0?ooo`030000003oool0oooo06h0oooo0`000?l20?ooo`<0ObXZ00@0oooo0?l0 +003o0000o`00o`3ooolC0?ooo`00l@3oool207lZ:P<0oooo10000?l80?ooo`<0o`00H03oool00`00 +0000oooo0?ooo`1Z0?ooo`@0003o0`3oool207lZ:P<0oooo00<0o`000?ooo`3oool0o`3ooolD0?oo +o`00l`3oool307lZ:P<0oooo00@00?l00000o`000?l0003o203oool30?l005d0oooo00<000000?oo +o`3oool0I`3oool30000o`@0oooo0`1o:RX20?ooo`<0o`00o`3ooolG0?ooo`00mP3oool307lZ:P80 +oooo0P00o`040000o`L0oooo00<0o`000?ooo`3oool0FP3oool00`000000oooo0?ooo`1S0?ooo`@0 +003o103oool307lZ:P<0oooo0P3o003o0?oooaX0oooo003i0?ooo`@0ObXZ00@0oooo003o0000o`00 +0?l00`000?l50?ooo`<0o`00F@3oool00`000000oooo0?ooo`1P0?ooo`<0003o103oool407lZ:P<0 +oooo0`3o003o0?oooa`0oooo003m0?ooo`<0ObXZ0P3oool2003o00@0003o103oool30?l005H0oooo +00<000000?ooo`3oool0G03oool40000o`@0oooo0`1o:RX40?ooo`<0o`00o`3ooolO0?ooo`00o`3o +ool10?ooo`@0ObXZ00@0oooo003o0000o`000?l00`000?l40?ooo`80o`00E03oool00`000000oooo +0?ooo`1I0?ooo`<0003o103oool407lZ:P@0oooo0`3o003o0?ooob80oooo003o0?ooo`D0oooo0P1o +:RX20?ooo`<00?l010000?l20?ooo`80o`00DP3oool4000005@0oooo10000?l30?ooo`04003o001o +:RX0ObXZ07lZ:PH0oooo0P3o003o0?ooobD0oooo003o0?ooo`L0oooo1@1o:RX0103oool00?l0003o +0000o`030000o`040?ooo`3o0000o`000?l004l0oooo00<000000?ooo`3oool0DP3oool30000o`@0 +oooo101o:RX50?ooo`@0o`00o`3ooolW0?ooo`00o`3oool<0?ooo`@0ObXZ0`00o`030000o`030?oo +o`3o0000o`0004d0oooo00<000000?ooo`3oool0C`3oool30000o`<0oooo101o:RX40?ooo`D0o`00 +o`3oool[0?ooo`00o`3oool@0?ooo`@0ObXZ0P00o`040000o`030?l0003oool0oooo04T0oooo00<0 +00000?ooo`3oool0B`3oool40000o`80oooo101o:RX40?ooo`@0o`00o`3oool`0?ooo`00o`3ooolD +0?ooo`@0ObXZ0P00o`030000o`@0oooo0`000?m20?ooo`030000003oool0oooo0440oooo0`000?l4 +0?ooo`<0003o00<0oooo003o001o:RX00`1o:RX30?ooo`D0o`00o`3ooold0?ooo`00o`3ooolH0?oo +o`@0ObXZ00<00?l00000o`000?l01P000?m10?ooo`030000003oool0oooo0400oooo20000?l00`00 +o`00ObXZ07lZ:P0207lZ:PL0o`00o`3oooli0?ooo`00o`3ooolL0?ooo`@0ObXZ1`000?lo0?ooo`03 +0000003oool0oooo03h0oooo1`000?l407lZ:P<0o`00o`3ooom10?ooo`00o`3ooolP0?ooo`D0003o +0P1o:RX:0000ocD0oooo00<000000?ooo`3oool0<03oool40?l000X0003o0P1o:RX50000ool0oooo +B03oool00?l0oooo8@3oool30000o`80oooo00<0o`0007lZ:P1o:RX00`1o:RX50?ooo`X0003o:`3o +ool00`000000oooo0?ooo`0R0?ooo`P0o`002P000?l30?ooo`03003o001o:RX0ObXZ00@0ObXZ0`3o +ool30000ool0ooooB@3oool00?l0oooo:03oool30?l000030?ooo`1o:RX0ObXZ00D0ObXZ203oool9 +0000ob80oooo00<000000?ooo`3oool06@3oool70?l000X0003o1P3oool2003o00H0ObXZo`3ooomE +0?ooo`00o`3oool[0?ooo`<0o`00103oool00`00o`00ObXZ07lZ:P0507lZ:PX0oooo2P000?lH0?oo +o`030000003oool0oooo0140oooo1@3o000:0000o`P0oooo0`00o`0707lZ:_l0ooooF`3oool00?l0 +oooo;P3oool30?l000P0oooo00<00?l007lZ:P1o:RX0201o:RX:0?ooo`X0003o0P3oool2000000T0 +oooo0`000?l;0?ooo`80o`002P000?l80?ooo`<00?l02P1o:R[o0?ooof80oooo003o0?oooc40oooo +103o000<0?ooo`<00?l0301o:RX80?ooo`X0003o0P3oool50000o`80oooo2P000?l60?ooo`<00?l0 +301o:R[o0?ooof`0oooo003o0?ooocD0oooo1@3o000B0?ooo`@00?l04P1o:RX90000oa<0ObXZo`3o +oomh0?ooo`00o`3ooolj0?ooo`H0o`00703oool00`000000o`000?l000050?l000D0003oo`3ooon= +0?ooo`00o`3ooom00?oooad0o`00203oool30000ool0ooooSP3oool00?l0ooooFP3oool2000000X0 +oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo0?l0oooo +S@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<00000 +0?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0 +ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0 +o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool0 +0`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?oo +o`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool400000?l0oooo +S03oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<00000 +0?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0 +ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0 +o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool0 +0`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?oo +o`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo +0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV +0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?oo +ohd0oooo003o0?ooofH0oooo1000003o0?oooh`0oooo003o0?ooofH0oooo00<000000?ooo`3oool0 +o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool0 +0`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?oo +o`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo +0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV +0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?oo +ohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000 +003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o +0?ooofH0oooo1000003o0?oooh`0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?oo +o`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo +0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV +0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?oo +ohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000 +003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o +0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo +0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo +00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`@00000o`3ooon<0?ooo`00o`3ooomV +0?ooo`030000003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?oo +ohd0oooo003o0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000 +003oool0oooo0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o +0?ooofH0oooo00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo +0?l0ooooS@3oool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o0?ooofH0oooo +00<000000?ooo`3oool0o`3ooon=0?ooo`00o`3ooomV0?ooo`030000003oool0oooo0?l0ooooS@3o +ool00?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooohd0oooo003o0?oooe/0oooo0`0000080?oo +o`030000003oool0oooo0?l0ooooS@3oool00?l0ooooG03oool00`000000oooo0?ooo`070?ooo`03 +0000003oool0oooo0?l0ooooS@3oool00?l0ooooF@3oool5000000P0oooo1P00003o0?ooohX0oooo +003o0?oooeT0oooo00@000000?ooo`3oool00000o`3ooonI0?ooo`00o`3ooomJ0?ooo`030000003o +ool000000?l0ooooV@3oool00?l0ooooF`3oool200000?l0ooooV@3oool00?l0ooooo`3oooof0?oo +o`00o`3ooooo0?ooooH0oooo003o0?ooool0oooomP3oool00?l0ooooo`3oooof0?ooo`00o`3ooooo +0?ooooH0oooo003o0?ooool0oooomP3oool00?l0ooooo`3oooof0?ooo`00o`3ooooo0?ooooH0oooo +003o0?ooool0oooomP3oool00?l0ooooo`3oooof0?ooo`00o`3ooooo0?ooooH0oooo003o0?ooool0 +oooomP3oool00?l0ooooo`3oooof0?ooo`00o`3ooooo0?ooooH0oooo003o0?ooool0oooomP3oool0 +0?l0ooooo`3oooof0?ooo`00o`3ooom`0?ooo`800000o`3ooon40?ooo`00o`3oooma0?ooo`030000 +003oool0oooo0?l0ooooPP3oool00?l0ooooLP3oool00`000000oooo0?ooo`3o0?oooh40oooo003o +0?ooog40oooo00<000000?ooo`000000o`3ooon20?ooo`00o`3ooom`0?ooo`040000003oool0oooo +00000?l0ooooPP3oool00?l0ooooK`3oool3000000030?ooo`00000000000?l0ooooP@3oool00?l0 +ooooI03oool010000000oooo0?ooo`00003o0?ooohh0oooo003o0?ooofD0oooo0P00003o0?ooohl0 +oooo003o0?ooool0oooomP3oool00?l0ooooo`3oooof0?ooo`00\ +\>"], + ImageRangeCache->{{{0, 755}, {377, 0}} -> {-5.22077, -1.06566, 0.014586, \ +0.014586}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + InterpretationBox[\("\< Lauf Nummer \>"\[InvisibleSpace]4\ +\[InvisibleSpace]"\< mit \>"\[InvisibleSpace]13\[InvisibleSpace]"\< St\ +\[UDoubleDot]tzpunkten \>"\), + SequenceForm[ + " Lauf Nummer ", 4, " mit ", 13, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Input"], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.1 0.1 [ +[.1 .0875 -6 -9 ] +[.1 .0875 6 0 ] +[.3 .0875 -6 -9 ] +[.3 .0875 6 0 ] +[.7 .0875 -3 -9 ] +[.7 .0875 3 0 ] +[.9 .0875 -3 -9 ] +[.9 .0875 3 0 ] +[1.025 .1 0 -6.28125 ] +[1.025 .1 22 6.28125 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .2 -6 -4.5 ] +[.4875 .2 0 4.5 ] +[.4875 .3 -6 -4.5 ] +[.4875 .3 0 4.5 ] +[.4875 .4 -6 -4.5 ] +[.4875 .4 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.5625 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .1 m +.1 .10625 L +s +[(-4)] .1 .0875 0 1 Mshowa +.3 .1 m +.3 .10625 L +s +[(-2)] .3 .0875 0 1 Mshowa +.7 .1 m +.7 .10625 L +s +[(2)] .7 .0875 0 1 Mshowa +.9 .1 m +.9 .10625 L +s +[(4)] .9 .0875 0 1 Mshowa +.125 Mabswid +.15 .1 m +.15 .10375 L +s +.2 .1 m +.2 .10375 L +s +.25 .1 m +.25 .10375 L +s +.35 .1 m +.35 .10375 L +s +.4 .1 m +.4 .10375 L +s +.45 .1 m +.45 .10375 L +s +.55 .1 m +.55 .10375 L +s +.6 .1 m +.6 .10375 L +s +.65 .1 m +.65 .10375 L +s +.75 .1 m +.75 .10375 L +s +.8 .1 m +.8 .10375 L +s +.85 .1 m +.85 .10375 L +s +.05 .1 m +.05 .10375 L +s +.95 .1 m +.95 .10375 L +s +.25 Mabswid +0 .1 m +1 .1 L +s +gsave +1.025 .1 -61 -10.2813 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.5625 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 12.813 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-1)] .4875 0 1 0 Mshowa +.5 .2 m +.50625 .2 L +s +[(1)] .4875 .2 1 0 Mshowa +.5 .3 m +.50625 .3 L +s +[(2)] .4875 .3 1 0 Mshowa +.5 .4 m +.50625 .4 L +s +[(3)] .4875 .4 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .02 m +.50375 .02 L +s +.5 .04 m +.50375 .04 L +s +.5 .06 m +.50375 .06 L +s +.5 .08 m +.50375 .08 L +s +.5 .12 m +.50375 .12 L +s +.5 .14 m +.50375 .14 L +s +.5 .16 m +.50375 .16 L +s +.5 .18 m +.50375 .18 L +s +.5 .22 m +.50375 .22 L +s +.5 .24 m +.50375 .24 L +s +.5 .26 m +.50375 .26 L +s +.5 .28 m +.50375 .28 L +s +.5 .32 m +.50375 .32 L +s +.5 .34 m +.50375 .34 L +s +.5 .36 m +.50375 .36 L +s +.5 .38 m +.50375 .38 L +s +.5 .42 m +.50375 .42 L +s +.5 .44 m +.50375 .44 L +s +.5 .46 m +.50375 .46 L +s +.5 .48 m +.50375 .48 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.5625 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 12.813 moveto +(^) show +87.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .1 m +.102 .12124 L +.104 .14106 L +.106 .15809 L +.108 .17181 L +.11 .18258 L +.112 .19081 L +.114 .1969 L +.116 .20125 L +.118 .20425 L +.12 .20632 L +.122 .20784 L +.124 .20923 L +.126 .21087 L +.128 .21294 L +.13 .2154 L +.132 .21819 L +.134 .22127 L +.136 .22458 L +.138 .22807 L +.14 .23169 L +.142 .2354 L +.144 .23913 L +.146 .24284 L +.148 .24648 L +.15 .25 L +.152 .25335 L +.154 .25654 L +.156 .25957 L +.158 .26244 L +.16 .26517 L +.162 .26776 L +.164 .27021 L +.166 .27254 L +.168 .27476 L +.17 .27686 L +.172 .27887 L +.174 .28077 L +.176 .28259 L +.178 .28432 L +.18 .28598 L +.182 .28757 L +.184 .2891 L +.186 .29058 L +.188 .29201 L +.19 .2934 L +.192 .29475 L +.194 .29609 L +.196 .2974 L +.198 .2987 L +Mistroke +.2 .3 L +.202 .3013 L +.204 .3026 L +.206 .3039 L +.208 .30521 L +.21 .30652 L +.212 .30782 L +.214 .30913 L +.216 .31044 L +.218 .31175 L +.22 .31305 L +.222 .31436 L +.224 .31566 L +.226 .31696 L +.228 .31826 L +.23 .31956 L +.232 .32085 L +.234 .32214 L +.236 .32342 L +.238 .32471 L +.24 .32598 L +.242 .32725 L +.244 .32852 L +.246 .32978 L +.248 .33103 L +.25 .33227 L +.252 .33351 L +.254 .33474 L +.256 .33597 L +.258 .33718 L +.26 .33838 L +.262 .33958 L +.264 .34077 L +.266 .34194 L +.268 .34311 L +.27 .34426 L +.272 .34541 L +.274 .34654 L +.276 .34766 L +.278 .34876 L +.28 .34986 L +.282 .35094 L +.284 .35201 L +.286 .35306 L +.288 .3541 L +.29 .35512 L +.292 .35613 L +.294 .35712 L +.296 .3581 L +.298 .35906 L +Mistroke +.3 .36 L +.302 .36093 L +.304 .36183 L +.306 .36273 L +.308 .3636 L +.31 .36446 L +.312 .3653 L +.314 .36613 L +.316 .36694 L +.318 .36773 L +.32 .36851 L +.322 .36928 L +.324 .37003 L +.326 .37077 L +.328 .37149 L +.33 .3722 L +.332 .37289 L +.334 .37357 L +.336 .37424 L +.338 .37489 L +.34 .37553 L +.342 .37616 L +.344 .37678 L +.346 .37738 L +.348 .37798 L +.35 .37856 L +.352 .37913 L +.354 .37968 L +.356 .38023 L +.358 .38077 L +.36 .38129 L +.362 .38181 L +.364 .38232 L +.366 .38281 L +.368 .3833 L +.37 .38378 L +.372 .38425 L +.374 .38471 L +.376 .38516 L +.378 .3856 L +.38 .38604 L +.382 .38646 L +.384 .38688 L +.386 .3873 L +.388 .3877 L +.39 .3881 L +.392 .38849 L +.394 .38888 L +.396 .38926 L +.398 .38963 L +Mistroke +.4 .39 L +.402 .39036 L +.404 .39072 L +.406 .39107 L +.408 .39142 L +.41 .39176 L +.412 .39209 L +.414 .39242 L +.416 .39274 L +.418 .39306 L +.42 .39337 L +.422 .39367 L +.424 .39397 L +.426 .39426 L +.428 .39455 L +.43 .39483 L +.432 .3951 L +.434 .39537 L +.436 .39563 L +.438 .39588 L +.44 .39613 L +.442 .39637 L +.444 .3966 L +.446 .39682 L +.448 .39704 L +.45 .39725 L +.452 .39746 L +.454 .39765 L +.456 .39784 L +.458 .39802 L +.46 .3982 L +.462 .39836 L +.464 .39852 L +.466 .39868 L +.468 .39882 L +.47 .39895 L +.472 .39908 L +.474 .3992 L +.476 .39931 L +.478 .39942 L +.48 .39951 L +.482 .3996 L +.484 .39968 L +.486 .39975 L +.488 .39981 L +.49 .39986 L +.492 .39991 L +.494 .39995 L +.496 .39997 L +.498 .39999 L +Mistroke +.5 .4 L +.502 .4 L +.504 .39999 L +.506 .39997 L +.508 .39995 L +.51 .39991 L +.512 .39987 L +.514 .39982 L +.516 .39975 L +.518 .39969 L +.52 .39961 L +.522 .39952 L +.524 .39942 L +.526 .39932 L +.528 .39921 L +.53 .39909 L +.532 .39896 L +.534 .39882 L +.536 .39868 L +.538 .39852 L +.54 .39836 L +.542 .39819 L +.544 .39801 L +.546 .39783 L +.548 .39764 L +.55 .39743 L +.552 .39723 L +.554 .39701 L +.556 .39678 L +.558 .39655 L +.56 .39631 L +.562 .39607 L +.564 .39581 L +.566 .39555 L +.568 .39528 L +.57 .395 L +.572 .39472 L +.574 .39443 L +.576 .39413 L +.578 .39382 L +.58 .39351 L +.582 .39319 L +.584 .39286 L +.586 .39253 L +.588 .39219 L +.59 .39184 L +.592 .39149 L +.594 .39112 L +.596 .39076 L +.598 .39038 L +Mistroke +.6 .39 L +.602 .38961 L +.604 .38922 L +.606 .38882 L +.608 .38841 L +.61 .38799 L +.612 .38757 L +.614 .38714 L +.616 .3867 L +.618 .38626 L +.62 .3858 L +.622 .38534 L +.624 .38487 L +.626 .3844 L +.628 .38391 L +.63 .38342 L +.632 .38292 L +.634 .38241 L +.636 .38189 L +.638 .38136 L +.64 .38083 L +.642 .38028 L +.644 .37973 L +.646 .37916 L +.648 .37859 L +.65 .37801 L +.652 .37742 L +.654 .37681 L +.656 .3762 L +.658 .37558 L +.66 .37495 L +.662 .37431 L +.664 .37365 L +.666 .37299 L +.668 .37232 L +.67 .37163 L +.672 .37094 L +.674 .37023 L +.676 .36952 L +.678 .36879 L +.68 .36805 L +.682 .3673 L +.684 .36653 L +.686 .36576 L +.688 .36497 L +.69 .36417 L +.692 .36336 L +.694 .36254 L +.696 .36171 L +.698 .36086 L +Mistroke +.7 .36 L +.702 .35913 L +.704 .35824 L +.706 .35734 L +.708 .35643 L +.71 .35551 L +.712 .35457 L +.714 .35362 L +.716 .35266 L +.718 .35169 L +.72 .3507 L +.722 .3497 L +.724 .34868 L +.726 .34765 L +.728 .34661 L +.73 .34556 L +.732 .34449 L +.734 .34341 L +.736 .34232 L +.738 .34121 L +.74 .34009 L +.742 .33895 L +.744 .33781 L +.746 .33664 L +.748 .33547 L +.75 .33428 L +.752 .33308 L +.754 .33186 L +.756 .33063 L +.758 .32939 L +.76 .32813 L +.762 .32686 L +.764 .32557 L +.766 .32427 L +.768 .32296 L +.77 .32163 L +.772 .32029 L +.774 .31893 L +.776 .31756 L +.778 .31618 L +.78 .31478 L +.782 .31337 L +.784 .31194 L +.786 .3105 L +.788 .30904 L +.79 .30757 L +.792 .30609 L +.794 .30459 L +.796 .30307 L +.798 .30154 L +Mistroke +.8 .3 L +.802 .29844 L +.804 .29687 L +.806 .29527 L +.808 .29365 L +.81 .29201 L +.812 .29034 L +.814 .28864 L +.816 .2869 L +.818 .28514 L +.82 .28333 L +.822 .28149 L +.824 .2796 L +.826 .27766 L +.828 .27568 L +.83 .27365 L +.832 .27156 L +.834 .26942 L +.836 .26723 L +.838 .26497 L +.84 .26265 L +.842 .26026 L +.844 .2578 L +.846 .25528 L +.848 .25268 L +.85 .25 L +.852 .24724 L +.854 .24437 L +.856 .24137 L +.858 .23819 L +.86 .23481 L +.862 .2312 L +.864 .22733 L +.866 .22317 L +.868 .21868 L +.87 .21384 L +.872 .20862 L +.874 .20298 L +.876 .1969 L +.878 .19038 L +.88 .18345 L +.882 .17616 L +.884 .16853 L +.886 .16061 L +.888 .15243 L +.89 .14403 L +.892 .13544 L +.894 .12671 L +.896 .11787 L +.898 .10895 L +Mistroke +.9 .1 L +Mfstroke +1 0 0 r +.1 .1 m +.102 .12325 L +.104 .14204 L +.106 .15711 L +.108 .16912 L +.11 .17863 L +.112 .18613 L +.114 .19205 L +.116 .19675 L +.118 .20054 L +.12 .20368 L +.122 .20638 L +.124 .20883 L +.126 .21116 L +.128 .21348 L +.13 .21588 L +.132 .21842 L +.134 .22115 L +.136 .22408 L +.138 .22723 L +.14 .2306 L +.142 .23417 L +.144 .23792 L +.146 .24183 L +.148 .24587 L +.15 .25 L +.152 .25419 L +.154 .25839 L +.156 .26257 L +.158 .2667 L +.16 .27073 L +.162 .27464 L +.164 .27838 L +.166 .28194 L +.168 .28527 L +.17 .28837 L +.172 .2912 L +.174 .29376 L +.176 .29602 L +.178 .29799 L +.18 .29964 L +.182 .30099 L +.184 .30202 L +.186 .30274 L +.188 .30316 L +.19 .30329 L +.192 .30314 L +.194 .30271 L +.196 .30204 L +.198 .30113 L +Mistroke +.2 .3 L +.202 .29868 L +.204 .29719 L +.206 .29555 L +.208 .29378 L +.21 .29192 L +.212 .28998 L +.214 .28799 L +.216 .28597 L +.218 .28396 L +.22 .28198 L +.222 .28004 L +.224 .27818 L +.226 .27641 L +.228 .27476 L +.23 .27325 L +.232 .2719 L +.234 .27072 L +.236 .26974 L +.238 .26896 L +.24 .26841 L +.242 .26809 L +.244 .26801 L +.246 .26819 L +.248 .26862 L +.25 .26933 L +.252 .2703 L +.254 .27155 L +.256 .27307 L +.258 .27486 L +.26 .27692 L +.262 .27925 L +.264 .28184 L +.266 .28468 L +.268 .28777 L +.27 .2911 L +.272 .29465 L +.274 .29842 L +.276 .30238 L +.278 .30654 L +.28 .31087 L +.282 .31535 L +.284 .31998 L +.286 .32473 L +.288 .32959 L +.29 .33454 L +.292 .33956 L +.294 .34464 L +.296 .34975 L +.298 .35487 L +Mistroke +.3 .36 L +.302 .36511 L +.304 .37017 L +.306 .37518 L +.308 .38012 L +.31 .38497 L +.312 .38971 L +.314 .39432 L +.316 .3988 L +.318 .40312 L +.32 .40728 L +.322 .41125 L +.324 .41503 L +.326 .4186 L +.328 .42196 L +.33 .42509 L +.332 .42799 L +.334 .43065 L +.336 .43305 L +.338 .43521 L +.34 .4371 L +.342 .43873 L +.344 .44009 L +.346 .44119 L +.348 .44202 L +.35 .44259 L +.352 .44288 L +.354 .44292 L +.356 .4427 L +.358 .44222 L +.36 .44149 L +.362 .44053 L +.364 .43933 L +.366 .4379 L +.368 .43625 L +.37 .4344 L +.372 .43234 L +.374 .43011 L +.376 .42769 L +.378 .42512 L +.38 .42239 L +.382 .41953 L +.384 .41655 L +.386 .41346 L +.388 .41027 L +.39 .40701 L +.392 .40368 L +.394 .40029 L +.396 .39688 L +.398 .39344 L +Mistroke +.4 .39 L +.402 .38657 L +.404 .38316 L +.406 .37979 L +.408 .37647 L +.41 .37322 L +.412 .37005 L +.414 .36698 L +.416 .364 L +.418 .36115 L +.42 .35843 L +.422 .35585 L +.424 .35342 L +.426 .35115 L +.428 .34905 L +.43 .34713 L +.432 .3454 L +.434 .34386 L +.436 .34252 L +.438 .34138 L +.44 .34046 L +.442 .33974 L +.444 .33925 L +.446 .33897 L +.448 .33892 L +.45 .33908 L +.452 .33946 L +.454 .34006 L +.456 .34088 L +.458 .34191 L +.46 .34315 L +.462 .34459 L +.464 .34624 L +.466 .34808 L +.468 .3501 L +.47 .35231 L +.472 .35468 L +.474 .35722 L +.476 .35991 L +.478 .36274 L +.48 .36571 L +.482 .36879 L +.484 .37199 L +.486 .37528 L +.488 .37866 L +.49 .38211 L +.492 .38562 L +.494 .38918 L +.496 .39277 L +.498 .39638 L +Mistroke +.5 .4 L +.502 .40361 L +.504 .4072 L +.506 .41075 L +.508 .41425 L +.51 .4177 L +.512 .42106 L +.514 .42434 L +.516 .42752 L +.518 .43059 L +.52 .43353 L +.522 .43633 L +.524 .43899 L +.526 .44149 L +.528 .44381 L +.53 .44597 L +.532 .44793 L +.534 .4497 L +.536 .45126 L +.538 .45262 L +.54 .45376 L +.542 .45468 L +.544 .45538 L +.546 .45584 L +.548 .45607 L +.55 .45607 L +.552 .45583 L +.554 .45535 L +.556 .45464 L +.558 .45369 L +.56 .45251 L +.562 .4511 L +.564 .44946 L +.566 .4476 L +.568 .44552 L +.57 .44324 L +.572 .44074 L +.574 .43806 L +.576 .43518 L +.578 .43213 L +.58 .42891 L +.582 .42553 L +.584 .422 L +.586 .41834 L +.588 .41455 L +.59 .41066 L +.592 .40667 L +.594 .40259 L +.596 .39844 L +.598 .39424 L +Mistroke +.6 .39 L +.602 .38573 L +.604 .38145 L +.606 .37718 L +.608 .37292 L +.61 .3687 L +.612 .36453 L +.614 .36042 L +.616 .35638 L +.618 .35245 L +.62 .34861 L +.622 .3449 L +.624 .34133 L +.626 .3379 L +.628 .33463 L +.63 .33153 L +.632 .32861 L +.634 .32589 L +.636 .32337 L +.638 .32106 L +.64 .31897 L +.642 .31711 L +.644 .31549 L +.646 .3141 L +.648 .31296 L +.65 .31207 L +.652 .31143 L +.654 .31104 L +.656 .3109 L +.658 .31102 L +.66 .31139 L +.662 .31201 L +.664 .31287 L +.666 .31397 L +.668 .31531 L +.67 .31687 L +.672 .31866 L +.674 .32065 L +.676 .32285 L +.678 .32523 L +.68 .32779 L +.682 .33052 L +.684 .3334 L +.686 .33642 L +.688 .33955 L +.69 .3428 L +.692 .34613 L +.694 .34953 L +.696 .35299 L +.698 .35649 L +Mistroke +.7 .36 L +.702 .36351 L +.704 .367 L +.706 .37046 L +.708 .37385 L +.71 .37717 L +.712 .38039 L +.714 .38349 L +.716 .38647 L +.718 .38929 L +.72 .39194 L +.722 .3944 L +.724 .39667 L +.726 .39871 L +.728 .40053 L +.73 .4021 L +.732 .40341 L +.734 .40445 L +.736 .40521 L +.738 .40568 L +.74 .40586 L +.742 .40574 L +.744 .40531 L +.746 .40456 L +.748 .40351 L +.75 .40215 L +.752 .40048 L +.754 .3985 L +.756 .39622 L +.758 .39365 L +.76 .3908 L +.762 .38767 L +.764 .38427 L +.766 .38063 L +.768 .37676 L +.77 .37266 L +.772 .36837 L +.774 .3639 L +.776 .35927 L +.778 .35451 L +.78 .34962 L +.782 .34465 L +.784 .33962 L +.786 .33454 L +.788 .32945 L +.79 .32437 L +.792 .31932 L +.794 .31434 L +.796 .30944 L +.798 .30465 L +Mistroke +.8 .3 L +.802 .29551 L +.804 .29119 L +.806 .28707 L +.808 .28317 L +.81 .27949 L +.812 .27607 L +.814 .27289 L +.816 .26998 L +.818 .26733 L +.82 .26495 L +.822 .26284 L +.824 .26098 L +.826 .25937 L +.828 .258 L +.83 .25684 L +.832 .25587 L +.834 .25507 L +.836 .2544 L +.838 .25383 L +.84 .25332 L +.842 .25283 L +.844 .2523 L +.846 .25169 L +.848 .25094 L +.85 .25 L +.852 .24881 L +.854 .24731 L +.856 .24544 L +.858 .24315 L +.86 .24038 L +.862 .23707 L +.864 .23317 L +.866 .22866 L +.868 .22348 L +.87 .21763 L +.872 .21109 L +.874 .20386 L +.876 .19598 L +.878 .18748 L +.88 .17844 L +.882 .16895 L +.884 .15915 L +.886 .14921 L +.888 .13933 L +.89 .12978 L +.892 .12086 L +.894 .11295 L +.896 .10648 L +.898 .10197 L +Mistroke +.9 .1 L +Mfstroke +.5 .165 .165 r +.1 .1 m +.102 .12996 L +.104 .14232 L +.106 .15177 L +.108 .1597 L +.11 .16666 L +.112 .17293 L +.114 .17867 L +.116 .184 L +.118 .18898 L +.12 .19367 L +.122 .19812 L +.124 .20235 L +.126 .20639 L +.128 .21027 L +.13 .21399 L +.132 .21758 L +.134 .22104 L +.136 .22438 L +.138 .22762 L +.14 .23077 L +.142 .23382 L +.144 .23679 L +.146 .23968 L +.148 .24249 L +.15 .24524 L +.152 .24792 L +.154 .25053 L +.156 .25309 L +.158 .25559 L +.16 .25803 L +.162 .26043 L +.164 .26278 L +.166 .26507 L +.168 .26733 L +.17 .26954 L +.172 .27171 L +.174 .27384 L +.176 .27593 L +.178 .27798 L +.18 .28 L +.182 .28198 L +.184 .28393 L +.186 .28585 L +.188 .28773 L +.19 .28959 L +.192 .29141 L +.194 .29321 L +.196 .29498 L +.198 .29672 L +Mistroke +.2 .29843 L +.202 .30012 L +.204 .30178 L +.206 .30342 L +.208 .30503 L +.21 .30662 L +.212 .30819 L +.214 .30974 L +.216 .31126 L +.218 .31276 L +.22 .31424 L +.222 .3157 L +.224 .31714 L +.226 .31856 L +.228 .31996 L +.23 .32135 L +.232 .32271 L +.234 .32405 L +.236 .32538 L +.238 .32669 L +.24 .32798 L +.242 .32925 L +.244 .33051 L +.246 .33175 L +.248 .33298 L +.25 .33419 L +.252 .33538 L +.254 .33656 L +.256 .33772 L +.258 .33887 L +.26 .34 L +.262 .34112 L +.264 .34222 L +.266 .34331 L +.268 .34438 L +.27 .34545 L +.272 .34649 L +.274 .34753 L +.276 .34855 L +.278 .34956 L +.28 .35055 L +.282 .35153 L +.284 .3525 L +.286 .35346 L +.288 .3544 L +.29 .35533 L +.292 .35625 L +.294 .35716 L +.296 .35805 L +.298 .35894 L +Mistroke +.3 .35981 L +.302 .36067 L +.304 .36152 L +.306 .36235 L +.308 .36318 L +.31 .364 L +.312 .3648 L +.314 .36559 L +.316 .36638 L +.318 .36715 L +.32 .36791 L +.322 .36866 L +.324 .3694 L +.326 .37013 L +.328 .37085 L +.33 .37156 L +.332 .37226 L +.334 .37295 L +.336 .37363 L +.338 .3743 L +.34 .37495 L +.342 .3756 L +.344 .37624 L +.346 .37687 L +.348 .3775 L +.35 .37811 L +.352 .37871 L +.354 .3793 L +.356 .37989 L +.358 .38046 L +.36 .38102 L +.362 .38158 L +.364 .38213 L +.366 .38267 L +.368 .38319 L +.37 .38371 L +.372 .38423 L +.374 .38473 L +.376 .38522 L +.378 .38571 L +.38 .38618 L +.382 .38665 L +.384 .38711 L +.386 .38756 L +.388 .388 L +.39 .38843 L +.392 .38886 L +.394 .38927 L +.396 .38968 L +.398 .39008 L +Mistroke +.4 .39047 L +.402 .39086 L +.404 .39123 L +.406 .3916 L +.408 .39196 L +.41 .39231 L +.412 .39265 L +.414 .39298 L +.416 .39331 L +.418 .39363 L +.42 .39394 L +.422 .39424 L +.424 .39454 L +.426 .39482 L +.428 .3951 L +.43 .39537 L +.432 .39563 L +.434 .39589 L +.436 .39614 L +.438 .39637 L +.44 .39661 L +.442 .39683 L +.444 .39705 L +.446 .39725 L +.448 .39745 L +.45 .39765 L +.452 .39783 L +.454 .39801 L +.456 .39818 L +.458 .39834 L +.46 .3985 L +.462 .39864 L +.464 .39878 L +.466 .39891 L +.468 .39904 L +.47 .39916 L +.472 .39926 L +.474 .39937 L +.476 .39946 L +.478 .39955 L +.48 .39962 L +.482 .3997 L +.484 .39976 L +.486 .39982 L +.488 .39986 L +.49 .39991 L +.492 .39994 L +.494 .39997 L +.496 .39998 L +.498 .4 L +Mistroke +.5 .4 L +.502 .4 L +.504 .39998 L +.506 .39997 L +.508 .39994 L +.51 .39991 L +.512 .39986 L +.514 .39982 L +.516 .39976 L +.518 .3997 L +.52 .39962 L +.522 .39955 L +.524 .39946 L +.526 .39937 L +.528 .39926 L +.53 .39916 L +.532 .39904 L +.534 .39891 L +.536 .39878 L +.538 .39864 L +.54 .3985 L +.542 .39834 L +.544 .39818 L +.546 .39801 L +.548 .39783 L +.55 .39765 L +.552 .39745 L +.554 .39725 L +.556 .39705 L +.558 .39683 L +.56 .39661 L +.562 .39637 L +.564 .39614 L +.566 .39589 L +.568 .39563 L +.57 .39537 L +.572 .3951 L +.574 .39482 L +.576 .39454 L +.578 .39424 L +.58 .39394 L +.582 .39363 L +.584 .39331 L +.586 .39298 L +.588 .39265 L +.59 .39231 L +.592 .39196 L +.594 .3916 L +.596 .39123 L +.598 .39086 L +Mistroke +.6 .39047 L +.602 .39008 L +.604 .38968 L +.606 .38927 L +.608 .38886 L +.61 .38843 L +.612 .388 L +.614 .38756 L +.616 .38711 L +.618 .38665 L +.62 .38618 L +.622 .38571 L +.624 .38522 L +.626 .38473 L +.628 .38423 L +.63 .38371 L +.632 .38319 L +.634 .38267 L +.636 .38213 L +.638 .38158 L +.64 .38102 L +.642 .38046 L +.644 .37989 L +.646 .3793 L +.648 .37871 L +.65 .37811 L +.652 .3775 L +.654 .37687 L +.656 .37624 L +.658 .3756 L +.66 .37495 L +.662 .3743 L +.664 .37363 L +.666 .37295 L +.668 .37226 L +.67 .37156 L +.672 .37085 L +.674 .37013 L +.676 .3694 L +.678 .36866 L +.68 .36791 L +.682 .36715 L +.684 .36638 L +.686 .36559 L +.688 .3648 L +.69 .364 L +.692 .36318 L +.694 .36235 L +.696 .36152 L +.698 .36067 L +Mistroke +.7 .35981 L +.702 .35894 L +.704 .35805 L +.706 .35716 L +.708 .35625 L +.71 .35533 L +.712 .3544 L +.714 .35346 L +.716 .3525 L +.718 .35153 L +.72 .35055 L +.722 .34956 L +.724 .34855 L +.726 .34753 L +.728 .34649 L +.73 .34545 L +.732 .34438 L +.734 .34331 L +.736 .34222 L +.738 .34112 L +.74 .34 L +.742 .33887 L +.744 .33772 L +.746 .33656 L +.748 .33538 L +.75 .33419 L +.752 .33298 L +.754 .33175 L +.756 .33051 L +.758 .32925 L +.76 .32798 L +.762 .32669 L +.764 .32538 L +.766 .32405 L +.768 .32271 L +.77 .32135 L +.772 .31996 L +.774 .31856 L +.776 .31714 L +.778 .3157 L +.78 .31424 L +.782 .31276 L +.784 .31126 L +.786 .30974 L +.788 .30819 L +.79 .30662 L +.792 .30503 L +.794 .30342 L +.796 .30178 L +.798 .30012 L +Mistroke +.8 .29843 L +.802 .29672 L +.804 .29498 L +.806 .29321 L +.808 .29141 L +.81 .28959 L +.812 .28773 L +.814 .28585 L +.816 .28393 L +.818 .28198 L +.82 .28 L +.822 .27798 L +.824 .27593 L +.826 .27384 L +.828 .27171 L +.83 .26954 L +.832 .26733 L +.834 .26507 L +.836 .26278 L +.838 .26043 L +.84 .25803 L +.842 .25559 L +.844 .25309 L +.846 .25053 L +.848 .24792 L +.85 .24524 L +.852 .24249 L +.854 .23968 L +.856 .23679 L +.858 .23382 L +.86 .23077 L +.862 .22762 L +.864 .22438 L +.866 .22104 L +.868 .21758 L +.87 .21399 L +.872 .21027 L +.874 .20639 L +.876 .20235 L +.878 .19812 L +.88 .19367 L +.882 .18898 L +.884 .184 L +.886 .17867 L +.888 .17293 L +.89 .16666 L +.892 .1597 L +.894 .15177 L +.896 .14232 L +.898 .12996 L +Mistroke +.9 .1 L +Mfstroke +0 0 1 r +.1 .1 m +.105 .15 L +.125 .21 L +.15 .25 L +.2 .3 L +.3 .36 L +.4 .39 L +.5 .4 L +.6 .39 L +.7 .36 L +.8 .3 L +.85 .25 L +.875 .2 L +.9 .1 L +s +5 Mabswid +.1 .1 Mdot +.105 .15 Mdot +.125 .21 Mdot +.15 .25 Mdot +.2 .3 Mdot +.3 .36 Mdot +.4 .39 Mdot +.5 .4 Mdot +.6 .39 Mdot +.7 .36 Mdot +.8 .3 Mdot +.85 .25 Mdot +.875 .2 Mdot +.9 .1 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{874, 437}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg`3oool5 +0000ofD0oooo00<000000?ooo`3oool0203oool00`000000oooo0000000F0?ooo`00403ooom>0000 +00D0003oo`00003o000007/000001@000?m>000001P0oooo0P0000090?ooo`030000003oool0oooo +01D0oooo000h0?ooo`030000003oool0oooo02<0oooo1@000?lU0?ooo`030000003oool0oooo02D0 +oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0T0?ooo`030000003oool0oooo02D0 +oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0U0?ooo`030000003oool0oooo02D0 +oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0U0?ooo`030000003oool0oooo02D0 +oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0U0?ooo`030000003oool0oooo02@0 +oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0S0?ooo`D0003o9@3oool00`000000 +oooo0?ooo`0m0?ooo`030000003oool0oooo00L0oooo0P0000000`3oool000000000000E0?ooo`00 +>03oool00`000000oooo0?ooo`0T0?ooo`<0003o9P3oool00`000000oooo0?ooo`0U0?ooo`030000 +003oool0oooo02D0oooo00<000000?ooo`3oool0903oool00`000000oooo0?ooo`0U0?ooo`030000 +003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0U0?ooo`030000 +003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0U0?ooo`030000 +003oool0oooo02D0oooo00<000000?ooo`3oool09@3oool00`000000oooo0?ooo`0T0?ooo`030000 +003oool0oooo02D0oooo00<000000?ooo`3oool08`3oool0103o0000003o0000o`000?lV0?ooo`03 +0000003oool0oooo03`0oooo00<000000?ooo`3oool08P3oool003P0oooo00<000000?ooo`3oool0 +9@3oool00`000?l0oooo0?ooo`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool0 +9@3oool00`000000oooo0?ooo`0T0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool0 +9@3oool00`000000oooo0?ooo`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool0 +9@3oool00`000000oooo0?ooo`0U0?ooo`030000003oool0oooo02D0oooo00<000000?ooo`3oool0 +9@3oool00`000000oooo0?ooo`0U0?ooo`030000003oool0oooo02@0oooo00<000000?ooo`3oool0 +9@3oool00`000000oooo0?ooo`0S0?ooo`030?l000000?l0ObXZ02L0oooo00<000000?ooo`3oool0 +H@3oool00600oooo00<0003o0?ooo`3oool0W03oool00`000000oooo0?ooo`2M0?ooo`030000003o +ool0oooo09d0oooo00<000000?ooo`3oool0V@3oool0103o0000oooo0000o`1o:RZ;0?ooo`00H03o +ool00`000?l0oooo0?ooo`2L0?ooo`030000003oool0oooo09d0oooo00<000000?ooo`3oool0W@3o +ool00`000000oooo0?ooo`2I0?ooo`040?l0003oool0003o07lZ:X/0oooo001P0?ooo`0307lZ:P00 +0?l0oooo0?l0oooo?@3oool00`000000oooo0?ooo`3o0?ooocX0oooo00@0o`000000o`00o`00ObXZ +R`3oool00600oooo00<0ObXZ0000o`3oool0o`3ooolm0?ooo`030000003oool0oooo0?l0oooo>@3o +ool01@3o0000oooo0000o`00o`00ObXZ08/0oooo001P0?ooo`0307lZ:P000?l0oooo0?l0oooo?@3o +ool00`000000oooo0?ooo`3o0?ooocT0oooo00D0o`000?ooo`000?l00?l007lZ:P2;0?ooo`00H03o +ool00`1o:RX0003o0?ooo`3o0?ooocd0oooo00<000000?ooo`3oool0o`3ooolh0?ooo`060?l0003o +ool0oooo0000o`3oool0ObXZR`3oool00600oooo00<0ObXZ0000o`3oool0o`3ooolm0?ooo`030000 +003oool0oooo0?l0oooo>03oool01P3o0000oooo0000o`00o`00oooo07lZ:X/0oooo001P0?ooo`03 +07lZ:P000?l0oooo0?l0oooo?@3oool00`000000oooo0?ooo`3o0?ooocP0oooo00H0o`000?ooo`00 +0?l00?l00?ooo`1o:RZ;0?ooo`00H03oool00`1o:RX0003o0?ooo`3o0?ooocd0oooo00<000000?oo +o`3oool0o`3ooolh0?ooo`050?l0003oool0003o003o001o:RX0S03oool00640oooo00<0003o0?oo +o`3oool0o`3oooll0?ooo`030000003oool0oooo0?l0oooo=`3oool01P3o0000oooo0?ooo`000?l0 +oooo07lZ:X`0oooo001Q0?ooo`030000o`3oool0oooo0?l0oooo?03oool00`000000oooo0?ooo`3o +0?ooocL0oooo00H0o`000?ooo`000?l00?l00?ooo`1o:RZ<0?ooo`00H@3oool00`000?l0oooo0?oo +o`3o0?oooc`0oooo00<000000?ooo`3oool0o`3ooolg0?ooo`060?l0003oool0003o003o003oool0 +ObXZS03oool00640oooo00<0ObXZ0000o`3oool0o`3oooll0?ooo`@00000o`3ooolf0?ooo`030?l0 +003oool0003o0080oooo00<0ObXZ0?ooo`3oool0RP3oool00640oooo00<0ObXZ0000o`3oool0o`3o +ooll0?ooo`030000003oool0oooo0?l0oooo=`3oool00`3o0000oooo0000o`020?ooo`0307lZ:P3o +ool0oooo08X0oooo001Q0?ooo`0307lZ:P000?l0oooo0?l0oooo?03oool00`000000oooo0?ooo`3o +0?ooocH0oooo00@0o`000?ooo`000?l00?l00P3oool00`1o:RX0oooo0?ooo`2:0?ooo`00H@3oool0 +0`1o:RX0003o0?ooo`3o0?oooc`0oooo00<000000?ooo`3oool0o`3ooolf0?ooo`040?l0003oool0 +003o003o0080oooo00<0ObXZ0?ooo`3oool0RP3oool00640oooo00<0ObXZ0000o`3oool0o`3oooll +0?ooo`030000003oool0oooo0?l0oooo=P3oool00`3o0000oooo0000o`030?ooo`0307lZ:P3oool0 +oooo08X0oooo001Q0?ooo`0307lZ:P000?l0oooo0?l0oooo?03oool00`000000oooo0?ooo`3o0?oo +ocH0oooo00<0o`000?ooo`000?l00`3oool00`1o:RX0oooo0?ooo`2:0?ooo`00H@3oool00`1o:RX0 +003o0?ooo`3o0?oooc`0oooo00<000000?ooo`3oool0o`3ooole0?ooo`040?l0003oool0003o003o +00<0oooo00<0ObXZ0?ooo`3oool0RP3oool00640oooo00<0ObXZ0000o`3oool0o`3oooll0?ooo`03 +0000003oool0oooo0?l0oooo=@3oool0103o0000oooo0000o`00o`030?ooo`0307lZ:P3oool0oooo +08X0oooo001Q0?ooo`0307lZ:P000?l0oooo0?l0oooo?03oool00`000000oooo0?ooo`3o0?ooocD0 +oooo00@0o`000?ooo`000?l00?l00`3oool00`1o:RX0oooo0?ooo`2:0?ooo`00H@3oool00`1o:RX0 +003o0?ooo`3o0?oooc`0oooo00<000000?ooo`3oool0o`3ooole0?ooo`030?l0003oool0003o00@0 +oooo00<0ObXZ0?ooo`3oool0RP3oool00640oooo00<0ObXZ0?l000000?l0o`3oooll0?ooo`030000 +003oool0oooo0?l0oooo=@3oool00`3o0000003o003o00040?ooo`0307lZ:P3oool0oooo08X0oooo +001R0?ooo`0307lZ:P000?l0oooo0?l0oooo>`3oool00`000000oooo0?ooo`3o0?ooocD0oooo00<0 +o`000000o`00o`000`3oool00`1o:RX0oooo0?ooo`2;0?ooo`00HP3oool00`1o:RX0003o0?ooo`3o +0?oooc/0oooo00<000000?ooo`3oool0o`3ooold0?ooo`040?l0003oool0003o003o00<0oooo00<0 +ObXZ0?ooo`3oool0R`3oool00680oooo00<0ObXZ0000o`3oool0o`3ooolk0?ooo`030000003oool0 +oooo0?l0oooo=03oool0103o0000oooo0000o`00o`030?ooo`0307lZ:P3oool0oooo08/0oooo001R +0?ooo`0307lZ:P000?l0oooo0?l0oooo>`3oool00`000000oooo0?ooo`3o0?oooc@0oooo00<0o`00 +0000o`00o`00103oool00`1o:RX0oooo0?ooo`2;0?ooo`00HP3oool00`1o:RX0003o0?ooo`3o0?oo +oc/0oooo00<000000?ooo`3oool0o`3ooold0?ooo`030?l000000?l00?l000@0oooo00<0ObXZ0?oo +o`3oool0R`3oool006<0oooo00<0003o0?ooo`3oool0o`3ooolj0?ooo`@00000o`3ooolc0?ooo`03 +0?l000000?l00?l000<0oooo00<0ObXZ0?ooo`3oool0S03oool006<0oooo00<0003o0?ooo`3oool0 +o`3ooolj0?ooo`030000003oool0oooo0?l0oooo<`3oool0103o0000oooo0000o`00o`030?ooo`03 +07lZ:P3oool0oooo08`0oooo001S0?ooo`030000o`3oool0oooo0?l0oooo>P3oool00`000000oooo +0?ooo`3o0?oooc<0oooo00<0o`000000o`00o`00103oool00`1o:RX0oooo0?ooo`2<0?ooo`00H`3o +ool00`000?l0oooo0?ooo`3o0?ooocX0oooo00<000000?ooo`3oool0o`3ooolc0?ooo`030?l00000 +0?l00?l000@0oooo00<0ObXZ0?ooo`3oool0S03oool006<0oooo00<0o`000000o`3oool0o`3ooolj +0?ooo`030000003oool0oooo0?l0oooo<`3oool00`3o0000003o003o00030?ooo`0307lZ:P3oool0 +oooo08d0oooo001T0?ooo`030000o`3oool0oooo0?l0oooo>@3oool00`000000oooo0?ooo`3o0?oo +oc80oooo00@0o`000?ooo`000?l00?l00`3oool00`1o:RX0oooo0?ooo`2=0?ooo`00H`3oool30000 +ool0oooo>P3oool00`000000oooo0?ooo`3o0?oooc80oooo00@0o`000000o`3oool00?l00`3oool0 +0`1o:RX0oooo0?ooo`2=0?ooo`00HP3oool50000ool0oooo>@3oool00`000000oooo0?ooo`3o0?oo +oc80oooo00<0o`000000o`00o`00103oool00`1o:RX0oooo0?ooo`2=0?ooo`00HP3oool50000ool0 +oooo>@3oool00`000000oooo0?ooo`3o0?oooc80oooo00<0o`000000o`00o`000`3oool00`1o:RX0 +oooo0?ooo`2>0?ooo`00HP3oool50000ool0oooo>@3oool00`000000oooo0?ooo`3o0?oooc40oooo +00@0o`000?ooo`000?l00?l00`3oool00`1o:RX0oooo0?ooo`2>0?ooo`00H`3oool30000ool0oooo +>P3oool00`000000oooo0?ooo`3o0?oooc40oooo00@0o`000000o`3oool00?l00`3oool00`1o:RX0 +oooo0?ooo`2>0?ooo`00I@3oool00`000?l0oooo0?ooo`3o0?ooocP0oooo00<000000?ooo`3oool0 +o`3ooola0?ooo`040?l000000?l0oooo003o00<0oooo00<0ObXZ0?ooo`3oool0SP3oool006D0oooo +00<0003o0?ooo`3oool0o`3ooolh0?ooo`030000003oool0oooo0?l0oooo<@3oool00`3o0000003o +003o00030?ooo`0307lZ:P3oool0oooo08l0oooo001U0?ooo`030?l000000?l0oooo0?l0oooo>03o +ool00`000000oooo0?ooo`3o0?oooc00oooo00@0o`000?ooo`000?l00?l00`3oool00`1o:RX0oooo +0?ooo`2?0?ooo`00I@3oool00`3o0000003o0?ooo`3o0?ooocP0oooo00<000000?ooo`3oool0o`3o +ool`0?ooo`040?l000000?l0oooo003o00<0oooo00<0ObXZ0?ooo`3oool0S`3oool006D0oooo00<0 +o`000000o`3oool0o`3ooolh0?ooo`030000003oool0oooo0?l0oooo<03oool00`3o0000003o003o +00040?ooo`0307lZ:P3oool0oooo08l0oooo001U0?ooo`030?l0001o:RX0003o0?l0oooo>03oool4 +00000?l0oooo;`3oool00`3o0000003o003o00040?ooo`0307lZ:P3oool0oooo08l0oooo001U0?oo +o`030?l0003oool0003o0?l0oooo>03oool00`000000oooo0?ooo`3o0?oooc00oooo00<0o`000000 +o`00o`000`3oool00`1o:RX0oooo0?ooo`2@0?ooo`00I@3oool00`3o0000oooo0000o`3o0?ooocP0 +oooo00<000000?ooo`3oool0o`3oool`0?ooo`030000o`00o`00oooo00<0oooo00<0ObXZ0?ooo`3o +ool0T03oool006D0oooo00@00?l00?l0001o:RX0003oo`3ooolg0?ooo`030000003oool0oooo0?l0 +oooo;`3oool00`3o0000003o003o00040?ooo`0307lZ:P3oool0oooo0900oooo001V0?ooo`030?l0 +003oool0003o0?l0oooo=`3oool00`000000oooo0?ooo`3o0?ooobl0oooo00<0o`000000o`00o`00 +0`3oool00`1o:RX0oooo0?ooo`2A0?ooo`00IP3oool00`3o0000oooo0000o`3o0?ooocL0oooo00<0 +00000?ooo`3oool0o`3oool_0?ooo`030?l000000?l0oooo00<0oooo00<0ObXZ0?ooo`3oool0T@3o +ool006H0oooo00@0o`000?ooo`1o:RX0003oo`3ooolf0?ooo`030000003oool0oooo0?l0oooo;`3o +ool00`000?l00?l00?ooo`030?ooo`0307lZ:P3oool0oooo0940oooo001V0?ooo`040?l0003oool0 +ObXZ0000ool0oooo=P3oool00`000000oooo0?ooo`3o0?ooobl0oooo00<0003o003o003oool00`3o +ool00`1o:RX0oooo0?ooo`2A0?ooo`00IP3oool0103o0000oooo0?ooo`000?oo0?ooocH0oooo00<0 +00000?ooo`3oool0o`3oool_0?ooo`030000o`00o`00oooo0080oooo00<0ObXZ0?ooo`3oool0TP3o +ool006H0oooo00D0o`000?ooo`3oool0ObXZ0000o`3o0?ooocD0oooo00<000000?ooo`3oool0o`3o +ool^0?ooo`030?l000000?l00?l000<0oooo00<0ObXZ0?ooo`3oool0TP3oool006H0oooo00D00?l0 +0?l0003oool0ObXZ0000o`3o0?ooocD0oooo00<000000?ooo`3oool0o`3oool^0?ooo`030000o`00 +o`00oooo00<0oooo00<0ObXZ0?ooo`3oool0TP3oool006H0oooo00D00?l00?l0003oool0ObXZ0000 +o`3o0?ooocD0oooo00<000000?ooo`3oool0o`3oool^0?ooo`030000o`00o`00oooo00<0oooo00<0 +ObXZ0?ooo`3oool0TP3oool006L0oooo00D0o`000?ooo`3oool0ObXZ0000o`3o0?oooc@0oooo00<0 +00000?ooo`3oool0o`3oool^0?ooo`030000o`00o`00oooo0080oooo00<0ObXZ0?ooo`3oool0T`3o +ool006L0oooo00D0o`000?ooo`3oool0ObXZ0000o`3o0?oooc@0oooo00<000000?ooo`3oool0o`3o +ool]0?ooo`030?l000000?l00?l000<0oooo00<0ObXZ0?ooo`3oool0T`3oool006L0oooo00D00?l0 +0?l0003oool0oooo0000o`3o0?oooc@0oooo00<000000?ooo`3oool0o`3oool]0?ooo`030000o`3o +ool00?l00080oooo00<0ObXZ0?ooo`3oool0U03oool006L0oooo00H00?l00?l0003oool0oooo07lZ +:P000?oo0?oooc<0oooo00<000000?ooo`3oool0o`3oool]0?ooo`030000o`00o`00oooo0080oooo +00<0ObXZ0?ooo`3oool0U03oool006P0oooo00D0o`000?ooo`3oool0ObXZ0000o`3o0?oooc<0oooo +1000003o0?ooob`0oooo00D0003o003o003oool0oooo07lZ:P2G0?ooo`00J03oool01@3o0000oooo +0?ooo`3oool0003o0?l0oooo<`3oool00`000000oooo0?ooo`3o0?ooobd0oooo00D0003o0?ooo`3o +ool0oooo07lZ:P2G0?ooo`00J03oool01P3o0000oooo0?ooo`3oool0ObXZ0000ool0oooo0?ooo`030?l0003oool0oooo02`0oooo00<0o`000?ooo`3oool0]@3oool00`000000oooo0?oo +o`3`0?ooo`040?l0003oool0oooo0000o`80oooo00<00?l00?ooo`3oool0c`3oool009X0oooo00<0 +o`000?ooo`3oool0203oool2003o0080oooo00<0ObXZ0000o`3oool0303oool00`3o0000oooo0?oo +o`0]0?ooo`030?l0003oool0oooo0;@0oooo00<000000?ooo`3oool0k`3oool01@3o0000oooo0?oo +o`000?l0ObXZ00800?l0dP3oool009/0oooo00<0o`000?ooo`3oool02@3oool2003o00030?ooo`1o +:RX0003o00X0oooo0P3o000`0?ooo`030?l0003oool0oooo0;@0oooo00<000000?ooo`3oool0k`3o +ool01@3o0000oooo0000o`1o:RX00?l00=@0oooo002K0?ooo`030?l0003oool0oooo00/0oooo00@0 +0?l00?ooo`3oool0003o203oool00`3o0000oooo0?ooo`0a0?ooo`030?l0003oool0oooo0;<0oooo +00<000000?ooo`3oool0kP3oool01@3o0000oooo0000o`3oool00?l00=D0oooo002L0?ooo`030?l0 +003oool0oooo00/0oooo0P00o`000`3oool0003o0?ooo`050?ooo`030?l0003oool0oooo03<0oooo +00<0o`000?ooo`3oool0/P3oool00`000000oooo0?ooo`3^0?ooo`040?l000000?l0oooo003o0=H0 +oooo002M0?ooo`030?l0003oool0oooo00`0oooo00<00?l00?ooo`000?l00`000?l00`3oool0o`00 +0?ooo`0e0?ooo`030?l0003oool0oooo0:<0oooo1000000;0?ooo`030000003oool0oooo0>/0oooo +10000?l00`3oool00?l00?ooo`3F0?ooo`00WP3oool00`3o0000oooo0?ooo`0<0?ooo`03003o0000 +0?l0003o00<0003o>03oool00`3o0000oooo0?ooo`2R0?ooo`030000003oool0oooo00`0oooo00<0 +00000?ooo`3oool0jP3oool50000o`03003o003oool0oooo0=H0oooo002O0?ooo`80o`003@3oool5 +0000ocP0oooo00<0o`000?ooo`3oool0X`3oool00`000000oooo0?ooo`0;0?ooo`H00000i`3oool5 +0000omT0oooo002Q0?ooo`030?l0003oool0oooo00X0oooo1@000?li0?ooo`030?l0003oool0oooo +0:<0oooo00<000000?ooo`3oool02P3oool00`000000oooo0?ooo`3Z0?ooo`D0003of@3oool00:80 +oooo0P3o00080?ooo`80o`0000D0oooo0000o`000?l0003o003o00020000ocL0oooo00<0o`000?oo +o`3oool0X@3oool010000000oooo0?ooo`00000;0?ooo`030000003oool0oooo0>P0oooo0P000?l0 +103oool0003o0000o`000?oJ0?ooo`00Y03oool80?l000L0oooo00<00?l007lZ:P000?l0=P3oool0 +0`3o0000oooo0?ooo`2R0?ooo`800000303oool00`000000oooo0?ooo`3W0?ooo`050000o`1o:RX0 +0?l0003o003o0000g03oool00;@0oooo00@00?l007lZ:P000?l0003o=@3oool00`3o0000oooo0?oo +o`2_0?ooo`030000003oool0oooo0>D0oooo0P000?l01@1o:RX00?l00?ooo`3oool0o`000=`0oooo +002e0?ooo`800?l000<0ObXZ0000o`000?l0<`3oool00`3o0000oooo0?ooo`2_0?ooo`030000003o +ool0oooo0><0oooo0P000?l00`1o:RX00?l0003o00020?ooo`030?l0003oool0oooo0=/0oooo002g +0?ooo`04003o001o:RX0oooo0000oc<0oooo00<0o`000?ooo`3oool0[P3oool00`000000oooo0?oo +o`3R0?ooo`040000o`3oool0ObXZ003o00@0oooo00<0o`000?ooo`3oool0f`3oool00;T0oooo00@0 +ObXZ0?ooo`000?l0003o<@3oool00`3o0000oooo0?ooo`2^0?ooo`030000003oool0oooo0>00oooo +0P000?l00`3oool0ObXZ0?ooo`040?ooo`030?l0003oool0oooo0=`0oooo002j0?ooo`80ObXZ00<0 +oooo0000o`3oool0<03oool00`3o0000oooo0?ooo`2]0?ooo`030000003oool0oooo0=l0oooo00D0 +003o0?ooo`1o:RX0ObXZ003o00050?ooo`030?l0003oool0oooo0=`0oooo002l0?ooo`0407lZ:P3o +ool0003o0000obl0oooo00<0o`000?ooo`3oool0[@3oool00`000000oooo0?ooo`1h0?ooo`H0o`00 +G`3oool20000o`040?ooo`1o:RX00?l0003o00H0oooo00<0o`000?ooo`3oool0g03oool00;d0oooo +00<0ObXZ003o003oool00P000?l]0?ooo`030?l0003oool0oooo0:d0oooo00<000000?ooo`3oool0 +M@3oool30?l000H0oooo00<0o`000?ooo`3oool0FP3oool20000o`80oooo00<0ObXZ003o003oool0 +1P3oool00`3o0000oooo0?ooo`3M0?ooo`00_P3oool01@1o:RX00?l0003o003oool0003o02d0oooo +00<0o`000?ooo`3oool0[03oool00`000000oooo0?ooo`1c0?ooo`80o`002P3oool20?l005T0oooo +00H0003o0?ooo`3oool0oooo07lZ:P00o`080?ooo`030?l0003oool0oooo0=d0oooo002o0?ooo`80 +ObXZ00@00?l00?ooo`000?l0003o:`3oool00`3o0000oooo0?ooo`2/0?ooo`030000003oool0oooo +0780oooo00<0o`000?ooo`3oool0303oool00`3o0000oooo0?ooo`1D0?ooo`80003o0P3oool207lZ +:PX0oooo00<0o`000?ooo`3oool0g@3oool00<40oooo00@0ObXZ003o0000o`00oooo0P000?lZ0?oo +o`030?l0003oool0oooo0:/0oooo00<000000?ooo`3oool0L03oool20?l00100oooo0P3o001B0?oo +o`80003o0`3oool00`1o:RX0oooo0?ooo`090?ooo`030?l0003oool0oooo0=h0oooo00320?ooo`80 +ObXZ00@00?l00?ooo`3oool0003o:P3oool00`3o0000oooo0?ooo`2Z0?ooo`030000003oool0oooo +06h0oooo0P3o000D0?ooo`80o`00C`3oool010000?l0oooo0?ooo`3oool207lZ:P`0oooo00<0o`00 +0?ooo`3oool0gP3oool00<@0oooo00@0ObXZ003o0000o`00oooo0P000?lX0?ooo`030?l0003oool0 +oooo0:X0oooo00<000000?ooo`3oool0K@3oool00`3o0000oooo0?ooo`0F0?ooo`030?l0003oool0 +oooo04X0oooo0P000?l30?ooo`0307lZ:P3oool0oooo00/0oooo00<0o`000?ooo`3oool0g`3oool0 +00?ooo`030?l0003oool0oooo0>40oooo003:0?oo +o`80ObXZ00<0oooo003o0000o`000P3oool00`000?l0oooo0?ooo`0P0?ooo`030?l0003oool0oooo +0:P0oooo00<000000?ooo`3oool0J@3oool00`3o0000oooo0?ooo`0N0?ooo`030?l0003oool0oooo +03h0oooo00<0003o0?ooo`3oool00`3oool207lZ:Q40oooo00<0o`000?ooo`3oool0h@3oool00<`0 +oooo00<0ObXZ0?ooo`3oool00P00o`000`3oool0003o0000o`0P0?ooo`030?l0003oool0oooo0:P0 +oooo00<000000?ooo`3oool0J03oool00`3o0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo03/0 +oooo0P000?l50?ooo`0307lZ:P3oool0oooo0140oooo00<0o`000?ooo`3oool0h@3oool0080oooo003B0?ooo`80ObXZ00<0oooo003o0000o`000P3oool0 +0`000?l0oooo0?ooo`0J0?ooo`030?l0003oool0oooo0:H0oooo00<000000?ooo`3oool0I@3oool0 +0`3o0000oooo0?ooo`0V0?ooo`030?l0003oool0oooo0380oooo00<0003o0?ooo`3oool00`3oool2 +07lZ:QL0oooo00<0o`000?ooo`3oool0h`3oool00=@0oooo00<0ObXZ0?ooo`3oool00P00o`000`3o +ool0003o0000o`0J0?ooo`030?l0003oool0oooo0:H0oooo00<000000?ooo`3oool0I@3oool00`3o +0000oooo0?ooo`0W0?ooo`030?l0003oool0oooo02l0oooo0P000?l50?ooo`0307lZ:P3oool0oooo +01L0oooo00<0o`000?ooo`3oool0h`3oool00=D0oooo0P1o:RX20?ooo`03003o003oool0oooo0080 +003o6@3oool00`3o0000oooo0?ooo`2U0?ooo`030000003oool0oooo06@0oooo00<0o`000?ooo`3o +ool0:@3oool00`3o0000oooo0?ooo`0/0?ooo`80003o1@3oool207lZ:QT0oooo00<0o`000?ooo`3o +ool0i03oool00=L0oooo0P1o:RX00`3oool00?l0003o00020?ooo`030000o`3oool0oooo01H0oooo +00<0o`000?ooo`3oool0Y@3oool00`000000oooo0?ooo`1S0?ooo`030?l0003oool0oooo02X0oooo +00<0o`000?ooo`3oool0:`3oool00`000?l0oooo0?ooo`040?ooo`0307lZ:P3oool0oooo01T0oooo +00<0o`000?ooo`3oool0i03oool00=T0oooo00@0ObXZ0?ooo`3oool00?l00P3oool20000oaH0oooo +00<0o`000?ooo`3oool0Y@3oool00`000000oooo0?ooo`1S0?ooo`030?l0003oool0oooo02/0oooo +00<0o`000?ooo`3oool0:03oool20000o`D0oooo0P1o:RXL0?ooo`030?l0003oool0oooo0>@0oooo +003J0?ooo`<0ObXZ0P00o`020?ooo`80003o5@3oool00`3o0000oooo0?ooo`2T0?ooo`030000003o +ool0oooo0680oooo00<0o`000?ooo`3oool0;@3oool00`3o0000oooo0?ooo`0U0?ooo`80003o103o +ool307lZ:Qd0oooo00<0o`000?ooo`3oool0i@3oool00=d0oooo0P1o:RX2003o0080oooo00<0003o +0?ooo`3oool04P3oool00`3o0000oooo0?ooo`1i0?ooo`<0o`00:03oool00`000000oooo0?ooo`1R +0?ooo`030?l0003oool0oooo02d0oooo00<0o`000?ooo`3oool0903oool00`000?l0oooo0?ooo`02 +0?ooo`80ObXZ00<00?l00?ooo`3oool07@3oool00`3o0000oooo0?ooo`3U0?ooo`00g`3oool207lZ +:P03003o003oool0oooo0080003o4`3oool00`3o0000oooo0?ooo`1e0?ooo`<0o`000`3oool40?l0 +02@0oooo1000001P0?ooo`030?l0003oool0oooo02l0oooo00<0o`000?ooo`3oool08@3oool20000 +o`@0oooo00<0ObXZ0?ooo`3oool0803oool00`3o0000oooo0?ooo`3U0?ooo`00h@3oool00`1o:RX0 +0?l0003o00020?ooo`80003o4@3oool00`3o0000oooo0?ooo`1b0?ooo`<0o`002P3oool20?l00280 +oooo00<000000?ooo`3oool0H03oool00`3o0000oooo0?ooo`0a0?ooo`030?l0003oool0oooo01h0 +oooo0P000?l40?ooo`80ObXZ8P3oool00`3o0000oooo0?ooo`3V0?ooo`00hP3oool207lZ:P05003o +003oool0oooo0?ooo`000?l04@3oool00`3o0000oooo0?ooo`1_0?ooo`80o`003`3oool20?l00200 +oooo00<000000?ooo`3oool0G`3oool00`3o0000oooo0?ooo`0b0?ooo`030?l0003oool0oooo01d0 +oooo00<0003o0?ooo`3oool00P3oool207lZ:R@0oooo00<0o`000?ooo`3oool0iP3oool00>@0oooo +00<0ObXZ003o0000o`000P3oool20000o`l0oooo00<0o`000?ooo`3oool0K@3oool20?l001<0oooo +00<0o`000?ooo`3oool07@3oool00`000000oooo0?ooo`1O0?ooo`030?l0003oool0oooo03<0oooo +00<0o`000?ooo`3oool06P3oool20000o`@0oooo00<0ObXZ0?ooo`3oool08`3oool00`3o0000oooo +0?ooo`3W0?ooo`00i@3oool207lZ:P04003o003oool0oooo0?ooo`80003o3P3oool00`3o0000oooo +0?ooo`1[0?ooo`030?l0003oool0oooo01@0oooo0P3o000M0?ooo`030000003oool0oooo05h0oooo +00<0o`000?ooo`3oool0=03oool00`3o0000oooo0?ooo`0H0?ooo`80003o103oool207lZ:RH0oooo +00<0o`000?ooo`3oool0i`3oool00>L0oooo0`1o:RX30?ooo`030000o`3oool0oooo00/0oooo00<0 +o`000?ooo`3oool0J`3oool00`3o0000oooo0?ooo`0F0?ooo`030?l0003oool0oooo01X0oooo00<0 +00000?ooo`3oool0GP3oool00`3o0000oooo0?ooo`0e0?ooo`030?l0003oool0oooo01H0oooo00@0 +003o0?ooo`3oool0oooo0`1o:RXW0?ooo`030?l0003oool0oooo0>P0oooo003Z0?ooo`80ObXZ00@0 +0?l00?ooo`000?l0003o2`3oool00`3o0000oooo0?ooo`1Y0?ooo`80o`006P3oool00`3o0000oooo +0?ooo`0I0?ooo`030000003oool0oooo05d0oooo00<0o`000?ooo`3oool0=`3oool00`3o0000oooo +0?ooo`0C0?ooo`80003o0P3oool207lZ:P800?l0:03oool00`3o0000oooo0?ooo`3X0?ooo`00k03o +ool0101o:RX00?l0003o003oool20000o`X0oooo00<0o`000?ooo`3oool0I`3oool00`3o0000oooo +0?ooo`0K0?ooo`030?l0003oool0oooo01P0oooo00<000000?ooo`3oool0G@3oool00`3o0000oooo +0?ooo`0g0?ooo`030?l0003oool0oooo0140oooo0P000?l30?ooo`0307lZ:P3oool0oooo02T0oooo +00<0o`000?ooo`3oool0j@3oool00>d0oooo0P1o:RX01000o`00oooo0?ooo`000?l90?ooo`030?l0 +003oool0oooo06L0oooo00<0o`000?ooo`3oool0703oool00`3o0000oooo0?ooo`0G0?ooo`030000 +003oool0oooo05`0oooo00<0o`000?ooo`3oool0>@3oool00`3o0000oooo0?ooo`0?0?ooo`040000 +o`3oool0oooo0?ooo`80ObXZ;03oool00`3o0000oooo0?ooo`3Y0?ooo`00k`3oool0101o:RX00?l0 +003o003oool20000o`L0oooo00<0o`000?ooo`3oool0I@3oool20?l00200oooo00<0o`000?ooo`3o +ool05P3oool00`000000oooo0?ooo`1L0?ooo`030?l0003oool0oooo03T0oooo00<0o`000?ooo`3o +ool03@3oool20000o`<0oooo00<0ObXZ0?ooo`3oool0;03oool00`3o0000oooo0?ooo`3Y0?ooo`00 +l03oool407lZ:P030?ooo`000?l0oooo00H0oooo00<0o`000?ooo`3oool0H`3oool00`3o0000oooo +0?ooo`0Q0?ooo`030?l0003oool0oooo01D0oooo00<000000?ooo`3oool0F`3oool00`3o0000oooo +0?ooo`0k0?ooo`030?l0003oool0oooo00/0oooo00<0003o0?ooo`1o:RX00`1o:RX^0?ooo`030?l0 +003oool0oooo0>X0oooo003d0?ooo`0407lZ:P3oool0003o0000o`D0oooo00<0o`000?ooo`3oool0 +HP3oool00`3o0000oooo0?ooo`0S0?ooo`030?l0003oool0oooo01@0oooo00<000000?ooo`3oool0 +F`3oool00`3o0000oooo0?ooo`0k0?ooo`030?l0003oool0oooo00T0oooo0P000?l00`3oool0ObXZ +0?ooo`0a0?ooo`030?l0003oool0oooo0>X0oooo003e0?ooo`80ObXZ00<00?l00000o`000?l0103o +ool00`3o0000oooo0?ooo`1P0?ooo`030?l0003oool0oooo02D0oooo00<0o`000?ooo`3oool04`3o +ool00`000000oooo0?ooo`1J0?ooo`030?l0003oool0oooo03d0oooo00<0o`000?ooo`3oool01P3o +ool20000o`030?ooo`1o:RX0ObXZ03<0oooo00<0o`000?ooo`3oool0jP3oool00?L0oooo0`1o:RX0 +1@000?l0oooo0?ooo`3oool0o`000680oooo00<0o`000?ooo`3oool09@3oool00`3o0000oooo0?oo +o`0C0?ooo`030000003oool0oooo05X0oooo00<0o`000?ooo`3oool0?P3oool00`3o0000oooo0?oo +o`040?ooo`040000o`1o:RX0ObXZ07lZ:S@0oooo00<0o`000?ooo`3oool0j`3oool00?X0oooo00@0 +ObXZ0000o`000?l0oooo0`000?mO0?ooo`030?l0003oool0oooo02L0oooo00<0o`000?ooo`3oool0 +4P3oool00`000000oooo0?ooo`1I0?ooo`030?l0003oool0oooo0400oooo0`000?l0103oool0003o +0000o`1o:RXg0?ooo`030?l0003oool0oooo0>/0oooo003l0?ooo`0307lZ:P000?l0003o00<0003o +G@3oool00`3o0000oooo0?ooo`0Y0?ooo`030?l0003oool0oooo0140oooo00<000000?ooo`3oool0 +F@3oool00`3o0000oooo0?ooo`0o0?ooo`D0003o00<0ObXZ0?ooo`3oool0=P3oool00`3o0000oooo +0?ooo`3/0?ooo`00o@3oool50000oe`0oooo00<0o`000?ooo`3oool0:`3oool00`3o0000oooo0?oo +o`0@0?ooo`@00000E`3oool00`3o0000oooo0?ooo`100?ooo`D0003o>@3oool00`3o0000oooo0?oo +o`3/0?ooo`00o@3oool70000oeX0oooo00<0o`000?ooo`3oool0:`3oool00`3o0000oooo0?ooo`0@ +0?ooo`030000003oool0oooo05P0oooo00<0o`000?ooo`3oool0?P3oool70000ocT0oooo00<0o`00 +0?ooo`3oool0k03oool00?h0oooo0`000?l00`3oool00?l0003o00040000oeD0oooo00<0o`000?oo +o`3oool0;@3oool00`3o0000oooo0?ooo`0?0?ooo`030000003oool0oooo05L0oooo00<0o`000?oo +o`3oool0>`3oool40000o`800?l000@0oooo0000o`000?l0003o>@3oool00`3o0000oooo0?ooo`3] +0?ooo`00o`3oool10?ooo`030?l0003oool0oooo0080oooo0`1o:RX30000oe40oooo00<0o`000?oo +o`3oool0;`3oool00`3o0000oooo0?ooo`0>0?ooo`030000003oool0oooo05L0oooo00<0o`000?oo +o`3oool0>03oool30000o`<0ObXZ1P3oool00`3o0000oooo0?ooo`0g0?ooo`030?l0003oool0oooo +0>d0oooo003o0?ooo`80oooo00<0o`000?ooo`3oool00`3oool01000o`00ObXZ07lZ:P3oool30000 +odd0oooo00<0o`000?ooo`3oool0<03oool00`3o0000oooo0?ooo`0>0?ooo`030000003oool0oooo +05H0oooo00<0o`000?ooo`3oool0=P3oool30000o`040?ooo`1o:RX0ObXZ003o00T0oooo00<0o`00 +0?ooo`3oool0=@3oool00`3o0000oooo0?ooo`3^0?ooo`00o`3oool20?ooo`030?l0003oool0oooo +00H0oooo0`1o:RX00`3oool0003o0000o`020000odT0oooo00<0o`000?ooo`3oool0<@3oool00`3o +0000oooo0?ooo`0=0?ooo`030000003oool0oooo05H0oooo00<0o`000?ooo`3oool0@3oool00`3o0000oooo0?ooo`090?ooo`030000003oool0oooo05<0oooo00<0o`00 +0?ooo`3oool08@3oool40000o`D0oooo0`1o:RXP0?ooo`030?l0003oool0oooo02h0oooo00<0o`00 +0?ooo`3oool0l@3oool00?l0oooo1@3oool00`3o0000oooo0?ooo`0E0?ooo`04003o001o:RX0ObXZ +07lZ:PH0oooo0`000?l]0?ooo`030?l0003oool0oooo03/0oooo00<0o`000?ooo`3oool0203oool0 +0`000000oooo0?ooo`1C0?ooo`030?l0003oool0oooo01h0oooo0`000?l60?ooo`<0ObXZ903oool0 +0`3o0000oooo0?ooo`0/0?ooo`030?l0003oool0oooo0?80oooo003o0?ooo`D0oooo00<0o`000?oo +o`3oool0603oool00`00o`00ObXZ07lZ:P0207lZ:PD0oooo0`000?lZ0?ooo`030?l0003oool0oooo +03/0oooo00<0o`000?ooo`3oool0203oool00`000000oooo0?ooo`1B0?ooo`030?l0003oool0oooo +01`0oooo0`000?l60?ooo`<0ObXZ9`3oool00`3o0000oooo0?ooo`0/0?ooo`030?l0003oool0oooo +0?80oooo003o0?ooo`H0oooo00<0o`000?ooo`3oool06P3oool2003o00<0ObXZ1@3oool40000obD0 +oooo00<0o`000?ooo`3oool0?@3oool00`3o0000oooo0?ooo`070?ooo`030000003oool0oooo0580 +oooo00<0o`000?ooo`3oool0603oool40000o`D0oooo101o:RX[0?ooo`030?l0003oool0oooo02/0 +oooo00<0o`000?ooo`3oool0lP3oool00?l0oooo1P3oool00`3o0000oooo0?ooo`0M0?ooo`800?l0 +0`1o:RX60?ooo`<0003o8P3oool00`3o0000oooo0?ooo`0m0?ooo`030?l0003oool0oooo00L0oooo +00<000000?ooo`3oool0D@3oool00`3o0000oooo0?ooo`0F0?ooo`<0003o1P3oool307lZ:Rl0oooo +00<0o`000?ooo`3oool0:P3oool00`3o0000oooo0?ooo`3c0?ooo`00o`3oool70?ooo`030?l0003o +ool0oooo01l0oooo0P00o`0307lZ:PH0oooo0`000?lN0?ooo`030?l0003oool0oooo03l0oooo00<0 +o`000?ooo`3oool01P3oool400000500oooo00<0o`000?ooo`3oool04`3oool30000o`@0oooo0P00 +o`0307lZ:S<0oooo00<0o`000?ooo`3oool0:@3oool00`3o0000oooo0?ooo`3c0?ooo`00o`3oool7 +0?ooo`030?l0003oool0oooo02@0oooo1@1o:RX40?ooo`@0003o6@3oool00`3o0000oooo0?ooo`10 +0?ooo`030?l0003oool0oooo00H0oooo00<000000?ooo`3oool0D03oool00`3o0000oooo0?ooo`0@ +0?ooo`@0003o103oool507lZ:SH0oooo00<0o`000?ooo`3oool0:03oool00`3o0000oooo0?ooo`3d +0?ooo`00o`3oool70?ooo`030?l0003oool0oooo02L0oooo0P00o`0307lZ:PD0oooo0`000?lF0?oo +o`030?l0003oool0oooo0440oooo00<0o`000?ooo`3oool01@3oool00`000000oooo0?ooo`1?0?oo +o`030?l0003oool0oooo00h0oooo0`000?l50?ooo`<0ObXZ?03oool00`3o0000oooo0?ooo`0W0?oo +o`030?l0003oool0oooo0?@0oooo003o0?ooo`P0oooo00<0o`000?ooo`3oool0:`3oool307lZ:PD0 +oooo0`000?lB0?ooo`030?l0003oool0oooo04<0oooo00<0o`000?ooo`3oool0103oool00`000000 +oooo0?ooo`1?0?ooo`030?l0003oool0oooo00/0oooo0`000?l30?ooo`800?l00`1o:RY00?ooo`03 +0?l0003oool0oooo02D0oooo00<0o`000?ooo`3oool0m@3oool00?l0oooo203oool00`3o0000oooo +0?ooo`0^0?ooo`D0ObXZ0`3oool40000o`d0oooo00<0o`000?ooo`3oool0A03oool00`3o0000oooo +0?ooo`040?ooo`030000003oool0oooo04h0oooo00<0o`000?ooo`3oool0203oool40000o`030?oo +o`00o`000?l000D0ObXZ@`3oool00`3o0000oooo0?ooo`0U0?ooo`030?l0003oool0oooo0?D0oooo +003o0?ooo`P0oooo00<0o`000?ooo`3oool0<`3oool307lZ:P800?l00P3oool30000o`X0oooo00<0 +o`000?ooo`3oool0A@3oool00`3o0000oooo0?ooo`030?ooo`030000003oool0oooo04h0oooo00<0 +o`000?ooo`3oool01@3oool30000o`80oooo0P00o`0307lZ:TT0oooo00<0o`000?ooo`3oool08`3o +ool00`3o0000oooo0?ooo`3f0?ooo`00o`3oool90?ooo`030?l0003oool0oooo03D0oooo1@1o:RX2 +003o00<0003o103oool30000odP0oooo00<0o`000?ooo`3oool00`3oool00`000000oooo0?ooo`1< +0?ooo`<0003o103oool30000o`800?l01@1o:RY=0?ooo`030?l0003oool0oooo0240oooo00<0o`00 +0?ooo`3oool0m`3oool00?l0oooo2@3oool00`3o0000oooo0?ooo`0j0?ooo`D0ObXZ20000?m80?oo +o`030?l0003oool0oooo0080oooo00<000000?ooo`3oool0B`3oool80000o`D0ObXZDP3oool00`3o +0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo0?P0oooo003o0?ooo`X0oooo00<0o`000?ooo`3o +ool0?P3oool307lZ:PL0003oAP3oool00`3o0000oooo0?ooo`020?ooo`030000003oool0oooo04T0 +oooo1`000?l307lZ:UP0oooo00<0o`000?ooo`3oool07`3oool00`3o0000oooo0?ooo`3h0?ooo`00 +o`3oool:0?ooo`030?l0003oool0oooo0440oooo1@000?l207lZ:PX0003o?@3oool01@3o0000oooo +0?ooo`3oool000000440oooo2P000?l207lZ:PD0003oG03oool00`3o0000oooo0?ooo`0M0?ooo`03 +0?l0003oool0oooo0?T0oooo003o0?ooo`/0oooo00<0o`000?ooo`3oool0@@3oool30000o`@0oooo +1@1o:RX3003o00030?ooo`000?l0003o00P0003o=03oool0103o0000oooo0?ooo`00000g0?ooo`X0 +003o00@0oooo003o0000o`000?l01@1o:RX40?ooo`<0003oGP3oool00`3o0000oooo0?ooo`0K0?oo +o`030?l0003oool0oooo0?X0oooo003o0?ooo`/0oooo00<0o`000?ooo`3oool0@@3oool00`3o0000 +oooo0?ooo`090?ooo`H0ObXZ0`00o`050?ooo`X0003o:P3oool0103o0000oooo0?ooo`00000]0?oo +o`X0003o1P3oool2003o00H0ObXZ203oool00`3o0000oooo0?ooo`1O0?ooo`030?l0003oool0oooo +01/0oooo00<0o`000?ooo`3oool0nP3oool00?l0oooo303oool00`3o0000oooo0?ooo`0o0?ooo`03 +0?l0003oool0oooo0100oooo201o:RX3003o00L0oooo2P000?lQ0?ooo`030?l0003oool0000002<0 +oooo2P000?l80?ooo`800?l0201o:RX>0?ooo`030?l0003oool0oooo0600oooo00<0o`000?ooo`3o +ool06@3oool00`3o0000oooo0?ooo`3k0?ooo`00o`3oool<0?ooo`030?l0003oool0oooo03l0oooo +00<0o`000?ooo`3oool0603oool807lZ:P<00?l02@3oool:0000oaL0oooo00<0o`000?ooo`000000 +6@3oool:0000o`X0oooo0P00o`0807lZ:QH0oooo00<0o`000?ooo`3oool0H@3oool00`3o0000oooo +0?ooo`0G0?ooo`030?l0003oool0oooo0?`0oooo003o0?ooo`d0oooo00<0o`000?ooo`3oool0?@3o +ool00`3o0000oooo0?ooo`0Q0?ooo`X0ObXZ0`00o`090?ooo`X0003o00<0oooo0000000000002`3o +ool30000o`h0oooo2P000?l;0?ooo`03003o001o:RX0ObXZ00P0ObXZ7@3oool00`3o0000oooo0?oo +o`1S0?ooo`030?l0003oool0oooo01D0oooo00<0o`000?ooo`3oool0o@3oool00?l0oooo3@3oool0 +0`3o0000oooo0?ooo`0l0?ooo`030?l0003oool0oooo02`0oooo301o:RX4003o00H0oooo2P000?l3 +0?ooo`D0003o0`3oool:0000o`P0oooo0P00o`0<07lZ:RL0oooo00<0o`000?ooo`3oool0I03oool0 +0`3o0000oooo0?ooo`0D0?ooo`030?l0003oool0oooo0?d0oooo003o0?ooo`d0oooo00<0o`000?oo +o`3oool0>`3oool00`3o0000oooo0?ooo`0i0?oooa@0ObXZ2`000?lD07lZ:S80oooo00<0o`000?oo +o`3oool0IP3oool00`3o0000oooo0?ooo`0B0?ooo`030?l0003oool0oooo0?h0oooo003o0?ooo`h0 +oooo00<0o`000?ooo`3oool0>P3oool00`3o0000oooo0?ooo`160?ooo`030000003oool0oooo00L0 +oooo1@000?m90?ooo`030?l0003oool0oooo06L0oooo00<0o`000?ooo`3oool0403oool00`3o0000 +oooo0?ooo`3o0?ooo`00o`3oool>0?ooo`030?l0003oool0oooo03T0oooo00<0o`000?ooo`3oool0 +A03oool010000000oooo0?ooo`00000:0?ooo`<0003oB@3oool00`3o0000oooo0?ooo`1Y0?ooo`80 +o`003`3oool00`3o0000oooo0?ooo`3o0?ooo`40oooo003o0?ooo`l0oooo00<0o`000?ooo`3oool0 +>03oool00`3o0000oooo0?ooo`150?ooo`800000303oool00`000000oooo0?l000170?ooo`030?l0 +003oool0oooo06`0oooo00<0o`000?ooo`3oool02P3oool20?l00?l0oooo103oool00?l0oooo3`3o +ool00`3o0000oooo0?ooo`0g0?ooo`030?l0003oool0oooo05@0oooo00<000000?ooo`3o0000A`3o +ool00`3o0000oooo0?ooo`1]0?ooo`<0o`001P3oool30?l00?l0oooo1P3oool00?l0oooo403oool0 +0`3o0000oooo0?ooo`0f0?ooo`030?l0003oool0oooo05@0oooo00@000000?ooo`3oool0o`00A@3o +ool00`3o0000oooo0?ooo`1a0?ooo`H0o`00o`3oool90?ooo`00o`3oool@0?ooo`030?l0003oool0 +oooo03D0oooo00<0o`000?ooo`3oool0E@3oool010000000oooo0?ooo`3o00150?ooo`030?l0003o +ool0oooo0?l0ooooP03oool00?l0oooo4@3oool00`3o0000oooo0?ooo`0c0?ooo`030?l0003oool0 +oooo05H0oooo00D000000?ooo`3oool0oooo0?l000140?ooo`030?l0003oool0oooo0?l0ooooP03o +ool00?l0oooo4@3oool00`3o0000oooo0?ooo`0c0?ooo`030?l0003oool0oooo05H0oooo00D00000 +0?ooo`3oool0oooo0?l000130?ooo`030?l0003oool0oooo0?l0ooooP@3oool00?l0oooo4P3oool0 +0`3o0000oooo0?ooo`0a0?ooo`030?l0003oool0oooo05L0oooo00<000000?ooo`3oool00P3oool0 +0`3o0000oooo0?ooo`100?ooo`030?l0003oool0oooo0?l0ooooP@3oool00?l0oooo4`3oool00`3o +0000oooo0?ooo`0`0?ooo`030?l0003oool0oooo05L0oooo00<000000?ooo`3oool00P3oool00`3o +0000oooo0?ooo`0o0?ooo`030?l0003oool0oooo0?l0ooooPP3oool00?l0oooo4`3oool00`3o0000 +oooo0?ooo`0_0?ooo`030?l0003oool0oooo05P0oooo00<000000?ooo`3oool00`3oool00`3o0000 +oooo0?ooo`0n0?ooo`030?l0003oool0oooo0?l0ooooPP3oool00?l0oooo503oool00`3o0000oooo +0?ooo`0]0?ooo`030?l0003oool0oooo05T0oooo00<000000?ooo`3oool00`3oool00`3o0000oooo +0?ooo`0m0?ooo`030?l0003oool0oooo0?l0ooooP`3oool00?l0oooo503oool00`3o0000oooo0?oo +o`0/0?ooo`030?l0003oool0oooo05X0oooo00<000000?ooo`3oool0103oool00`3o0000oooo0?oo +o`0l0?ooo`030?l0003oool0oooo0?l0ooooP`3oool00?l0oooo5@3oool00`3o0000oooo0?ooo`0[ +0?ooo`030?l0003oool0oooo05X0oooo00<000000?ooo`3oool01@3oool00`3o0000oooo0?ooo`0j +0?ooo`030?l0003oool0oooo0?l0ooooQ03oool00?l0oooo5@3oool00`3o0000oooo0?ooo`0Z0?oo +o`030?l0003oool0oooo05/0oooo00<000000?ooo`3oool01P3oool00`3o0000oooo0?ooo`0i0?oo +o`030?l0003oool0oooo0?l0ooooQ03oool00?l0oooo5P3oool00`3o0000oooo0?ooo`0Y0?ooo`03 +0?l0003oool0oooo05/0oooo100000050?ooo`030?l0003oool0oooo03P0oooo00<0o`000?ooo`3o +ool0o`3ooon50?ooo`00o`3ooolF0?ooo`030?l0003oool0oooo02P0oooo00<0o`000?ooo`3oool0 +G03oool00`000000oooo0?ooo`070?ooo`030?l0003oool0oooo03L0oooo00<0o`000?ooo`3oool0 +o`3ooon50?ooo`00o`3ooolG0?ooo`030?l0003oool0oooo02H0oooo00<0o`000?ooo`3oool0G@3o +ool00`000000oooo0?ooo`070?ooo`030?l0003oool0oooo03H0oooo00<0o`000?ooo`3oool0o`3o +oon60?ooo`00o`3ooolG0?ooo`030?l0003oool0oooo02D0oooo00<0o`000?ooo`3oool0GP3oool0 +0`000000oooo0?ooo`080?ooo`030?l0003oool0oooo03@0oooo00<0o`000?ooo`3oool0o`3ooon7 +0?ooo`00o`3ooolH0?ooo`030?l0003oool0oooo02@0oooo00<0o`000?ooo`3oool0GP3oool00`00 +0000oooo0?ooo`080?ooo`030?l0003oool0oooo03@0oooo00<0o`000?ooo`3oool0o`3ooon70?oo +o`00o`3ooolI0?ooo`030?l0003oool0oooo0280oooo00<0o`000?ooo`3oool0G`3oool00`000000 +oooo0?ooo`090?ooo`030?l0003oool0oooo0380oooo00<0o`000?ooo`3oool0o`3ooon80?ooo`00 +o`3ooolI0?ooo`030?l0003oool0oooo0240oooo00<0o`000?ooo`3oool0H03oool00`000000oooo +0?ooo`0:0?ooo`030?l0003oool0oooo0300oooo00<0o`000?ooo`3oool0o`3ooon90?ooo`00o`3o +oolJ0?ooo`030?l0003oool0oooo01l0oooo00<0o`000?ooo`3oool0H@3oool00`000000oooo0?oo +o`0:0?ooo`030?l0003oool0oooo0300oooo00<0o`000?ooo`3oool0o`3ooon90?ooo`00o`3ooolK +0?ooo`030?l0003oool0oooo01d0oooo00<0o`000?ooo`3oool0HP3oool00`000000oooo0?ooo`0; +0?ooo`030?l0003oool0oooo02h0oooo00<0o`000?ooo`3oool0o`3ooon:0?ooo`00o`3ooolL0?oo +o`030?l0003oool0oooo01/0oooo00<0o`000?ooo`3oool0H`3oool00`000000oooo0?ooo`0;0?oo +o`030?l0003oool0oooo02h0oooo00<0o`000?ooo`3oool0o`3ooon:0?ooo`00o`3ooolL0?ooo`03 +0?l0003oool0oooo01/0oooo00<0o`000?ooo`3oool0H`3oool00`000000oooo0?ooo`0<0?ooo`03 +0?l0003oool0oooo02`0oooo00<0o`000?ooo`3oool0o`3ooon;0?ooo`00o`3ooolM0?ooo`030?l0 +003oool0oooo01T0oooo00<0o`000?ooo`3oool0I03oool00`000000oooo0?ooo`0=0?ooo`030?l0 +003oool0oooo02X0oooo00<0o`000?ooo`3oool0o`3ooon<0?ooo`00o`3ooolN0?ooo`80o`00603o +ool00`3o0000oooo0?ooo`1U0?ooo`030000003oool0oooo00h0oooo00<0o`000?ooo`3oool0:@3o +ool00`3o0000oooo0?ooo`3o0?oooh`0oooo003o0?oooal0oooo00<0o`000?ooo`3oool05@3oool0 +0`3o0000oooo0?ooo`1V0?ooo`030000003oool0oooo00l0oooo00<0o`000?ooo`3oool09`3oool0 +0`3o0000oooo0?ooo`3o0?ooohd0oooo003o0?ooob00oooo00<0o`000?ooo`3oool04P3oool20?l0 +06T0oooo00<000000?ooo`3oool03`3oool00`3o0000oooo0?ooo`0W0?ooo`030?l0003oool0oooo +0?l0ooooS@3oool00?l0oooo8@3oool20?l00140oooo00<0o`000?ooo`3oool0J@3oool00`000000 +oooo0?ooo`0@0?ooo`030?l0003oool0oooo02D0oooo00<0o`000?ooo`3oool0o`3ooon>0?ooo`00 +o`3ooolS0?ooo`80o`003`3oool00`3o0000oooo0?ooo`1Y0?ooo`@00000403oool00`3o0000oooo +0?ooo`0S0?ooo`030?l0003oool0oooo0?l0ooooS`3oool00?l0oooo9@3oool00`3o0000oooo0?oo +o`080?ooo`@0o`00K03oool00`000000oooo0?ooo`0B0?ooo`030?l0003oool0oooo0240oooo00<0 +o`000?ooo`3oool0o`3ooon@0?ooo`00o`3ooolV0?ooo`X0o`00L03oool00`000000oooo0?ooo`0B +0?ooo`030?l0003oool0oooo0200oooo00<0o`000?ooo`3oool0o`3ooonA0?ooo`00o`3ooonP0?oo +o`030000003oool0oooo01<0oooo00<0o`000?ooo`3oool07`3oool00`3o0000oooo0?ooo`3o0?oo +oi40oooo003o0?oooj00oooo00<000000?ooo`3oool0503oool00`3o0000oooo0?ooo`0M0?ooo`03 +0?l0003oool0oooo0?l0ooooTP3oool00?l0ooooX03oool00`000000oooo0?ooo`0E0?ooo`030?l0 +003oool0oooo01/0oooo00<0o`000?ooo`3oool0o`3ooonC0?ooo`00o`3ooonP0?ooo`030000003o +ool0oooo01H0oooo0P3o000J0?ooo`030?l0003oool0oooo0?l0ooooU03oool00?l0ooooX03oool0 +0`000000oooo0?ooo`0G0?ooo`030?l0003oool0oooo01L0oooo00<0o`000?ooo`3oool0o`3ooonE +0?ooo`00o`3ooonP0?ooo`030000003oool0oooo01P0oooo00<0o`000?ooo`3oool05@3oool00`3o +0000oooo0?ooo`3o0?oooiH0oooo003o0?oooj00oooo00<000000?ooo`3oool06@3oool20?l001@0 +oooo00<0o`000?ooo`3oool0o`3ooonG0?ooo`00o`3ooonP0?ooo`030000003oool0oooo01/0oooo +00<0o`000?ooo`3oool03`3oool20?l00?l0ooooVP3oool00?l0ooooX03oool00`000000oooo0?oo +o`0L0?ooo`80o`003@3oool20?l00?l0ooooW03oool00?l0ooooX03oool00`000000oooo0?ooo`0N +0?ooo`<0o`001`3oool30?l00?l0ooooWP3oool00?l0ooooX03oool00`000000oooo0?ooo`0Q0?oo +o`L0o`00o`3ooonQ0?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob@3oool00?l0oooo +X03oool00`000000oooo0?ooo`3o0?ooolT0oooo003o0?oooj00oooo1000003o0?ooolP0oooo003o +0?oooj00oooo00<000000?ooo`3oool0o`3oooo90?ooo`00o`3ooonP0?ooo`030000003oool0oooo +0?l0oooob@3oool00?l0ooooX03oool00`000000oooo0?ooo`3o0?ooolT0oooo003o0?oooj00oooo +00<000000?ooo`3oool0o`3oooo90?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob@3o +ool00?l0ooooX03oool00`000000oooo0?ooo`3o0?ooolT0oooo003o0?oooj00oooo00<000000?oo +o`3oool0o`3oooo90?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob@3oool00?l0oooo +X03oool00`000000oooo0?ooo`3o0?ooolT0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3o +ooo90?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob@3oool00?l0ooooX03oool00`00 +0000oooo0?ooo`3o0?ooolT0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3oooo90?ooo`00 +o`3ooonP0?ooo`030000003oool0oooo0?l0oooob@3oool00?l0ooooX03oool00`000000oooo0?oo +o`3o0?ooolT0oooo003o0?oooj00oooo1000003o0?ooolP0oooo003o0?oooj00oooo00<000000?oo +o`3oool0o`3oooo90?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob@3oool00?l0oooo +X03oool00`000000oooo0?ooo`3o0?ooolT0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3o +ooo90?ooo`00o`3ooonP0?ooo`030000003oool0oooo0?l0oooob@3oool00?l0ooooX03oool00`00 +0000oooo0?ooo`3o0?ooolT0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3oooo90?ooo`00 +o`3ooonP0?ooo`030000003oool0oooo0?l0oooob@3oool00?l0ooooX03oool00`000000oooo0?oo +o`3o0?ooolT0oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3oooo90?ooo`00o`3ooonP0?oo +o`030000003oool0oooo0?l0oooob@3oool00?l0ooooX03oool00`000000oooo0?ooo`3o0?ooolT0 +oooo003o0?oooj00oooo00<000000?ooo`3oool0o`3oooo90?ooo`00o`3ooonC0?ooo`<000002P3o +ool00`000000oooo0?ooo`3o0?ooolT0oooo003o0?oooi@0oooo00<000000?ooo`3oool02@3oool0 +0`000000oooo0?ooo`3o0?ooolT0oooo003o0?oooi40oooo1@00000:0?ooo`H00000o`3oooo60?oo +o`00o`3ooonA0?ooo`040000003oool0oooo00000?l0ooooe`3oool00?l0ooooTP3oool00`000000 +oooo0000003o0?ooomL0oooo003o0?oooi<0oooo0P00003o0?ooomL0oooo003o0?ooool0ooooo`3o +oom]0?ooo`00o`3ooooo0?ooool0ooooK@3oool00?l0ooooo`3ooooo0?ooofd0oooo003o0?ooool0 +ooooo`3ooom]0?ooo`00o`3ooooo0?ooool0ooooK@3oool00?l0ooooo`3ooooo0?ooofd0oooo003o +0?ooool0ooooo`3ooom]0?ooo`00o`3ooooo0?ooool0ooooK@3oool00?l0ooooo`3ooooo0?ooofd0 +oooo003o0?ooool0ooooo`3ooom]0?ooo`00o`3ooooo0?ooool0ooooK@3oool00?l0ooooo`3ooooo +0?ooofd0oooo003o0?ooool0ooooo`3ooom]0?ooo`00o`3ooooo0?ooool0ooooK@3oool00?l0oooo +o`3ooooo0?ooofd0oooo003o0?ooool0ooooo`3ooom]0?ooo`00o`3ooooo0?ooool0ooooK@3oool0 +0?l0ooooo`3ooooo0?ooofd0oooo003o0?ooool0ooooo`3ooom]0?ooo`00o`3ooonZ0?ooo`800000 +o`3oooo00?ooo`00o`3ooon[0?ooo`030000003oool0oooo0?l0oooo_P3oool00?l0oooo[03oool0 +0`000000oooo0?ooo`3o0?oookd0oooo003o0?oooj/0oooo00<000000?ooo`000000o`3ooonn0?oo +o`00o`3ooonZ0?ooo`040000003oool0oooo00000?l0oooo_P3oool00?l0ooooZ@3oool300000003 +0?ooo`00000000000?l0oooo_@3oool00?l0ooooWP3oool010000000oooo0?ooo`00003o0?ooolX0 +oooo003o0?oooil0oooo0P00003o0?oool/0oooo003o0?ooool0ooooo`3ooom]0?ooo`00o`3ooooo +0?ooool0ooooK@3oool00001\ +\>"], + ImageRangeCache->{{{0, 873}, {436, 0}} -> {-5.20729, -1.05642, 0.0125318, \ +0.0125318}}] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + InterpretationBox[\("\< Lauf Nummer \>"\[InvisibleSpace]5\ +\[InvisibleSpace]"\< mit \>"\[InvisibleSpace]14\[InvisibleSpace]"\< St\ +\[UDoubleDot]tzpunkten \>"\), + SequenceForm[ + " Lauf Nummer ", 5, " mit ", 14, " St\[UDoubleDot]tzpunkten "], + Editable->False]], "Input"], + +Cell[CellGroupData[{ + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.1 0.1 [ +[.1 .0875 -6 -9 ] +[.1 .0875 6 0 ] +[.3 .0875 -6 -9 ] +[.3 .0875 6 0 ] +[.7 .0875 -3 -9 ] +[.7 .0875 3 0 ] +[.9 .0875 -3 -9 ] +[.9 .0875 3 0 ] +[1.025 .1 0 -6.28125 ] +[1.025 .1 22 6.28125 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .2 -6 -4.5 ] +[.4875 .2 0 4.5 ] +[.4875 .3 -6 -4.5 ] +[.4875 .3 0 4.5 ] +[.4875 .4 -6 -4.5 ] +[.4875 .4 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.5625 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .1 m +.1 .10625 L +s +[(-4)] .1 .0875 0 1 Mshowa +.3 .1 m +.3 .10625 L +s +[(-2)] .3 .0875 0 1 Mshowa +.7 .1 m +.7 .10625 L +s +[(2)] .7 .0875 0 1 Mshowa +.9 .1 m +.9 .10625 L +s +[(4)] .9 .0875 0 1 Mshowa +.125 Mabswid +.15 .1 m +.15 .10375 L +s +.2 .1 m +.2 .10375 L +s +.25 .1 m +.25 .10375 L +s +.35 .1 m +.35 .10375 L +s +.4 .1 m +.4 .10375 L +s +.45 .1 m +.45 .10375 L +s +.55 .1 m +.55 .10375 L +s +.6 .1 m +.6 .10375 L +s +.65 .1 m +.65 .10375 L +s +.75 .1 m +.75 .10375 L +s +.8 .1 m +.8 .10375 L +s +.85 .1 m +.85 .10375 L +s +.05 .1 m +.05 .10375 L +s +.95 .1 m +.95 .10375 L +s +.25 Mabswid +0 .1 m +1 .1 L +s +gsave +1.025 .1 -61 -10.2813 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.5625 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 12.813 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-1)] .4875 0 1 0 Mshowa +.5 .2 m +.50625 .2 L +s +[(1)] .4875 .2 1 0 Mshowa +.5 .3 m +.50625 .3 L +s +[(2)] .4875 .3 1 0 Mshowa +.5 .4 m +.50625 .4 L +s +[(3)] .4875 .4 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .02 m +.50375 .02 L +s +.5 .04 m +.50375 .04 L +s +.5 .06 m +.50375 .06 L +s +.5 .08 m +.50375 .08 L +s +.5 .12 m +.50375 .12 L +s +.5 .14 m +.50375 .14 L +s +.5 .16 m +.50375 .16 L +s +.5 .18 m +.50375 .18 L +s +.5 .22 m +.50375 .22 L +s +.5 .24 m +.50375 .24 L +s +.5 .26 m +.50375 .26 L +s +.5 .28 m +.50375 .28 L +s +.5 .32 m +.50375 .32 L +s +.5 .34 m +.50375 .34 L +s +.5 .36 m +.50375 .36 L +s +.5 .38 m +.50375 .38 L +s +.5 .42 m +.50375 .42 L +s +.5 .44 m +.50375 .44 L +s +.5 .46 m +.50375 .46 L +s +.5 .48 m +.50375 .48 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.5625 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 12.813 moveto +(^) show +87.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 12.813 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .1 m +.102 .12124 L +.104 .14106 L +.106 .15809 L +.108 .17181 L +.11 .18258 L +.112 .19081 L +.114 .1969 L +.116 .20125 L +.118 .20426 L +.12 .20632 L +.122 .20785 L +.124 .20923 L +.126 .21087 L +.128 .21294 L +.13 .21539 L +.132 .21818 L +.134 .22125 L +.136 .22455 L +.138 .22804 L +.14 .23166 L +.142 .23537 L +.144 .23911 L +.146 .24282 L +.148 .24647 L +.15 .25 L +.152 .25337 L +.154 .25657 L +.156 .25962 L +.158 .26251 L +.16 .26526 L +.162 .26787 L +.164 .27036 L +.166 .27271 L +.168 .27495 L +.17 .27708 L +.172 .2791 L +.174 .28102 L +.176 .28285 L +.178 .2846 L +.18 .28626 L +.182 .28785 L +.184 .28938 L +.186 .29085 L +.188 .29226 L +.19 .29363 L +.192 .29496 L +.194 .29625 L +.196 .29752 L +.198 .29877 L +Mistroke +.2 .3 L +.202 .30122 L +.204 .30244 L +.206 .30365 L +.208 .30486 L +.21 .30606 L +.212 .30726 L +.214 .30845 L +.216 .30964 L +.218 .31083 L +.22 .31202 L +.222 .3132 L +.224 .31439 L +.226 .31557 L +.228 .31676 L +.23 .31794 L +.232 .31913 L +.234 .32032 L +.236 .32151 L +.238 .32271 L +.24 .32391 L +.242 .32512 L +.244 .32633 L +.246 .32755 L +.248 .32877 L +.25 .33 L +.252 .33124 L +.254 .33248 L +.256 .33373 L +.258 .33499 L +.26 .33625 L +.262 .33751 L +.264 .33876 L +.266 .34002 L +.268 .34128 L +.27 .34253 L +.272 .34378 L +.274 .34502 L +.276 .34625 L +.278 .34747 L +.28 .34869 L +.282 .34989 L +.284 .35108 L +.286 .35226 L +.288 .35342 L +.29 .35457 L +.292 .35569 L +.294 .3568 L +.296 .35789 L +.298 .35896 L +Mistroke +.3 .36 L +.302 .36102 L +.304 .36202 L +.306 .36299 L +.308 .36394 L +.31 .36487 L +.312 .36577 L +.314 .36666 L +.316 .36752 L +.318 .36836 L +.32 .36918 L +.322 .36998 L +.324 .37076 L +.326 .37153 L +.328 .37227 L +.33 .373 L +.332 .3737 L +.334 .37439 L +.336 .37507 L +.338 .37572 L +.34 .37636 L +.342 .37699 L +.344 .37759 L +.346 .37819 L +.348 .37877 L +.35 .37933 L +.352 .37988 L +.354 .38042 L +.356 .38094 L +.358 .38145 L +.36 .38195 L +.362 .38244 L +.364 .38291 L +.366 .38338 L +.368 .38383 L +.37 .38428 L +.372 .38471 L +.374 .38514 L +.376 .38555 L +.378 .38596 L +.38 .38636 L +.382 .38675 L +.384 .38714 L +.386 .38751 L +.388 .38789 L +.39 .38825 L +.392 .38861 L +.394 .38896 L +.396 .38931 L +.398 .38966 L +Mistroke +.4 .39 L +.402 .39034 L +.404 .39067 L +.406 .391 L +.408 .39133 L +.41 .39165 L +.412 .39197 L +.414 .39228 L +.416 .39259 L +.418 .39289 L +.42 .39319 L +.422 .39349 L +.424 .39378 L +.426 .39406 L +.428 .39434 L +.43 .39461 L +.432 .39488 L +.434 .39515 L +.436 .39541 L +.438 .39566 L +.44 .3959 L +.442 .39614 L +.444 .39638 L +.446 .39661 L +.448 .39683 L +.45 .39704 L +.452 .39725 L +.454 .39746 L +.456 .39765 L +.458 .39784 L +.46 .39802 L +.462 .3982 L +.464 .39836 L +.466 .39852 L +.468 .39868 L +.47 .39882 L +.472 .39896 L +.474 .39909 L +.476 .39921 L +.478 .39932 L +.48 .39943 L +.482 .39952 L +.484 .39961 L +.486 .39969 L +.488 .39976 L +.49 .39982 L +.492 .39988 L +.494 .39992 L +.496 .39996 L +.498 .39998 L +Mistroke +.5 .4 L +.502 .40001 L +.504 .4 L +.506 .39999 L +.508 .39997 L +.51 .39994 L +.512 .3999 L +.514 .39985 L +.516 .3998 L +.518 .39973 L +.52 .39965 L +.522 .39957 L +.524 .39948 L +.526 .39937 L +.528 .39926 L +.53 .39914 L +.532 .39902 L +.534 .39888 L +.536 .39874 L +.538 .39858 L +.54 .39842 L +.542 .39825 L +.544 .39807 L +.546 .39789 L +.548 .39769 L +.55 .39749 L +.552 .39728 L +.554 .39706 L +.556 .39684 L +.558 .3966 L +.56 .39636 L +.562 .39611 L +.564 .39585 L +.566 .39559 L +.568 .39532 L +.57 .39504 L +.572 .39475 L +.574 .39446 L +.576 .39416 L +.578 .39385 L +.58 .39353 L +.582 .39321 L +.584 .39288 L +.586 .39254 L +.588 .3922 L +.59 .39185 L +.592 .39149 L +.594 .39113 L +.596 .39076 L +.598 .39038 L +Mistroke +.6 .39 L +.602 .38961 L +.604 .38921 L +.606 .38881 L +.608 .3884 L +.61 .38798 L +.612 .38756 L +.614 .38713 L +.616 .38669 L +.618 .38624 L +.62 .38579 L +.622 .38533 L +.624 .38486 L +.626 .38438 L +.628 .3839 L +.63 .38341 L +.632 .3829 L +.634 .38239 L +.636 .38188 L +.638 .38135 L +.64 .38081 L +.642 .38027 L +.644 .37971 L +.646 .37915 L +.648 .37858 L +.65 .37799 L +.652 .3774 L +.654 .3768 L +.656 .37619 L +.658 .37557 L +.66 .37494 L +.662 .3743 L +.664 .37364 L +.666 .37298 L +.668 .37231 L +.67 .37162 L +.672 .37093 L +.674 .37022 L +.676 .36951 L +.678 .36878 L +.68 .36804 L +.682 .36729 L +.684 .36653 L +.686 .36576 L +.688 .36497 L +.69 .36417 L +.692 .36336 L +.694 .36254 L +.696 .36171 L +.698 .36086 L +Mistroke +.7 .36 L +.702 .35913 L +.704 .35824 L +.706 .35735 L +.708 .35644 L +.71 .35551 L +.712 .35458 L +.714 .35363 L +.716 .35266 L +.718 .35169 L +.72 .3507 L +.722 .3497 L +.724 .34869 L +.726 .34766 L +.728 .34662 L +.73 .34556 L +.732 .3445 L +.734 .34342 L +.736 .34232 L +.738 .34121 L +.74 .34009 L +.742 .33896 L +.744 .33781 L +.746 .33665 L +.748 .33547 L +.75 .33428 L +.752 .33308 L +.754 .33186 L +.756 .33063 L +.758 .32939 L +.76 .32813 L +.762 .32686 L +.764 .32557 L +.766 .32427 L +.768 .32296 L +.77 .32163 L +.772 .32029 L +.774 .31893 L +.776 .31756 L +.778 .31618 L +.78 .31478 L +.782 .31337 L +.784 .31194 L +.786 .3105 L +.788 .30904 L +.79 .30757 L +.792 .30609 L +.794 .30459 L +.796 .30307 L +.798 .30154 L +Mistroke +.8 .3 L +.802 .29844 L +.804 .29687 L +.806 .29527 L +.808 .29365 L +.81 .29201 L +.812 .29034 L +.814 .28864 L +.816 .2869 L +.818 .28514 L +.82 .28333 L +.822 .28149 L +.824 .2796 L +.826 .27766 L +.828 .27568 L +.83 .27365 L +.832 .27156 L +.834 .26942 L +.836 .26723 L +.838 .26497 L +.84 .26264 L +.842 .26026 L +.844 .2578 L +.846 .25528 L +.848 .25268 L +.85 .25 L +.852 .24724 L +.854 .24437 L +.856 .24137 L +.858 .23819 L +.86 .23481 L +.862 .2312 L +.864 .22733 L +.866 .22317 L +.868 .21868 L +.87 .21384 L +.872 .20862 L +.874 .20298 L +.876 .1969 L +.878 .19038 L +.88 .18345 L +.882 .17616 L +.884 .16853 L +.886 .16061 L +.888 .15243 L +.89 .14403 L +.892 .13544 L +.894 .12671 L +.896 .11787 L +.898 .10895 L +Mistroke +.9 .1 L +Mfstroke +1 0 0 r +.1 .1 m +.102 .12342 L +.104 .14213 L +.106 .157 L +.108 .16877 L +.11 .17805 L +.112 .18537 L +.114 .19119 L +.116 .19588 L +.118 .19975 L +.12 .20305 L +.122 .20597 L +.124 .20868 L +.126 .21131 L +.128 .21393 L +.13 .21663 L +.132 .21943 L +.134 .22237 L +.136 .22545 L +.138 .22868 L +.14 .23203 L +.142 .2355 L +.144 .23906 L +.146 .24268 L +.148 .24634 L +.15 .25 L +.152 .25364 L +.154 .25723 L +.156 .26074 L +.158 .26414 L +.16 .26743 L +.162 .27058 L +.164 .27357 L +.166 .27639 L +.168 .27904 L +.17 .2815 L +.172 .28378 L +.174 .28587 L +.176 .28778 L +.178 .28952 L +.18 .29108 L +.182 .29248 L +.184 .29373 L +.186 .29485 L +.188 .29584 L +.19 .29672 L +.192 .2975 L +.194 .2982 L +.196 .29885 L +.198 .29944 L +Mistroke +.2 .3 L +.202 .30054 L +.204 .30108 L +.206 .30163 L +.208 .30221 L +.21 .30282 L +.212 .30348 L +.214 .30419 L +.216 .30497 L +.218 .30582 L +.22 .30674 L +.222 .30775 L +.224 .30884 L +.226 .31002 L +.228 .31129 L +.23 .31265 L +.232 .31408 L +.234 .31561 L +.236 .3172 L +.238 .31887 L +.24 .32061 L +.242 .3224 L +.244 .32425 L +.246 .32613 L +.248 .32805 L +.25 .33 L +.252 .33196 L +.254 .33392 L +.256 .33588 L +.258 .33782 L +.26 .33973 L +.262 .34161 L +.264 .34343 L +.266 .34521 L +.268 .34691 L +.27 .34854 L +.272 .35008 L +.274 .35154 L +.276 .35289 L +.278 .35414 L +.28 .35528 L +.282 .35631 L +.284 .35722 L +.286 .358 L +.288 .35866 L +.29 .35919 L +.292 .3596 L +.294 .35988 L +.296 .36004 L +.298 .36008 L +Mistroke +.3 .36 L +.302 .35981 L +.304 .3595 L +.306 .3591 L +.308 .3586 L +.31 .35801 L +.312 .35734 L +.314 .3566 L +.316 .3558 L +.318 .35494 L +.32 .35404 L +.322 .35312 L +.324 .35217 L +.326 .35121 L +.328 .35025 L +.33 .34931 L +.332 .3484 L +.334 .34752 L +.336 .3467 L +.338 .34593 L +.34 .34524 L +.342 .34463 L +.344 .34411 L +.346 .3437 L +.348 .3434 L +.35 .34322 L +.352 .34318 L +.354 .34328 L +.356 .34352 L +.358 .34392 L +.36 .34447 L +.362 .3452 L +.364 .34608 L +.366 .34715 L +.368 .34838 L +.37 .34979 L +.372 .35138 L +.374 .35314 L +.376 .35507 L +.378 .35718 L +.38 .35945 L +.382 .36189 L +.384 .36449 L +.386 .36723 L +.388 .37013 L +.39 .37315 L +.392 .37631 L +.394 .37958 L +.396 .38296 L +.398 .38644 L +Mistroke +.4 .39 L +.402 .39363 L +.404 .39732 L +.406 .40106 L +.408 .40482 L +.41 .4086 L +.412 .41238 L +.414 .41614 L +.416 .41988 L +.418 .42357 L +.42 .42719 L +.422 .43074 L +.424 .4342 L +.426 .43755 L +.428 .44077 L +.43 .44385 L +.432 .44678 L +.434 .44954 L +.436 .45212 L +.438 .4545 L +.44 .45667 L +.442 .45863 L +.444 .46035 L +.446 .46182 L +.448 .46305 L +.45 .46401 L +.452 .46471 L +.454 .46513 L +.456 .46527 L +.458 .46512 L +.46 .46468 L +.462 .46395 L +.464 .46293 L +.466 .46161 L +.468 .46 L +.47 .4581 L +.472 .45591 L +.474 .45344 L +.476 .4507 L +.478 .44768 L +.48 .44441 L +.482 .44088 L +.484 .43712 L +.486 .43312 L +.488 .42891 L +.49 .4245 L +.492 .41991 L +.494 .41514 L +.496 .41022 L +.498 .40517 L +Mistroke +.5 .4 L +.502 .39473 L +.504 .38939 L +.506 .38399 L +.508 .37855 L +.51 .3731 L +.512 .36766 L +.514 .36225 L +.516 .3569 L +.518 .35162 L +.52 .34643 L +.522 .34137 L +.524 .33646 L +.526 .3317 L +.528 .32714 L +.53 .32278 L +.532 .31866 L +.534 .31478 L +.536 .31117 L +.538 .30786 L +.54 .30484 L +.542 .30215 L +.544 .2998 L +.546 .2978 L +.548 .29617 L +.55 .29492 L +.552 .29406 L +.554 .29359 L +.556 .29353 L +.558 .29389 L +.56 .29466 L +.562 .29586 L +.564 .29747 L +.566 .29951 L +.568 .30197 L +.57 .30485 L +.572 .30813 L +.574 .31182 L +.576 .31591 L +.578 .32037 L +.58 .32521 L +.582 .33041 L +.584 .33594 L +.586 .3418 L +.588 .34796 L +.59 .3544 L +.592 .3611 L +.594 .36804 L +.596 .37519 L +.598 .38252 L +Mistroke +.6 .39 L +.602 .39761 L +.604 .40531 L +.606 .41308 L +.608 .42088 L +.61 .42868 L +.612 .43645 L +.614 .44414 L +.616 .45174 L +.618 .4592 L +.62 .46648 L +.622 .47356 L +.624 .4804 L +.626 .48697 L +.628 .49322 L +.63 .49914 L +Mfstroke +.63 .49914 m +.63031 .5 L +s +.67229 .5 m +.674 .49416 L +.676 .48674 L +.678 .47873 L +.68 .47015 L +.682 .46103 L +.684 .4514 L +.686 .44128 L +.688 .43071 L +.69 .41972 L +.692 .40836 L +.694 .39666 L +.696 .38467 L +.698 .37244 L +.7 .36 L +.702 .34741 L +.704 .33472 L +.706 .32198 L +.708 .30924 L +.71 .29655 L +.712 .28397 L +.714 .27156 L +.716 .25936 L +.718 .24744 L +.72 .23584 L +.722 .22462 L +.724 .21383 L +.726 .20351 L +.728 .19373 L +.73 .18452 L +.732 .17593 L +.734 .168 L +.736 .16077 L +.738 .15427 L +.74 .14854 L +.742 .14361 L +.744 .1395 L +.746 .13623 L +.748 .13381 L +.75 .13226 L +.752 .13158 L +.754 .13178 L +.756 .13284 L +.758 .13477 L +.76 .13753 L +.762 .14112 L +.764 .1455 L +.766 .15065 L +.768 .15653 L +.77 .16309 L +Mistroke +.772 .17028 L +.774 .17806 L +.776 .18635 L +.778 .19511 L +.78 .20426 L +.782 .21373 L +.784 .22344 L +.786 .23331 L +.788 .24327 L +.79 .25323 L +.792 .2631 L +.794 .2728 L +.796 .28224 L +.798 .29134 L +.8 .3 L +.802 .30815 L +.804 .3157 L +.806 .32257 L +.808 .3287 L +.81 .33402 L +.812 .33847 L +.814 .34198 L +.816 .34453 L +.818 .34607 L +.82 .34657 L +.822 .34602 L +.824 .34441 L +.826 .34176 L +.828 .33809 L +.83 .33342 L +.832 .32782 L +.834 .32134 L +.836 .31405 L +.838 .30606 L +.84 .29746 L +.842 .28838 L +.844 .27895 L +.846 .2693 L +.848 .2596 L +.85 .25 L +.852 .24067 L +.854 .23178 L +.856 .2235 L +.858 .216 L +.86 .20943 L +.862 .20394 L +.864 .19966 L +.866 .19667 L +.868 .19505 L +.87 .19483 L +Mistroke +.872 .19596 L +.874 .19837 L +.876 .20188 L +.878 .20625 L +.88 .21112 L +.882 .21602 L +.884 .22035 L +.886 .22335 L +.888 .22407 L +.89 .22139 L +.892 .21395 L +.894 .20014 L +.896 .17807 L +.898 .14554 L +.9 .1 L +Mfstroke +.5 .165 .165 r +.1 .1 m +.102 .12996 L +.104 .14232 L +.106 .15177 L +.108 .1597 L +.11 .16666 L +.112 .17293 L +.114 .17867 L +.116 .184 L +.118 .18898 L +.12 .19367 L +.122 .19812 L +.124 .20235 L +.126 .20639 L +.128 .21027 L +.13 .21399 L +.132 .21758 L +.134 .22104 L +.136 .22438 L +.138 .22762 L +.14 .23077 L +.142 .23382 L +.144 .23679 L +.146 .23968 L +.148 .24249 L +.15 .24524 L +.152 .24792 L +.154 .25053 L +.156 .25309 L +.158 .25559 L +.16 .25803 L +.162 .26043 L +.164 .26278 L +.166 .26507 L +.168 .26733 L +.17 .26954 L +.172 .27171 L +.174 .27384 L +.176 .27593 L +.178 .27798 L +.18 .28 L +.182 .28198 L +.184 .28393 L +.186 .28585 L +.188 .28773 L +.19 .28959 L +.192 .29141 L +.194 .29321 L +.196 .29498 L +.198 .29672 L +Mistroke +.2 .29843 L +.202 .30012 L +.204 .30178 L +.206 .30342 L +.208 .30503 L +.21 .30662 L +.212 .30819 L +.214 .30974 L +.216 .31126 L +.218 .31276 L +.22 .31424 L +.222 .3157 L +.224 .31714 L +.226 .31856 L +.228 .31996 L +.23 .32135 L +.232 .32271 L +.234 .32405 L +.236 .32538 L +.238 .32669 L +.24 .32798 L +.242 .32925 L +.244 .33051 L +.246 .33175 L +.248 .33298 L +.25 .33419 L +.252 .33538 L +.254 .33656 L +.256 .33772 L +.258 .33887 L +.26 .34 L +.262 .34112 L +.264 .34222 L +.266 .34331 L +.268 .34438 L +.27 .34545 L +.272 .34649 L +.274 .34753 L +.276 .34855 L +.278 .34956 L +.28 .35055 L +.282 .35153 L +.284 .3525 L +.286 .35346 L +.288 .3544 L +.29 .35533 L +.292 .35625 L +.294 .35716 L +.296 .35805 L +.298 .35894 L +Mistroke +.3 .35981 L +.302 .36067 L +.304 .36152 L +.306 .36235 L +.308 .36318 L +.31 .364 L +.312 .3648 L +.314 .36559 L +.316 .36638 L +.318 .36715 L +.32 .36791 L +.322 .36866 L +.324 .3694 L +.326 .37013 L +.328 .37085 L +.33 .37156 L +.332 .37226 L +.334 .37295 L +.336 .37363 L +.338 .3743 L +.34 .37495 L +.342 .3756 L +.344 .37624 L +.346 .37687 L +.348 .3775 L +.35 .37811 L +.352 .37871 L +.354 .3793 L +.356 .37989 L +.358 .38046 L +.36 .38102 L +.362 .38158 L +.364 .38213 L +.366 .38267 L +.368 .38319 L +.37 .38371 L +.372 .38423 L +.374 .38473 L +.376 .38522 L +.378 .38571 L +.38 .38618 L +.382 .38665 L +.384 .38711 L +.386 .38756 L +.388 .388 L +.39 .38843 L +.392 .38886 L +.394 .38927 L +.396 .38968 L +.398 .39008 L +Mistroke +.4 .39047 L +.402 .39086 L +.404 .39123 L +.406 .3916 L +.408 .39196 L +.41 .39231 L +.412 .39265 L +.414 .39298 L +.416 .39331 L +.418 .39363 L +.42 .39394 L +.422 .39424 L +.424 .39454 L +.426 .39482 L +.428 .3951 L +.43 .39537 L +.432 .39563 L +.434 .39589 L +.436 .39614 L +.438 .39637 L +.44 .39661 L +.442 .39683 L +.444 .39705 L +.446 .39725 L +.448 .39745 L +.45 .39765 L +.452 .39783 L +.454 .39801 L +.456 .39818 L +.458 .39834 L +.46 .3985 L +.462 .39864 L +.464 .39878 L +.466 .39891 L +.468 .39904 L +.47 .39916 L +.472 .39926 L +.474 .39937 L +.476 .39946 L +.478 .39955 L +.48 .39962 L +.482 .3997 L +.484 .39976 L +.486 .39982 L +.488 .39986 L +.49 .39991 L +.492 .39994 L +.494 .39997 L +.496 .39998 L +.498 .4 L +Mistroke +.5 .4 L +.502 .4 L +.504 .39998 L +.506 .39997 L +.508 .39994 L +.51 .39991 L +.512 .39986 L +.514 .39982 L +.516 .39976 L +.518 .3997 L +.52 .39962 L +.522 .39955 L +.524 .39946 L +.526 .39937 L +.528 .39926 L +.53 .39916 L +.532 .39904 L +.534 .39891 L +.536 .39878 L +.538 .39864 L +.54 .3985 L +.542 .39834 L +.544 .39818 L +.546 .39801 L +.548 .39783 L +.55 .39765 L +.552 .39745 L +.554 .39725 L +.556 .39705 L +.558 .39683 L +.56 .39661 L +.562 .39637 L +.564 .39614 L +.566 .39589 L +.568 .39563 L +.57 .39537 L +.572 .3951 L +.574 .39482 L +.576 .39454 L +.578 .39424 L +.58 .39394 L +.582 .39363 L +.584 .39331 L +.586 .39298 L +.588 .39265 L +.59 .39231 L +.592 .39196 L +.594 .3916 L +.596 .39123 L +.598 .39086 L +Mistroke +.6 .39047 L +.602 .39008 L +.604 .38968 L +.606 .38927 L +.608 .38886 L +.61 .38843 L +.612 .388 L +.614 .38756 L +.616 .38711 L +.618 .38665 L +.62 .38618 L +.622 .38571 L +.624 .38522 L +.626 .38473 L +.628 .38423 L +.63 .38371 L +.632 .38319 L +.634 .38267 L +.636 .38213 L +.638 .38158 L +.64 .38102 L +.642 .38046 L +.644 .37989 L +.646 .3793 L +.648 .37871 L +.65 .37811 L +.652 .3775 L +.654 .37687 L +.656 .37624 L +.658 .3756 L +.66 .37495 L +.662 .3743 L +.664 .37363 L +.666 .37295 L +.668 .37226 L +.67 .37156 L +.672 .37085 L +.674 .37013 L +.676 .3694 L +.678 .36866 L +.68 .36791 L +.682 .36715 L +.684 .36638 L +.686 .36559 L +.688 .3648 L +.69 .364 L +.692 .36318 L +.694 .36235 L +.696 .36152 L +.698 .36067 L +Mistroke +.7 .35981 L +.702 .35894 L +.704 .35805 L +.706 .35716 L +.708 .35625 L +.71 .35533 L +.712 .3544 L +.714 .35346 L +.716 .3525 L +.718 .35153 L +.72 .35055 L +.722 .34956 L +.724 .34855 L +.726 .34753 L +.728 .34649 L +.73 .34545 L +.732 .34438 L +.734 .34331 L +.736 .34222 L +.738 .34112 L +.74 .34 L +.742 .33887 L +.744 .33772 L +.746 .33656 L +.748 .33538 L +.75 .33419 L +.752 .33298 L +.754 .33175 L +.756 .33051 L +.758 .32925 L +.76 .32798 L +.762 .32669 L +.764 .32538 L +.766 .32405 L +.768 .32271 L +.77 .32135 L +.772 .31996 L +.774 .31856 L +.776 .31714 L +.778 .3157 L +.78 .31424 L +.782 .31276 L +.784 .31126 L +.786 .30974 L +.788 .30819 L +.79 .30662 L +.792 .30503 L +.794 .30342 L +.796 .30178 L +.798 .30012 L +Mistroke +.8 .29843 L +.802 .29672 L +.804 .29498 L +.806 .29321 L +.808 .29141 L +.81 .28959 L +.812 .28773 L +.814 .28585 L +.816 .28393 L +.818 .28198 L +.82 .28 L +.822 .27798 L +.824 .27593 L +.826 .27384 L +.828 .27171 L +.83 .26954 L +.832 .26733 L +.834 .26507 L +.836 .26278 L +.838 .26043 L +.84 .25803 L +.842 .25559 L +.844 .25309 L +.846 .25053 L +.848 .24792 L +.85 .24524 L +.852 .24249 L +.854 .23968 L +.856 .23679 L +.858 .23382 L +.86 .23077 L +.862 .22762 L +.864 .22438 L +.866 .22104 L +.868 .21758 L +.87 .21399 L +.872 .21027 L +.874 .20639 L +.876 .20235 L +.878 .19812 L +.88 .19367 L +.882 .18898 L +.884 .184 L +.886 .17867 L +.888 .17293 L +.89 .16666 L +.892 .1597 L +.894 .15177 L +.896 .14232 L +.898 .12996 L +Mistroke +.9 .1 L +Mfstroke +0 0 1 r +.1 .1 m +.105 .15 L +.125 .21 L +.15 .25 L +.2 .3 L +.25 .33 L +.3 .36 L +.4 .39 L +.5 .4 L +.6 .39 L +.7 .36 L +.8 .3 L +.85 .25 L +.875 .2 L +.9 .1 L +s +5 Mabswid +.1 .1 Mdot +.105 .15 Mdot +.125 .21 Mdot +.15 .25 Mdot +.2 .3 Mdot +.25 .33 Mdot +.3 .36 Mdot +.4 .39 Mdot +.5 .4 Mdot +.6 .39 Mdot +.7 .36 Mdot +.8 .3 Mdot +.85 .25 Mdot +.875 .2 Mdot +.9 .1 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{705, 352.5}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg`3oool4000000@0oooo00<000000?ooo`3oool0203oool0 +0`000000oooo0?ooo`3o0?ooog80oooo003o0?oood<0oooo00<000000?ooo`3oool0203oool00`00 +0000oooo0?ooo`3o0?ooog80oooo003o0?oood80oooo0P00000:0?ooo`030000003oool0oooo0?l0 +ooooLP3oool00?l0ooooCP3oool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<0 +00000?ooo`3oool0o`3ooomb0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool0 +0?l0ooooCP3oool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3o +ool0o`3ooomb0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3o +ool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb +0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool300000?l0 +ooooLP3oool00?l0ooooCP3oool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<0 +00000?ooo`3oool0o`3ooomb0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool0 +0?l0ooooCP3oool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3o +ool0o`3ooomb0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3o +ool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb +0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool00`000000 +oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb0?ooo`00o`3o +oom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool300000?l0ooooLP3oool0 +0?l0ooooCP3oool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3o +ool0o`3ooomb0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3o +ool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb +0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool00`000000 +oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb0?ooo`00o`3o +oom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool00`000000oooo0?ooo`3o +0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb0?ooo`00o`3ooom>0?ooo`03 +0000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool300000?l0ooooLP3oool00?l0ooooCP3o +ool00`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb +0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool00`000000 +oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb0?ooo`00o`3o +oom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool00`000000oooo0?ooo`3o +0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb0?ooo`00D@3oool3000007X0 +oooo1000001k0?ooo`030000003oool0oooo07X0oooo1000001m0?ooo`<00000L`3oool00580oooo +00<000000?ooo`3oool0N@3oool00`000000oooo0?ooo`1l0?ooo`030000003oool0oooo07X0oooo +00<000000?ooo`3oool0O`3oool00`000000oooo0?ooo`1b0?ooo`00C`3oool5000007/0oooo00<0 +00000?ooo`3oool0N`3oool00`000000oooo0?ooo`1k0?ooo`030000003oool0oooo07/0oooo1@00 +001c0?ooo`00B@3oool400000080oooo00@000000?ooo`3oool00000M@3oool4000000@0oooo00<0 +00000?ooo`3oool0NP3oool3000007`0oooo00<000000?ooo`3oool0NP3oool010000000oooo0?oo +o`00001d0?ooo`00D03oool00`000000oooo0000001k0?ooo`040000003oool0oooo000007/0oooo +00<000000?ooo`3oool0NP3oool010000000oooo0?ooo`00001l0?ooo`030000003oool0000007@0 +oooo001A0?ooo`800000O03oool2000007`0oooo00<000000?ooo`3oool0N`3oool2000007h0oooo +0P00001d0?ooo`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool0 +0`000000oooo0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb0?oo +o`00o`3ooom>0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool00`000000oooo +0?ooo`3o0?ooog80oooo003o0?ooodh0oooo00<000000?ooo`3oool0o`3ooomb0?ooo`00o`3ooom> +0?ooo`030000003oool0oooo0?l0ooooLP3oool00?l0ooooCP3oool00`000000oooo0?ooo`3o0?oo +og80oooo001=0?ooo`<0003oo@3oool00`000000oooo0?ooo`3j0?ooo`<0003oM03oool004`0oooo +1@000?ol0?ooo`030000003oool0oooo0?T0oooo1@000?m@0?ooo`030000003oool0oooo00P0oooo +0P0000000`3oool000000000000C0?ooo`003P3oooln000000D0003oo`00003i000000D0003o?P00 +000C0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`000000503oool002h0oooo00<00000 +0?ooo`3oool06`3oool50000oad0oooo00<000000?ooo`3oool0703oool00`000000oooo0?ooo`0M +0?ooo`030000003oool0oooo01d0oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0M +0?ooo`030000003oool0oooo01d0oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0L +0?ooo`030000003oool0oooo01d0oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0M +0?ooo`030000003oool0oooo01d0oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0L +0?ooo`030000003oool0oooo01/0oooo1@000?lM0?ooo`030000003oool0oooo0380oooo0P000009 +0?ooo`030000003oool0oooo01<0oooo000^0?ooo`030000003oool0oooo01`0oooo0`000?lN0?oo +o`030000003oool0oooo01`0oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0M0?oo +o`030000003oool0oooo01d0oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0M0?oo +o`030000003oool0oooo01d0oooo00<000000?ooo`3oool0703oool00`000000oooo0?ooo`0M0?oo +o`030000003oool0oooo01d0oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0M0?oo +o`030000003oool0oooo01d0oooo00<000000?ooo`3oool0703oool00`000000oooo0?ooo`0L0?oo +o`<0003o7P3oool00`000000oooo0?ooo`0a0?ooo`030000003oool0oooo00L0oooo0P0000000`3o +ool000000000000C0?ooo`00;P3oool00`000000oooo0?ooo`0M0?ooo`030000o`3oool0oooo01d0 +oooo00<000000?ooo`3oool0703oool00`000000oooo0?ooo`0M0?ooo`030000003oool0oooo01d0 +oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0M0?ooo`030000003oool0oooo01d0 +oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0L0?ooo`030000003oool0oooo01d0 +oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0M0?ooo`030000003oool0oooo01d0 +oooo00<000000?ooo`3oool07@3oool00`000000oooo0?ooo`0L0?ooo`030000003oool0oooo01`0 +oooo00<0003o07lZ:P3oool07P3oool00`000000oooo0?ooo`0`0?ooo`030000003oool0oooo0200 +oooo001>0?ooo`030000o`3oool0oooo07`0oooo00<000000?ooo`3oool0O@3oool00`000000oooo +0?ooo`1l0?ooo`030000003oool0oooo07/0oooo00<0003o07lZ:P3oool0M03oool004h0oooo00<0 +003o0?ooo`3oool0o03oool00`000000oooo0?ooo`3j0?ooo`030000o`1o:RX0oooo07@0oooo001> +0?ooo`0307lZ:P000?l0oooo0?`0oooo00<000000?ooo`3oool0n@3oool00`000?l00?l007lZ:P1e +0?ooo`00CP3oool00`1o:RX0003o0?ooo`3l0?ooo`030000003oool0oooo0?T0oooo00<0003o003o +001o:RX0M@3oool004h0oooo00<0ObXZ0000o`3oool0o03oool00`000000oooo0?ooo`3i0?ooo`03 +0000o`00o`00ObXZ07D0oooo001>0?ooo`0307lZ:P000?l0oooo0?`0oooo00<000000?ooo`3oool0 +n@3oool00`000?l0oooo07lZ:P1e0?ooo`00C`3oool00`000?l0oooo0?ooo`3k0?ooo`030000003o +ool0oooo0?P0oooo00@0003o003o001o:RX0o`00M@3oool004l0oooo00<0003o0?ooo`3oool0n`3o +ool00`000000oooo0?ooo`3h0?ooo`040000o`00o`00ObXZ0?l007D0oooo001?0?ooo`030000o`3o +ool0oooo0?/0oooo00<000000?ooo`3oool0n03oool010000?l00?l007lZ:P3o001e0?ooo`00C`3o +ool00`000?l0oooo0?ooo`3k0?ooo`<00000n03oool010000?l00?l007lZ:P3o001e0?ooo`00C`3o +ool00`000?l0oooo0?ooo`3k0?ooo`030000003oool0oooo0?L0oooo00D0003o0?ooo`00o`00ObXZ +0?l0001e0?ooo`00C`3oool00`000?l0oooo0?ooo`3k0?ooo`030000003oool0oooo0?L0oooo00@0 +003o003o003oool0ObXZMP3oool004l0oooo00<0003o0?ooo`3oool0n`3oool00`000000oooo0?oo +o`3g0?ooo`040000o`00o`00oooo07lZ:WH0oooo001?0?ooo`0307lZ:P000?l0oooo0?/0oooo00<0 +00000?ooo`3oool0m`3oool010000?l00?l00?ooo`1o:RYf0?ooo`00C`3oool00`1o:RX0003o0?oo +o`3k0?ooo`030000003oool0oooo0?H0oooo00D0003o0?ooo`00o`00oooo07lZ:P1f0?ooo`00C`3o +ool00`1o:RX0003o0?ooo`3k0?ooo`030000003oool0oooo0?H0oooo00D0003o003o003oool0oooo +07lZ:P1f0?ooo`00C`3oool00`1o:RX0003o0?ooo`3k0?ooo`030000003oool0oooo09d0oooo0P3o +001G0?ooo`050000o`00o`00oooo0?ooo`1o:RX0MP3oool004l0oooo00<0ObXZ0000o`3oool0n`3o +ool00`000000oooo0?ooo`2L0?ooo`030?l0003oool0oooo0080o`00E@3oool01@000?l00?l00?oo +o`3oool0ObXZ07H0oooo001?0?ooo`0307lZ:P000?l0oooo0?/0oooo00<000000?ooo`3oool0V`3o +ool00`3o0000oooo0?ooo`030?ooo`030?l0003oool0oooo0540oooo00<0003o003o003oool00P3o +ool00`1o:RX0oooo0?ooo`1d0?ooo`00C`3oool00`1o:RX0003o0?ooo`3k0?ooo`030000003oool0 +oooo09T0oooo0P3o00060?ooo`030?l0003oool0oooo0540oooo00H0003o003o003oool0oooo07lZ +:P3o001f0?ooo`00D03oool00`000?l0oooo0?ooo`3j0?ooo`030000003oool0oooo09P0oooo00<0 +o`000?ooo`3oool01`3oool00`3o0000oooo0?ooo`1@0?ooo`060000o`00o`00oooo0?ooo`1o:RX0 +o`00MP3oool00500oooo00<0003o0?ooo`3oool0nP3oool00`000000oooo0?ooo`2H0?ooo`030?l0 +003oool0oooo00L0oooo00<0o`000?ooo`3oool0D03oool01P000?l00?l00?ooo`3oool0ObXZ0?l0 +07H0oooo001@0?ooo`030000o`3oool0oooo0?X0oooo0`00002H0?ooo`030?l0003oool0oooo00P0 +oooo00<0o`000?ooo`3oool0CP3oool00`000?l00?l00?ooo`020?ooo`0307lZ:P3o0000oooo07D0 +oooo001@0?ooo`0307lZ:P000?l0oooo0?X0oooo00<000000?ooo`3oool0U`3oool00`3o0000oooo +0?ooo`0:0?ooo`030?l0003oool0oooo04d0oooo00<0003o003o003oool00P3oool00`1o:RX0o`00 +0?ooo`1e0?ooo`00D03oool00`1o:RX0003o0?ooo`3j0?ooo`030000003oool0oooo09L0oooo00<0 +o`000?ooo`3oool02P3oool00`3o0000oooo0?ooo`1=0?ooo`030000o`00o`00oooo0080oooo00<0 +ObXZ0?l0003oool0M@3oool00500oooo00<0o`000000o`3oool0nP3oool00`000000oooo0?ooo`2F +0?ooo`030?l0003oool0oooo00`0oooo00<0o`000?ooo`3oool0C03oool00`000?l00?l00?ooo`02 +0?ooo`0307lZ:P3o0000oooo07D0oooo001@0?ooo`<0003onP3oool00`000000oooo0?ooo`2F0?oo +o`030?l0003oool0oooo00`0oooo00<0o`000?ooo`3oool0B`3oool00`000?l0oooo003o00020?oo +o`0307lZ:P3oool0o`0007H0oooo001?0?ooo`D0003on@3oool00`000000oooo0?ooo`2E0?ooo`03 +0?l0003oool0oooo00h0oooo00<0o`000?ooo`3oool0BP3oool00`000?l00?l00?ooo`020?ooo`03 +07lZ:P3oool0o`0007H0oooo001?0?ooo`D0003on@3oool00`000000oooo0?ooo`2E0?ooo`030?l0 +003oool0oooo00h0oooo00<0o`000?ooo`3oool0BP3oool00`000?l00?l00?ooo`020?ooo`0307lZ +:P3oool0o`0007H0oooo001?0?ooo`D0003on@3oool00`000000oooo0?ooo`2D0?ooo`030?l0003o +ool0oooo00l0oooo00<0o`000?ooo`3oool0BP3oool00`000?l00?l00?ooo`020?ooo`0307lZ:P3o +ool0o`0007H0oooo001@0?ooo`<0003onP3oool00`000000oooo0?ooo`2D0?ooo`030?l0003oool0 +oooo00l0oooo00<0o`000?ooo`3oool0B@3oool00`000?l0oooo003o00030?ooo`0307lZ:P3oool0 +o`0007H0oooo001B0?ooo`030000o`3oool0oooo0?P0oooo00<000000?ooo`3oool0U03oool00`3o +0000oooo0?ooo`0@0?ooo`030?l0003oool0oooo04P0oooo00<0003o0?ooo`00o`000P3oool0101o +:RX0oooo0?ooo`3o001f0?ooo`00DP3oool00`000?l0ObXZ0?ooo`3h0?ooo`030000003oool0oooo +09@0oooo00<0o`000?ooo`3oool0403oool00`3o0000oooo0?ooo`180?ooo`030000o`00o`00oooo +0080oooo00@0ObXZ0?ooo`3oool0o`00MP3oool00580oooo00<0o`000000o`3oool0n03oool00`00 +0000oooo0?ooo`2C0?ooo`030?l0003oool0oooo0140oooo00<0o`000?ooo`3oool0B03oool01@00 +0?l00?l00?ooo`3oool0ObXZ00<0oooo00<0o`000?ooo`3oool0M03oool00580oooo00<0o`000000 +o`3oool0n03oool3000009<0oooo00<0o`000?ooo`3oool04P3oool00`3o0000oooo0?ooo`160?oo +o`030000o`00o`00oooo0080oooo00D0ObXZ0?ooo`3oool0oooo0?l0001f0?ooo`00DP3oool00`3o +0000003o0?ooo`3h0?ooo`030000003oool0oooo09<0oooo00<0o`000?ooo`3oool04P3oool00`3o +0000oooo0?ooo`160?ooo`030000o`00o`00oooo0080oooo00D0ObXZ0?ooo`3oool0oooo0?l0001f +0?ooo`00DP3oool00`3o0000ObXZ0000o`3h0?ooo`030000003oool0oooo09<0oooo00<0o`000?oo +o`3oool04`3oool00`3o0000oooo0?ooo`150?ooo`030000o`00o`00oooo0080oooo00@0ObXZ0?oo +o`3oool0o`00M`3oool00580oooo00<00?l00?l000000?l0n03oool00`000000oooo0?ooo`2C0?oo +o`030?l0003oool0oooo01<0oooo00<0o`000?ooo`3oool0A@3oool01@000?l00?l00?ooo`3oool0 +ObXZ00<0oooo00<0o`000?ooo`3oool0M@3oool005<0oooo00<0o`000000o`3oool0m`3oool00`00 +0000oooo0?ooo`2B0?ooo`030?l0003oool0oooo01@0oooo00<0o`000?ooo`3oool0A03oool00`00 +0?l00?l00?ooo`020?ooo`0507lZ:P3oool0oooo0?ooo`3o0000M`3oool005<0oooo00<0o`0007lZ +:P000?l0m`3oool00`000000oooo0?ooo`2B0?ooo`030?l0003oool0oooo01D0oooo00<0o`000?oo +o`3oool0@`3oool00`000?l00?l00?ooo`020?ooo`0507lZ:P3oool0oooo0?ooo`3o0000M`3oool0 +05<0oooo00<0o`0007lZ:P000?l0m`3oool00`000000oooo0?ooo`2B0?ooo`030?l0003oool0oooo +01D0oooo00<0o`000?ooo`3oool0@`3oool00`000?l00?l00?ooo`020?ooo`0507lZ:P3oool0oooo +0?ooo`3o0000M`3oool005<0oooo00<0o`0007lZ:P000?l0m`3oool00`000000oooo0?ooo`2B0?oo +o`030?l0003oool0oooo01D0oooo00<0o`000?ooo`3oool0@`3oool01@000?l00?l00?ooo`3oool0 +ObXZ00@0oooo00<0o`000?ooo`3oool0M@3oool005<0oooo00@0o`000?ooo`1o:RX0003omP3oool0 +0`000000oooo0?ooo`2A0?ooo`030?l0003oool0oooo01H0oooo00<0o`000?ooo`3oool0@P3oool0 +0`000?l0oooo003o00020?ooo`0307lZ:P3oool0oooo0080oooo00<0o`000?ooo`3oool0M@3oool0 +05<0oooo00@0o`000?ooo`1o:RX0003omP3oool00`000000oooo0?ooo`2A0?ooo`030?l0003oool0 +oooo01H0oooo00<0o`000?ooo`3oool0@P3oool00`000?l00?l00?ooo`020?ooo`0307lZ:P3oool0 +oooo0080oooo00<0o`000?ooo`3oool0M@3oool005<0oooo00@00?l00?l0003oool0003omP3oool0 +0`000000oooo0?ooo`2@0?ooo`030?l0003oool0oooo01P0oooo00<0o`000?ooo`3oool0@@3oool0 +1@000?l00?l00?ooo`3oool0ObXZ00D0oooo00<0o`000?ooo`3oool0M@3oool005<0oooo00D00?l0 +0?l0003oool0ObXZ0000o`3e0?ooo`030000003oool0oooo0900oooo00<0o`000?ooo`3oool0603o +ool00`3o0000oooo0?ooo`110?ooo`050000o`00o`00oooo0?ooo`1o:RX01@3oool00`3o0000oooo +0?ooo`1e0?ooo`00E03oool0103o0000oooo0?ooo`000?oe0?ooo`030000003oool0oooo0900oooo +00<0o`000?ooo`3oool0603oool00`3o0000oooo0?ooo`100?ooo`050000o`3oool00?l00?ooo`1o +:RX01P3oool00`3o0000oooo0?ooo`1e0?ooo`00E03oool0103o0000oooo0?ooo`000?oe0?ooo`<0 +0000T03oool00`3o0000oooo0?ooo`0H0?ooo`030?l0003oool0oooo0400oooo00D0003o003o003o +ool0oooo07lZ:P060?ooo`030?l0003oool0oooo07D0oooo001D0?ooo`050?l0003oool0oooo07lZ +:P000?l0m03oool00`000000oooo0?ooo`2?0?ooo`030?l0003oool0oooo01T0oooo00<0o`000?oo +o`3oool0@03oool010000?l00?l00?ooo`1o:RX70?ooo`030?l0003oool0oooo07D0oooo001D0?oo +o`05003o003o0000oooo0?ooo`000?l0m03oool00`000000oooo0?ooo`2?0?ooo`030?l0003oool0 +oooo01X0oooo00<0o`000?ooo`3oool0?`3oool010000?l00?l00?ooo`1o:RX70?ooo`030?l0003o +ool0oooo07D0oooo001D0?ooo`06003o003o0000oooo0?ooo`1o:RX0003ol`3oool00`000000oooo +0?ooo`2?0?ooo`030?l0003oool0oooo01X0oooo00<0o`000?ooo`3oool0?P3oool01@000?l0oooo +003o003oool0ObXZ00L0oooo00<0o`000?ooo`3oool0M@3oool005@0oooo00H00?l00?l0003oool0 +oooo07lZ:P000?oc0?ooo`030000003oool0oooo08l0oooo00<0o`000?ooo`3oool06P3oool00`3o +0000oooo0?ooo`0n0?ooo`050000o`00o`00oooo0?ooo`1o:RX01`3oool00`3o0000oooo0?ooo`1e +0?ooo`00E@3oool01@00o`00o`000?ooo`3oool0003o0?<0oooo00<000000?ooo`3oool0S`3oool0 +0`3o0000oooo0?ooo`0J0?ooo`030?l0003oool0oooo03h0oooo00@0003o003o003oool0ObXZ203o +ool00`3o0000oooo0?ooo`1e0?ooo`00E@3oool01P00o`00o`000?ooo`3oool0ObXZ0000oo80oooo +00<000000?ooo`3oool0SP3oool00`3o0000oooo0?ooo`0L0?ooo`030?l0003oool0oooo03d0oooo +00@0003o0?ooo`3oool0ObXZ1`3oool00`3o0000oooo0?ooo`1f0?ooo`00E@3oool01P00o`00oooo +0?l0003oool0ObXZ0000oo80oooo00<000000?ooo`3oool0SP3oool00`3o0000oooo0?ooo`0L0?oo +o`030?l0003oool0oooo03`0oooo00D0003o003o003oool0oooo07lZ:P070?ooo`030?l0003oool0 +oooo07H0oooo001E0?ooo`03003o003oool0o`000080oooo00<0003o0?ooo`3oool0l03oool00`00 +0000oooo0?ooo`2>0?ooo`030?l0003oool0oooo01`0oooo00<0o`000?ooo`3oool0?03oool01000 +0?l00?l00?ooo`1o:RX80?ooo`030?l0003oool0oooo07H0oooo001F0?ooo`06003o003oool0o`00 +0?ooo`1o:RX0003ol@3oool00`000000oooo0?ooo`2>0?ooo`030?l0003oool0oooo01d0oooo00<0 +o`000?ooo`3oool0>`3oool010000?l0oooo0?ooo`1o:RX80?ooo`030?l0003oool0oooo07H0oooo +001F0?ooo`03003o003oool0o`000080oooo00<0003o0?ooo`3oool0k`3oool00`000000oooo0?oo +o`2>0?ooo`030?l0003oool0oooo01d0oooo00<0o`000?ooo`3oool0=P3oool40?l000040?ooo`00 +0?l0oooo07lZ:PT0oooo00<0o`000?ooo`3oool0MP3oool005L0oooo00D00?l00?l0003oool0oooo +0000o`3T0?ooo`D00000203oool00`000000oooo0?ooo`2>0?ooo`030?l0003oool0oooo01d0oooo +00<0o`000?ooo`3oool0=@3oool0103o0000oooo0?ooo`3oool30000o`030?ooo`1o:RX0oooo00P0 +oooo00<0o`000?ooo`3oool0MP3oool005L0oooo00<00?l00?ooo`3o00000P3oool00`000?l0oooo +0?ooo`3S0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3oool0S@3oool00`3o0000oooo +0?ooo`0N0?ooo`030?l0003oool0oooo03@0oooo00@0o`000?ooo`3oool0oooo1@000?l:0?ooo`03 +0?l0003oool0oooo07H0oooo001H0?ooo`05003o003o0000oooo0?ooo`000?l0i@3oool00`000000 +oooo0?ooo`080?ooo`D00000R`3oool00`3o0000oooo0?ooo`0N0?ooo`030?l0003oool0oooo03<0 +oooo00<0o`000?ooo`3oool00P3oool50000o`X0oooo00<0o`000?ooo`3oool0MP3oool005P0oooo +00H00?l00?l0003oool0oooo0000o`1o:R[T0?ooo`030000003oool0oooo00P0oooo00<000000?oo +o`3oool0S@3oool00`3o0000oooo0?ooo`0O0?ooo`030?l0003oool0oooo0340oooo00<0o`000?oo +o`3oool00`3oool50000o`X0oooo00<0o`000?ooo`3oool0MP3oool005P0oooo00<00?l00?ooo`3o +00000P3oool00`000?l0oooo0?ooo`3R0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3o +ool0S@3oool00`3o0000oooo0?ooo`0O0?ooo`030?l0003oool0oooo0340oooo00<0o`000?ooo`3o +ool0103oool30000o`/0oooo00<0o`000?ooo`3oool0MP3oool005T0oooo00H00?l00?ooo`3o0000 +oooo0000o`1o:R[R0?ooo`8000002P3oool00`000000oooo0?ooo`2=0?ooo`030?l0003oool0oooo +01l0oooo00<0o`000?ooo`3oool0<@3oool00`3o0000oooo0?ooo`030?ooo`050000o`3oool0ObXZ +0?ooo`3o00002@3oool00`3o0000oooo0?ooo`1g0?ooo`00FP3oool00`00o`00oooo0?l000030000 +ond0oooo00<000000?ooo`3oool0S03oool00`3o0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo +0300oooo00<0o`000?ooo`3oool0103oool01@000?l00?l007lZ:P3oool0o`0000T0oooo00<0o`00 +0?ooo`3oool0M`3oool005/0oooo00<00?l00000o`000?l00`000?o/0?ooo`030000003oool0oooo +08`0oooo00<0o`000?ooo`3oool0803oool00`3o0000oooo0?ooo`0`0?ooo`030?l0003oool0oooo +00<0oooo00<0003o0?ooo`1o:RX00`3oool00`3o0000oooo0?ooo`060?ooo`030?l0003oool0oooo +07L0oooo001L0?ooo`D0003ok03oool00`000000oooo0?ooo`2<0?ooo`030?l0003oool0oooo0200 +oooo00<0o`000?ooo`3oool0<03oool00`3o0000oooo0?ooo`030?ooo`030000o`00o`00ObXZ00<0 +oooo00<0o`000?ooo`3oool01P3oool00`3o0000oooo0?ooo`1g0?ooo`00G03oool50000on`0oooo +00<000000?ooo`3oool0S03oool00`3o0000oooo0?ooo`0Q0?ooo`030?l0003oool0oooo02l0oooo +00<0o`000?ooo`3oool00P3oool00`000?l0oooo07lZ:P050?ooo`030?l0003oool0oooo00@0oooo +00<0o`000?ooo`3oool0N03oool005d0oooo0`000?l00`00o`00ObXZ0?ooo`3Z0?ooo`030000003o +ool0oooo08/0oooo00<0o`000?ooo`3oool08P3oool00`3o0000oooo0?ooo`0^0?ooo`030?l0003o +ool0oooo00<0oooo00<0003o003o001o:RX01@3oool00`3o0000oooo0?ooo`040?ooo`030?l0003o +ool0oooo07P0oooo001P0?ooo`030000o`1o:RX0oooo0>X0oooo00<000000?ooo`3oool0R`3oool0 +0`3o0000oooo0?ooo`0R0?ooo`030?l0003oool0oooo02h0oooo00<0o`000?ooo`3oool00P3oool0 +0`000?l0oooo07lZ:P070?ooo`030?l0003oool0oooo00<0oooo00<0o`000?ooo`3oool0N03oool0 +0600oooo00<0003o07lZ:P3oool0jP3oool00`000000oooo0?ooo`2;0?ooo`030?l0003oool0oooo +0280oooo00<0o`000?ooo`3oool0;P3oool00`3o0000oooo0?ooo`020?ooo`030000o`1o:RX00?l0 +00L0oooo00<0o`000?ooo`3oool00`3oool00`3o0000oooo0?ooo`1h0?ooo`00H@3oool00`000?l0 +ObXZ0?ooo`3Y0?ooo`030000003oool0oooo08/0oooo00<0o`000?ooo`3oool08P3oool00`3o0000 +oooo0?ooo`0^0?ooo`070?l0003oool0oooo0?ooo`000?l0oooo07lZ:P080?ooo`030?l0003oool0 +oooo00<0oooo00<0o`000?ooo`3oool0N03oool00680oooo00<0003o0?ooo`3oool0j03oool00`00 +0000oooo0?ooo`2;0?ooo`030?l0003oool0oooo0280oooo00<0o`000?ooo`3oool0;@3oool00`3o +0000oooo0?ooo`020?ooo`030000o`1o:RX00?l000T0oooo00D0o`000?ooo`3oool0oooo0?l0001k +0?ooo`00HP3oool00`000?l0ObXZ0?ooo`3X0?ooo`<00000RP3oool00`3o0000oooo0?ooo`0T0?oo +o`030?l0003oool0oooo02`0oooo00P0o`000?ooo`3oool0oooo0000o`3oool0ObXZ003o00T0oooo +00D0o`000?ooo`3oool0oooo0?l0001k0?ooo`00H`3oool00`000?l0ObXZ0?ooo`3W0?ooo`030000 +003oool0oooo08X0oooo00<0o`000?ooo`3oool0903oool00`3o0000oooo0?ooo`0[0?ooo`030?l0 +003oool0oooo0080oooo00<0003o07lZ:P00o`002P3oool01@3o0000oooo0?ooo`3oool0o`0007/0 +oooo001T0?ooo`030000o`1o:RX0oooo0>H0oooo00<000000?ooo`3oool0RP3oool00`3o0000oooo +0?ooo`0T0?ooo`030?l0003oool0oooo02/0oooo00P0o`000?ooo`3oool0oooo0000o`1o:RX0oooo +003o00/0oooo0`3o001l0?ooo`00I03oool00`000?l0ObXZ0?ooo`3V0?ooo`030000003oool0oooo +08X0oooo00<0o`000?ooo`3oool0903oool00`3o0000oooo0?ooo`0[0?ooo`070?l0003oool0oooo +0?ooo`000?l0oooo003o002;0?ooo`00I@3oool00`000?l0ObXZ0?ooo`3U0?ooo`030000003oool0 +oooo08X0oooo00<0o`000?ooo`3oool09@3oool00`3o0000oooo0?ooo`0Z0?ooo`060?l0003oool0 +oooo0000o`1o:RX00?l0S03oool006D0oooo00<0003o07lZ:P3oool0i@3oool00`000000oooo0?oo +o`2:0?ooo`030?l0003oool0oooo02D0oooo00<0o`000?ooo`3oool0:@3oool01`3o0000oooo0?oo +o`3oool0003o07lZ:P00o`00S03oool006H0oooo00<0003o07lZ:P3oool0i03oool00`000000oooo +0?ooo`2:0?ooo`030?l0003oool0oooo02D0oooo00<0o`000?ooo`3oool0:@3oool01P3o0000oooo +0?ooo`000?l0ObXZ003o08d0oooo001W0?ooo`030000o`3oool0oooo0><0oooo00<000000?ooo`3o +ool0R@3oool00`3o0000oooo0?ooo`0W0?ooo`030?l0003oool0oooo02P0oooo00H0o`000?ooo`3o +ool0003o07lZ:P00o`2=0?ooo`00I`3oool00`000?l0ObXZ0?ooo`3S0?ooo`030000003oool0oooo +08T0oooo00<0o`000?ooo`3oool09`3oool00`3o0000oooo0?ooo`0X0?ooo`050?l0003oool0003o +07lZ:P00o`00SP3oool006P0oooo00<0003o07lZ:P3oool0hP3oool00`000000oooo0?ooo`290?oo +o`030?l0003oool0oooo02L0oooo00<0o`000?ooo`3oool0:03oool01@3o0000oooo0000o`3oool0 +0?l008h0oooo001X0?ooo`030000o`00o`00ObXZ0>80oooo00<000000?ooo`3oool0R@3oool00`3o +0000oooo0?ooo`0W0?ooo`030?l0003oool0oooo02L0oooo00D0o`000?ooo`000?l0oooo003o002? +0?ooo`00J@3oool00`000?l0ObXZ0?ooo`3Q0?ooo`030000003oool0oooo08T0oooo00<0o`000?oo +o`3oool09`3oool00`3o0000oooo0?ooo`0W0?ooo`050?l0001o:RX0003o0?ooo`00o`00S`3oool0 +06X0oooo00<0003o07lZ:P3oool0h03oool3000008P0oooo00<0o`000?ooo`3oool0:@3oool00`3o +0000oooo0?ooo`0V0?ooo`040?l000000?l0oooo003o0900oooo001Z0?ooo`030000o`1o:RX0oooo +0>00oooo00<000000?ooo`3oool0R03oool00`3o0000oooo0?ooo`0Y0?ooo`030?l0003oool0oooo +02H0oooo00<0ObXZ0000o`00o`00T@3oool006/0oooo00<0003o07lZ:P3oool0g`3oool00`000000 +oooo0?ooo`280?ooo`030?l0003oool0oooo02T0oooo00<0o`000?ooo`3oool09P3oool00`000?l0 +0?l00?ooo`2A0?ooo`00J`3oool00`3o0000003o07lZ:P3O0?ooo`030000003oool0oooo08P0oooo +00<0o`000?ooo`3oool0:@3oool00`3o0000oooo0?ooo`0U0?ooo`0307lZ:P000?l00?l00980oooo +001/0?ooo`030000o`3oool0ObXZ0=h0oooo00<000000?ooo`3oool0Q`3oool00`3o0000oooo0?oo +o`0Z0?ooo`030?l0003oool0oooo02@0oooo00<0ObXZ0000o`00o`00T`3oool006`0oooo00@00?l0 +0000o`000?l0003og@3oool00`000000oooo0?ooo`270?ooo`030?l0003oool0oooo02X0oooo00<0 +o`000?ooo`3oool08`3oool30000o`03003o003oool0oooo0940oooo001/0?ooo`D0003og03oool0 +0`000000oooo0?ooo`270?ooo`030?l0003oool0oooo02/0oooo00<0o`000?ooo`3oool08@3oool5 +0000oi<0oooo001/0?ooo`D0003og03oool00`000000oooo0?ooo`270?ooo`030?l0003oool0oooo +02/0oooo00<0o`000?ooo`3oool08@3oool50000oi<0oooo001/0?ooo`D0003og03oool00`000000 +oooo0?ooo`270?ooo`030?l0003oool0oooo02/0oooo00<0o`000?ooo`3oool0803oool00`1o:RX0 +003o0000o`030000oi<0oooo001]0?ooo`@0003o00<0ObXZ0?ooo`3oool0f@3oool00`000000oooo +0?ooo`260?ooo`030?l0003oool0oooo02`0oooo00<0o`000?ooo`3oool0803oool00`1o:RX0003o +0000o`020000oi@0oooo001_0?ooo`030?l0003oool0003o0080ObXZf@3oool00`000000oooo0?oo +o`260?ooo`030?l0003oool0oooo02`0oooo00<0o`000?ooo`3oool07P3oool207lZ:P030000o`00 +o`00o`0009H0oooo001`0?ooo`040?l0003oool0003o07lZ:]T0oooo00<000000?ooo`3oool0QP3o +ool00`3o0000oooo0?ooo`0]0?ooo`030?l0003oool0oooo01`0oooo00H0ObXZ0?ooo`000?l00?l0 +0?ooo`3o002F0?ooo`00L03oool01@3o0000oooo0?ooo`000?l0ObXZ0=P0oooo00<000000?ooo`3o +ool0QP3oool00`3o0000oooo0?ooo`0]0?ooo`030?l0003oool0oooo01`0oooo00H0ObXZ0000o`3o +ool00?l00?ooo`3o002F0?ooo`00L@3oool01@3o0000oooo0?ooo`000?l0ObXZ0=L0oooo0`000026 +0?ooo`030?l0003oool0oooo02d0oooo00<0o`000?ooo`3oool06`3oool0101o:RX0003o003o0000 +o`020?ooo`030?l0003oool0oooo09@0oooo001a0?ooo`060?l00000o`00oooo0?ooo`000?l0ObXZ +eP3oool00`000000oooo0?ooo`260?ooo`030?l0003oool0oooo02h0oooo00<0o`000?ooo`3oool0 +6@3oool00`1o:RX0003o003o00040?ooo`030?l0003oool0oooo09@0oooo001b0?ooo`060?l00000 +o`00oooo0?ooo`000?l0ObXZe@3oool00`000000oooo0?ooo`260?ooo`030?l0003oool0oooo02h0 +oooo00<0o`000?ooo`3oool06@3oool00`000?l0oooo003o00040?ooo`030?l0003oool0oooo09@0 +oooo001c0?ooo`060?l00000o`00oooo0?ooo`000?l0ObXZe03oool00`000000oooo0?ooo`260?oo +o`030?l0003oool0oooo02h0oooo00<0o`000?ooo`3oool05`3oool0101o:RX0003o0?ooo`00o`04 +0?ooo`030?l0003oool0oooo09D0oooo001c0?ooo`030?l00000o`00oooo0080oooo00<0003o0?oo +o`3oool0dP3oool00`000000oooo0?ooo`250?ooo`030?l0003oool0oooo02l0oooo00<0o`000?oo +o`3oool05P3oool0101o:RX0003o0?ooo`00o`050?ooo`030?l0003oool0oooo09D0oooo001d0?oo +o`030?l00000o`00oooo0080oooo00<0003o0?ooo`3oool0d@3oool00`000000oooo0?ooo`250?oo +o`030?l0003oool0oooo02l0oooo00<0o`000?ooo`3oool05P3oool010000?l0oooo0?ooo`00o`05 +0?ooo`030?l0003oool0oooo09D0oooo001d0?ooo`030?l0003oool00?l000<0oooo00<0003o0?oo +o`3oool0d03oool00`000000oooo0?ooo`250?ooo`030?l0003oool0oooo0300oooo00<0o`000?oo +o`3oool0503oool010000?l0oooo003o0000o`060?ooo`030?l0003oool0oooo09D0oooo001e0?oo +o`030?l0003oool00?l000<0oooo00<0003o0?ooo`3oool0c`3oool00`000000oooo0?ooo`250?oo +o`030?l0003oool0oooo0300oooo00<0o`000?ooo`3oool04`3oool00`000?l0oooo003o00080?oo +o`030?l0003oool0oooo09D0oooo001f0?ooo`030?l0003oool00?l000<0oooo00<0003o0?ooo`3o +ool0cP3oool00`000000oooo0?ooo`250?ooo`030?l0003oool0oooo0300oooo00<0o`000?ooo`3o +ool04P3oool00`000?l0oooo003o00090?ooo`030?l0003oool0oooo09D0oooo001g0?ooo`030?l0 +0000o`00oooo00<0oooo00<0003o0?ooo`3oool0c@3oool00`000000oooo0?ooo`250?ooo`030?l0 +003oool0oooo0300oooo00<0o`000?ooo`3oool04@3oool010000?l0oooo0?ooo`00o`080?ooo`03 +0?l0003oool0oooo09H0oooo001g0?ooo`030?l0003oool00?l000<0oooo00<0003o07lZ:P3oool0 +c@3oool00`000000oooo0?ooo`250?ooo`030?l0003oool0oooo0300oooo00<0o`000?ooo`3oool0 +403oool010000?l0oooo003o0000o`090?ooo`030?l0003oool0oooo09H0oooo001h0?ooo`030?l0 +003oool00?l000<0oooo00<0003o0?ooo`3oool0c03oool00`000000oooo0?ooo`240?ooo`030?l0 +003oool0oooo0340oooo00<0o`000?ooo`3oool03`3oool00`1o:RX0003o003o000;0?ooo`030?l0 +003oool0oooo09H0oooo001i0?ooo`040?l0003oool00?l0003o0080oooo00<0003o0?ooo`3oool0 +b`3oool00`000000oooo0?ooo`240?ooo`030?l0003oool0oooo0380oooo00<0o`000?ooo`3oool0 +3P3oool00`000?l00?l00?ooo`0;0?ooo`030?l0003oool0oooo09H0oooo001i0?ooo`040?l0003o +ool0oooo003o00<0oooo00<0003o07lZ:P3oool0bP3oool3000008@0oooo00<0o`000?ooo`3oool0 +0?ooo`03 +0?l0003oool0oooo09P0oooo001n0?ooo`050?l0003oool0oooo0?ooo`00o`000P3oool00`000?l0 +ObXZ0?ooo`350?ooo`030000003oool0oooo08<0oooo00<0o`000?ooo`3oool0=03oool00`3o0000 +oooo0?ooo`060?ooo`0307lZ:P000?l00?l00100oooo00<0o`000?ooo`3oool0V03oool007l0oooo +00D0o`000?ooo`3oool0oooo003o00020?ooo`030000o`1o:RX0oooo0<@0oooo00<000000?ooo`3o +ool0P`3oool00`3o0000oooo0?ooo`0d0?ooo`030?l0003oool0oooo00D0oooo00<0ObXZ0000o`00 +o`004@3oool00`3o0000oooo0?ooo`2H0?ooo`00P03oool20?l00080oooo0P00o`000`3oool0003o +07lZ:P340?ooo`030000003oool0oooo08<0oooo00<0o`000?ooo`3oool0=03oool00`3o0000oooo +0?ooo`040?ooo`0307lZ:P000?l0oooo0180oooo00<0o`000?ooo`3oool0V03oool00880oooo00L0 +o`000?ooo`3oool0oooo003o003oool0003o0080ObXZ`P3oool00`000000oooo0?ooo`0P0?ooo`03 +0?l0003oool0oooo05l0oooo00<0o`000?ooo`3oool0=@3oool00`3o0000oooo0?ooo`020?ooo`80 +ObXZ00<0003o003o003oool04@3oool00`3o0000oooo0?ooo`2I0?ooo`00P`3oool30?l000060?oo +o`00o`000?l00000o`3oool0ObXZ`@3oool00`000000oooo0?ooo`0L0?ooo`@0o`0000@0oooo0?l0 +003o0000o`00GP3oool00`3o0000oooo0?ooo`0f0?ooo`070?l0003oool0oooo07lZ:P3oool0003o +003o000C0?ooo`030?l0003oool0oooo09T0oooo00260?ooo`060?l0003oool0oooo003o00000?l0 +ObXZ`@3oool00`000000oooo0?ooo`0K0?ooo`030?l0003oool0oooo00H0oooo00<0o`000?ooo`3o +ool0F`3oool00`3o0000oooo0?ooo`0f0?ooo`060?l0003oool0ObXZ0?ooo`000?l00?l0503oool0 +0`3o0000oooo0?ooo`2I0?ooo`00Q`3oool40?l000@0003o/@3oool4000000T0oooo00<000000?oo +o`3oool06P3oool00`3o0000oooo0?ooo`080?ooo`030?l0003oool0oooo05X0oooo00<0o`000?oo +o`3oool0=P3oool40000oaH0oooo00<0o`000?ooo`3oool0V@3oool008/0oooo1@000?n`0?ooo`03 +0000003oool0oooo00X0oooo00<000000?ooo`3oool06@3oool00`3o0000oooo0?ooo`0:0?ooo`80 +o`00FP3oool00`3o0000oooo0?ooo`0e0?ooo`D0003o5P3oool00`3o0000oooo0?ooo`2I0?ooo`00 +R`3oool50000o`030?l0003oool0oooo0:h0oooo00<000000?ooo`3oool02@3oool5000001H0oooo +00<0o`000?ooo`3oool0303oool00`3o0000oooo0?ooo`1H0?ooo`030?l0003oool0oooo03D0oooo +1@000?lF0?ooo`030?l0003oool0oooo09T0oooo002;0?ooo`D0003o00<0ObXZ0?l0003o00000P3o +002]0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3oool05`3oool00`3o0000oooo0?oo +o`0>0?ooo`030?l0003oool0oooo05H0oooo00<0o`000?ooo`3oool0=@3oool00`1o:RX0003o0000 +o`030000oaD0oooo00<0o`000?ooo`3oool0VP3oool008`0oooo0`000?l00`3oool0003o0000o`03 +0?ooo`80o`00Z@3oool010000000oooo0?ooo`0000090?ooo`030000003oool0oooo01H0oooo00<0 +o`000?ooo`3oool03`3oool00`3o0000oooo0?ooo`1F0?ooo`030?l0003oool0oooo03@0oooo0P00 +0?l0103oool0003o0000o`000?lF0?ooo`030?l0003oool0oooo09X0oooo002B0?ooo`030000o`1o +:RX00?l00080oooo0`3o002W0?ooo`8000002P3oool00`000000oooo0?ooo`0F0?ooo`030?l0003o +ool0oooo0100oooo00<0o`000?ooo`3oool0E@3oool00`3o0000oooo0?ooo`0c0?ooo`030000o`00 +o`00oooo00<0oooo00<0o`000?ooo`3oool0503oool00`3o0000oooo0?ooo`2J0?ooo`00T`3oool2 +0000o`03003o003oool0oooo0080oooo00<0o`000?ooo`3oool0/03oool00`000000oooo0?ooo`0E +0?ooo`030?l0003oool0oooo0140oooo00<0o`000?ooo`3oool0E@3oool00`3o0000oooo0?ooo`0a +0?ooo`80003o1P3oool00`3o0000oooo0?ooo`0D0?ooo`030?l0003oool0oooo09X0oooo002E0?oo +o`80003o103oool30?l00:l0oooo00<000000?ooo`3oool05@3oool00`3o0000oooo0?ooo`0B0?oo +o`030?l0003oool0oooo05@0oooo00<0o`000?ooo`3oool0;`3oool20000o`P0oooo00<0o`000?oo +o`3oool0503oool00`3o0000oooo0?ooo`2J0?ooo`00UP3oool00`1o:RX0003o003o00050?ooo`03 +0?l0003oool0oooo0:`0oooo00<000000?ooo`3oool0503oool00`3o0000oooo0?ooo`0D0?ooo`03 +0?l0003oool0oooo05<0oooo00<0o`000?ooo`3oool0;P3oool00`000?l0ObXZ0?ooo`080?ooo`03 +0?l0003oool0oooo01<0oooo00<0o`000?ooo`3oool0V`3oool009L0oooo00@0ObXZ0000o`000?l0 +0?l0103oool00`3o0000oooo0?ooo`2[0?ooo`030000003oool0oooo01<0oooo00<0o`000?ooo`3o +ool05P3oool00`3o0000oooo0?ooo`1B0?ooo`030?l0003oool0oooo02`0oooo0P000?l00`1o:RX0 +oooo0?ooo`080?ooo`030?l0003oool0oooo01<0oooo00<0o`000?ooo`3oool0V`3oool009T0oooo +00<0ObXZ0000o`000?l0103oool20?l00:/0oooo00<000000?ooo`3oool04P3oool00`3o0000oooo +0?ooo`0G0?ooo`030?l0003oool0oooo0580oooo00<0o`000?ooo`3oool0:P3oool20000o`0307lZ +:P3oool0oooo00/0oooo00<0o`000?ooo`3oool04P3oool00`3o0000oooo0?ooo`2K0?ooo`00VP3o +ool0101o:RX0oooo0000o`00o`040?ooo`030?l0003oool0oooo0:P0oooo00<000000?ooo`3oool0 +4P3oool00`3o0000oooo0?ooo`0H0?ooo`030?l0003oool0oooo0540oooo00<0o`000?ooo`3oool0 +:@3oool00`000?l0oooo07lZ:P0>0?ooo`030?l0003oool0oooo0180oooo00<0o`000?ooo`3oool0 +V`3oool009/0oooo00D0ObXZ0?ooo`000?l0003o003o00030?ooo`030?l0003oool0oooo0:L0oooo +00<000000?ooo`3oool04@3oool00`3o0000oooo0?ooo`0I0?ooo`030?l0003oool0oooo0500oooo +00<0o`000?ooo`3oool0:03oool20000o`030?ooo`1o:RX0oooo00h0oooo00<0o`000?ooo`3oool0 +4@3oool00`3o0000oooo0?ooo`2L0?ooo`00W03oool307lZ:P80003o00@00?l00?ooo`3oool0o`00 +Z03oool00`000000oooo0?ooo`0A0?ooo`030?l0003oool0oooo01T0oooo00<0o`000?ooo`3oool0 +D03oool00`3o0000oooo0?ooo`0V0?ooo`80003o0`1o:RX@0?ooo`030?l0003oool0oooo0140oooo +00<0o`000?ooo`3oool0W03oool009l0oooo00@0ObXZ0?ooo`000?l0003o0P3oool20?l00:H0oooo +0`00000A0?ooo`030?l0003oool0oooo01X0oooo00<0o`000?ooo`3oool0C`3oool00`3o0000oooo +0?ooo`0T0?ooo`80003o00<0oooo07lZ:P00o`004P3oool00`3o0000oooo0?ooo`0@0?ooo`030?l0 +003oool0oooo09d0oooo002P0?ooo`80ObXZ00<0oooo0000o`00o`000P3oool00`3o0000oooo0?oo +o`2S0?ooo`030000003oool0oooo0100oooo00<0o`000?ooo`3oool06`3oool00`3o0000oooo0?oo +o`1?0?ooo`030?l0003oool0oooo02<0oooo00D0003o0?ooo`3oool0ObXZ003o000D0?ooo`030?l0 +003oool0oooo00l0oooo00<0o`000?ooo`3oool0W@3oool00:80oooo00L0ObXZ0?ooo`000?l0003o +003o003oool0o`000:@0oooo00<000000?ooo`3oool0403oool00`3o0000oooo0?ooo`0L0?ooo`03 +0?l0003oool0oooo04h0oooo00<0o`000?ooo`3oool08@3oool20000o`030?ooo`1o:RX0ObXZ01H0 +oooo00<0o`000?ooo`3oool03`3oool00`3o0000oooo0?ooo`2M0?ooo`00X`3oool00`1o:RX0oooo +0?ooo`020000o`030?ooo`3o0000oooo0:80oooo00<000000?ooo`3oool03`3oool00`3o0000oooo +0?ooo`0M0?ooo`030?l0003oool0oooo04h0oooo00<0o`000?ooo`3oool07`3oool20000o`80oooo +00<0ObXZ0?ooo`3oool05P3oool00`3o0000oooo0?ooo`0>0?ooo`030?l0003oool0oooo09h0oooo +002T0?ooo`0607lZ:P3oool0oooo0?ooo`000?l00?l00P3o002Q0?ooo`030000003oool0oooo00l0 +oooo00<0o`000?ooo`3oool07P3oool00`3o0000oooo0?ooo`1<0?ooo`030?l0003oool0oooo01l0 +oooo00D0003o0?ooo`3oool0oooo07lZ:P0J0?ooo`030?l0003oool0oooo00d0oooo00<0o`000?oo +o`3oool0WP3oool00:D0oooo0`1o:RX0103oool0003o0000o`00o`030000oih0oooo00<000000?oo +o`3oool03P3oool00`3o0000oooo0?ooo`0O0?ooo`030?l0003oool0oooo04`0oooo00<0o`000?oo +o`3oool07@3oool20000o`040?ooo`1o:RX0ObXZ07lZ:Q/0oooo00<0o`000?ooo`3oool03@3oool0 +0`3o0000oooo0?ooo`2N0?ooo`00Z03oool00`1o:RX0oooo0?ooo`050000oid0oooo00<000000?oo +o`3oool03P3oool00`3o0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo04/0oooo00<0o`000?oo +o`3oool06`3oool20000o`80oooo00<0ObXZ003o003oool07@3oool00`3o0000oooo0?ooo`0<0?oo +o`030?l0003oool0oooo09h0oooo002Y0?ooo`0307lZ:P3oool0003o00@0003oW@3oool00`000000 +oooo0?ooo`0=0?ooo`030?l0003oool0oooo0240oooo00<0o`000?ooo`3oool0B`3oool00`3o0000 +oooo0?ooo`0J0?ooo`050000o`3oool0oooo0?ooo`1o:RX0803oool00`3o0000oooo0?ooo`0;0?oo +o`030?l0003oool0oooo09l0oooo002Z0?ooo`0307lZ:P000?l0003o00<0003o00<00?l00?ooo`3o +ool0VP3oool00`000000oooo0?ooo`0=0?ooo`030?l0003oool0oooo0240oooo00<0o`000?ooo`3o +ool0BP3oool00`3o0000oooo0?ooo`0I0?ooo`80003o0P3oool207lZ:R80oooo00<0o`000?ooo`3o +ool02P3oool00`3o0000oooo0?ooo`2O0?ooo`00[03oool30000o`030?ooo`000?l0003o09/0oooo +00<000000?ooo`3oool03@3oool00`3o0000oooo0?ooo`0R0?ooo`030?l0003oool0oooo04T0oooo +00<0o`000?ooo`3oool05`3oool20000o`80oooo0P1o:RXT0?ooo`030?l0003oool0oooo00X0oooo +00<0o`000?ooo`3oool0W`3oool00:h0oooo0P1o:RX00`3oool0o`000000o`2J0?ooo`030000003o +ool0oooo00`0oooo00<0o`000?ooo`3oool08`3oool00`3o0000oooo0?ooo`190?ooo`030?l0003o +ool0oooo01H0oooo00D0003o0?ooo`3oool0oooo07lZ:P0V0?ooo`030?l0003oool0oooo00T0oooo +00<0o`000?ooo`3oool0X03oool00;00oooo00<0ObXZ0?l0003oool00P000?l00`00o`00oooo0?oo +o`2E0?ooo`030000003oool0oooo00`0oooo00<0o`000?ooo`3oool08`3oool00`3o0000oooo0?oo +o`190?ooo`030?l0003oool0oooo01@0oooo0P000?l20?ooo`80ObXZ:03oool00`3o0000oooo0?oo +o`080?ooo`030?l0003oool0oooo0:00oooo002a0?ooo`80ObXZ0P3oool20000oiH0oooo00<00000 +0?ooo`3oool0303oool00`3o0000oooo0?ooo`0S0?ooo`030?l0003oool0oooo04T0oooo00<0o`00 +0?ooo`3oool04P3oool20000o`80oooo0P1o:RXZ0?ooo`030?l0003oool0oooo00L0oooo00<0o`00 +0?ooo`3oool0X@3oool00;<0oooo0P1o:RX20?ooo`030000o`3oool0oooo09<0oooo0`00000;0?oo +o`030?l0003oool0oooo02D0oooo00<0o`000?ooo`3oool0B03oool00`3o0000oooo0?ooo`0A0?oo +o`030000o`3oool0oooo0080ObXZ;@3oool00`3o0000oooo0?ooo`050?ooo`030?l0003oool0oooo +0:80oooo002e0?ooo`80ObXZ00<0oooo0000o`000?l0T`3oool00`000000oooo0?ooo`0;0?ooo`03 +0?l0003oool0oooo02D0oooo00<0o`000?ooo`3oool0A`3oool00`3o0000oooo0?ooo`0@0?ooo`80 +003o00<0oooo07lZ:P1o:RX0<03oool00`3o0000oooo0?ooo`040?ooo`030?l0003oool0oooo0:80 +oooo002f0?ooo`040?l0001o:RX0oooo0?ooo`80003o;P3oool80?l005/0oooo00<000000?ooo`3o +ool02P3oool00`3o0000oooo0?ooo`0V0?ooo`030?l0003oool0oooo04L0oooo00<0o`000?ooo`3o +ool03P3oool20000o`80oooo00<0ObXZ003o003oool0<03oool00`3o0000oooo0?ooo`030?ooo`03 +0?l0003oool0oooo0:<0oooo002g0?ooo`030?l0001o:RX0ObXZ0080oooo00<0003o003o003oool0 +:03oool30?l000P0oooo103o001G0?ooo`030000003oool0oooo00X0oooo00<0o`000?ooo`3oool0 +9`3oool00`3o0000oooo0?ooo`160?ooo`030?l0003oool0oooo00d0oooo00<0003o0?ooo`3oool0 +0P1o:RXd0?ooo`030?l0003oool0oooo0080oooo00<0o`000?ooo`3oool0X`3oool00;P0oooo0P3o +000207lZ:P030?ooo`000?l0003o02D0oooo0`3o000?0?ooo`030?l0003oool0oooo05@0oooo00<0 +00000?ooo`3oool02@3oool00`3o0000oooo0?ooo`0X0?ooo`030?l0003oool0oooo04H0oooo00<0 +o`000?ooo`3oool02`3oool20000o`030?ooo`1o:RX0ObXZ03L0oooo103o002V0?ooo`00^@3oool0 +0`3o0000oooo0?ooo`0207lZ:P030?ooo`000?l0003o0240oooo0P3o000C0?ooo`80o`00E03oool0 +0`000000oooo0?ooo`090?ooo`030?l0003oool0oooo02T0oooo00<0o`000?ooo`3oool0A@3oool0 +0`3o0000oooo0?ooo`090?ooo`80003o0P3oool00`1o:RX0oooo0?ooo`3Q0?ooo`00^P3oool0103o +0000oooo0?ooo`3oool207lZ:P03003o00000?l0003o01d0oooo0P3o000G0?ooo`80o`00DP3oool0 +0`000000oooo0?ooo`080?ooo`030?l0003oool0oooo02X0oooo00<0o`000?ooo`3oool0A@3oool0 +0`3o0000oooo0?ooo`070?ooo`80003o00@0oooo07lZ:P1o:RX0ObXZi03oool00;/0oooo0`3o0002 +0?ooo`<0ObXZ00<0003o0?ooo`3oool0603oool20?l001/0oooo00<0o`000?ooo`3oool0C`3oool0 +0`000000oooo0?ooo`080?ooo`030?l0003oool0oooo02X0oooo00<0o`000?ooo`3oool0A@3oool0 +0`3o0000oooo0?ooo`060?ooo`040000o`1o:RX0ObXZ07lZ:^L0oooo002n0?ooo`030?l0003oool0 +oooo0080oooo00<0ObXZ0000o`000?l05@3oool30?l001h0oooo00<0o`000?ooo`3oool0CP3oool0 +0`000000oooo0?ooo`080?ooo`030?l0003oool0oooo02/0oooo00<0o`000?ooo`3oool0A03oool0 +0`3o0000oooo0?ooo`040?ooo`80003o00<0ObXZ003o0000o`00j03oool00;l0oooo00<0o`000?oo +o`3oool00P3oool207lZ:P80003o4P3oool00`3o0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo +04d0oooo00<000000?ooo`3oool01`3oool00`3o0000oooo0?ooo`0/0?ooo`030?l0003oool0oooo +04<0oooo00<0o`000?ooo`3oool00`3oool20000o`80ObXZj`3oool00<00oooo0`3o00030?ooo`80 +ObXZ00<0003o0?ooo`3oool0303oool30?l002@0oooo00<0o`000?ooo`3oool0C03oool00`000000 +oooo0?ooo`070?ooo`030?l0003oool0oooo02`0oooo00<0o`000?ooo`3oool0@`3oool00`3o0000 +oooo0?ooo`020?ooo`030000o`1o:RX0ObXZ0>d0oooo00330?ooo`030?l0003oool0oooo00<0oooo +0P000?l01000o`00003o0000o`000?l60?ooo`80o`00:03oool00`3o0000oooo0?ooo`1;0?ooo`03 +0000003oool0oooo00L0oooo00<0o`000?ooo`3oool0;03oool00`3o0000oooo0?ooo`120?ooo`<0 +003o00@0oooo0000o`000?l00?l0k`3oool00<@0oooo103o00020?ooo`0307lZ:P000?l0003o00<0 +003o00<0oooo0?l0003o00000P3o000[0?ooo`030?l0003oool0oooo04X0oooo00<000000?ooo`3o +ool01P3oool00`3o0000oooo0?ooo`0^0?ooo`030?l0003oool0oooo0400oooo1@000?l00`1o:RX0 +oooo0?ooo`3_0?ooo`00b03oool30?l000D0003o00<0o`000?ooo`3oool0;@3oool00`3o0000oooo +0?ooo`1:0?ooo`<000001P3oool00`3o0000oooo0?ooo`0^0?ooo`030?l0003oool0oooo0400oooo +1@000?ob0?ooo`00b`3oool80000obh0oooo00<0o`000?ooo`3oool0B@3oool00`000000oooo0?oo +o`050?ooo`030?l0003oool0oooo02l0oooo00<0o`000?ooo`3oool0?@3oool80000oo80oooo003< +0?ooo`<0003o0P3oool00`00o`00ObXZ0000o`020000ob`0oooo00<0o`000?ooo`3oool0B03oool0 +0`000000oooo0?ooo`050?ooo`030?l0003oool0oooo02l0oooo00<0o`000?ooo`3oool0>P3oool3 +0000o`0407lZ:P3oool0oooo0?ooo`<0003ol`3oool00=<0oooo0P00o`00101o:RX0003o0000o`00 +0?lZ0?ooo`030?l0003oool0oooo04L0oooo00<000000?ooo`3oool0103oool00`3o0000oooo0?oo +o`0`0?ooo`030?l0003oool0oooo03L0oooo0`000?l207lZ:PH0oooo00<0o`000?ooo`3oool0lP3o +ool00=D0oooo0P00o`0207lZ:P@0003o9`3oool00`3o0000oooo0?ooo`160?ooo`030000003oool0 +oooo00@0oooo00<0o`000?ooo`3oool0<@3oool00`3o0000oooo0?ooo`0b0?ooo`@0003o0P1o:RX8 +0?ooo`030?l0003oool0oooo0?<0oooo003G0?ooo`<00?l00P1o:RX0103oool0003o0000o`000?lT +0?ooo`030?l0003oool0oooo04H0oooo00<000000?ooo`3oool0103oool00`3o0000oooo0?ooo`0a +0?ooo`030?l0003oool0oooo02l0oooo0`000?l00`3oool0ObXZ07lZ:P0;0?ooo`030?l0003oool0 +oooo0?<0oooo003J0?ooo`800?l00`1o:RX0103oool0003o0000o`000?lR0?ooo`030?l0003oool0 +oooo04D0oooo00<000000?ooo`3oool0103oool00`3o0000oooo0?ooo`0a0?ooo`030?l0003oool0 +oooo02`0oooo0`000?l0103oool0ObXZ07lZ:P1o:RX=0?ooo`030?l0003oool0oooo0?<0oooo003L +0?ooo`<00?l00P1o:RX20?ooo`@0003o7P3oool00`3o0000oooo0?ooo`150?ooo`030000003oool0 +oooo00<0oooo00<0o`000?ooo`3oool0<`3oool00`3o0000oooo0?ooo`0W0?ooo`@0003o0P3oool2 +07lZ:Q00oooo00<0o`000?ooo`3oool0l`3oool00=l0oooo0P00o`0307lZ:P<0oooo0`000?lL0?oo +o`030?l0003oool0oooo04@0oooo00<000000?ooo`3oool00`3oool00`3o0000oooo0?ooo`0c0?oo +o`030?l0003oool0oooo02@0oooo0`000?l30?ooo`<0ObXZ4P3oool00`3o0000oooo0?ooo`3c0?oo +o`00h@3oool3003o00@0ObXZ0P3oool30000oaX0oooo00<0o`000?ooo`3oool0@`3oool00`000000 +oooo0?ooo`030?ooo`030?l0003oool0oooo03@0oooo00<0o`000?ooo`3oool0803oool30000o`80 +oooo101o:RXE0?ooo`030?l0003oool0oooo0?<0oooo003U0?ooo`<00?l00P1o:RX30?ooo`@0003o +5`3oool00`3o0000oooo0?ooo`120?ooo`030000003oool0oooo0080oooo00<0o`000?ooo`3oool0 +=@3oool00`3o0000oooo0?ooo`0L0?ooo`@0003o0`3oool207lZ:QP0oooo00<0o`000?ooo`3oool0 +m03oool00>P0oooo0P00o`0407lZ:P<0oooo0`000?lD0?ooo`030?l0003oool0oooo0480oooo00<0 +00000?ooo`3oool00P3oool00`3o0000oooo0?ooo`0e0?ooo`030?l0003oool0oooo01T0oooo0`00 +0?l30?ooo`@0ObXZ6P3oool00`3o0000oooo0?ooo`3d0?ooo`00j`3oool3003o00@0ObXZ0P3oool4 +0000oa40oooo00<0o`000?ooo`3oool0@@3oool00`000000oooo0?ooo`020?ooo`030?l0003oool0 +oooo03D0oooo00<0o`000?ooo`3oool05@3oool40000o`80oooo101o:RXN0?ooo`030?l0003oool0 +oooo0?@0oooo003_0?ooo`<00?l00P1o:RX40?ooo`<0003o3P3oool00`3o0000oooo0?ooo`110?oo +o`<0000000<0oooo0?l0003oool0>03oool00`3o0000oooo0?ooo`0A0?ooo`<0003o0P3oool2003o +0080ObXZ8P3oool00`3o0000oooo0?ooo`3d0?ooo`00l`3oool00`00o`00ObXZ07lZ:P0207lZ:P<0 +oooo0`000?l<0?ooo`030?l0003oool0oooo0400oooo00D000000?ooo`3oool0oooo0?l0000i0?oo +o`030?l0003oool0oooo00h0oooo0`000?l20?ooo`03003o001o:RX0ObXZ0080ObXZ8`3oool00`3o +0000oooo0?ooo`3e0?ooo`00m`3oool00`00o`00ObXZ07lZ:P0207lZ:P80oooo10000?l90?ooo`03 +0?l0003oool0oooo03l0oooo00@000000?ooo`3oool0o`00>P3oool00`3o0000oooo0?ooo`0:0?oo +o`@0003o00<0oooo003o001o:RX00`1o:RXW0?ooo`030?l0003oool0oooo0?D0oooo003k0?ooo`03 +003o001o:RX0ObXZ0080ObXZ0P3oool30000o`H0oooo00<0o`000?ooo`3oool0?`3oool010000000 +oooo0?ooo`3o000j0?ooo`030?l0003oool0oooo00L0oooo0`000?l00`3oool00?l007lZ:P0307lZ +:R/0oooo00<0o`000?ooo`3oool0m@3oool00?l0oooo0@3oool507lZ:P<0003o103oool30000och0 +oooo00<000000?ooo`3o0000>`3oool30000o`@0oooo0`000?l507lZ:Rl0oooo00<0o`000?ooo`3o +ool0m@3oool00?l0oooo1P3oool307lZ:PP0003o?@3oool00`000000oooo0?l0000j0?ooo`P0003o +0`1o:RXd0?ooo`030?l0003oool0oooo0?D0oooo003o0?ooo`/0oooo00<0ObXZ0000o`000?l01P00 +0?lj0?ooo`030000003oool0o`0003L0oooo20000?l00`1o:RX0oooo0?ooo`0g0?ooo`030?l0003o +ool0oooo0?D0oooo003o0?ooo``0oooo1@000?l307lZ:PX0003o<03oool00`000000oooo0?l0000] +0?ooo`X0003o0`1o:RX50000ocT0oooo00<0o`000?ooo`3oool0mP3oool00?l0oooo3@3oool30000 +o`D0oooo1`1o:RX2003o00/0003o9@3oool00`000000o`000?ooo`0R0?ooo`/0003o00<0oooo003o +0000o`001P1o:RX50?ooo`<0003o>P3oool00`3o0000oooo0?ooo`3f0?ooo`00o`3oool?0?ooo`03 +0?l0003oool0oooo00X0oooo1P1o:RX4003o00<0oooo2`000?lJ0?ooo`030000003o0000oooo01P0 +oooo2P000?l50?ooo`800?l01`1o:RX=0?ooo`030?l0003oool0oooo03P0oooo00<0o`000?ooo`3o +ool0mP3oool00?l0oooo403oool00`3o0000oooo0?ooo`0?0?ooo`T0ObXZ1000o`050?ooo`X0003o +103oool2000000T0oooo0`000?l>0?ooo`/0003o1`3oool00`00o`00ObXZ07lZ:P0707lZ:QD0oooo +00<0o`000?ooo`3oool0=`3oool00`3o0000oooo0?ooo`3f0?ooo`00o`3oool@0?ooo`030?l0003o +ool0oooo01P0oooo2`1o:RX4003o00@0oooo2`000?l30?ooo`D0003o0`3oool:0000o`P0oooo2`1o +:RXN0?ooo`030?l0003oool0oooo03L0oooo00<0o`000?ooo`3oool0mP3oool00?l0oooo4@3oool0 +0`3o0000oooo0?ooo`0R0?oooa<0ObXZ2`000?lB07lZ:RT0oooo00<0o`000?ooo`3oool0=`3oool0 +0`3o0000oooo0?ooo`3f0?ooo`00o`3ooolB0?ooo`030?l0003oool0oooo02l0oooo00<000000?oo +o`3oool01@3oool50000och0oooo00<0o`000?ooo`3oool0=`3oool00`3o0000oooo0?ooo`3f0?oo +o`00o`3ooolB0?ooo`030?l0003oool0oooo02`0oooo00@000000?ooo`3oool00000203oool30000 +od00oooo00<0o`000?ooo`3oool0=@3oool00`3o0000oooo0?ooo`3g0?ooo`00o`3ooolC0?ooo`03 +0?l0003oool0oooo02`0oooo0P0000080?ooo`030?l0003oool000000440oooo00<0o`000?ooo`3o +ool0=@3oool00`3o0000oooo0?ooo`3g0?ooo`00o`3ooolC0?ooo`030?l0003oool0oooo03H0oooo +00<0o`000?ooo`000000@@3oool00`3o0000oooo0?ooo`0e0?ooo`030?l0003oool0oooo0?L0oooo +003o0?oooa@0oooo00<0o`000?ooo`3oool0=@3oool00`3o0000oooo000000110?ooo`030?l0003o +ool0oooo03D0oooo00<0o`000?ooo`3oool0m`3oool00?l0oooo503oool00`3o0000oooo0?ooo`0d +0?ooo`040?l0003oool0oooo00000440oooo00<0o`000?ooo`3oool0=@3oool00`3o0000oooo0?oo +o`3g0?ooo`00o`3ooolD0?ooo`030?l0003oool0oooo03@0oooo00@0o`000?ooo`3oool00000@P3o +ool00`3o0000oooo0?ooo`0d0?ooo`030?l0003oool0oooo0?L0oooo003o0?oooaD0oooo00<0o`00 +0?ooo`3oool0<`3oool0103o0000oooo0?ooo`0000120?ooo`030?l0003oool0oooo03@0oooo00<0 +o`000?ooo`3oool0m`3oool00?l0oooo5P3oool00`3o0000oooo0?ooo`0a0?ooo`050?l0003oool0 +oooo0?ooo`000000@P3oool00`3o0000oooo0?ooo`0d0?ooo`030?l0003oool0oooo0?L0oooo003o +0?oooaH0oooo00<0o`000?ooo`3oool0<@3oool01@3o0000oooo0?ooo`3oool000000480oooo00<0 +o`000?ooo`3oool0<`3oool00`3o0000oooo0?ooo`3h0?ooo`00o`3ooolG0?ooo`030?l0003oool0 +oooo02l0oooo00<0o`000?ooo`3oool00P3oool00`000000oooo0?ooo`100?ooo`030?l0003oool0 +oooo03<0oooo00<0o`000?ooo`3oool0n03oool00?l0oooo5`3oool00`3o0000oooo0?ooo`0_0?oo +o`030?l0003oool0oooo0080oooo00<000000?ooo`3oool0@@3oool00`3o0000oooo0?ooo`0b0?oo +o`030?l0003oool0oooo0?P0oooo003o0?oooaP0oooo00<0o`000?ooo`3oool0;@3oool00`3o0000 +oooo0?ooo`030?ooo`<00000@@3oool00`3o0000oooo0?ooo`0b0?ooo`030?l0003oool0oooo0?P0 +oooo003o0?oooaP0oooo00<0o`000?ooo`3oool0;@3oool00`3o0000oooo0?ooo`030?ooo`030000 +003oool0oooo0440oooo00<0o`000?ooo`3oool00?ooo`030000003oool0oooo04T0 +oooo00<0o`000?ooo`3oool08`3oool00`3o0000oooo0?ooo`3o0?ooo`00o`3ooom>0?ooo`030000 +003oool0oooo04T0oooo00<0o`000?ooo`3oool08`3oool00`3o0000oooo0?ooo`3o0?ooo`00o`3o +oom>0?ooo`030000003oool0oooo04T0oooo00<0o`000?ooo`3oool08`3oool00`3o0000oooo0?oo +o`3o0?ooo`00o`3ooom>0?ooo`030000003oool0oooo04X0oooo00<0o`000?ooo`3oool08P3oool0 +0`3o0000oooo0?ooo`3o0?ooo`00o`3ooom>0?ooo`030000003oool0oooo04X0oooo00<0o`000?oo +o`3oool08P3oool00`3o0000oooo0?ooo`3o0?ooo`00o`3ooom>0?ooo`030000003oool0oooo04X0 +oooo00<0o`000?ooo`3oool08@3oool00`3o0000oooo0?ooo`3o0?ooo`40oooo003o0?ooodh0oooo +00<000000?ooo`3oool0B`3oool00`3o0000oooo0?ooo`0P0?ooo`030?l0003oool0oooo0?l0oooo +0@3oool00?l0ooooCP3oool00`000000oooo0?ooo`1;0?ooo`030?l0003oool0oooo0200oooo00<0 +o`000?ooo`3oool0o`3oool10?ooo`00o`3ooom>0?ooo`<00000C03oool00`3o0000oooo0?ooo`0O +0?ooo`030?l0003oool0oooo0?l0oooo0@3oool00?l0ooooCP3oool00`000000oooo0?ooo`1<0?oo +o`030?l0003oool0oooo01l0oooo00<0o`000?ooo`3oool0o`3oool10?ooo`00o`3ooom>0?ooo`03 +0000003oool0oooo04`0oooo00<0o`000?ooo`3oool07P3oool00`3o0000oooo0?ooo`3o0?ooo`80 +oooo003o0?ooodh0oooo00<000000?ooo`3oool0C03oool00`3o0000oooo0?ooo`0N0?ooo`030?l0 +003oool0oooo0?l0oooo0P3oool00?l0ooooCP3oool00`000000oooo0?ooo`1=0?ooo`030?l0003o +ool0oooo01d0oooo00<0o`000?ooo`3oool0o`3oool20?ooo`00o`3ooom>0?ooo`030000003oool0 +oooo04d0oooo00<0o`000?ooo`3oool07@3oool00`3o0000oooo0?ooo`3o0?ooo`80oooo003o0?oo +odh0oooo00<000000?ooo`3oool0C@3oool00`3o0000oooo0?ooo`0L0?ooo`030?l0003oool0oooo +0?l0oooo0`3oool00?l0ooooCP3oool00`000000oooo0?ooo`1=0?ooo`030?l0003oool0oooo01`0 +oooo00<0o`000?ooo`3oool0o`3oool30?ooo`00o`3ooom>0?ooo`030000003oool0oooo04h0oooo +00<0o`000?ooo`3oool06P3oool00`3o0000oooo0?ooo`3o0?ooo`@0oooo003o0?ooodh0oooo00<0 +00000?ooo`3oool0CP3oool00`3o0000oooo0?ooo`0J0?ooo`030?l0003oool0oooo0?l0oooo103o +ool00?l0ooooCP3oool00`000000oooo0?ooo`1>0?ooo`030?l0003oool0oooo01X0oooo00<0o`00 +0?ooo`3oool0o`3oool40?ooo`00o`3ooom30?ooo`<00000203oool00`000000oooo0?ooo`1?0?oo +o`030?l0003oool0oooo01P0oooo00<0o`000?ooo`3oool0o`3oool50?ooo`00o`3ooom40?ooo`03 +0000003oool0oooo00L0oooo00<000000?ooo`3oool0C`3oool00`3o0000oooo0?ooo`0H0?ooo`03 +0?l0003oool0oooo0?l0oooo1@3oool00?l0oooo@@3oool5000000P0oooo1@00001>0?ooo`030?l0 +003oool0oooo01L0oooo00<0o`000?ooo`3oool0o`3oool50?ooo`00o`3ooom10?ooo`040000003o +ool0oooo00000?l0ooooOP3oool00?l0oooo@P3oool00`000000oooo0000003o0?ooogh0oooo003o +0?oood<0oooo0P00003o0?ooogh0oooo003o0?ooool0oooo``3oool00?l0ooooo`3oooo30?ooo`00 +o`3ooooo0?oool<0oooo003o0?ooool0oooo``3oool00?l0ooooo`3oooo30?ooo`00o`3ooooo0?oo +ol<0oooo003o0?ooool0oooo``3oool00?l0ooooo`3oooo30?ooo`00o`3ooooo0?oool<0oooo003o +0?ooool0oooo``3oool00?l0ooooo`3oooo30?ooo`00o`3ooooo0?oool<0oooo003o0?ooool0oooo +``3oool00?l0ooooo`3oooo30?ooo`00o`3ooooo0?oool<0oooo003o0?oooeP0oooo0P00003o0?oo +ofT0oooo003o0?oooeT0oooo00<000000?ooo`3oool0o`3ooomW0?ooo`00o`3ooomJ0?ooo`030000 +003oool0oooo0?l0ooooIP3oool00?l0ooooF@3oool00`000000oooo0000003o0?ooofL0oooo003o +0?oooeP0oooo00@000000?ooo`3oool00000o`3ooomW0?ooo`00o`3ooomG0?ooo`<0000000<0oooo +000000000000o`3ooomV0?ooo`00o`3ooom<0?ooo`040000003oool0oooo00000?l0ooooL`3oool0 +0?l0ooooC@3oool200000?l0ooooM03oool00?l0ooooo`3oooo30?ooo`00o`3ooooo0?oool<0oooo +0000\ +\>"], + ImageRangeCache->{{{0, 704}, {351.5, 0}} -> {-5.22807, -1.07067, 0.0156982, \ +0.0156982}}], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.25 0.0625 [ +[.1 .2375 -6 -9 ] +[.1 .2375 6 0 ] +[.3 .2375 -6 -9 ] +[.3 .2375 6 0 ] +[.7 .2375 -3 -9 ] +[.7 .2375 3 0 ] +[.9 .2375 -3 -9 ] +[.9 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .0625 -12 -4.5 ] +[.4875 .0625 0 4.5 ] +[.4875 .125 -12 -4.5 ] +[.4875 .125 0 4.5 ] +[.4875 .1875 -12 -4.5 ] +[.4875 .1875 0 4.5 ] +[.4875 .3125 -6 -4.5 ] +[.4875 .3125 0 4.5 ] +[.4875 .375 -6 -4.5 ] +[.4875 .375 0 4.5 ] +[.4875 .4375 -6 -4.5 ] +[.4875 .4375 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .25 m +.1 .25625 L +s +[(-4)] .1 .2375 0 1 Mshowa +.3 .25 m +.3 .25625 L +s +[(-2)] .3 .2375 0 1 Mshowa +.7 .25 m +.7 .25625 L +s +[(2)] .7 .2375 0 1 Mshowa +.9 .25 m +.9 .25625 L +s +[(4)] .9 .2375 0 1 Mshowa +.125 Mabswid +.15 .25 m +.15 .25375 L +s +.2 .25 m +.2 .25375 L +s +.25 .25 m +.25 .25375 L +s +.35 .25 m +.35 .25375 L +s +.4 .25 m +.4 .25375 L +s +.45 .25 m +.45 .25375 L +s +.55 .25 m +.55 .25375 L +s +.6 .25 m +.6 .25375 L +s +.65 .25 m +.65 .25375 L +s +.75 .25 m +.75 .25375 L +s +.8 .25 m +.8 .25375 L +s +.85 .25 m +.85 .25375 L +s +.05 .25 m +.05 .25375 L +s +.95 .25 m +.95 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-4)] .4875 0 1 0 Mshowa +.5 .0625 m +.50625 .0625 L +s +[(-3)] .4875 .0625 1 0 Mshowa +.5 .125 m +.50625 .125 L +s +[(-2)] .4875 .125 1 0 Mshowa +.5 .1875 m +.50625 .1875 L +s +[(-1)] .4875 .1875 1 0 Mshowa +.5 .3125 m +.50625 .3125 L +s +[(1)] .4875 .3125 1 0 Mshowa +.5 .375 m +.50625 .375 L +s +[(2)] .4875 .375 1 0 Mshowa +.5 .4375 m +.50625 .4375 L +s +[(3)] .4875 .4375 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .0125 m +.50375 .0125 L +s +.5 .025 m +.50375 .025 L +s +.5 .0375 m +.50375 .0375 L +s +.5 .05 m +.50375 .05 L +s +.5 .075 m +.50375 .075 L +s +.5 .0875 m +.50375 .0875 L +s +.5 .1 m +.50375 .1 L +s +.5 .1125 m +.50375 .1125 L +s +.5 .1375 m +.50375 .1375 L +s +.5 .15 m +.50375 .15 L +s +.5 .1625 m +.50375 .1625 L +s +.5 .175 m +.50375 .175 L +s +.5 .2 m +.50375 .2 L +s +.5 .2125 m +.50375 .2125 L +s +.5 .225 m +.50375 .225 L +s +.5 .2375 m +.50375 .2375 L +s +.5 .2625 m +.50375 .2625 L +s +.5 .275 m +.50375 .275 L +s +.5 .2875 m +.50375 .2875 L +s +.5 .3 m +.50375 .3 L +s +.5 .325 m +.50375 .325 L +s +.5 .3375 m +.50375 .3375 L +s +.5 .35 m +.50375 .35 L +s +.5 .3625 m +.50375 .3625 L +s +.5 .3875 m +.50375 .3875 L +s +.5 .4 m +.50375 .4 L +s +.5 .4125 m +.50375 .4125 L +s +.5 .425 m +.50375 .425 L +s +.5 .45 m +.50375 .45 L +s +.5 .4625 m +.50375 .4625 L +s +.5 .475 m +.50375 .475 L +s +.5 .4875 m +.50375 .4875 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .25 m +.10034 .25344 L +.1007 .25688 L +.10108 .26032 L +.10152 .26376 L +.10201 .26719 L +.10258 .27062 L +.10324 .27403 L +.104 .27744 L +.10489 .28084 L +.1059 .28423 L +.10706 .28761 L +.10835 .29097 L +.10978 .29431 L +.11133 .29763 L +.11302 .30093 L +.11484 .30421 L +.11679 .30745 L +.11886 .31066 L +.12105 .31384 L +.12337 .31699 L +.12582 .32009 L +.12838 .32315 L +.13106 .32617 L +.13386 .32915 L +.13677 .33208 L +.1398 .33496 L +.14292 .3378 L +.14615 .34059 L +.14948 .34333 L +.15291 .34603 L +.15642 .34868 L +.16002 .35129 L +.16371 .35385 L +.16748 .35637 L +.17132 .35885 L +.17524 .36128 L +.17922 .36367 L +.18328 .36602 L +.18739 .36833 L +.19156 .3706 L +.19578 .37284 L +.20006 .37503 L +.20438 .37719 L +.20875 .37931 L +.21317 .38139 L +.21763 .38344 L +.22213 .38545 L +.22667 .38742 L +.23126 .38935 L +Mistroke +.23588 .39125 L +.24055 .3931 L +.24525 .39492 L +.24999 .3967 L +.25477 .39844 L +.25958 .40014 L +.26442 .4018 L +.2693 .40342 L +.27422 .405 L +.27916 .40654 L +.28414 .40804 L +.28914 .4095 L +.29417 .41092 L +.29924 .4123 L +.30432 .41363 L +.30944 .41493 L +.31458 .41618 L +.31974 .4174 L +.32493 .41857 L +.33013 .41971 L +.33536 .42081 L +.34061 .42187 L +.34589 .42289 L +.35117 .42388 L +.35648 .42483 L +.3618 .42575 L +.36714 .42663 L +.3725 .42747 L +.37787 .42828 L +.38325 .42906 L +.38864 .4298 L +.39405 .43051 L +.39947 .43119 L +.40489 .43183 L +.41033 .43244 L +.41577 .43302 L +.42123 .43357 L +.42669 .43409 L +.43215 .43457 L +.43763 .43501 L +.44311 .43542 L +.4486 .4358 L +.45409 .43613 L +.45958 .43644 L +.46508 .4367 L +.47059 .43693 L +.47609 .43712 L +.4816 .43727 L +.48711 .43739 L +.49263 .43746 L +Mistroke +.49814 .4375 L +.50365 .43749 L +.50917 .43745 L +.51468 .43736 L +.5202 .43724 L +.52571 .43708 L +.53122 .43688 L +.53672 .43664 L +.54222 .43636 L +.54772 .43605 L +.55321 .4357 L +.5587 .43531 L +.56417 .43489 L +.56965 .43443 L +.57511 .43394 L +.58057 .43341 L +.58601 .43285 L +.59145 .43226 L +.59688 .43163 L +.60229 .43097 L +.6077 .43027 L +.61309 .42954 L +.61847 .42878 L +.62383 .42799 L +.62919 .42716 L +.63453 .42629 L +.63985 .4254 L +.64516 .42446 L +.65045 .4235 L +.65573 .42249 L +.66099 .42146 L +.66624 .42038 L +.67146 .41928 L +.67667 .41813 L +.68186 .41695 L +.68703 .41573 L +.69219 .41448 L +.69732 .41319 L +.70243 .41186 L +.70752 .4105 L +.71259 .4091 L +.71763 .40765 L +.72264 .40617 L +.72762 .40465 L +.73257 .40309 L +.73748 .40148 L +.74236 .39984 L +.74719 .39815 L +.75199 .39642 L +.75673 .39464 L +Mistroke +.76144 .39282 L +.76609 .39095 L +.77069 .38904 L +.77524 .38708 L +.77974 .38507 L +.78417 .38301 L +.78855 .38091 L +.79286 .37875 L +.79711 .37655 L +.8013 .37429 L +.80541 .37199 L +.80945 .36963 L +.81343 .36722 L +.81733 .36477 L +.82116 .36227 L +.82491 .35973 L +.82859 .35714 L +.83219 .3545 L +.83572 .35183 L +.83917 .34911 L +.84254 .34635 L +.84583 .34356 L +.84904 .34072 L +.85217 .33785 L +.85521 .33494 L +.85817 .332 L +.86105 .32903 L +.86384 .32602 L +.86654 .32298 L +.86915 .31991 L +.87168 .31681 L +.87411 .31368 L +.87646 .31052 L +.87871 .30734 L +.88086 .30413 L +.88291 .3009 L +.88487 .29765 L +.88672 .29437 L +.88846 .29107 L +.89009 .28776 L +.89161 .28442 L +.89301 .28107 L +.8943 .2777 L +.89546 .27431 L +.8965 .27092 L +.89742 .2675 L +.8982 .26408 L +.89885 .26064 L +.89937 .2572 L +.89975 .25374 L +Mistroke +.89999 .25028 L +.90008 .24681 L +.90004 .24334 L +.89985 .23987 L +.89952 .23639 L +.89906 .23292 L +.89846 .22945 L +.89772 .22599 L +.89685 .22254 L +.89585 .21911 L +.89472 .21568 L +.89345 .21228 L +.89206 .20889 L +.89054 .20553 L +.8889 .20218 L +.88713 .19887 L +.88525 .19558 L +.88324 .19233 L +.88111 .18911 L +.87886 .18592 L +.87649 .18278 L +.87401 .17967 L +.87142 .17661 L +.86871 .17359 L +.8659 .17061 L +.86297 .16769 L +.85994 .16481 L +.85681 .16198 L +.85358 .15919 L +.85025 .15645 L +.84682 .15375 L +.84331 .1511 L +.83971 .1485 L +.83602 .14594 L +.83225 .14342 L +.82841 .14095 L +.82448 .13852 L +.82049 .13613 L +.81644 .13378 L +.81231 .13148 L +.80813 .12921 L +.80389 .12698 L +.7996 .1248 L +.79525 .12265 L +.79086 .12054 L +.78641 .11847 L +.78192 .11644 L +.77739 .11445 L +.77281 .11249 L +.76818 .11058 L +Mistroke +.76351 .1087 L +.7588 .10686 L +.75405 .10506 L +.74926 .1033 L +.74444 .10158 L +.73957 .09989 L +.73467 .09824 L +.72974 .09663 L +.72477 .09506 L +.71977 .09353 L +.71474 .09203 L +.70967 .09058 L +.70458 .08916 L +.69946 .08777 L +.69432 .08643 L +.68915 .08512 L +.68395 .08385 L +.67873 .08262 L +.67349 .08142 L +.66823 .08026 L +.66295 .07914 L +.65764 .07806 L +.65233 .07701 L +.64699 .076 L +.64164 .07502 L +.63628 .07409 L +.6309 .07319 L +.62551 .07232 L +.62011 .0715 L +.6147 .07071 L +.60928 .06995 L +.60385 .06924 L +.59842 .06856 L +.59298 .06791 L +.58754 .0673 L +.58209 .06673 L +.57664 .0662 L +.57118 .0657 L +.56571 .06523 L +.56024 .06481 L +.55477 .06442 L +.54929 .06406 L +.5438 .06374 L +.53831 .06346 L +.53281 .06321 L +.52731 .06301 L +.5218 .06283 L +.51629 .06269 L +.51077 .06259 L +.50524 .06253 L +Mistroke +.49971 .0625 L +.49418 .06251 L +.48864 .06255 L +.4831 .06263 L +.47755 .06275 L +.47201 .0629 L +.46646 .06309 L +.46091 .06331 L +.45537 .06358 L +.44983 .06388 L +.44429 .06421 L +.43876 .06458 L +.43323 .06499 L +.42771 .06544 L +.4222 .06593 L +.41669 .06645 L +.4112 .06701 L +.40571 .0676 L +.40024 .06824 L +.39478 .06891 L +.38934 .06962 L +.3839 .07037 L +.37849 .07115 L +.37309 .07198 L +.36771 .07284 L +.36235 .07374 L +.357 .07468 L +.35168 .07565 L +.34638 .07667 L +.3411 .07772 L +.33585 .07882 L +.33062 .07995 L +.32542 .08112 L +.32024 .08232 L +.31509 .08357 L +.30997 .08486 L +.30488 .08618 L +.29982 .08755 L +.29479 .08895 L +.28979 .0904 L +.28483 .09188 L +.27989 .0934 L +.27499 .09496 L +.27012 .09655 L +.26527 .09818 L +.26046 .09985 L +.25568 .10156 L +.25093 .1033 L +.24621 .10508 L +.24151 .10689 L +Mistroke +.23685 .10874 L +.23221 .11062 L +.22761 .11253 L +.22303 .11448 L +.21848 .11647 L +.21396 .11848 L +.20947 .12053 L +.20501 .12261 L +.20057 .12473 L +.19616 .12687 L +.19179 .12905 L +.18747 .13127 L +.18322 .13353 L +.17904 .13584 L +.17495 .13819 L +.17097 .1406 L +.16709 .14306 L +.16335 .14559 L +.15974 .14818 L +.15629 .15083 L +.153 .15356 L +.14988 .15636 L +.14696 .15924 L +.14419 .16218 L +.14157 .16519 L +.13907 .16824 L +.13666 .17134 L +.13433 .17447 L +.13204 .17763 L +.12978 .1808 L +.12752 .18398 L +.12525 .18716 L +.12293 .19033 L +.12059 .19349 L +.11827 .19665 L +.11599 .19981 L +.11377 .20298 L +.11166 .20616 L +.10968 .20937 L +.10787 .2126 L +.10625 .21585 L +.10485 .21915 L +.10369 .22248 L +.10275 .22584 L +.102 .22924 L +.10141 .23266 L +.10097 .2361 L +.10063 .23956 L +.10037 .24303 L +.10017 .24651 L +Mistroke +.1 .25 L +Mfstroke +1 0 0 r +.1 .25 m +.07472 .24074 L +.06424 .23888 L +.06314 .24166 L +.06754 .24711 L +.07474 .25388 L +.08293 .26107 L +.09098 .2681 L +.09823 .27466 L +.10435 .28059 L +.10926 .28584 L +.11303 .29047 L +.11581 .29453 L +.11779 .29813 L +.1192 .30137 L +.12023 .30434 L +.12106 .30715 L +.12186 .30984 L +.12275 .3125 L +.12383 .31514 L +.12515 .31782 L +.12676 .32053 L +.12868 .32329 L +.13091 .3261 L +.13342 .32895 L +.13621 .33182 L +.13924 .33471 L +.14248 .3376 L +.14589 .34047 L +.14945 .34332 L +.15311 .34612 L +.15686 .34888 L +.16066 .35157 L +.16451 .3542 L +.16839 .35677 L +.17229 .35927 L +.17621 .3617 L +.18013 .36406 L +.18407 .36636 L +.18803 .3686 L +.19201 .37079 L +.19601 .37293 L +.20006 .37503 L +.20414 .37709 L +.20828 .37911 L +.21248 .3811 L +.21674 .38306 L +.22107 .38499 L +.22547 .3869 L +.22994 .38879 L +Mistroke +.23449 .39066 L +.23912 .3925 L +.24381 .39432 L +.24859 .39612 L +.25343 .39789 L +.25833 .39963 L +.26329 .40134 L +.26831 .40302 L +.27337 .40467 L +.27848 .40627 L +.28362 .40784 L +.28879 .40937 L +.29399 .41085 L +.29921 .41229 L +.30445 .41368 L +.3097 .41503 L +.31495 .41632 L +.32021 .41758 L +.32548 .41878 L +.33074 .41994 L +.33601 .42105 L +.34128 .42211 L +.34655 .42313 L +.35182 .42411 L +.35709 .42504 L +.36236 .42594 L +.36763 .4268 L +.37292 .42761 L +.37821 .4284 L +.38351 .42914 L +.38882 .42986 L +.39414 .43054 L +.39948 .43119 L +.40483 .43181 L +.41019 .43239 L +.41558 .43295 L +.42098 .43348 L +.4264 .43398 L +.43184 .43444 L +.43729 .43488 L +.44276 .43529 L +.44825 .43566 L +.45375 .436 L +.45927 .43631 L +.4648 .43659 L +.47034 .43683 L +.47589 .43704 L +.48144 .43721 L +.487 .43734 L +.49256 .43743 L +Mistroke +.49812 .43749 L +.50369 .43751 L +.50925 .43748 L +.5148 .43742 L +.52035 .43731 L +.52589 .43717 L +.53142 .43698 L +.53694 .43675 L +.54246 .43648 L +.54796 .43617 L +.55345 .43582 L +.55892 .43543 L +.56438 .435 L +.56983 .43454 L +.57527 .43403 L +.5807 .43349 L +.58611 .43291 L +.59151 .43229 L +.5969 .43164 L +.60228 .43096 L +.60764 .43024 L +.613 .42949 L +.61835 .4287 L +.62369 .42789 L +.62902 .42704 L +.63434 .42617 L +.63965 .42526 L +.64495 .42432 L +.65024 .42335 L +.65552 .42235 L +.66079 .42132 L +.66605 .42025 L +.6713 .41916 L +.67654 .41803 L +.68175 .41687 L +.68696 .41567 L +.69214 .41444 L +.6973 .41318 L +.70244 .41187 L +.70756 .41053 L +.71265 .40915 L +.71772 .40773 L +.72275 .40627 L +.72775 .40477 L +.73271 .40322 L +.73763 .40162 L +.74252 .39999 L +.74736 .3983 L +.75215 .39657 L +.7569 .39479 L +Mistroke +.76159 .39296 L +.76624 .39109 L +.77083 .38916 L +.77536 .38718 L +.77984 .38516 L +.78426 .38308 L +.78861 .38096 L +.7929 .37878 L +.79713 .37656 L +.80129 .37429 L +.80538 .37197 L +.80941 .3696 L +.81336 .36718 L +.81725 .36472 L +.82107 .36221 L +.82481 .35966 L +.82848 .35707 L +.83208 .35443 L +.8356 .35175 L +.83904 .34904 L +.84241 .34628 L +.84571 .34348 L +.84892 .34065 L +.85206 .33778 L +.85511 .33488 L +.85808 .33194 L +.86097 .32898 L +.86377 .32598 L +.86649 .32294 L +.86912 .31988 L +.87166 .31679 L +.87411 .31367 L +.87646 .31053 L +.87872 .30736 L +.88088 .30416 L +.88293 .30094 L +.88489 .29769 L +.88673 .29442 L +.88847 .29113 L +.8901 .28782 L +.89162 .28449 L +.89301 .28113 L +.89429 .27776 L +.89545 .27437 L +.89649 .27097 L +.8974 .26755 L +.89818 .26412 L +.89883 .26067 L +.89935 .25722 L +.89973 .25375 L +Mistroke +.89999 .25028 L +.9001 .24681 L +.90008 .24333 L +.89992 .23985 L +.89962 .23636 L +.89918 .23289 L +.89861 .22942 L +.8979 .22595 L +.89704 .2225 L +.89606 .21906 L +.89493 .21563 L +.89367 .21222 L +.89228 .20884 L +.89075 .20547 L +.88909 .20213 L +.88731 .19882 L +.8854 .19554 L +.88337 .19229 L +.88121 .18908 L +.87894 .1859 L +.87655 .18276 L +.87404 .17966 L +.87143 .1766 L +.86871 .17359 L +.86588 .17062 L +.86295 .16769 L +.85992 .16481 L +.85679 .16198 L +.85356 .15919 L +.85025 .15645 L +.84684 .15376 L +.84334 .15111 L +.83976 .14851 L +.83609 .14595 L +.83235 .14344 L +.82852 .14097 L +.82461 .13854 L +.82062 .13615 L +.81656 .13381 L +.81242 .1315 L +.80822 .12923 L +.80394 .127 L +.79959 .1248 L +.79517 .12263 L +.79069 .12049 L +.78615 .11839 L +.78154 .11632 L +.77687 .11427 L +.77214 .11226 L +.76736 .11027 L +Mistroke +.76252 .10832 L +.75763 .10639 L +.75269 .10449 L +.74771 .10262 L +.74268 .10078 L +.73762 .09898 L +.73252 .0972 L +.72739 .09546 L +.72223 .09376 L +.71705 .0921 L +.71185 .09047 L +.70663 .08889 L +.7014 .08736 L +.69616 .08587 L +.69092 .08443 L +.68568 .08305 L +.68044 .08172 L +.67521 .08044 L +.66998 .07923 L +.66477 .07807 L +.65958 .07698 L +.6544 .07595 L +.64924 .07498 L +.64411 .07408 L +.63899 .07324 L +.63388 .07246 L +.6288 .07175 L +.62373 .0711 L +.61868 .0705 L +.61364 .06996 L +.6086 .06947 L +.60357 .06903 L +.59854 .06864 L +.59349 .06828 L +.58843 .06796 L +.58335 .06766 L +.57824 .06739 L +.5731 .06713 L +.56791 .06688 L +.56267 .06664 L +.55737 .06639 L +.552 .06613 L +.54656 .06585 L +.54103 .06555 L +.53542 .06523 L +.52972 .06487 L +.52392 .06447 L +.51801 .06403 L +.51201 .06356 L +.50589 .06303 L +Mistroke +.49968 .06247 L +.49336 .06186 L +.48694 .06121 L +.48042 .06053 L +.47382 .05981 L +.46713 .05907 L +.46038 .05831 L +.45357 .05754 L +.44672 .05677 L +.43984 .05602 L +.43295 .05529 L +.42606 .0546 L +.4192 .05397 L +.41239 .0534 L +.40564 .05292 L +.39898 .05254 L +.39243 .05227 L +.38601 .05214 L +.37974 .05215 L +.37363 .05233 L +.36771 .05268 L +.362 .05321 L +.3565 .05394 L +.35123 .05487 L +.3462 .05602 L +.34141 .05737 L +.33687 .05894 L +.33256 .06073 L +.3285 .06271 L +.32467 .0649 L +.32105 .06728 L +.31764 .06983 L +.3144 .07253 L +.31131 .07537 L +.30835 .07833 L +.30549 .08137 L +.30268 .08448 L +.2999 .08761 L +.2971 .09075 L +.29426 .09386 L +.29132 .09692 L +.28825 .09988 L +.28502 .10274 L +.28158 .10545 L +.27792 .10799 L +.27401 .11035 L +.26981 .11251 L +.26533 .11446 L +.26056 .1162 L +.25549 .11772 L +Mistroke +.25013 .11903 L +.2445 .12014 L +.23863 .12108 L +.23256 .12187 L +.22631 .12254 L +.21996 .12314 L +.21355 .1237 L +.20714 .12427 L +.20081 .12491 L +.19462 .12566 L +.18865 .12658 L +.18296 .12771 L +.17761 .1291 L +.17267 .1308 L +.16818 .13283 L +.16417 .13521 L +.16066 .13795 L +.15766 .14105 L +.15513 .14449 L +.15305 .14824 L +.15135 .15223 L +.14995 .15641 L +.14874 .16069 L +.1476 .16497 L +.14641 .16915 L +.145 .17312 L +.14325 .17677 L +.14102 .17999 L +.13819 .18271 L +.13469 .18486 L +.13047 .18642 L +.12556 .18742 L +.12007 .18795 L +.11416 .18814 L +.10814 .18825 L +.10239 .18856 L +.09741 .18948 L +.09378 .19146 L +.09218 .19502 L +.0933 .20069 L +.0978 .20897 L +.10623 .22027 L +.11884 .23476 L +.13546 .25227 L +.15522 .27207 L +.17624 .29266 L +.19518 .31139 L +.20676 .32411 L +.20308 .32461 L +.17278 .30401 L +Mistroke +.1 .25 L +Mfstroke +.6 .4 .2 r +.1 .25 m +.10005 .25295 L +.1002 .25589 L +.10044 .25883 L +.10079 .26177 L +.10123 .26471 L +.10178 .26765 L +.10242 .27058 L +.10315 .2735 L +.10399 .27642 L +.10492 .27933 L +.10596 .28224 L +.10709 .28513 L +.10831 .28802 L +.10963 .2909 L +.11105 .29377 L +.11257 .29663 L +.11418 .29948 L +.11588 .30231 L +.11768 .30513 L +.11958 .30794 L +.12157 .31073 L +.12365 .31351 L +.12582 .31628 L +.12809 .31902 L +.13045 .32175 L +.1329 .32447 L +.13544 .32716 L +.13807 .32983 L +.14079 .33249 L +.1436 .33512 L +.14649 .33774 L +.14948 .34033 L +.15255 .3429 L +.1557 .34545 L +.15894 .34797 L +.16227 .35047 L +.16568 .35294 L +.16917 .35539 L +.17274 .35781 L +.17639 .36021 L +.18013 .36258 L +.18394 .36492 L +.18783 .36723 L +.19179 .36952 L +.19584 .37177 L +.19996 .374 L +.20415 .37619 L +.20841 .37835 L +.21275 .38048 L +Mistroke +.21716 .38258 L +.22163 .38465 L +.22618 .38668 L +.23079 .38868 L +.23548 .39065 L +.24022 .39258 L +.24503 .39447 L +.2499 .39633 L +.25484 .39815 L +.25983 .39994 L +.26489 .40169 L +.27 .4034 L +.27517 .40508 L +.28039 .40671 L +.28567 .40831 L +.291 .40987 L +.29638 .41139 L +.30182 .41287 L +.3073 .41431 L +.31283 .41571 L +.3184 .41706 L +.32402 .41838 L +.32969 .41966 L +.33539 .42089 L +.34114 .42208 L +.34693 .42323 L +.35275 .42433 L +.35861 .4254 L +.3645 .42642 L +.37043 .42739 L +.37639 .42832 L +.38238 .42921 L +.3884 .43006 L +.39445 .43085 L +.40052 .43161 L +.40662 .43232 L +.41274 .43298 L +.41889 .4336 L +.42505 .43418 L +.43123 .43471 L +.43743 .43519 L +.44364 .43563 L +.44987 .43602 L +.45611 .43637 L +.46236 .43667 L +.46862 .43692 L +.47488 .43713 L +.48116 .43729 L +.48744 .43741 L +.49372 .43748 L +Mistroke +.5 .4375 L +.50628 .43748 L +.51256 .43741 L +.51884 .43729 L +.52512 .43713 L +.53138 .43692 L +.53764 .43667 L +.54389 .43637 L +.55013 .43602 L +.55636 .43563 L +.56257 .43519 L +.56877 .43471 L +.57495 .43418 L +.58111 .4336 L +.58726 .43298 L +.59338 .43232 L +.59948 .43161 L +.60555 .43085 L +.6116 .43006 L +.61762 .42921 L +.62361 .42832 L +.62957 .42739 L +.6355 .42642 L +.64139 .4254 L +.64725 .42433 L +.65307 .42323 L +.65886 .42208 L +.66461 .42089 L +.67031 .41966 L +.67598 .41838 L +.6816 .41706 L +.68717 .41571 L +.6927 .41431 L +.69818 .41287 L +.70362 .41139 L +.709 .40987 L +.71433 .40831 L +.71961 .40671 L +.72483 .40508 L +.73 .4034 L +.73511 .40169 L +.74017 .39994 L +.74516 .39815 L +.7501 .39633 L +.75497 .39447 L +.75978 .39258 L +.76452 .39065 L +.76921 .38868 L +.77382 .38668 L +.77837 .38465 L +Mistroke +.78284 .38258 L +.78725 .38048 L +.79159 .37835 L +.79585 .37619 L +.80004 .374 L +.80416 .37177 L +.80821 .36952 L +.81217 .36723 L +.81606 .36492 L +.81987 .36258 L +.82361 .36021 L +.82726 .35781 L +.83083 .35539 L +.83432 .35294 L +.83773 .35047 L +.84106 .34797 L +.8443 .34545 L +.84745 .3429 L +.85052 .34033 L +.85351 .33774 L +.8564 .33512 L +.85921 .33249 L +.86193 .32983 L +.86456 .32716 L +.8671 .32447 L +.86955 .32175 L +.87191 .31902 L +.87418 .31628 L +.87635 .31351 L +.87843 .31073 L +.88042 .30794 L +.88232 .30513 L +.88412 .30231 L +.88582 .29948 L +.88743 .29663 L +.88895 .29377 L +.89037 .2909 L +.89169 .28802 L +.89291 .28513 L +.89404 .28224 L +.89508 .27933 L +.89601 .27642 L +.89685 .2735 L +.89758 .27058 L +.89822 .26765 L +.89877 .26471 L +.89921 .26177 L +.89956 .25883 L +.8998 .25589 L +.89995 .25295 L +Mistroke +.9 .25 L +.89995 .24705 L +.8998 .24411 L +.89956 .24117 L +.89921 .23823 L +.89877 .23529 L +.89822 .23235 L +.89758 .22942 L +.89685 .2265 L +.89601 .22358 L +.89508 .22067 L +.89404 .21776 L +.89291 .21487 L +.89169 .21198 L +.89037 .2091 L +.88895 .20623 L +.88743 .20337 L +.88582 .20052 L +.88412 .19769 L +.88232 .19487 L +.88042 .19206 L +.87843 .18927 L +.87635 .18649 L +.87418 .18372 L +.87191 .18098 L +.86955 .17825 L +.8671 .17553 L +.86456 .17284 L +.86193 .17017 L +.85921 .16751 L +.8564 .16488 L +.85351 .16226 L +.85052 .15967 L +.84745 .1571 L +.8443 .15455 L +.84106 .15203 L +.83773 .14953 L +.83432 .14706 L +.83083 .14461 L +.82726 .14219 L +.82361 .13979 L +.81987 .13742 L +.81606 .13508 L +.81217 .13277 L +.80821 .13048 L +.80416 .12823 L +.80004 .126 L +.79585 .12381 L +.79159 .12165 L +.78725 .11952 L +Mistroke +.78284 .11742 L +.77837 .11535 L +.77382 .11332 L +.76921 .11132 L +.76452 .10935 L +.75978 .10742 L +.75497 .10553 L +.7501 .10367 L +.74516 .10185 L +.74017 .10006 L +.73511 .09831 L +.73 .0966 L +.72483 .09492 L +.71961 .09329 L +.71433 .09169 L +.709 .09013 L +.70362 .08861 L +.69818 .08713 L +.6927 .08569 L +.68717 .08429 L +.6816 .08294 L +.67598 .08162 L +.67031 .08034 L +.66461 .07911 L +.65886 .07792 L +.65307 .07677 L +.64725 .07567 L +.64139 .0746 L +.6355 .07358 L +.62957 .07261 L +.62361 .07168 L +.61762 .07079 L +.6116 .06994 L +.60555 .06915 L +.59948 .06839 L +.59338 .06768 L +.58726 .06702 L +.58111 .0664 L +.57495 .06582 L +.56877 .06529 L +.56257 .06481 L +.55636 .06437 L +.55013 .06398 L +.54389 .06363 L +.53764 .06333 L +.53138 .06308 L +.52512 .06287 L +.51884 .06271 L +.51256 .06259 L +.50628 .06252 L +Mistroke +.5 .0625 L +.49372 .06252 L +.48744 .06259 L +.48116 .06271 L +.47488 .06287 L +.46862 .06308 L +.46236 .06333 L +.45611 .06363 L +.44987 .06398 L +.44364 .06437 L +.43743 .06481 L +.43123 .06529 L +.42505 .06582 L +.41889 .0664 L +.41274 .06702 L +.40662 .06768 L +.40052 .06839 L +.39445 .06915 L +.3884 .06994 L +.38238 .07079 L +.37639 .07168 L +.37043 .07261 L +.3645 .07358 L +.35861 .0746 L +.35275 .07567 L +.34693 .07677 L +.34114 .07792 L +.33539 .07911 L +.32969 .08034 L +.32402 .08162 L +.3184 .08294 L +.31283 .08429 L +.3073 .08569 L +.30182 .08713 L +.29638 .08861 L +.291 .09013 L +.28567 .09169 L +.28039 .09329 L +.27517 .09492 L +.27 .0966 L +.26489 .09831 L +.25983 .10006 L +.25484 .10185 L +.2499 .10367 L +.24503 .10553 L +.24022 .10742 L +.23548 .10935 L +.23079 .11132 L +.22618 .11332 L +.22163 .11535 L +Mistroke +.21716 .11742 L +.21275 .11952 L +.20841 .12165 L +.20415 .12381 L +.19996 .126 L +.19584 .12823 L +.19179 .13048 L +.18783 .13277 L +.18394 .13508 L +.18013 .13742 L +.17639 .13979 L +.17274 .14219 L +.16917 .14461 L +.16568 .14706 L +.16227 .14953 L +.15894 .15203 L +.1557 .15455 L +.15255 .1571 L +.14948 .15967 L +.14649 .16226 L +.1436 .16488 L +.14079 .16751 L +.13807 .17017 L +.13544 .17284 L +.1329 .17553 L +.13045 .17825 L +.12809 .18098 L +.12582 .18372 L +.12365 .18649 L +.12157 .18927 L +.11958 .19206 L +.11768 .19487 L +.11588 .19769 L +.11418 .20052 L +.11257 .20337 L +.11105 .20623 L +.10963 .2091 L +.10831 .21198 L +.10709 .21487 L +.10596 .21776 L +.10492 .22067 L +.10399 .22358 L +.10315 .2265 L +.10242 .22942 L +.10178 .23235 L +.10123 .23529 L +.10079 .23823 L +.10044 .24117 L +.1002 .24411 L +.10005 .24705 L +Mistroke +.1 .25 L +Mfstroke +0 0 1 r +.1 .25 m +.105 .28125 L +.13 .325 L +.15 .34375 L +.2 .375 L +.3 .4125 L +.4 .43125 L +.5 .4375 L +.6 .43125 L +.7 .4125 L +.8 .375 L +.875 .3125 L +.9 .25 L +.87 .175 L +.85 .15625 L +.8 .125 L +.6 .06875 L +.5 .0625 L +.3 .0875 L +.2 .125 L +.15 .15625 L +.125 .1875 L +.105 .21875 L +.1 .25 L +s +5 Mabswid +.1 .25 Mdot +.105 .28125 Mdot +.13 .325 Mdot +.15 .34375 Mdot +.2 .375 Mdot +.3 .4125 Mdot +.4 .43125 Mdot +.5 .4375 Mdot +.6 .43125 Mdot +.7 .4125 Mdot +.8 .375 Mdot +.875 .3125 Mdot +.9 .25 Mdot +.87 .175 Mdot +.85 .15625 Mdot +.8 .125 Mdot +.6 .06875 Mdot +.5 .0625 Mdot +.3 .0875 Mdot +.2 .125 Mdot +.15 .15625 Mdot +.125 .1875 Mdot +.105 .21875 Mdot +.1 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{1009, 504.5}, + ImageMargins->{{4, 0}, {0, 77}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`00o`3ooooR0?ooo`030000 +003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3o +ool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?oo +o`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0 +ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3o +oooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0 +oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?oo +o`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`@00000 +o`3ooooo0?ooo`h0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o +0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?oo +o`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0 +oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<0 +00000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo +0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80 +oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0 +o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o +0?ooon80oooo1000003o0?ooool0oooo3P3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?oo +ool0oooo3`3oool00?l0ooooI@3ooolS0?l005X0oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0 +oooo003o0?oooe/0oooo2P3o000S0?oooa80o`00B03oool00`000000oooo0?ooo`3o0?ooool0oooo +3`3oool00?l0ooooE`3oool40?l003l0oooo1`3o00110?ooo`030000003oool0oooo0?l0ooooo`3o +ool?0?ooo`00o`3ooomC0?ooo`@0o`00BP3oool=0?l003@0oooo00<000000?ooo`3oool0o`3ooooo +0?ooo`l0oooo003o0?oooe40oooo0P3o001K0?ooo`H0o`00;P3oool00`000000oooo0?ooo`3o0?oo +ool0oooo3`3oool00?l0ooooCP3oool30?l006<0oooo303o000R0?ooo`030000003oool0oooo0?l0 +ooooo`3oool?0?ooo`00o`3ooom;0?ooo`<0o`00LP3oool70?l001/0oooo00<000000?ooo`3oool0 +o`3ooooo0?ooo`l0oooo003o0?ooodT0oooo0P3o001l0?ooo`H0o`001@3oool2000000d0oooo0`00 +0?oo0?ooool0oooo403oool00?l0ooooA`3oool20?l008@0oooo303o00070?ooo`D0003oo`3ooooo +0?ooo`l0oooo003o0?ooodD0oooo0P3o00290?ooo`@00?l02`2IIS<;0000o`L0VFHco`3ooooo0?oo +o`<0oooo003o0?oood<0oooo0P3o001b0?oooad0VFHc00<000000?ooo`3oool020000?l00`3oool0 +003o0000o`030000o`D0o`0040000?lD09UV0?ooo`030000003oool0oooo01H0oooo3P3o000@0000oa40VFHco`3oooo90?ooo`00o`3oooln +0?ooo`80o`00D`3oool2003o00H0VFHc0P00o`0S0?ooo`P0003o6P3oool00`000000oooo0?ooo`0[ +0?ooo`T0o`003`000?l2003o00H0VFHc00<00?l00?ooo`3oool02`3oool30000ool0oooo/P3oool0 +0?l0oooo?03oool20?l004/0oooo302IIS@3oool00`3o0000oooo0?ooo`0m0?ooo`/0VFHc9@3oool70000oc80oooo +00<000000?ooo`3oool0F03oool80000o`L0VFHc0P3o003o0?ooojD0oooo003o0?ooocP0oooo00<0 +o`000?ooo`3oool0=03oool4003o00H0VFHc:03oool80000ocT0oooo00<000000?ooo`3oool0F@3o +ool30000o`@0oooo0`000?l20?ooo`800?l01P2IIS<50?l00?l0ooooW03oool00?l0oooo=`3oool0 +0`3o0000oooo0?ooo`0`0?ooo`<00?l01P2IIS0?ooo`030000003oool0oooo08L0oooo10000?lE +0?ooo`<00?l0102IIS<40?l00?l0ooooH`3oool00?l0oooo;03oool00`3o0000oooo0?ooo`060?oo +o`800?l00P2IIS<00`00o`00oooo0?ooo`080?ooo`P0003oUP3oool00`000000oooo0?ooo`2;0?oo +o`<0003o5`3oool2003o0080VFHc00@00?l00?ooo`3o0000o`00o`3ooomQ0?ooo`00o`3oool[0?oo +o`030?l0003oool0oooo0080oooo0`00o`0409UV<`H0oooo1`000?nN0?ooo`030000003oool0oooo +08h0oooo10000?lG0?ooo`@0VFHc103o003o0?oooed0oooo003o0?ooobP0oooo0`000?l20?ooo`H0 +VFHc0P3oool80000ojD0oooo00<000000?ooo`3oool0TP3oool30000oaP0oooo1@2IIS<30?l00?l0 +ooooF@3oool00?l0oooo9`3oool50000o`0309UV<`000?l0003o00H0003o[@3oool00`000000oooo +0?ooo`2E0?ooo`@0003o5`3oool2003o00@0VFHc0`3o003o0?oooeD0oooo003o0?ooobL0oooo1P00 +0?ne0?ooo`@00000V03oool30000oaP0oooo0P00o`0209UV<`030?ooo`3o0000o`000?l0ooooD`3o +ool00?l0oooo8P3oool00`00o`00VFHc09UV<`070000okH0oooo00<000000?ooo`3oool0W03oool4 +0000oaP0oooo102IIS<30?l00?l0ooooC`3oool00?l0oooo7P3oool509UV<`80003o0P3oool0103o +0000003o0000o`000?ng0?ooo`030000003oool0oooo0:00oooo0`000?lI0?ooo`D0VFHc0P3o003o +0?oood/0oooo003o0?oooa/0oooo0`2IIS<00`00o`00oooo0000o`020000o`<0oooo00<0o`000?oo +o`3oool0^@3oool00`000000oooo0?ooo`2S0?ooo`@0003o6P3oool409UVl0oooo00<00?l009UV<`2IIS<0103oool30000oaX0oooo0P3o003<0?ooo`03 +0000003oool0oooo0=T0oooo0`000?l@0?ooo`<0VFHc00<00?l00?ooo`3oool0o`3ooolL0?ooo`00 +k@3oool00`00o`00VFHc09UV<`030?ooo`<0003o703oool00`3o0000oooo0?ooo`3<0?ooo`030000 +003oool0oooo0=`0oooo10000?l?0?ooo`80VFHc00<00?l00?ooo`3oool0o`3ooolJ0?ooo`00j`3o +ool00`00o`00VFHc09UV<`020?ooo`<0003o7P3oool00`3o0000oooo0?ooo`3=0?ooo`030000003o +ool0oooo0>00oooo0`000?l>0?ooo`80VFHc00<00?l00?ooo`3oool0o`3ooolH0?ooo`00j@3oool0 +0`00o`00VFHc09UV<`020?ooo`80003o803oool00`3o0000oooo0?ooo`3>0?ooo`030000003oool0 +oooo0><0oooo10000?l<0?ooo`80VFHc0P3o003o0?oooaL0oooo003V0?ooo`@0VFHc00@0oooo0000 +o`000?l0003o803oool20?l00=40oooo00<000000?ooo`3oool0i`3oool40000o`X0oooo0`2IIS<2 +0?l00?l0oooo503oool00><0oooo0`2IIS<00`00o`00oooo0000o`020000ob00oooo0`3o003C0?oo +o`@00000jP3oool30000o`X0oooo102IIS?o0?oooa80oooo003Q0?ooo`80VFHc00<00?l00?ooo`00 +0?l00P000?lO0?ooo`@0o`00eP3oool00`000000oooo0?ooo`3^0?ooo`@0003o2P3oool209UV<`03 +0?l0003oool0oooo0?l0oooo3@3oool00=l0oooo0P2IIS<01000o`00oooo0000o`000?lP0?ooo`80 +o`00fP3oool00`000000oooo0?ooo`3b0?ooo`<0003o2@3oool209UV<`030?l0003oool0oooo0?l0 +oooo2`3oool00=`0oooo00@00?l009UV<`2IIS<0oooo0`000?lP0?ooo`80o`00g03oool00`000000 +oooo0?ooo`3e0?ooo`@0003o1`3oool209UV<`030?l0003oool0oooo0?l0oooo2@3oool00=X0oooo +00<00?l009UV<`2IIS<00`000?lQ0?ooo`80o`00gP3oool00`000000oooo0?ooo`3i0?ooo`<0003o +1P3oool209UV<`030?l0003oool0oooo0?l0oooo1`3oool00=P0oooo00<00?l009UV<`2IIS<00P00 +0?lP0?ooo`@0o`00h03oool00`000000oooo0?ooo`3l0?ooo`@0003o103oool209UV<`030?l0003o +ool0oooo0?l0oooo1@3oool00=H0oooo00<00?l009UV<`000?l00P000?lM0?ooo`D0o`00i03oool0 +0`000000oooo0?ooo`3o0?ooo`40oooo0`000?l30?ooo`80VFHc00<0o`000?ooo`3oool0o`3oool3 +0?ooo`00e03oool01000o`00003o0000o`000?lJ0?ooo`H0o`00j@3oool00`000000oooo0?ooo`3o +0?ooo`@0oooo10000?l0103oool0VFHc09UV<`3o003o0?ooo`<0oooo003B0?ooo`<0003o4P3oool; +0?l00>l0oooo00<000000?ooo`3oool0o`3oool80?ooo`@0003o00<0VFHc0?l0003oool0o`3oool0 +0T0oooo1000000=0?oo +o`030000003oool0oooo0?l0oooo303oool30000o`040?l0003oool0oooo0?ooo`<0003on03oool0 +00?oo +o`030000003oool0oooo0?l0oooo3`3oool80000ooL0oooo00390?ooo`D0003o00<0VFHc0?l0003o +00001@3o003k0?ooo`030000003oool0oooo00d0oooo1`00003o0?ooo`d0oooo00<0VFHc0000o`00 +0?l00`000?og0?ooo`00a03oool50?l000D0003oo03oool4000000@0oooo00<000000?ooo`3oool0 +303oool00`000000oooo0?ooo`3o0?oooa80oooo1@000?og0?ooo`00_`3oool50?l000@0oooo00<0 +003o09UV<`000?l00P000?oo0?ooo`@0oooo00@000000?ooo`3oool000003@3oool00`000000oooo +0?ooo`3o0?oooa<0oooo0`000?l00`2IIS<0003o0?ooo`3e0?ooo`00^@3oool60?l000L0oooo0P00 +0?l00`2IIS<0oooo0?ooo`3o0?ooo`L0oooo0P00000>0?ooo`030000003oool0oooo0?l0oooo5`3o +ool00`2IIS<0003o0000o`3d0?ooo`00]P3oool30?l000/0oooo0P000?l00`2IIS<0oooo0?ooo`3o +0?oooaT0oooo00<000000?ooo`3oool0o`3ooolI0?ooo`0309UV<`000?l0003o0?80oooo002d0?oo +o`80o`00303oool00`00o`00003o09UV<`3o0?oooad0oooo00<000000?ooo`3oool0o`3ooolK0?oo +o`0309UV<`000?l0o`000?00oooo002a0?ooo`<0o`00303oool01000o`00003o0000o`2IIS?o0?oo +oah0oooo00<000000?ooo`3oool0o`3ooolL0?ooo`0409UV<`000?l0003o0?l00>h0oooo002^0?oo +o`<0o`003@3oool2003o00030000o`2IIS<0oooo0?l0oooo7`3oool00`000000oooo0?ooo`3o0?oo +oah0oooo00@0VFHc0000o`3o0000o`00k03oool00:d0oooo00<0o`000?ooo`3oool0303oool2003o +0080003oo`3ooolR0?ooo`030000003oool0oooo0?l0oooo803oool20000o`80o`00jP3oool00:/0 +oooo0P3o000=0?ooo`800?l00P000?l00`2IIS<0oooo0?ooo`3o0?ooob40oooo00<000000?ooo`3o +ool0o`3ooolQ0?ooo`0409UV<`000?l0003o0?l00>T0oooo002Z0?ooo`030?l0003oool0oooo00/0 +oooo0P00o`000`3oool0003o09UV<`3o0?ooobD0oooo00<000000?ooo`3oool0o`3ooolS0?ooo`04 +09UV<`000?l0o`000?l00>L0oooo002X0?ooo`80o`00303oool2003o00040?ooo`000?l0003o09UV +@0oooo002V0?ooo`030?l0003oool0oooo +00X0oooo00<00?l00?ooo`3oool00P000?l00`2IIS<0oooo0?ooo`3o0?ooobL0oooo00<000000?oo +o`3oool0o`3ooolW0?ooo`0409UV<`000?l0003o0?l00><0oooo002U0?ooo`030?l0003oool0oooo +00T0oooo0P00o`020?ooo`030000o`2IIS<0oooo0?l0oooo:P3oool00`000000oooo0?ooo`3o0?oo +obT0oooo00@0VFHc0000o`3o0000o`00h@3oool00:@0oooo00<0o`000?ooo`3oool02@3oool00`00 +o`00oooo0?ooo`020000ool0oooo;@3oool00`000000oooo0?ooo`3o0?ooob/0oooo0P000?l20?l0 +0=l0oooo002S0?ooo`030?l0003oool0oooo00P0oooo0P00o`000`3oool0003o0000o`3o0?ooobl0 +oooo00<000000?ooo`3oool0o`3oool]0?ooo`80003o0P3o003M0?ooo`00X`3oool00`3o0000oooo +0?ooo`070?ooo`05003o003oool0oooo0000o`2IIS<0o`3oool`0?ooo`030000003oool0oooo0?l0 +oooo;P3oool00`2IIS<0003o0?ooo`020?l00=/0oooo002R0?ooo`030?l0003oool0oooo00H0oooo +0P00o`000`3oool0003o0000o`3o0?oooc80oooo00<000000?ooo`3oool0o`3oool`0?ooo`80003o +00<0oooo0?l0003oool0f@3oool00:40oooo00<0o`000?ooo`3oool01@3oool2003o0080oooo00<0 +003o09UV<`3oool0o`3ooolb0?ooo`030000003oool0oooo0?l0oooo<@3oool0102IIS<0003o0?oo +o`3o003I0?ooo`00X@3oool00`3o0000oooo0?ooo`040?ooo`03003o003oool0oooo0080003o00<0 +VFHc0?ooo`3oool0o`3ooolb0?ooo`030000003oool0oooo0?l0ooooP3oool00`000000oooo0?ooo`3o0?ooocP0oooo0P2IIS<00`000?l0 +0?l00?l0003A0?ooo`00WP3oool01@3o0000oooo0?ooo`3oool00?l00080003o00<0VFHc0?ooo`3o +ool0o`3ooolj0?ooo`030000003oool0oooo0?l0oooo>P3oool0102IIS<0003o0000o`3o003@0?oo +o`00WP3oool00`3o0000oooo0?ooo`020000o`030?ooo`2IIS<0oooo0?l0oooo?03oool00`000000 +oooo0?ooo`3o0?oooc/0oooo00@0VFHc0?ooo`000?l0003oc`3oool009`0oooo0`000?l01@3oool0 +003o0?ooo`3oool0VFHc0?l0oooo?P3oool00`000000oooo0?ooo`3o0?oooc`0oooo00D0VFHc0?oo +o`3oool0003o0?ooo`030000olX0oooo002K0?ooo`D0003o0P3oool00`2IIS<0oooo0?ooo`3o0?oo +ocd0oooo00<000000?ooo`3oool0o`3ooolm0?ooo`0309UV<`3oool0oooo00D0003ob@3oool009/0 +oooo1@000?l209UV0?ooo`0309UV<`3oool0003o +00L0oooo00<0o`000?ooo`3oool0o`3ooom70?ooo`030000003oool0oooo0?l0ooooD03oool209UV +<`030?ooo`000?l0003o00<0003o]P3oool008d0oooo00<0VFHc0?ooo`000?l01`3oool00`3o0000 +oooo0?ooo`3o0?ooodP0oooo1000003o0?oooe40oooo00<0VFHc0000o`000?l00`000?nf0?ooo`00 +S03oool00`2IIS<00?l00000o`080?ooo`030?l0003oool0oooo0?l0ooooB03oool00`000000oooo +0?ooo`3o0?oooe<0oooo1@000?nf0?ooo`00S03oool00`2IIS<0003o0?ooo`070?ooo`030?l0003o +ool0oooo0?l0ooooB@3oool00`000000oooo0?ooo`3o0?oooe<0oooo00D0VFHc0000o`000?l0003o +0?l0002f0?ooo`00R`3oool00`2IIS<0003o0?ooo`080?ooo`030?l0003oool0oooo0?l0ooooB@3o +ool00`000000oooo0?ooo`3o0?oooe@0oooo00@0VFHc0?ooo`000?l0o`00]P3oool008X0oooo00<0 +VFHc003o00000?l0203oool00`3o0000oooo0?ooo`3o0?ooodX0oooo00<000000?ooo`3oool0o`3o +oomE0?ooo`0409UV<`3oool0003o0?l00;D0oooo00290?ooo`0309UV<`00o`00003o00P0oooo00<0 +o`000?ooo`3oool0o`3ooom;0?ooo`030000003oool0oooo0?l0ooooEP3oool0102IIS<0003o0?oo +o`3o002d0?ooo`00R03oool00`2IIS<00?l00000o`080?ooo`030?l0003oool0oooo0?l0ooooC03o +ool00`000000oooo0?ooo`3o0?oooeL0oooo00@0003o0?ooo`3oool0o`00/`3oool008L0oooo00<0 +VFHc0?ooo`000?l0203oool00`3o0000oooo0?ooo`3o0?ooodd0oooo00<000000?ooo`3oool0o`3o +oomG0?ooo`0509UV<`000?l0oooo0?ooo`3o0000/P3oool008H0oooo00<0VFHc0?ooo`000?l01`3o +ool20?l00?l0ooooD03oool00`000000oooo0?ooo`3o0?oooeP0oooo00D0003o0?ooo`3oool0oooo +0?l0002a0?ooo`00Q@3oool40000o`D0oooo0P3o003o0?oood40oooo1@00000<0?ooo`030000003o +ool0oooo0?l0ooooF@3oool010000?l0oooo0?ooo`3o002a0?ooo`00Q03oool50000o`D0o`00o`3o +oom50?ooo`030000003oool0oooo00`0oooo00<000000?ooo`3oool0o`3ooomI0?ooo`050000o`2I +IS<0oooo0?ooo`3o0000/03oool008@0oooo1@000?oo0?ooodX0oooo00<000000?ooo`3oool0303o +ool700000?l0ooooE@3oool00`000?l0oooo09UV<`020?ooo`030?l0003oool0oooo0:d0oooo001_ +0?oooa@0o`0000<0VFHc0000o`000?l00`000?oo0?oood80oooo100000040?ooo`030000003oool0 +oooo00`0oooo00<000000?ooo`3oool0o`3ooomJ0?ooo`050000o`2IIS<0oooo0?ooo`3o0000[`3o +ool006`0oooo0`3o000D0?ooo`0309UV<`3oool0003o0080003oo`3ooom;0?ooo`030000003oool0 +oooo00`0oooo00<000000?ooo`3oool0o`3ooomJ0?ooo`030000o`3oool0VFHc0080oooo00<0o`00 +0?ooo`3oool0[03oool006X0oooo0P3o000F0?ooo`0309UV<`3oool0003o0?l0ooooC@3oool20000 +00h0oooo00<000000?ooo`3oool0o`3ooomJ0?ooo`040000o`3oool0oooo09UV<`80oooo00<0o`00 +0?ooo`3oool0Z`3oool006T0oooo00<0o`000?ooo`3oool05@3oool00`2IIS<0oooo0000o`3o0?oo +oeh0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`060000o`3oool0oooo09UV<`3oool0o`00[@3o +ool006P0oooo00<0o`000?ooo`3oool05@3oool0102IIS<0oooo0?ooo`000?oo0?oooeh0oooo00<0 +00000?ooo`3oool0o`3ooomK0?ooo`070000o`3oool0oooo0?ooo`2IIS<0oooo0?l0002/0?ooo`00 +J03oool00`3o0000oooo0?ooo`0E0?ooo`0309UV<`3oool0003o0?l0ooooG`3oool00`000000oooo +0?ooo`3o0?oooe`0oooo00@0003o0?ooo`3oool0VFHc0P3oool00`3o0000oooo0?ooo`2Y0?ooo`00 +I`3oool00`3o0000oooo0?ooo`0E0?ooo`0309UV<`3oool0003o0?l0ooooH03oool00`000000oooo +0?ooo`3o0?oooe`0oooo00L0003o0?ooo`3oool0oooo09UV<`3oool0o`000:/0oooo001W0?ooo`03 +0?l0003oool0oooo01@0oooo00@0VFHc0?ooo`00o`00003oo`3ooomP0?ooo`030000003oool0oooo +0?l0ooooG03oool00`000?l0oooo0?ooo`020?ooo`0309UV<`3oool0o`000:X0oooo001W0?ooo`03 +0?l0003oool0oooo01@0oooo00<0VFHc003o00000?l0o`3ooomQ0?ooo`030000003oool0oooo0?l0 +ooooG@3oool020000?l0oooo0?ooo`3oool0VFHc0?ooo`00o`00o`00Z@3oool006P0oooo00<0o`00 +0?ooo`3oool04P3oool00`2IIS<00?l00000o`3o0?ooof80oooo00<000000?ooo`3oool0o`3ooomM +0?ooo`030000o`3oool0oooo0080oooo00<0VFHc0?ooo`3o0000Z@3oool006P0oooo00<0o`000?oo +o`3oool04@3oool0102IIS<0oooo003o00000?oo0?ooof80oooo00<000000?ooo`3oool0o`3ooomN +0?ooo`080000o`3oool0oooo0?ooo`2IIS<0oooo003o003o002X0?ooo`00J03oool00`3o0000oooo +0?ooo`0A0?ooo`0309UV<`00o`00003o0?l0ooooH`3oool400000?l0ooooG@3oool00`000?l0oooo +0?ooo`020?ooo`0309UV<`3oool0o`000:P0oooo001Y0?ooo`030?l0003oool0oooo00l0oooo00<0 +VFHc003o00000?l0o`3ooomT0?ooo`030000003oool0oooo0?l0ooooGP3oool00`000?l0oooo0?oo +o`030?ooo`0309UV<`00o`00o`000:L0oooo001Y0?ooo`030?l0003oool0oooo00l0oooo00<0VFHc +0?ooo`000?l0o`3ooomT0?ooo`030000003oool0oooo0?l0ooooG`3oool00`000?l0oooo0?ooo`02 +0?ooo`0309UV<`3oool0o`000:L0oooo001Z0?ooo`030?l0003oool0oooo00d0oooo00<0VFHc0?oo +o`000?l0o`3ooomU0?ooo`030000003oool0oooo0?l0ooooG`3oool00`000?l0oooo0?ooo`030?oo +o`0309UV<`3oool0o`000:H0oooo001Z0?ooo`030?l0003oool0oooo00`0oooo00@0VFHc003o003o +ool0003oo`3ooomU0?ooo`030000003oool0oooo0?l0ooooH03oool00`000?l0oooo0?ooo`020?oo +o`0309UV<`3oool0o`000:H0oooo001[0?ooo`030?l0003oool0oooo00/0oooo00<0VFHc0?ooo`00 +0?l0o`3ooomV0?ooo`030000003oool0oooo0?l0ooooH03oool00`000?l0oooo0?ooo`030?ooo`03 +09UV<`3oool0o`000:D0oooo001/0?ooo`030?l0003oool0oooo00T0oooo00<0VFHc003o00000?l0 +o`3ooomW0?ooo`030000003oool0oooo0?l0ooooH03oool00`000?l0oooo0?ooo`030?ooo`0309UV +<`3oool0o`000:D0oooo001/0?ooo`030?l0003oool0oooo00T0oooo00<0VFHc0?ooo`000?l0o`3o +oomW0?ooo`030000003oool0oooo0?l0ooooH@3oool00`000?l0oooo0?ooo`030?ooo`0309UV<`3o +ool0o`000:@0oooo001]0?ooo`030?l0003oool0oooo00L0oooo00<0VFHc003o00000?l0o`3ooomX +0?ooo`030000003oool0oooo0?l0ooooH@3oool00`000?l0oooo0?ooo`030?ooo`0309UV<`3oool0 +o`000:@0oooo001^0?ooo`030?l0003oool0oooo00H0oooo00<0VFHc0000o`3oool0o`3ooomX0?oo +o`030000003oool0oooo0?l0ooooHP3oool00`000?l0oooo0?ooo`030?ooo`0309UV<`3o0000oooo +0:<0oooo001^0?ooo`030?l0003oool0oooo00D0oooo00<0VFHc003o00000?l0o`3ooomY0?ooo`03 +0000003oool0oooo0?l0ooooHP3oool00`000?l0oooo0?ooo`030?ooo`0309UV<`3oool0o`000:<0 +oooo001_0?ooo`030?l0003oool0oooo00@0oooo00<0VFHc0000o`3oool0o`3ooomY0?ooo`@00000 +o`3ooomQ0?ooo`030000o`3oool0oooo00@0oooo00<0VFHc0?l0003oool0XP3oool00700oooo00<0 +o`000?ooo`3oool00P3oool00`2IIS<0003o0?ooo`3o0?ooofX0oooo00<000000?ooo`3oool0o`3o +oomS0?ooo`030000o`3oool0oooo00<0oooo00<0VFHc003o003o0000XP3oool00700oooo00<0o`00 +0?ooo`3oool00P3oool00`2IIS<0003o0?ooo`3o0?ooofX0oooo00<000000?ooo`3oool0o`3ooomS +0?ooo`030000o`3oool0oooo00@0oooo00<0VFHc0?l0003oool0X@3oool00740oooo00D0o`000?oo +o`3oool00?l00000o`3o0?ooof`0oooo00<000000?ooo`3oool0o`3ooomS0?ooo`030000o`3oool0 +oooo00@0oooo00<0VFHc003o003o0000X@3oool00780oooo0`000?oo0?ooofd0oooo00<000000?oo +o`3oool0o`3ooomT0?ooo`030000o`3oool0oooo00@0oooo00<0VFHc0?l0003oool0X03oool00740 +oooo1@000?oo0?ooof`0oooo00<000000?ooo`3oool0o`3ooomT0?ooo`030000o`3oool0oooo00@0 +oooo00<0VFHc003o003o0000X03oool00740oooo1@000?oo0?ooof`0oooo00<000000?ooo`3oool0 +o`3ooomU0?ooo`030000o`3oool0oooo00<0oooo00<0VFHc003o003o0000X03oool00740oooo1@00 +0?oo0?ooof`0oooo00<000000?ooo`3oool0o`3ooomU0?ooo`030000o`3oool0oooo00@0oooo00<0 +VFHc0?l0003oool0W`3oool00780oooo0`000?l00`3o0000oooo0?ooo`3o0?ooofX0oooo00<00000 +0?ooo`3oool0o`3ooomU0?ooo`030000o`3oool0oooo00@0oooo00<0VFHc0?l0003oool0W`3oool0 +0780oooo00D00?l00000o`3oool0oooo0?l0003o0?ooof/0oooo00<000000?ooo`3oool0o`3ooomV +0?ooo`030000o`3oool0oooo00<0oooo00<0VFHc003o003o0000W`3oool00780oooo00<0003o0?oo +o`3oool00P3oool00`3o0000oooo0?ooo`3o0?ooofP0oooo00<000000?ooo`3oool0o`3ooomV0?oo +o`030000o`3oool0oooo00@0oooo00<0VFHc0?l0003oool0WP3oool00780oooo00<0003o0?ooo`3o +ool00P3oool00`3o0000oooo0?ooo`3o0?ooofP0oooo00<000000?ooo`3oool0o`3ooomW0?ooo`03 +0000o`3oool0oooo00<0oooo00<0VFHc0?l0003oool0WP3oool00740oooo00<0VFHc0000o`3oool0 +103oool00`3o0000oooo0?ooo`3o0?ooofL0oooo1000003o0?ooofH0oooo00<0003o0?ooo`3oool0 +0`3oool00`2IIS<0o`000?ooo`2N0?ooo`00L@3oool00`2IIS<0003o0?ooo`050?ooo`030?l0003o +ool0oooo0?l0ooooIP3oool00`000000oooo0?ooo`3o0?ooofL0oooo00<0003o0?ooo`3oool00`3o +ool00`2IIS<0o`000?ooo`2N0?ooo`00L@3oool00`2IIS<0003o0?ooo`060?ooo`030?l0003oool0 +oooo0?l0ooooI@3oool00`000000oooo0?ooo`3o0?ooofP0oooo00<0003o0?ooo`3oool00P3oool0 +0`2IIS<0o`000?ooo`2N0?ooo`00L03oool00`00o`00VFHc0000o`02000000H0oooo00<0o`000?oo +o`3oool0Z`3oool400000;@0oooo00<000000?ooo`3oool0]03oool400000:l0oooo00<0003o0?oo +o`3oool00`3oool00`2IIS<0o`0000000002000009/0oooo001`0?ooo`04003o002IIS<0003o0000 +00P0oooo00<0o`000?ooo`3oool0ZP3oool00`000000oooo0?ooo`2e0?ooo`030000003oool0oooo +0;@0oooo00<000000?ooo`3oool0/@3oool00`000?l0oooo0?ooo`020?ooo`0409UV<`3o0000oooo +000009`0oooo001`0?ooo`03003o00000?l0000000800000203oool00`3o0000oooo0?ooo`2Z0?oo +o`030000003oool0oooo0;@0oooo00<000000?ooo`3oool0]@3oool00`000000oooo0?ooo`2`0?oo +o`030000o`3oool0oooo0080oooo00<0VFHc0?l0000000000P00002K0?ooo`00JP3oool400000080 +oooo00@0VFHc0000o`3oool000002@3oool00`3o0000oooo0?ooo`2S0?ooo`@00000103oool00`00 +0000oooo0?ooo`2c0?ooo`030000003oool0oooo0;H0oooo00<000000?ooo`3oool0[`3oool00`00 +0?l0oooo0?ooo`020?ooo`040000002IIS<0o`00000009`0oooo001`0?ooo`0409UV<`000?l0oooo +000000X0oooo00<0o`000?ooo`3oool0Z03oool010000000oooo0?ooo`00002d0?ooo`030000003o +ool0oooo0;@0oooo00@000000?ooo`3oool00000/@3oool00`000?l0oooo0?ooo`020?ooo`0309UV +<`3o0000000009`0oooo001`0?ooo`0409UV<`000?l00000000000/0oooo00<0o`000?ooo`3oool0 +Z03oool200000;D0oooo00<000000?ooo`3oool0]@3oool200000;80oooo00<0003o0?ooo`3oool0 +0P3oool00`2IIS<0o`000000002L0?ooo`00K`3oool00`00o`00VFHc0000o`0>0?ooo`030?l0003o +ool0oooo0?l0ooooG`3oool00`000000oooo0?ooo`3o0?ooof/0oooo00H0003o0?ooo`3oool0oooo +09UV<`3o002M0?ooo`00K`3oool00`00o`00VFHc0000o`0?0?ooo`030?l0003oool0oooo0?l0oooo +GP3oool00`000000oooo0?ooo`3o0?ooof/0oooo00H0003o0?ooo`3oool0oooo09UV<`3o002M0?oo +o`00K`3oool00`2IIS<0oooo0000o`0@0?ooo`030?l0003oool0oooo0?l0ooooG@3oool400000?l0 +ooooJP3oool00`000?l0oooo0?ooo`020?ooo`0309UV<`3oool0oooo09/0oooo001_0?ooo`0309UV +<`3oool0003o0140oooo00<0o`000?ooo`3oool0o`3ooomL0?ooo`030000003oool0oooo0?l0oooo +K03oool01@000?l0oooo0?ooo`3oool0VFHc09d0oooo001=0?ooo`D0o`007@3oool00`2IIS<0003o +0?ooo`0B0?ooo`030?l0003oool0oooo0?l0ooooF`3oool00`000000oooo0?ooo`3o0?ooof`0oooo +00D0003o0?ooo`3oool0oooo09UV<`2M0?ooo`00C03oool00`3o0000oooo0?ooo`030?ooo`L0o`00 +5P3oool00`2IIS<0003o0?ooo`0C0?ooo`030?l0003oool0oooo0?l0ooooFP3oool00`000000oooo +0?ooo`3o0?ooof`0oooo00D0003o0?ooo`3oool0oooo09UV<`2M0?ooo`00C03oool00`3o0000oooo +0?ooo`0:0?ooo`80o`00503oool00`2IIS<0003o0?ooo`0D0?ooo`030?l0003oool0oooo0?l0oooo +F@3oool00`000000oooo0?ooo`3o0?ooofd0oooo00@0003o0?ooo`3oool0VFHcW@3oool004d0oooo +00<0o`000?ooo`3oool02`3oool30?l00140oooo00<0VFHc0000o`3oool05@3oool00`3o0000oooo +0?ooo`3o0?oooeP0oooo00<000000?ooo`3oool0o`3ooom]0?ooo`040000o`3oool0oooo09UV0?ooo`030?l0003oool0oooo00d0oooo0`3o000>0?ooo`0309UV<`000?l0oooo01D0oooo +00<0o`000?ooo`3oool0o`3ooomH0?ooo`030000003oool0oooo0?l0ooooKP3oool00`000?l0oooo +09UV<`2M0?ooo`00CP3oool00`3o0000oooo0?ooo`0@0?ooo`80o`00303oool00`2IIS<0003o0?oo +o`0F0?ooo`030?l0003oool0oooo0?l0ooooE`3oool00`000000oooo0?ooo`3o0?ooofh0oooo00<0 +003o0?ooo`2IIS<0W@3oool004l0oooo00<0o`000?ooo`3oool04@3oool30?l000T0oooo00<0VFHc +0000o`3oool05`3oool00`3o0000oooo0?ooo`3o0?oooeH0oooo00<000000?ooo`3oool0o`3ooom^ +0?ooo`030000o`3oool0VFHc09d0oooo001@0?ooo`030?l0003oool0oooo01<0oooo0`3o00060?oo +o`030000o`3oool0oooo01P0oooo00<0o`000?ooo`3oool0o`3ooomE0?ooo`030000003oool0oooo +0?l0ooooK`3oool00`000?l0VFHc0?ooo`2L0?ooo`00D@3oool00`3o0000oooo0?ooo`0E0?ooo`80 +o`000`3oool30000oaX0oooo00<0o`000?ooo`3oool0o`3ooomD0?ooo`030000003oool0oooo0?l0 +ooooK`3oool30000ogD0oooo00<000000?ooo`3oool0203oool2000000030?ooo`000000000001L0 +oooo001B0?ooo`030?l0003oool0oooo01H0oooo0P3o00050000oaX0oooo00<0o`000?ooo`3oool0 +o`3ooomC0?ooo`030000003oool0oooo0?l0ooooKP3oool50000ogD0oooo00<000000?ooo`3oool0 +203oool00`000000oooo0000000H0?ooo`004P3ooom1000000030?l000000000000001L000001@00 +0?lK000000030?l00000000000000?l00000o`000033000000D0003oF`00000K0?ooo`8000002@3o +ool00`000000oooo0?ooo`0G0?ooo`00@03oool00`000000oooo0?ooo`0A0?ooo`030?l0003oool0 +oooo01H0oooo1@000?lL0?ooo`030?l0003oool0oooo00`0oooo00<000000?ooo`3oool0:`3oool0 +0`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02`0oooo00<000000?ooo`3oool0:`3oool0 +0`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02`0oooo00<000000?ooo`3oool0:`3oool0 +0`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02`0oooo00<000000?ooo`3oool0:`3oool0 +0`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02/0oooo00<000000?ooo`3oool0;03oool0 +0`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02T0oooo1@000?l/0?ooo`030000003oool0 +oooo04H0oooo00<000000?ooo`3oool01`3oool2000000030?ooo`000000000001L0oooo00100?oo +o`030000003oool0oooo0180oooo00<0o`000?ooo`3oool05P3oool30000o`030?ooo`3o0000oooo +01/0oooo00<0o`000?ooo`3oool02`3oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo +02/0oooo00<000000?ooo`3oool0;03oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo +02/0oooo00<000000?ooo`3oool0;03oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo +02/0oooo00<000000?ooo`3oool0;03oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo +02/0oooo00<000000?ooo`3oool0:`3oool00`000000oooo0?ooo`0/0?ooo`030000003oool0oooo +02/0oooo00<000000?ooo`3oool0:P3oool30000obd0oooo00<000000?ooo`3oool0A@3oool00`00 +0000oooo0?ooo`0T0?ooo`00@03oool00`000000oooo0?ooo`0C0?ooo`030?l0003oool0oooo01H0 +oooo00D0003o0?ooo`3oool0oooo0?l0000L0?ooo`030?l0003oool0oooo00X0oooo00<000000?oo +o`3oool0:`3oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02`0oooo00<000000?oo +o`3oool0:`3oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02`0oooo00<000000?oo +o`3oool0:`3oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02`0oooo00<000000?oo +o`3oool0:`3oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02/0oooo00<000000?oo +o`3oool0;03oool00`000000oooo0?ooo`0[0?ooo`030000003oool0oooo02X0oooo00<0003o09UV +<`3oool0;@3oool00`000000oooo0?ooo`1/0?ooo`00E`3oool00`3o0000oooo0?ooo`0E0?ooo`03 +09UV<`000?l0oooo0080oooo0P3o000K0?ooo`030?l0003oool0oooo09@0oooo00<000000?ooo`3o +ool0]P3oool00`000000oooo0?ooo`2f0?ooo`030000003oool0oooo0;@0oooo00<0003o0?ooo`2I +IS<0W@3oool005P0oooo00<0o`000?ooo`3oool0503oool00`2IIS<0003o0?ooo`040?ooo`030?l0 +003oool0oooo01T0oooo00<0o`000?ooo`3oool0T`3oool00`000000oooo0?ooo`2f0?ooo`030000 +003oool0oooo0;H0oooo00<000000?ooo`3oool0]03oool00`000?l0oooo09UV<`2M0?ooo`00F@3o +ool20?l001@0oooo00<0VFHc0000o`3oool01@3oool00`3o0000oooo0?ooo`0I0?ooo`030?l0003o +ool0oooo0980oooo00<000000?ooo`3oool0]P3oool00`000000oooo0?ooo`2f0?ooo`030000003o +ool0oooo0;@0oooo00<0003o0?ooo`2IIS<0W@3oool005/0oooo00<0o`000?ooo`3oool04@3oool0 +0`2IIS<0003o0?ooo`060?ooo`80o`006P3oool00`3o0000oooo0?ooo`3o0?oood/0oooo00<00000 +0?ooo`3oool0o`3ooom]0?ooo`040000o`3oool0oooo09UVN0?ooo`00I@3oool00`3o0000oooo0?ooo`080?ooo`0309UV<`00 +0?l0oooo0140oooo0P3o000H0?ooo`030?l0003oool0oooo0?l0oooo@@3oool00`000000oooo0?oo +o`3o0?ooofX0oooo00H0003o0?ooo`3oool0oooo0?l0002IIS>N0?ooo`00IP3oool00`3o0000oooo +0?ooo`070?ooo`0309UV<`000?l0oooo01<0oooo00<0o`000?ooo`3oool05P3oool00`3o0000oooo +0?ooo`3o0?oood00oooo00<000000?ooo`3oool0o`3ooomY0?ooo`030000o`3oool0oooo0080oooo +00<0o`0009UV<`3oool0W@3oool006L0oooo00<0o`000?ooo`3oool01`3oool00`000?l0oooo0?oo +o`0C0?ooo`030?l0003oool0oooo01H0oooo00<0o`000?ooo`3oool0o`3ooolo0?ooo`030000003o +ool0oooo0?l0ooooJ@3oool01P000?l0oooo0?ooo`3oool0o`0009UVP0?ooo`00K03oool00`3o0000oooo0?ooo`020?ooo`0309UV<`000?l0oooo01P0oooo0P3o +000F0?ooo`030?l0003oool0oooo0?l0oooo>`3oool00`000000oooo0?ooo`3o0?ooofL0oooo00<0 +003o0?ooo`3oool00P3oool00`3o0000VFHc0?ooo`2O0?ooo`00K@3oool01P3o0000oooo0?ooo`3o +ool0VFHc0000oa/0oooo00<0o`000?ooo`3oool0503oool00`3o0000oooo0?ooo`3o0?ooocX0oooo +1000003o0?ooofH0oooo00<0003o0?ooo`3oool00P3oool00`3o0000VFHc0?ooo`2O0?ooo`00KP3o +ool01@3o0000oooo0?ooo`3oool0003o01`0oooo00<0o`000?ooo`3oool0503oool00`3o0000oooo +0?ooo`3o0?ooocT0oooo00<000000?ooo`3oool0o`3ooomV0?ooo`030000o`3oool0oooo0080oooo +00<00?l00?l0002IIS<0X03oool006l0oooo00@0o`000?ooo`3oool0003o7@3oool20?l001D0oooo +00<0o`000?ooo`3oool0o`3ooolh0?ooo`030000003oool0oooo0?l0ooooIP3oool00`000?l0oooo +0?ooo`020?ooo`030?l0003oool0VFHc0:00oooo001`0?ooo`80o`0000<00?l00000o`3oool07@3o +ool00`3o0000oooo0?ooo`0C0?ooo`030?l0003oool0oooo0?l0oooo=`3oool00`000000oooo0?oo +o`3o0?ooofH0oooo00<0003o0?ooo`3oool00P3oool00`3o0000VFHc0?ooo`2P0?ooo`00LP3oool3 +0000oah0oooo00<0o`000?ooo`3oool04`3oool00`3o0000oooo0?ooo`3o0?ooocH0oooo00<00000 +0?ooo`3oool0o`3ooomU0?ooo`030000o`3oool0oooo00<0oooo00<0o`0009UV<`3oool0X03oool0 +0740oooo1@000?lN0?ooo`80o`00503oool00`3o0000oooo0?ooo`3o0?ooocD0oooo00<000000?oo +o`3oool0o`3ooomU0?ooo`030000o`3oool0oooo0080oooo00<0o`000?ooo`2IIS<0X@3oool00740 +oooo1@000?lP0?ooo`030?l0003oool0oooo0180oooo00<0o`000?ooo`3oool0o`3ooold0?ooo`03 +0000003oool0oooo0?l0ooooI03oool00`000?l0oooo0?ooo`030?ooo`030?l0002IIS<0oooo0:40 +oooo001a0?ooo`D0003o8@3oool00`3o0000oooo0?ooo`0B0?ooo`030?l0003oool0oooo0?l0oooo +<`3oool00`000000oooo0?ooo`3o0?ooof@0oooo00<0003o0?ooo`3oool00`3oool00`3o0000VFHc +0?ooo`2Q0?ooo`00LP3oool30000o`030?l0003oool0oooo0200oooo0P3o000C0?ooo`030?l0003o +ool0oooo0?l0oooo[0?ooo`00O03oool01@00o`00oooo0000o`3oool0o`0002l0oooo0P3o000= +0?ooo`030?l0003oool0oooo0?l0oooo803oool00`000000oooo0?ooo`3o0?oooed0oooo00D0003o +0?ooo`3o0000oooo09UV<`2/0?ooo`00O03oool01P00o`00oooo09UV<`000?l0oooo0?l00300oooo +00<0o`000?ooo`3oool02`3oool00`3o0000oooo0?ooo`3o0?oooal0oooo00<000000?ooo`3oool0 +o`3ooomL0?ooo`060000o`3oool0oooo0?l0003oool0VFHc[03oool007d0oooo00D00?l00?ooo`2I +IS<0003o0?l0000a0?ooo`80o`00303oool00`3o0000oooo0?ooo`3o0?oooah0oooo00<000000?oo +o`3oool0o`3ooomL0?ooo`050000o`3oool0o`000?ooo`2IIS<0[@3oool007d0oooo00H00?l00?oo +o`3oool0003o0?ooo`3o000b0?ooo`030?l0003oool0oooo00X0oooo00<0o`000?ooo`3oool0o`3o +oolM0?ooo`030000003oool0oooo0?l0ooooF`3oool01@000?l0oooo0?ooo`3o0000VFHc0:h0oooo +001n0?ooo`05003o003oool0VFHc0000o`3o0000<`3oool20?l000/0oooo00<0o`000?ooo`3oool0 +o`3ooolL0?ooo`030000003oool0oooo0?l0ooooF`3oool01@000?l0oooo0?l0003oool0VFHc0:h0 +oooo001o0?ooo`04003o003oool0003o0?l003D0oooo00<0o`000?ooo`3oool02@3oool00`3o0000 +oooo0?ooo`3o0?oooa/0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`040000o`3o0000oooo09UV +` +0?ooo`00P03oool01000o`00oooo0?ooo`000?lg0?ooo`030?l0003oool0oooo00P0oooo00<0o`00 +0?ooo`3oool0o`3oool80?ooo`D00000303oool00`000000oooo0?ooo`3o0?oooeP0oooo0`000?l0 +0`3o0000VFHc0?ooo`2`0?ooo`00P@3oool01000o`00oooo0000o`3o000g0?ooo`80o`002@3oool0 +0`3o0000oooo0?ooo`3o0?ooo`T0oooo00<000000?ooo`3oool0303oool00`000000oooo0?ooo`3o +0?oooeL0oooo1@000?nb0?ooo`00P@3oool01000o`00oooo0?ooo`000?li0?ooo`030?l0003oool0 +oooo00L0oooo00<0o`000?ooo`3oool0o`3oool80?ooo`030000003oool0oooo00`0oooo1`00003o +0?oooe<0oooo1@000?nb0?ooo`00PP3oool00`00o`00oooo0000o`0j0?ooo`030?l0003oool0oooo +00L0oooo00<0o`000?ooo`3oool0o`3oool70?ooo`030000003oool0oooo00`0oooo00<000000?oo +o`3oool0o`3ooomG0?ooo`D0003o/P3oool008<0oooo00<00?l00?ooo`000?l0>P3oool20?l000L0 +oooo00<0o`000?ooo`3oool0o`3oool70?ooo`030000003oool0oooo00`0oooo00<000000?ooo`3o +ool0o`3ooomG0?ooo`@0003o/`3oool008<0oooo00@00?l00?ooo`000?l0VFHc>`3oool00`3o0000 +oooo0?ooo`050?ooo`030?l0003oool0oooo0?l0oooo1@3oool2000000h0oooo00<000000?ooo`3o +ool0o`3ooomE0?ooo`80003o00<0o`0009UV<`3oool0]03oool008@0oooo00@00?l00?ooo`000?l0 +VFHc>`3oool20?l000H0oooo00<0o`000?ooo`3oool0o`3ooolD0?ooo`030000003oool0oooo0?l0 +ooooE03oool010000?l0oooo0?l0002IIS>f0?ooo`00Q@3oool01000o`00o`000000o`2IISj +0?ooo`00R03oool50000ocl0oooo0P3o00020?ooo`030?l0003oool0oooo0?l0oooo3`3oool00`00 +0000oooo0?ooo`3o0?ooodd0oooo00L0003o0?ooo`3oool0oooo0?l0003oool0VFHc0;X0oooo0028 +0?ooo`D0003o00<0VFHc0?ooo`3oool0?P3oool40?l00?l0oooo403oool400000?l0ooooB`3oool0 +1`000?l0oooo0?ooo`3oool0o`000?ooo`2IIS<0^`3oool008P0oooo1@000?l00`3oool0VFHc0?oo +o`3o0?oooe80oooo00<000000?ooo`3oool0o`3ooom;0?ooo`050000o`3oool0oooo0?ooo`3o0000 +0P2IIS>l0?ooo`00R@3oool40000o`80oooo00<0VFHc0?ooo`3oool0o`3ooom@0?ooo`030000003o +ool0oooo0?l0ooooB@3oool20000o`<0oooo00<0o`0009UV<`3oool0_@3oool008`0oooo00D0o`00 +0000o`3oool0oooo09UV<`3o0?oooe40oooo00<000000?ooo`3oool0o`3ooom80?ooo`030000o`3o +ool0oooo0080oooo00<0o`0009UV<`3oool0_P3oool008d0oooo00D0o`000000o`3oool0oooo09UV +<`3o0?oooe00oooo00<000000?ooo`3oool0o`3ooom70?ooo`030000o`3oool0oooo0080oooo00<0 +o`000?ooo`2IIS<0_`3oool008h0oooo00D0o`000000o`3oool0oooo09UV<`3o0?ooodl0oooo00<0 +00000?ooo`3oool0o`3ooom60?ooo`030000o`3oool0oooo0080oooo00<0o`000?ooo`2IIS<0`03o +ool008l0oooo00D0o`000000o`3oool0oooo09UV<`3o0?ooodh0oooo00<000000?ooo`3oool0o`3o +oom50?ooo`030000o`3oool0oooo0080oooo00<0o`00003o002IIS<0`@3oool00900oooo00D0o`00 +0000o`3oool0oooo09UV<`3o0?ooodd0oooo00<000000?ooo`3oool0o`3ooom30?ooo`80003o103o +ool00`3o00000?l009UV<`320?ooo`00T@3oool01@3o0000003o0?ooo`3oool0VFHc0?l0ooooC03o +ool00`000000oooo0?ooo`3o0?oood80oooo00<0003o0?ooo`3oool00`3oool00`3o00000?l009UV +<`330?ooo`00TP3oool01@00o`00003o0000o`3oool0VFHc0?l0ooooB`3oool00`000000oooo0?oo +o`3o0?oood40oooo00<0003o0?ooo`3oool0103oool00`3o0000VFHc0?ooo`330?ooo`00T`3oool0 +1@00o`00o`000000o`3oool0VFHc0?l0ooooBP3oool00`000000oooo0?ooo`3o0?oood00oooo00<0 +003o0?ooo`3oool0103oool00`3o0000VFHc0?ooo`340?ooo`00U03oool01000o`00o`000000o`3o +ool209UV`3oool00`000?l0oooo0?ooo`040?ooo`030?l0002I +IS<0oooo00?ooo`00V`3oool50000o`80oooo00<0VFHc0?ooo`3oool0o`3ooolm0?ooo`030000 +003oool0oooo0?l0oooo=@3oool00`000?l0oooo0?ooo`040?ooo`030?l0002IIS<0oooo0<0oooo002g0?ooo`80o`000P000?l00`2IIS<0oooo0?ooo`3o0?ooob@0oooo00<000000?oo +o`3oool0o`3ooolQ0?ooo`030000o`3oool0oooo0080VFHc00<0o`000?ooo`3oool0i@3oool00;T0 +oooo00@0o`00003o00000?l0VFHco`3ooolU0?ooo`030000003oool0oooo0?l0oooo803oool01@00 +0?l0oooo0?ooo`2IIS<0o`000>T0oooo002j0?ooo`80o`000P000?oo0?ooob@0oooo00<000000?oo +o`3oool0o`3ooolO0?ooo`050000o`3oool0oooo09UV<`3o0000jP3oool00;`0oooo00@0o`00003o +00000?l0003oo`3ooolR0?ooo`030000003oool0oooo0?l0oooo7@3oool20000o`040?ooo`2IIS<0 +VFHc003o0>/0oooo002m0?ooo`80o`0000<0oooo0000o`3oool0o`3ooolP0?ooo`030000003oool0 +oooo0?l0oooo703oool01@000?l0oooo0?ooo`2IIS<00?l00>d0oooo002o0?ooo`80o`000P000?oo +0?oooal0oooo00<000000?ooo`3oool0o`3ooolK0?ooo`050000o`3oool0VFHc09UV<`00o`00kP3o +ool00<00oooo00D00?l00?l0003o0000003o09UV<`3o0?oooad0oooo00<000000?ooo`3oool0o`3o +oolJ0?ooo`040000o`2IIS<0VFHc003o0?00oooo00320?ooo`05003o003o0000003o0000o`2IIS<0 +o`3ooolK0?ooo`030000003oool0oooo0?l0oooo6@3oool00`000?l0VFHc0?l0003b0?ooo`00a03o +ool01000o`00o`000000o`000?oo0?oooaX0oooo00<000000?ooo`3oool0o`3ooolG0?ooo`80003o +00<0o`000?ooo`3oool0lP3oool000?ooo`00hP3oool409UV<`80oooo0`000?of0?ooo`@00000l`3oool3 +0000o`80oooo0`2IIS<20?l00?l0oooo403oool00>D0oooo00@0o`0009UV<`2IIS<0VFHc0P3oool3 +0000oo<0oooo00<000000?ooo`3oool0l@3oool30000o`80oooo0`2IIS<00`3oool0o`000?l0003o +0?oooa80oooo003W0?ooo`04003o003o0000VFHc09UV<`<0oooo0P000?oa0?ooo`030000003oool0 +oooo0>l0oooo0P000?l30?ooo`80VFHc00@00?l00?l0003o0000o`00o`3ooolD0?ooo`00j@3oool0 +1000o`00o`0009UV<`2IIS<30?ooo`<0003okP3oool00`000000oooo0?ooo`3/0?ooo`<0003o0P3o +ool309UV<`03003o003o0000o`000?l0oooo5`3oool00>/0oooo00@00?l00?l0002IIS<0VFHc103o +ool30000on/0oooo00<000000?ooo`3oool0j@3oool30000o`<0oooo0P2IIS<01000o`00o`000?l0 +003o003o0?oooaT0oooo003^0?ooo`040?l0002IIS<0VFHc09UV<`@0oooo0`000?oX0?ooo`030000 +003oool0oooo0>H0oooo0`000?l40?ooo`80VFHc0`3o003o0?oooa`0oooo003a0?ooo`030?l0002I +IS<0VFHc00D0oooo0P000?oV0?ooo`030000003oool0oooo0>@0oooo0P000?l50?ooo`80VFHc0P3o +003o0?oooal0oooo003c0?ooo`040?l0002IIS<0VFHc09UV<`@0oooo0`000?oS0?ooo`030000003o +ool0oooo0>40oooo0`000?l40?ooo`<0VFHc0P3o003o0?ooob40oooo003f0?ooo`030?l0002IIS<0 +VFHc0080VFHc0`3oool30000on00oooo00<000000?ooo`3oool0gP3oool30000o`<0oooo102IIS<2 +0?l00?l0oooo903oool00?P0oooo0P00o`000`3o0000VFHc09UV<`040?ooo`<0003og@3oool00`00 +0000oooo0?ooo`3K0?ooo`<0003o103oool209UV<`040?ooo`3o0000o`000?l00?l0oooo9P3oool0 +0?`0oooo00@0o`0009UV<`2IIS<0VFHc103oool20000om/0oooo00<000000?ooo`3oool0f@3oool2 +0000o`@0oooo0`2IIS<30?l00?l0oooo:@3oool00?h0oooo0P3o000209UV<`@0oooo0`000?oH0?oo +o`030000003oool0oooo0=H0oooo0`000?l40?ooo`80VFHc0P3o003o0?ooobd0oooo003o0?ooo`40 +oooo0P3o000309UV<`@0oooo0`000?oE0?ooo`@00000dP3oool30000o`@0oooo0`2IIS<20?l00?l0 +oooo;`3oool00?l0oooo1@3oool00`3o0000VFHc09UV<`0209UV<`<0oooo0`000?oB0?ooo`030000 +003oool0oooo0=00oooo0`000?l30?ooo`@0VFHc0P3o003o0?oooc80oooo003o0?ooo`L0oooo00<0 +0?l00?l0003o00000P2IIS<40?ooo`80003od03oool00`000000oooo0?ooo`3>0?ooo`80003o103o +ool209UV<`80o`00o`3ooolf0?ooo`00o`3oool:0?ooo`80o`000`2IIS<30?ooo`<0003oc@3oool0 +0`000000oooo0?ooo`3;0?ooo`<0003o0`3oool309UV<`80o`00o`3ooolh0?ooo`00o`3oool>0?oo +o`040?l0002IIS<0VFHc0?l000<0oooo0`000?o:0?ooo`030000003oool0oooo0@3oool409UV<`030?l0003oool0oooo00H0003oW03oool00`00 +0000oooo0?ooo`2J0?ooo`H0003o0P3oool00`3o0000VFHc09UV<`0209UV0000obH0oooo00<000000?ooo`3oool0903oool@0000o`030?ooo`2IIS<0 +VFHc00l0VFHco`3oooo80?ooo`00o`3ooon[0?ooo``0VFHc1@3o000?0000o`L0oooo0P00000=0?oo +o`<0003o5P3oool?0000o`<0oooo0P3o000<09UV<`80o`00o`3ooooG0?ooo`00o`3ooong0?oooa@0 +VFHc40000?l50?ooo`D0003o1@3oool@0000oa@0VFHco`3ooooU0?ooo`00o`3ooooC0?ooo`P0VFHc +3`000?l709UV<`80o`00o`3ooooo0?ooo`40oooo003o0?ooom@0oooo00<000000?ooo`3oool02@3o +ool50000ool0ooooo`3oool?0?ooo`00o`3ooooA0?ooo`040000003oool0oooo000000`0oooo0`00 +0?oo0?ooool0oooo403oool00?l0oooodP3oool2000000h0oooo00<000000?ooo`3oool0o`3ooooo +0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80 +oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0 +o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o +0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?oo +o`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0 +oooo003o0?ooon80oooo1000003o0?ooool0oooo3P3oool00?l0oooohP3oool00`000000oooo0?oo +o`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool0 +0?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000 +oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo +3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool0 +0`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?oo +ool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooo +hP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?oo +o`3o0?ooool0oooo3`3oool00?l0oooohP3oool400000?l0ooooo`3oool>0?ooo`00o`3ooooR0?oo +o`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0 +ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3o +oooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0 +oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?oo +o`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000 +003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3o +ool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?oo +o`@00000o`3ooooo0?ooo`h0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0 +oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<0 +00000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo +0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80 +oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0 +o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o +0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?oo +o`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0 +oooo003o0?ooon80oooo1000003o0?ooool0oooo3P3oool00?l0oooohP3oool00`000000oooo0?oo +o`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool0 +0?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000 +oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo +3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool0 +0`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?oo +ool0oooo3`3oool00?l0ooood`3oool3000000`0oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0 +oooo003o0?ooom@0oooo00<000000?ooo`3oool02`3oool00`000000oooo0?ooo`3o0?ooool0oooo +3`3oool00?l0ooood@3oool5000000`0oooo1`00003o0?ooool0oooo2`3oool00?l0ooood@3oool0 +10000000oooo0?ooo`00003o0?ooool0oooo7`3oool00?l0oooodP3oool00`000000oooo0000003o +0?ooool0oooo7`3oool00?l0ooood`3oool200000?l0ooooo`3ooolO0?ooo`00o`3ooooo0?ooool0 +oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0ooooo`3ooood0?ooo`00o`3ooooo +0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0ooooo`3ooood0?ooo`00 +o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0ooooo`3ooood +0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0oooo +o`3ooood0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?oo +ool0ooooo`3ooood0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo +003o0?ooool0ooooo`3ooood0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oo +oo@0oooo003o0?ooool0ooooo`3ooood0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooook03o +ool200000?l0ooooo`3oool60?ooo`00o`3oooo]0?ooo`030000003oool0oooo0?l0ooooo`3oool4 +0?ooo`00o`3oooo^0?ooo`030000003oool0oooo0?l0ooooo`3oool30?ooo`00o`3oooo]0?ooo`03 +0000003oool000000?l0ooooo`3oool40?ooo`00o`3oooo/0?ooo`040000003oool0oooo00000?l0 +ooooo`3oool40?ooo`00o`3oooo[0?ooo`<0000000<0oooo000000000000o`3ooooo0?ooo`<0oooo +003o0?ooon00oooo00@000000?ooo`3oool00000o`3ooooo0?oooa00oooo003o0?ooon40oooo0P00 +003o0?ooool0oooo4@3oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0ooooo`3ooood0?oo +o`00o`3ooooo0?ooool0oooom03oool00001\ +\>"], + ImageRangeCache->{{{0, 1008}, {503.5, 0}} -> {-5.1993, -4.0778, 0.0107998, \ +0.0172797}}], + +Cell[GraphicsData["PostScript", "\<\ +%! +%%Creator: Mathematica +%%AspectRatio: .5 +MathPictureStart +/Mabs { +Mgmatrix idtransform +Mtmatrix dtransform +} bind def +/Mabsadd { Mabs +3 -1 roll add +3 1 roll add +exch } bind def +%% Graphics +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10 scalefont setfont +% Scaling calculations +0.5 0.1 0.25 0.0625 [ +[.1 .2375 -6 -9 ] +[.1 .2375 6 0 ] +[.3 .2375 -6 -9 ] +[.3 .2375 6 0 ] +[.7 .2375 -3 -9 ] +[.7 .2375 3 0 ] +[.9 .2375 -3 -9 ] +[.9 .2375 3 0 ] +[1.025 .25 0 -6.4375 ] +[1.025 .25 22 6.4375 ] +[.4875 0 -12 -4.5 ] +[.4875 0 0 4.5 ] +[.4875 .0625 -12 -4.5 ] +[.4875 .0625 0 4.5 ] +[.4875 .125 -12 -4.5 ] +[.4875 .125 0 4.5 ] +[.4875 .1875 -12 -4.5 ] +[.4875 .1875 0 4.5 ] +[.4875 .3125 -6 -4.5 ] +[.4875 .3125 0 4.5 ] +[.4875 .375 -6 -4.5 ] +[.4875 .375 0 4.5 ] +[.4875 .4375 -6 -4.5 ] +[.4875 .4375 0 4.5 ] +[.4875 .5 -6 -4.5 ] +[.4875 .5 0 4.5 ] +[.5 .525 -17 0 ] +[.5 .525 17 12.875 ] +[ 0 0 0 0 ] +[ 1 .5 0 0 ] +] MathScale +% Start of Graphics +1 setlinecap +1 setlinejoin +newpath +0 g +.25 Mabswid +[ ] 0 setdash +.1 .25 m +.1 .25625 L +s +[(-4)] .1 .2375 0 1 Mshowa +.3 .25 m +.3 .25625 L +s +[(-2)] .3 .2375 0 1 Mshowa +.7 .25 m +.7 .25625 L +s +[(2)] .7 .2375 0 1 Mshowa +.9 .25 m +.9 .25625 L +s +[(4)] .9 .2375 0 1 Mshowa +.125 Mabswid +.15 .25 m +.15 .25375 L +s +.2 .25 m +.2 .25375 L +s +.25 .25 m +.25 .25375 L +s +.35 .25 m +.35 .25375 L +s +.4 .25 m +.4 .25375 L +s +.45 .25 m +.45 .25375 L +s +.55 .25 m +.55 .25375 L +s +.6 .25 m +.6 .25375 L +s +.65 .25 m +.65 .25375 L +s +.75 .25 m +.75 .25375 L +s +.8 .25 m +.8 .25375 L +s +.85 .25 m +.85 .25375 L +s +.05 .25 m +.05 .25375 L +s +.95 .25 m +.95 .25375 L +s +.25 Mabswid +0 .25 m +1 .25 L +s +gsave +1.025 .25 -61 -10.4375 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +63.000 13.000 moveto +%%IncludeResource: font Mathematica1Mono +%%IncludeFont: Mathematica1Mono +/Mathematica1Mono findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(>) show +75.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(x) show +81.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +.5 0 m +.50625 0 L +s +[(-4)] .4875 0 1 0 Mshowa +.5 .0625 m +.50625 .0625 L +s +[(-3)] .4875 .0625 1 0 Mshowa +.5 .125 m +.50625 .125 L +s +[(-2)] .4875 .125 1 0 Mshowa +.5 .1875 m +.50625 .1875 L +s +[(-1)] .4875 .1875 1 0 Mshowa +.5 .3125 m +.50625 .3125 L +s +[(1)] .4875 .3125 1 0 Mshowa +.5 .375 m +.50625 .375 L +s +[(2)] .4875 .375 1 0 Mshowa +.5 .4375 m +.50625 .4375 L +s +[(3)] .4875 .4375 1 0 Mshowa +.5 .5 m +.50625 .5 L +s +[(4)] .4875 .5 1 0 Mshowa +.125 Mabswid +.5 .0125 m +.50375 .0125 L +s +.5 .025 m +.50375 .025 L +s +.5 .0375 m +.50375 .0375 L +s +.5 .05 m +.50375 .05 L +s +.5 .075 m +.50375 .075 L +s +.5 .0875 m +.50375 .0875 L +s +.5 .1 m +.50375 .1 L +s +.5 .1125 m +.50375 .1125 L +s +.5 .1375 m +.50375 .1375 L +s +.5 .15 m +.50375 .15 L +s +.5 .1625 m +.50375 .1625 L +s +.5 .175 m +.50375 .175 L +s +.5 .2 m +.50375 .2 L +s +.5 .2125 m +.50375 .2125 L +s +.5 .225 m +.50375 .225 L +s +.5 .2375 m +.50375 .2375 L +s +.5 .2625 m +.50375 .2625 L +s +.5 .275 m +.50375 .275 L +s +.5 .2875 m +.50375 .2875 L +s +.5 .3 m +.50375 .3 L +s +.5 .325 m +.50375 .325 L +s +.5 .3375 m +.50375 .3375 L +s +.5 .35 m +.50375 .35 L +s +.5 .3625 m +.50375 .3625 L +s +.5 .3875 m +.50375 .3875 L +s +.5 .4 m +.50375 .4 L +s +.5 .4125 m +.50375 .4125 L +s +.5 .425 m +.50375 .425 L +s +.5 .45 m +.50375 .45 L +s +.5 .4625 m +.50375 .4625 L +s +.5 .475 m +.50375 .475 L +s +.5 .4875 m +.50375 .4875 L +s +.25 Mabswid +.5 0 m +.5 .5 L +s +gsave +.5 .525 -78 -4 Mabsadd m +1 1 Mabs scale +currentpoint translate +0 20.875 translate 1 -1 scale +/g { setgray} bind def +/k { setcmykcolor} bind def +/p { gsave} bind def +/r { setrgbcolor} bind def +/w { setlinewidth} bind def +/C { curveto} bind def +/F { fill} bind def +/L { lineto} bind def +/rL { rlineto} bind def +/P { grestore} bind def +/s { stroke} bind def +/S { show} bind def +/N {currentpoint 3 -1 roll show moveto} bind def +/Msf { findfont exch scalefont [1 0 0 -1 0 0 ] makefont setfont} bind def +/m { moveto} bind def +/Mr { rmoveto} bind def +/Mx {currentpoint exch pop moveto} bind def +/My {currentpoint pop exch moveto} bind def +/X {0 rmoveto} bind def +/Y {0 exch rmoveto} bind def +63.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +75.000 13.000 moveto +(^) show +87.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +(y) show +93.000 13.000 moveto +%%IncludeResource: font Courier +%%IncludeFont: Courier +/Courier findfont 10.000 scalefont +[1 0 0 -1 0 0 ] makefont setfont +0.000 0.000 0.000 setrgbcolor +0.000 0.000 rmoveto +1.000 setlinewidth +grestore +0 0 m +1 0 L +1 .5 L +0 .5 L +closepath +clip +newpath +0 1 0 r +.5 Mabswid +.1 .25 m +.10023 .25348 L +.10048 .25695 L +.10078 .26042 L +.10115 .26388 L +.10161 .26732 L +.10219 .27075 L +.10292 .27416 L +.1038 .27755 L +.10488 .28091 L +.10616 .28425 L +.10763 .28756 L +.10926 .29085 L +.11101 .29412 L +.11285 .29738 L +.11477 .30063 L +.11671 .30388 L +.11866 .30713 L +.12059 .31038 L +.12249 .31363 L +.12443 .31687 L +.12647 .32008 L +.12866 .32324 L +.13107 .32633 L +.13373 .32934 L +.1366 .33229 L +.13965 .33517 L +.14287 .33799 L +.14621 .34076 L +.14966 .34349 L +.15318 .34617 L +.15677 .34881 L +.16043 .35141 L +.16415 .35397 L +.16794 .35648 L +.17179 .35896 L +.17571 .3614 L +.17968 .3638 L +.18371 .36616 L +.18781 .36848 L +.19195 .37076 L +.19616 .37301 L +.20041 .37521 L +.20472 .37738 L +.20908 .3795 L +.21349 .38159 L +.21794 .38364 L +.22245 .38566 L +.227 .38763 L +.23159 .38956 L +Mistroke +.23623 .39146 L +.24091 .39332 L +.24563 .39513 L +.25039 .39691 L +.25519 .39864 L +.26002 .40034 L +.26489 .402 L +.2698 .40362 L +.27473 .40519 L +.2797 .40673 L +.2847 .40822 L +.28973 .40968 L +.29479 .41109 L +.29987 .41247 L +.30498 .4138 L +.31012 .41509 L +.31528 .41634 L +.32046 .41755 L +.32566 .41873 L +.33088 .41986 L +.33613 .42096 L +.34139 .42201 L +.34667 .42303 L +.35197 .42402 L +.35729 .42497 L +.36263 .42588 L +.36798 .42675 L +.37334 .42759 L +.37872 .4284 L +.38412 .42917 L +.38952 .42991 L +.39494 .43062 L +.40036 .43129 L +.4058 .43194 L +.41125 .43255 L +.41671 .43312 L +.42217 .43366 L +.42764 .43417 L +.43312 .43465 L +.43861 .43509 L +.4441 .43549 L +.4496 .43586 L +.4551 .43619 L +.46061 .43649 L +.46613 .43675 L +.47164 .43697 L +.47716 .43715 L +.48268 .4373 L +.48821 .43741 L +.49373 .43747 L +Mistroke +.49926 .4375 L +.50479 .43749 L +.51031 .43743 L +.51584 .43734 L +.52136 .43721 L +.52688 .43704 L +.5324 .43683 L +.53792 .43658 L +.54343 .4363 L +.54894 .43597 L +.55444 .43562 L +.55994 .43522 L +.56542 .43479 L +.57091 .43432 L +.57638 .43382 L +.58184 .43328 L +.5873 .43271 L +.59275 .43211 L +.59818 .43147 L +.60361 .4308 L +.60902 .4301 L +.61442 .42936 L +.6198 .42859 L +.62518 .42778 L +.63054 .42694 L +.63589 .42607 L +.64122 .42516 L +.64653 .42422 L +.65183 .42324 L +.65712 .42222 L +.66239 .42118 L +.66764 .42009 L +.67287 .41897 L +.67808 .41781 L +.68328 .41662 L +.68846 .41539 L +.69362 .41413 L +.69875 .41282 L +.70387 .41148 L +.70896 .4101 L +.71403 .40869 L +.71908 .40723 L +.72409 .40573 L +.72907 .4042 L +.73402 .40262 L +.73893 .401 L +.74381 .39934 L +.74864 .39763 L +.75343 .39588 L +.75817 .39409 L +Mistroke +.76287 .39225 L +.76752 .39036 L +.77212 .38843 L +.77666 .38645 L +.78114 .38442 L +.78557 .38235 L +.78994 .38022 L +.79424 .37805 L +.79847 .37582 L +.80264 .37355 L +.80674 .37122 L +.81077 .36884 L +.81473 .36641 L +.81862 .36394 L +.82243 .36142 L +.82616 .35885 L +.82983 .35624 L +.83341 .35359 L +.83692 .3509 L +.84035 .34816 L +.8437 .34538 L +.84697 .34257 L +.85015 .33971 L +.85326 .33682 L +.85628 .3339 L +.85922 .33094 L +.86207 .32794 L +.86483 .32492 L +.8675 .32186 L +.87009 .31877 L +.87259 .31565 L +.87499 .31251 L +.87731 .30934 L +.87953 .30614 L +.88165 .30291 L +.88367 .29967 L +.88559 .2964 L +.8874 .29311 L +.8891 .28979 L +.89069 .28646 L +.89217 .28311 L +.89353 .27975 L +.89477 .27636 L +.89589 .27297 L +.89688 .26956 L +.89775 .26613 L +.89848 .26269 L +.89908 .25925 L +.89954 .25579 L +.89986 .25233 L +Mistroke +.90004 .24886 L +.90008 .24538 L +.89997 .2419 L +.89973 .23842 L +.89934 .23493 L +.89882 .23146 L +.89816 .22799 L +.89736 .22452 L +.89643 .22107 L +.89537 .21763 L +.89418 .21421 L +.89286 .21081 L +.89141 .20742 L +.88984 .20406 L +.88813 .20072 L +.88631 .19741 L +.88436 .19413 L +.8823 .19089 L +.88011 .18768 L +.8778 .1845 L +.87538 .18136 L +.87285 .17827 L +.8702 .17522 L +.86743 .17222 L +.86456 .16926 L +.86158 .16635 L +.8585 .16348 L +.85531 .16067 L +.85203 .1579 L +.84864 .15517 L +.84516 .1525 L +.8416 .14986 L +.83794 .14728 L +.8342 .14473 L +.83038 .14224 L +.82649 .13978 L +.82252 .13736 L +.81849 .13499 L +.81439 .13266 L +.81024 .13037 L +.80602 .12811 L +.80176 .12589 L +.79744 .12372 L +.79308 .12157 L +.78868 .11947 L +.78423 .1174 L +.77973 .11538 L +.7752 .11339 L +.77062 .11143 L +.766 .10952 L +Mistroke +.76134 .10764 L +.75665 .10581 L +.75191 .10401 L +.74714 .10225 L +.74233 .10053 L +.73749 .09885 L +.73261 .09721 L +.7277 .09562 L +.72276 .09406 L +.71779 .09254 L +.71279 .09106 L +.70775 .08962 L +.70269 .08822 L +.6976 .08687 L +.69249 .08555 L +.68734 .08428 L +.68218 .08304 L +.67699 .08185 L +.67178 .08069 L +.66654 .07958 L +.66129 .0785 L +.65601 .07746 L +.65072 .07645 L +.64541 .07549 L +.64008 .07456 L +.63473 .07367 L +.62937 .07281 L +.624 .07199 L +.61861 .0712 L +.61321 .07045 L +.6078 .06973 L +.60238 .06904 L +.59694 .06839 L +.5915 .06777 L +.58606 .06718 L +.5806 .06663 L +.57513 .06611 L +.56966 .06562 L +.56418 .06517 L +.5587 .06475 L +.5532 .06437 L +.54771 .06402 L +.5422 .06371 L +.53669 .06343 L +.53118 .06319 L +.52566 .06298 L +.52013 .06281 L +.5146 .06268 L +.50907 .06258 L +.50354 .06252 L +Mistroke +.498 .0625 L +.49246 .06251 L +.48692 .06256 L +.48137 .06265 L +.47583 .06278 L +.47029 .06294 L +.46476 .06315 L +.45923 .0634 L +.45371 .06368 L +.4482 .06401 L +.44269 .06438 L +.4372 .06479 L +.43171 .06524 L +.42624 .06574 L +.42079 .06628 L +.41535 .06686 L +.40993 .06748 L +.40452 .06815 L +.39914 .06887 L +.39377 .06963 L +.38843 .07043 L +.3831 .07127 L +.37778 .07215 L +.37248 .07306 L +.36719 .074 L +.36191 .07497 L +.35664 .07596 L +.35138 .07698 L +.34612 .07801 L +.34086 .07907 L +.3356 .08014 L +.33034 .08122 L +.32508 .0823 L +.31981 .0834 L +.31454 .08449 L +.30926 .08559 L +.30397 .08668 L +.29866 .08777 L +.29335 .08886 L +.28805 .08996 L +.28276 .09108 L +.27752 .09224 L +.27232 .09346 L +.2672 .09474 L +.26215 .09611 L +.25721 .09758 L +.25237 .09916 L +.24767 .10087 L +.24309 .1027 L +.23862 .10465 L +Mistroke +.23425 .10669 L +.22994 .10882 L +.2257 .11101 L +.22149 .11326 L +.21731 .11554 L +.21312 .11785 L +.20893 .12017 L +.2047 .12248 L +.20042 .12478 L +.19608 .12704 L +.1917 .12928 L +.18731 .13151 L +.18294 .13374 L +.17862 .136 L +.17439 .13829 L +.17028 .14063 L +.16631 .14304 L +.16251 .14552 L +.15893 .1481 L +.15559 .15078 L +.15252 .15359 L +.14975 .15654 L +.14729 .15963 L +.14506 .16282 L +.14298 .16608 L +.14096 .16937 L +.13891 .17264 L +.13674 .17586 L +.13436 .17899 L +.13169 .18199 L +.12863 .18482 L +.12511 .18743 L +.12118 .18986 L +.11757 .19243 L +.11459 .19525 L +.11215 .1983 L +.11019 .20153 L +.10863 .20491 L +.1074 .20839 L +.10642 .21195 L +.10563 .21553 L +.10493 .21911 L +.10429 .22265 L +.10368 .22615 L +.1031 .22962 L +.10254 .23306 L +.10201 .23647 L +.10149 .23987 L +.10099 .24326 L +.10049 .24663 L +Mistroke +.1 .25 L +Mfstroke +1 0 0 r +.1 .25 m +.32404 .34015 L +.3939 .37122 L +.38081 .37017 L +.32983 .35415 L +.26794 .33351 L +.20995 .31403 L +.1628 .29846 L +.12858 .28772 L +.10661 .28163 L +.09483 .27948 L +.09073 .28034 L +.09183 .28328 L +.09602 .28748 L +.10164 .29231 L +.10751 .29728 L +.11289 .30208 L +.11742 .30653 L +.12101 .31058 L +.12373 .31422 L +.12581 .31752 L +.1275 .32056 L +.12907 .32342 L +.13075 .32619 L +.13273 .32894 L +.13514 .33172 L +.13804 .33455 L +.14145 .33746 L +.14531 .34043 L +.14957 .34345 L +.15411 .34649 L +.15883 .34952 L +.16361 .35249 L +.16834 .35539 L +.17293 .35817 L +.1773 .36082 L +.1814 .36332 L +.18521 .36566 L +.18871 .36784 L +.19192 .36986 L +.19487 .37174 L +.19763 .3735 L +.20025 .37516 L +.20279 .37673 L +.20534 .37825 L +.20796 .37974 L +.21073 .38123 L +.21371 .38273 L +.21694 .38426 L +.22048 .38584 L +Mistroke +.22435 .38748 L +.22857 .38918 L +.23315 .39095 L +.23808 .39279 L +.24335 .39468 L +.24893 .39663 L +.25479 .39862 L +.26088 .40064 L +.26717 .40266 L +.2736 .40469 L +.28013 .4067 L +.28671 .40867 L +.29329 .41059 L +.29984 .41246 L +.30631 .41424 L +.31268 .41594 L +.31891 .41755 L +.32498 .41906 L +.33089 .42047 L +.33663 .42177 L +.34218 .42297 L +.34757 .42407 L +.35279 .42507 L +.35787 .42598 L +.36281 .4268 L +.36764 .42754 L +.37239 .42822 L +.37707 .42883 L +.38171 .42939 L +.38633 .42991 L +.39096 .43039 L +.39561 .43085 L +.40032 .43128 L +.40509 .4317 L +.40994 .43211 L +.41488 .43251 L +.41991 .43291 L +.42506 .4333 L +.4303 .4337 L +.43566 .43409 L +.44111 .43448 L +.44666 .43487 L +.4523 .43525 L +.45802 .43561 L +.46381 .43596 L +.46965 .43629 L +.47553 .4366 L +.48144 .43687 L +.48736 .43712 L +.49329 .43732 L +Mistroke +.49921 .43748 L +.50511 .4376 L +.51098 .43766 L +.5168 .43768 L +.52259 .43764 L +.52832 .43754 L +.534 .43739 L +.53962 .43718 L +.54518 .43692 L +.55068 .4366 L +.55613 .43622 L +.56152 .43579 L +.56687 .43531 L +.57218 .43478 L +.57744 .43421 L +.58268 .43359 L +.58789 .43293 L +.59308 .43223 L +.59826 .4315 L +.60344 .43074 L +.60862 .42995 L +.6138 .42913 L +.619 .42828 L +.62421 .42741 L +.62944 .42652 L +.63468 .4256 L +.63995 .42467 L +.64524 .42371 L +.65055 .42274 L +.65588 .42174 L +.66122 .42072 L +.66658 .41967 L +.67194 .4186 L +.67731 .41751 L +.68267 .41638 L +.68803 .41522 L +.69338 .41403 L +.69871 .4128 L +.70401 .41154 L +.70928 .41023 L +.71452 .40889 L +.71972 .40749 L +.72487 .40606 L +.72996 .40457 L +.73501 .40303 L +.73999 .40144 L +.74491 .3998 L +.74976 .3981 L +.75454 .39635 L +.75926 .39454 L +Mistroke +.7639 .39268 L +.76848 .39076 L +.77298 .38879 L +.77741 .38676 L +.78177 .38468 L +.78606 .38255 L +.79028 .38037 L +.79444 .37813 L +.79853 .37584 L +.80255 .37351 L +.80651 .37113 L +.81042 .3687 L +.81426 .36624 L +.81804 .36372 L +.82176 .36117 L +.82542 .35858 L +.82902 .35595 L +.83257 .35328 L +.83606 .35058 L +.83948 .34784 L +.84284 .34507 L +.84614 .34226 L +.84937 .33942 L +.85254 .33656 L +.85563 .33365 L +.85865 .33072 L +.86159 .32776 L +.86445 .32477 L +.86722 .32175 L +.86991 .3187 L +.8725 .31562 L +.87499 .31251 L +.87739 .30937 L +.87968 .3062 L +.88187 .30301 L +.88394 .29979 L +.8859 .29654 L +.88774 .29327 L +.88946 .28997 L +.89106 .28664 L +.89253 .2833 L +.89388 .27993 L +.89509 .27654 L +.89618 .27313 L +.89713 .2697 L +.89795 .26625 L +.89864 .26279 L +.89919 .25932 L +.89961 .25584 L +.89989 .25235 L +Mistroke +.90003 .24885 L +.90004 .24535 L +.89992 .24184 L +.89966 .23834 L +.89927 .23484 L +.89874 .23135 L +.89808 .22786 L +.89729 .22439 L +.89636 .22093 L +.89531 .21749 L +.89413 .21406 L +.89282 .21066 L +.89137 .20728 L +.88981 .20393 L +.88811 .2006 L +.8863 .1973 L +.88436 .19404 L +.88229 .19081 L +.88011 .18761 L +.8778 .18446 L +.87538 .18134 L +.87285 .17826 L +.8702 .17522 L +.86743 .17222 L +.86456 .16927 L +.86158 .16636 L +.8585 .16349 L +.85531 .16067 L +.85203 .1579 L +.84864 .15517 L +.84517 .15249 L +.8416 .14985 L +.83795 .14725 L +.83422 .14471 L +.8304 .1422 L +.82651 .13974 L +.82255 .13733 L +.81852 .13496 L +.81442 .13263 L +.81026 .13034 L +.80604 .12809 L +.80176 .12589 L +.79743 .12372 L +.79305 .1216 L +.78863 .11951 L +.78416 .11747 L +.77964 .11546 L +.77509 .11348 L +.77049 .11155 L +.76586 .10965 L +Mistroke +.76119 .10778 L +.75649 .10595 L +.75176 .10416 L +.74699 .10241 L +.74219 .10069 L +.73736 .099 L +.73249 .09735 L +.7276 .09574 L +.72268 .09416 L +.71772 .09263 L +.71274 .09112 L +.70772 .08966 L +.70268 .08824 L +.69761 .08685 L +.69251 .08551 L +.68738 .0842 L +.68223 .08294 L +.67705 .08172 L +.67184 .08054 L +.66661 .0794 L +.66135 .07831 L +.65608 .07726 L +.65078 .07625 L +.64546 .07528 L +.64012 .07436 L +.63477 .07347 L +.6294 .07263 L +.62402 .07183 L +.61863 .07107 L +.61322 .07035 L +.6078 .06967 L +.60238 .06902 L +.59694 .06841 L +.5915 .06783 L +.58605 .06729 L +.5806 .06678 L +.57513 .0663 L +.56967 .06585 L +.56419 .06543 L +.55871 .06503 L +.55323 .06467 L +.54774 .06432 L +.54224 .06401 L +.53673 .06372 L +.53122 .06346 L +.5257 .06322 L +.52017 .06301 L +.51463 .06283 L +.50909 .06268 L +.50355 .06256 L +Mistroke +.49799 .06247 L +.49244 .06242 L +.48688 .06241 L +.48131 .06244 L +.47575 .06251 L +.4702 .06262 L +.46464 .06278 L +.4591 .06299 L +.45356 .06325 L +.44803 .06357 L +.44252 .06394 L +.43703 .06437 L +.43155 .06485 L +.42609 .06539 L +.42066 .06598 L +.41525 .06663 L +.40986 .06733 L +.40449 .06808 L +.39915 .06888 L +.39382 .06972 L +.38852 .07061 L +.38323 .07153 L +.37796 .07247 L +.37269 .07345 L +.36744 .07444 L +.36219 .07545 L +.35694 .07648 L +.35169 .0775 L +.34643 .07854 L +.34116 .07957 L +.33588 .08059 L +.33059 .08162 L +.32529 .08264 L +.31997 .08366 L +.31465 .08467 L +.30932 .08569 L +.30399 .08672 L +.29866 .08776 L +.29334 .08883 L +.28805 .08992 L +.28279 .09105 L +.27757 .09224 L +.27239 .09347 L +.26728 .09478 L +.26224 .09616 L +.25728 .09763 L +.25241 .09918 L +.24763 .10084 L +.24294 .10259 L +.23835 .10445 L +Mistroke +.23386 .1064 L +.22946 .10845 L +.22515 .11059 L +.22091 .11282 L +.21674 .11511 L +.21261 .11747 L +.20852 .11987 L +.20446 .12231 L +.2004 .12476 L +.19633 .12722 L +.19225 .12967 L +.18816 .1321 L +.18405 .13452 L +.17993 .13691 L +.17582 .13928 L +.17174 .14164 L +.16771 .144 L +.16378 .14638 L +.15997 .1488 L +.15633 .15128 L +.1529 .15384 L +.1497 .15651 L +.14677 .1593 L +.14409 .16223 L +.14167 .16529 L +.13945 .16847 L +.13738 .17174 L +.13536 .17505 L +.13326 .17835 L +.13095 .18157 L +.12828 .18462 L +.1251 .18743 L +.1213 .18992 L +.11685 .19208 L +.1118 .1939 L +.10637 .19549 L +.10095 .19702 L +.09619 .19882 L +.09303 .20133 L +.09266 .20516 L +.09655 .21104 L +.10629 .21978 L +.12342 .23217 L +.14902 .24877 L +.18316 .26965 L +.22392 .29386 L +.26614 .31883 L +.29941 .33933 L +.30547 .34615 L +.25446 .3242 L +Mistroke +.1 .25 L +Mfstroke +.6 .4 .2 r +.1 .25 m +.10005 .25295 L +.1002 .25589 L +.10044 .25883 L +.10079 .26177 L +.10123 .26471 L +.10178 .26765 L +.10242 .27058 L +.10315 .2735 L +.10399 .27642 L +.10492 .27933 L +.10596 .28224 L +.10709 .28513 L +.10831 .28802 L +.10963 .2909 L +.11105 .29377 L +.11257 .29663 L +.11418 .29948 L +.11588 .30231 L +.11768 .30513 L +.11958 .30794 L +.12157 .31073 L +.12365 .31351 L +.12582 .31628 L +.12809 .31902 L +.13045 .32175 L +.1329 .32447 L +.13544 .32716 L +.13807 .32983 L +.14079 .33249 L +.1436 .33512 L +.14649 .33774 L +.14948 .34033 L +.15255 .3429 L +.1557 .34545 L +.15894 .34797 L +.16227 .35047 L +.16568 .35294 L +.16917 .35539 L +.17274 .35781 L +.17639 .36021 L +.18013 .36258 L +.18394 .36492 L +.18783 .36723 L +.19179 .36952 L +.19584 .37177 L +.19996 .374 L +.20415 .37619 L +.20841 .37835 L +.21275 .38048 L +Mistroke +.21716 .38258 L +.22163 .38465 L +.22618 .38668 L +.23079 .38868 L +.23548 .39065 L +.24022 .39258 L +.24503 .39447 L +.2499 .39633 L +.25484 .39815 L +.25983 .39994 L +.26489 .40169 L +.27 .4034 L +.27517 .40508 L +.28039 .40671 L +.28567 .40831 L +.291 .40987 L +.29638 .41139 L +.30182 .41287 L +.3073 .41431 L +.31283 .41571 L +.3184 .41706 L +.32402 .41838 L +.32969 .41966 L +.33539 .42089 L +.34114 .42208 L +.34693 .42323 L +.35275 .42433 L +.35861 .4254 L +.3645 .42642 L +.37043 .42739 L +.37639 .42832 L +.38238 .42921 L +.3884 .43006 L +.39445 .43085 L +.40052 .43161 L +.40662 .43232 L +.41274 .43298 L +.41889 .4336 L +.42505 .43418 L +.43123 .43471 L +.43743 .43519 L +.44364 .43563 L +.44987 .43602 L +.45611 .43637 L +.46236 .43667 L +.46862 .43692 L +.47488 .43713 L +.48116 .43729 L +.48744 .43741 L +.49372 .43748 L +Mistroke +.5 .4375 L +.50628 .43748 L +.51256 .43741 L +.51884 .43729 L +.52512 .43713 L +.53138 .43692 L +.53764 .43667 L +.54389 .43637 L +.55013 .43602 L +.55636 .43563 L +.56257 .43519 L +.56877 .43471 L +.57495 .43418 L +.58111 .4336 L +.58726 .43298 L +.59338 .43232 L +.59948 .43161 L +.60555 .43085 L +.6116 .43006 L +.61762 .42921 L +.62361 .42832 L +.62957 .42739 L +.6355 .42642 L +.64139 .4254 L +.64725 .42433 L +.65307 .42323 L +.65886 .42208 L +.66461 .42089 L +.67031 .41966 L +.67598 .41838 L +.6816 .41706 L +.68717 .41571 L +.6927 .41431 L +.69818 .41287 L +.70362 .41139 L +.709 .40987 L +.71433 .40831 L +.71961 .40671 L +.72483 .40508 L +.73 .4034 L +.73511 .40169 L +.74017 .39994 L +.74516 .39815 L +.7501 .39633 L +.75497 .39447 L +.75978 .39258 L +.76452 .39065 L +.76921 .38868 L +.77382 .38668 L +.77837 .38465 L +Mistroke +.78284 .38258 L +.78725 .38048 L +.79159 .37835 L +.79585 .37619 L +.80004 .374 L +.80416 .37177 L +.80821 .36952 L +.81217 .36723 L +.81606 .36492 L +.81987 .36258 L +.82361 .36021 L +.82726 .35781 L +.83083 .35539 L +.83432 .35294 L +.83773 .35047 L +.84106 .34797 L +.8443 .34545 L +.84745 .3429 L +.85052 .34033 L +.85351 .33774 L +.8564 .33512 L +.85921 .33249 L +.86193 .32983 L +.86456 .32716 L +.8671 .32447 L +.86955 .32175 L +.87191 .31902 L +.87418 .31628 L +.87635 .31351 L +.87843 .31073 L +.88042 .30794 L +.88232 .30513 L +.88412 .30231 L +.88582 .29948 L +.88743 .29663 L +.88895 .29377 L +.89037 .2909 L +.89169 .28802 L +.89291 .28513 L +.89404 .28224 L +.89508 .27933 L +.89601 .27642 L +.89685 .2735 L +.89758 .27058 L +.89822 .26765 L +.89877 .26471 L +.89921 .26177 L +.89956 .25883 L +.8998 .25589 L +.89995 .25295 L +Mistroke +.9 .25 L +.89995 .24705 L +.8998 .24411 L +.89956 .24117 L +.89921 .23823 L +.89877 .23529 L +.89822 .23235 L +.89758 .22942 L +.89685 .2265 L +.89601 .22358 L +.89508 .22067 L +.89404 .21776 L +.89291 .21487 L +.89169 .21198 L +.89037 .2091 L +.88895 .20623 L +.88743 .20337 L +.88582 .20052 L +.88412 .19769 L +.88232 .19487 L +.88042 .19206 L +.87843 .18927 L +.87635 .18649 L +.87418 .18372 L +.87191 .18098 L +.86955 .17825 L +.8671 .17553 L +.86456 .17284 L +.86193 .17017 L +.85921 .16751 L +.8564 .16488 L +.85351 .16226 L +.85052 .15967 L +.84745 .1571 L +.8443 .15455 L +.84106 .15203 L +.83773 .14953 L +.83432 .14706 L +.83083 .14461 L +.82726 .14219 L +.82361 .13979 L +.81987 .13742 L +.81606 .13508 L +.81217 .13277 L +.80821 .13048 L +.80416 .12823 L +.80004 .126 L +.79585 .12381 L +.79159 .12165 L +.78725 .11952 L +Mistroke +.78284 .11742 L +.77837 .11535 L +.77382 .11332 L +.76921 .11132 L +.76452 .10935 L +.75978 .10742 L +.75497 .10553 L +.7501 .10367 L +.74516 .10185 L +.74017 .10006 L +.73511 .09831 L +.73 .0966 L +.72483 .09492 L +.71961 .09329 L +.71433 .09169 L +.709 .09013 L +.70362 .08861 L +.69818 .08713 L +.6927 .08569 L +.68717 .08429 L +.6816 .08294 L +.67598 .08162 L +.67031 .08034 L +.66461 .07911 L +.65886 .07792 L +.65307 .07677 L +.64725 .07567 L +.64139 .0746 L +.6355 .07358 L +.62957 .07261 L +.62361 .07168 L +.61762 .07079 L +.6116 .06994 L +.60555 .06915 L +.59948 .06839 L +.59338 .06768 L +.58726 .06702 L +.58111 .0664 L +.57495 .06582 L +.56877 .06529 L +.56257 .06481 L +.55636 .06437 L +.55013 .06398 L +.54389 .06363 L +.53764 .06333 L +.53138 .06308 L +.52512 .06287 L +.51884 .06271 L +.51256 .06259 L +.50628 .06252 L +Mistroke +.5 .0625 L +.49372 .06252 L +.48744 .06259 L +.48116 .06271 L +.47488 .06287 L +.46862 .06308 L +.46236 .06333 L +.45611 .06363 L +.44987 .06398 L +.44364 .06437 L +.43743 .06481 L +.43123 .06529 L +.42505 .06582 L +.41889 .0664 L +.41274 .06702 L +.40662 .06768 L +.40052 .06839 L +.39445 .06915 L +.3884 .06994 L +.38238 .07079 L +.37639 .07168 L +.37043 .07261 L +.3645 .07358 L +.35861 .0746 L +.35275 .07567 L +.34693 .07677 L +.34114 .07792 L +.33539 .07911 L +.32969 .08034 L +.32402 .08162 L +.3184 .08294 L +.31283 .08429 L +.3073 .08569 L +.30182 .08713 L +.29638 .08861 L +.291 .09013 L +.28567 .09169 L +.28039 .09329 L +.27517 .09492 L +.27 .0966 L +.26489 .09831 L +.25983 .10006 L +.25484 .10185 L +.2499 .10367 L +.24503 .10553 L +.24022 .10742 L +.23548 .10935 L +.23079 .11132 L +.22618 .11332 L +.22163 .11535 L +Mistroke +.21716 .11742 L +.21275 .11952 L +.20841 .12165 L +.20415 .12381 L +.19996 .126 L +.19584 .12823 L +.19179 .13048 L +.18783 .13277 L +.18394 .13508 L +.18013 .13742 L +.17639 .13979 L +.17274 .14219 L +.16917 .14461 L +.16568 .14706 L +.16227 .14953 L +.15894 .15203 L +.1557 .15455 L +.15255 .1571 L +.14948 .15967 L +.14649 .16226 L +.1436 .16488 L +.14079 .16751 L +.13807 .17017 L +.13544 .17284 L +.1329 .17553 L +.13045 .17825 L +.12809 .18098 L +.12582 .18372 L +.12365 .18649 L +.12157 .18927 L +.11958 .19206 L +.11768 .19487 L +.11588 .19769 L +.11418 .20052 L +.11257 .20337 L +.11105 .20623 L +.10963 .2091 L +.10831 .21198 L +.10709 .21487 L +.10596 .21776 L +.10492 .22067 L +.10399 .22358 L +.10315 .2265 L +.10242 .22942 L +.10178 .23235 L +.10123 .23529 L +.10079 .23823 L +.10044 .24117 L +.1002 .24411 L +.10005 .24705 L +Mistroke +.1 .25 L +Mfstroke +0 0 1 r +.1 .25 m +.105 .28125 L +.12 .30938 L +.13 .325 L +.15 .34375 L +.2 .375 L +.3 .4125 L +.4 .43125 L +.5 .4375 L +.6 .43125 L +.7 .4125 L +.8 .375 L +.875 .3125 L +.9 .25 L +.87 .175 L +.85 .15625 L +.8 .125 L +.7 .0875 L +.6 .06875 L +.5 .0625 L +.4 .06875 L +.3 .0875 L +.25 .1 L +.2 .125 L +.15 .15625 L +.125 .1875 L +.12 .19063 L +.105 .21875 L +.1 .25 L +s +5 Mabswid +.1 .25 Mdot +.105 .28125 Mdot +.12 .30938 Mdot +.13 .325 Mdot +.15 .34375 Mdot +.2 .375 Mdot +.3 .4125 Mdot +.4 .43125 Mdot +.5 .4375 Mdot +.6 .43125 Mdot +.7 .4125 Mdot +.8 .375 Mdot +.875 .3125 Mdot +.9 .25 Mdot +.87 .175 Mdot +.85 .15625 Mdot +.8 .125 Mdot +.7 .0875 Mdot +.6 .06875 Mdot +.5 .0625 Mdot +.4 .06875 Mdot +.3 .0875 Mdot +.25 .1 Mdot +.2 .125 Mdot +.15 .15625 Mdot +.125 .1875 Mdot +.12 .19063 Mdot +.105 .21875 Mdot +.1 .25 Mdot +% End of Graphics +MathPictureEnd +\ +\>"], "Graphics", + ImageSize->{1009, 504.5}, + ImageMargins->{{43, 0}, {0, 0}}, + ImageRegion->{{0, 1}, {0, 1}}, + ImageCache->GraphicsData["Bitmap", "\<\ +CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`00o`3ooooR0?ooo`030000 +003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3o +ool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?oo +o`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0 +ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3o +oooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0 +oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?oo +o`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`@00000 +o`3ooooo0?ooo`h0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o +0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?oo +o`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0 +oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<0 +00000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo +0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80 +oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0 +o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o +0?ooon80oooo1000003o0?ooool0oooo3P3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?oo +ool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooo +hP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?oo +o`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool0 +0?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000 +oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo +3`3oool00?l0oooodP3oool2000000d0oooo0`000?oo0?ooool0oooo403oool00?l0ooood@3oool0 +10000000oooo0?ooo`00000;0?ooo`D0003oo`3ooooo0?ooo`l0oooo003o0?oool@0oooo403o0007 +09UV<`l0003o1`2IIS?o0?ooool0oooo0`3oool00?l0oooo/03oool70?l001@0VFHc40000?l50?oo +o`D0003o0`3oool20?l00100003o502IIS?o0?ooonD0oooo003o0?ooojH0oooo1P3o000;09UV<`D0 +oooo3`000?l60?ooo`040000003oool0oooo000000`0oooo0`000?lF0?ooo`l0003o1@3o000;09UV +<`800?l0o`3ooooH0?ooo`00o`3ooonK0?oooa40VFHc40000?lF0?ooo`8000003P3oool00`000000 +oooo0?ooo`0T0?oooa00003o4@2IIS?o0?ooolT0oooo003o0?oooh@0oooo0`000?l:0?ooo`@0o`00 +1P2IIS<00`00o`00oooo0000o`0>0000ocH0oooo00<000000?ooo`3oool0=03oool?0000o`80o`00 +1P2IIS<>0?ooo`<0003oo`3ooonb0?ooo`00o`3ooon30?ooo`D0003o00<0oooo09UV<`2IIS<00P2I +IS<@0000odD0oooo00<000000?ooo`3oool0@`3oool@0000o`<0VFHc0P3oool50000ool0oooo/@3o +ool00?l0ooooP`3oool:0000oeD0oooo00<000000?ooo`3oool0D`3oool:0000o`80o`00o`3ooon_ +0?ooo`00o`3ooomi0?ooo`D0VFHc2P000?mJ0?ooo`030000003oool0oooo05P0oooo2P000?l509UV +0?ooo`80003o +0`3oool0103o0000VFHc09UV<`3o003o0?ooocL0oooo003g0?ooo`T0003o1P3oool309UV40oooo0`000?l30?ooo`030?l0002IIS<0VFHc00800?l0o`3ooolR0?ooo`00jP3oool20?l00003 +003o00000?l0003o00<0oooo0P2IIS?]0?ooo`030000003oool0oooo0>@0oooo0P000?l30?ooo`05 +0?l0002IIS<0VFHc0?l00000o`00o`3ooolP0?ooo`00j03oool20?l00003003o00000?l0003o00<0 +oooo0P2IIS?_0?ooo`030000003oool0oooo0>H0oooo0`000?l30?ooo`<0VFHc00<0o`000?ooo`3o +ool0o`3ooolL0?ooo`00iP3oool20?l00003003o00000?l0003o00<0oooo0P2IIS?a0?ooo`030000 +003oool0oooo0>T0oooo0`000?l30?ooo`80VFHc00<0o`000?ooo`3oool0o`3ooolJ0?ooo`00i03o +ool20?l00003003o00000?l0003o00<0oooo0P2IIS?c0?ooo`030000003oool0oooo0>`0oooo0`00 +0?l20?ooo`80VFHc00<0o`00003o003oool0o`3ooolH0?ooo`00hP3oool20?l00003003o00000?l0 +003o00<0oooo0P2IIS?e0?ooo`030000003oool0oooo0>l0oooo0P000?l20?ooo`80VFHc00<0o`00 +003o003oool0o`3ooolF0?ooo`00h03oool20?l00004003o00000?l0003o0?ooo`@0VFHcm`3oool0 +0`000000oooo0?ooo`3a0?ooo`<0003o00H0oooo09UV<`2IIS<0VFHc0?l00000o`3o0?oooa@0oooo +003O0?ooo`040?l00000o`00003o0000o`<0VFHcn`3oool400000?<0oooo0`000?l00`3oool0VFHc +09UV<`0209UV<`03003o003oool0oooo0?l0oooo3`3oool00=d0oooo0P3o00020000o`80VFHcoP3o +ool00`000000oooo0?ooo`3g0?ooo`<0003o00D0oooo0?l0002IIS<0VFHc003o003o0?ooo`l0oooo +003K0?ooo`80o`000P000?l209UV0?ooo`030000003oool0oooo0?l0oooo3`3oool00`2I +IS<0003o0000o`050000ooL0oooo00390?ooo`D0003o00<0VFHc0?ooo`3oool0o`3oool10?ooo`03 +0000003oool0oooo00d0oooo1`00003o0?ooo`d0oooo00<0VFHc0000o`000?l00`000?og0?ooo`00 +b@3oool50000oo`0oooo100000040?ooo`030000003oool0oooo00`0oooo00<000000?ooo`3oool0 +o`3ooolB0?ooo`D0003om`3oool000?ooo`030000 +003oool0oooo0?l0oooo5`3oool00`2IIS<0003o0000o`3d0?ooo`00``3oool01000o`00003o0000 +o`2IIS?o0?oooa/0oooo00<000000?ooo`3oool0o`3ooolI0?ooo`0309UV<`000?l0003o0?80oooo +00310?ooo`800?l000<0003o09UV<`3oool0o`3ooolL0?ooo`030000003oool0oooo0?l0oooo6`3o +ool00`2IIS<0003o0?l0003`0?ooo`00_`3oool2003o0080003o00<0VFHc0?ooo`3oool0o`3ooolL +0?ooo`030000003oool0oooo0?l0oooo703oool0102IIS<0003o0000o`3o003^0?ooo`00_@3oool2 +003o00030?ooo`000?l0VFHc0?l0oooo803oool00`000000oooo0?ooo`3o0?oooah0oooo00@0VFHc +0000o`3o0000o`00k03oool00;/0oooo0P00o`000`3oool0003o0000o`3o0?ooob80oooo00<00000 +0?ooo`3oool0o`3ooolP0?ooo`80003o0P3o003Z0?ooo`00^@3oool2003o00040?ooo`000?l0003o +09UV40oooo002`0?ooo`03003o003oool0 +o`000080003oo`3oool]0?ooo`030000003oool0oooo0?l0oooo:`3oool20000o`80o`00g`3oool0 +0:h0oooo0P00o`000`3oool0003o0000o`3o0?ooobl0oooo00<000000?ooo`3oool0o`3oool]0?oo +o`80003o0P3o003M0?ooo`00[03oool2003o00040?ooo`3o0000003o09UV@3oool400000?l0oooo=@3oool209UV<`80003o00<0 +o`000?ooo`3oool0d@3oool00:80oooo00@00?l00?ooo`3o0000003o0P2IIS?o0?ooocX0oooo00<0 +00000?ooo`3oool0o`3ooolh0?ooo`80VFHc00<0003o0?l0003oool0d@3oool00:40oooo00D00?l0 +0?ooo`000?l0003o09UV<`3o0?oooc`0oooo00<000000?ooo`3oool0o`3ooolj0?ooo`0409UV<`00 +0?l0003o0?l00=00oooo002P0?ooo`05003o00000?l0003o0?ooo`2IIS<0o`3ooolm0?ooo`030000 +003oool0oooo0?l0oooo>`3oool0102IIS<0oooo0000o`000?o?0?ooo`00W03oool30000o`05003o +00000?l0oooo0?ooo`2IIS<0o`3oooln0?ooo`030000003oool0oooo0?l0oooo?03oool01@2IIS<0 +oooo0?ooo`000?l0o`0000<0003obP3oool009/0oooo1@000?l20?ooo`0309UV<`3oool0oooo0?l0 +oooo?@3oool00`000000oooo0?ooo`3o0?ooocd0oooo00<0VFHc0?ooo`3oool01@000?o90?ooo`00 +V`3oool50000o`80VFHco`3ooom00?ooo`030000003oool0oooo0?l0oooo?P3oool209UV<`D0003o +b@3oool009/0oooo1@000?oo0?oood80oooo00<000000?ooo`3oool0o`3ooom00?ooo`D0003ob@3o +ool009/0oooo10000?oo0?oood<0oooo00<000000?ooo`3oool0o`3ooom10?ooo`@0003ob@3oool0 +09X0oooo00<0o`000000o`2IIS<0o`3ooom50?ooo`030000003oool0oooo0?l0oooo@P3oool01@2I +IS<0oooo0?ooo`000?l0o`0000?ooo`030000 +003oool0oooo0?l0ooooCP3oool01@2IIS<0oooo0?ooo`3oool0003o0;/0oooo002?0?ooo`0409UV +<`000?l0oooo003o0?l0ooooC`3oool00`000000oooo0?ooo`3o0?ooodl0oooo00@0VFHc0?ooo`3o +ool0oooo10000?ng0?ooo`00SP3oool01@2IIS<0oooo0000o`3oool00?l00?l0ooooC`3oool00`00 +0000oooo0?ooo`3o0?oooe00oooo0P2IIS<00`3oool0003o0000o`030000okH0oooo002=0?ooo`05 +09UV<`3oool0003o0?ooo`00o`00o`3ooom@0?ooo`@00000o`3ooomA0?ooo`0309UV<`000?l0003o +00<0003o]P3oool008`0oooo00D0VFHc0?ooo`000?l0oooo003o003o0?oooe40oooo00<000000?oo +o`3oool0o`3ooomC0?ooo`D0003o]P3oool008`0oooo00@0VFHc0000o`3o00000?l0o`3ooomB0?oo +o`030000003oool0oooo0?l0ooooD`3oool0102IIS<0003o0000o`000?ng0?ooo`00R`3oool0102I +IS<0003o0?l00000o`3o0?oooe<0oooo00<000000?ooo`3oool0o`3ooomD0?ooo`0409UV<`3oool0 +003o0?l00;H0oooo002:0?ooo`0409UV<`3oool0003o003o0?l0ooooE03oool00`000000oooo0?oo +o`3o0?oooeD0oooo00<0VFHc0?ooo`000?l00P3o002d0?ooo`00R@3oool01@2IIS<0oooo0000o`3o +00000?l00?l0ooooE03oool00`000000oooo0?ooo`3o0?oooeH0oooo00D0VFHc0000o`3oool0oooo +0?l0002c0?ooo`00R03oool01@2IIS<0oooo0000o`3o00000?l00?l0ooooE@3oool00`000000oooo +0?ooo`3o0?oooeL0oooo00D0003o0?ooo`3oool0oooo0?l0002b0?ooo`00Q`3oool01@2IIS<0oooo +0000o`3o00000?l00?l0ooooEP3oool00`000000oooo0?ooo`3o0?oooeL0oooo00D0VFHc0000o`3o +ool0oooo0?l0002b0?ooo`00QP3oool01@2IIS<0oooo0000o`3o00000?l00?l0ooooE`3oool00`00 +0000oooo0?ooo`3o0?oooeP0oooo00D0003o0?ooo`3oool0oooo0?l0002a0?ooo`00Q@3oool40000 +o`03003o003oool0oooo0?l0ooooA@3oool5000000`0oooo00<000000?ooo`3oool0o`3ooomI0?oo +o`050000o`3oool0oooo0?ooo`3o0000/03oool008@0oooo1@000?oo0?ooodX0oooo00<000000?oo +o`3oool0303oool00`000000oooo0?ooo`3o0?oooeT0oooo00D0003o09UV<`3oool0oooo0?l0002` +0?ooo`00Q03oool50000ool0ooooBP3oool00`000000oooo0?ooo`0<0?ooo`L00000o`3ooomE0?oo +o`030000o`3oool0VFHc0080oooo00<0o`000?ooo`3oool0[@3oool00800oooo0`000?l00`2IIS<0 +003o0000o`030000ool0oooo@P3oool4000000@0oooo00<000000?ooo`3oool0303oool00`000000 +oooo0?ooo`3o0?oooeX0oooo00<0003o09UV<`3oool00P3oool00`3o0000oooo0?ooo`2/0?ooo`00 +O`3oool50000o`040?ooo`000?l0003o0000ool0ooooB`3oool00`000000oooo0?ooo`0<0?ooo`03 +0000003oool0oooo0?l0ooooFP3oool00`000?l0oooo09UV<`020?ooo`030?l0003oool0oooo0:`0 +oooo001o0?ooo`D0003oo`3ooom>0?ooo`8000003P3oool00`000000oooo0?ooo`3o0?oooeX0oooo +00@0003o0?ooo`3oool0VFHc0P3oool00`3o0000oooo0?ooo`2[0?ooo`00O@3oool20?l000D0003o +o`3ooomN0?ooo`030000003oool0oooo0?l0ooooF`3oool010000?l0oooo0?ooo`2IIS<20?ooo`03 +0?l0003oool0oooo0:X0oooo001k0?ooo`80o`000P3oool01000o`00003o0000o`000?oo0?oooel0 +oooo00<000000?ooo`3oool0o`3ooomK0?ooo`070000o`3oool0oooo0?ooo`2IIS<0oooo0?l0002/ +0?ooo`00N03oool30?l00080oooo0P00o`000`000?l0VFHc0?ooo`3o0?ooof00oooo00<000000?oo +o`3oool0o`3ooomL0?ooo`040000o`3oool0oooo09UV<`80oooo00<0o`000?ooo`3oool0Z@3oool0 +07H0oooo0P3o00040?ooo`04003o003oool0oooo0000ool0ooooHP3oool00`000000oooo0?ooo`3o +0?oooe`0oooo00D0003o0?ooo`3oool0oooo09UV<`020?ooo`030?l0003oool0oooo0:P0oooo001b +0?ooo`@0o`001@3oool01000o`00oooo0?ooo`000?oo0?ooof<0oooo00<000000?ooo`3oool0o`3o +oomL0?ooo`030000o`3oool0oooo0080oooo00<0VFHc0?ooo`3o0000ZP3oool006l0oooo0`3o0009 +0?ooo`04003o003oool0oooo0000ool0ooooH`3oool00`000000oooo0?ooo`3o0?oooed0oooo00D0 +003o0?ooo`3oool0oooo09UV<`020?ooo`030?l0003oool0oooo0:L0oooo001]0?ooo`80o`002`3o +ool01000o`00oooo0?ooo`000?oo0?ooof@0oooo00<000000?ooo`3oool0o`3ooomM0?ooo`030000 +o`3oool0oooo0080oooo00<0VFHc0?ooo`3o0000Z@3oool006/0oooo0P3o000<0?ooo`05003o003o +ool0oooo09UV<`000?l0o`3ooomT0?ooo`030000003oool0oooo0?l0ooooGP3oool01@000?l0oooo +0?ooo`3oool0VFHc0080oooo00<0o`000?ooo`3oool0YP3oool006T0oooo0P3o000>0?ooo`04003o +003oool0oooo0000ool0ooooI@3oool400000?l0ooooG@3oool00`000?l0oooo0?ooo`020?ooo`03 +09UV<`3oool0o`000:P0oooo001X0?ooo`030?l0003oool0oooo00d0oooo00D00?l00?ooo`3oool0 +VFHc0000o`3o0?ooofD0oooo00<000000?ooo`3oool0o`3ooomN0?ooo`030000o`3oool0oooo00<0 +oooo00<0VFHc0?ooo`3o0000Y`3oool006P0oooo00<0o`000?ooo`3oool03@3oool01000o`00oooo +0?ooo`000?oo0?ooofH0oooo00<000000?ooo`3oool0o`3ooomO0?ooo`030000o`3oool0oooo0080 +oooo00<0VFHc0?ooo`3o0000Y`3oool006P0oooo00<0o`000?ooo`3oool0303oool01@00o`00oooo +0?ooo`2IIS<0003o0?l0ooooIP3oool00`000000oooo0?ooo`3o0?oooel0oooo00<0003o0?ooo`3o +ool00`3oool00`2IIS<0oooo0?l0002V0?ooo`00J03oool00`3o0000oooo0?ooo`0<0?ooo`04003o +003oool0VFHc0000ool0ooooI`3oool00`000000oooo0?ooo`3o0?ooof00oooo00<0003o0?ooo`3o +ool00P3oool00`2IIS<0oooo0?l0002V0?ooo`00J03oool00`3o0000oooo0?ooo`0;0?ooo`04003o +003oool0oooo0000ool0ooooJ03oool00`000000oooo0?ooo`3o0?ooof00oooo00<0003o0?ooo`3o +ool00`3oool00`2IIS<00?l00?l0002U0?ooo`00J@3oool00`3o0000oooo0?ooo`0:0?ooo`04003o +003oool0VFHc0000ool0ooooJ03oool00`000000oooo0?ooo`3o0?ooof00oooo00<0003o0?ooo`3o +ool00`3oool00`2IIS<0oooo0?l0002U0?ooo`00J@3oool00`3o0000oooo0?ooo`090?ooo`04003o +003oool0oooo0000ool0ooooJ@3oool00`000000oooo0?ooo`3o0?ooof40oooo00<0003o0?ooo`3o +ool00`3oool00`2IIS<0o`000?ooo`2T0?ooo`00JP3oool00`3o0000oooo0?ooo`080?ooo`04003o +003oool0VFHc0000ool0ooooJ@3oool00`000000oooo0?ooo`3o0?ooof40oooo00<0003o0?ooo`3o +ool00`3oool00`2IIS<0oooo0?l0002T0?ooo`00JP3oool00`3o0000oooo0?ooo`070?ooo`04003o +003oool0oooo0000ool0ooooJP3oool00`000000oooo0?ooo`3o0?ooof80oooo00<0003o0?ooo`3o +ool00`3oool00`2IIS<0o`000?ooo`2S0?ooo`00J`3oool00`3o0000oooo0?ooo`060?ooo`04003o +003oool0VFHc0000ool0ooooJP3oool00`000000oooo0?ooo`3o0?ooof80oooo00<0003o0?ooo`3o +ool00`3oool00`2IIS<0oooo0?l0002S0?ooo`00K03oool00`3o0000oooo0?ooo`050?ooo`03003o +003oool0003o0?l0ooooJ`3oool400000?l0ooooH@3oool00`000?l0oooo0?ooo`040?ooo`0309UV +<`3o0000oooo0:80oooo001]0?ooo`030?l0003oool0oooo00@0oooo00<00?l009UV<`000?l0o`3o +oom[0?ooo`030000003oool0oooo0?l0ooooH`3oool00`000?l0oooo0?ooo`030?ooo`0309UV<`3o +ool0o`000:80oooo001^0?ooo`030?l0003oool0oooo00<0oooo00<00?l00000o`3oool0o`3ooom[ +0?ooo`030000003oool0oooo0?l0ooooH`3oool00`000?l0oooo0?ooo`040?ooo`0309UV<`3o0000 +oooo0:40oooo001_0?ooo`80o`000`3oool00`00o`00003o0?ooo`3o0?ooof/0oooo00<000000?oo +o`3oool0o`3ooomS0?ooo`030000o`3oool0oooo00@0oooo00<0VFHc0?l0003oool0X@3oool00740 +oooo00@0o`000000o`000?l0003oo`3ooom]0?ooo`030000003oool0oooo0?l0ooooI03oool00`00 +0?l0oooo0?ooo`040?ooo`0309UV<`3o0000oooo0:00oooo001a0?ooo`D0003oo`3ooom/0?ooo`03 +0000003oool0oooo0?l0ooooI03oool00`000?l0oooo0?ooo`040?ooo`0309UV<`3o0000oooo0:00 +oooo001a0?ooo`D0003oo`3ooom/0?ooo`030000003oool0oooo0?l0ooooI@3oool00`000?l0oooo +0?ooo`030?ooo`0309UV<`3o0000oooo0:00oooo001a0?ooo`D0003oo`3ooom/0?ooo`030000003o +ool0oooo0?l0ooooI@3oool00`000?l0oooo0?ooo`040?ooo`0309UV<`3o0000oooo09l0oooo001b +0?ooo`<0003o0P3o003o0?ooof/0oooo00<000000?ooo`3oool0o`3ooomU0?ooo`030000o`3oool0 +oooo00@0oooo00<0VFHc0?l0003oool0W`3oool007<0oooo00D0003o0?ooo`3oool0oooo0?l0003o +0?ooofX0oooo00<000000?ooo`3oool0o`3ooomV0?ooo`030000o`3oool0oooo00<0oooo00<0VFHc +0?l0003oool0W`3oool00780oooo00<0003o003o003oool00`3oool20?l00?l0ooooJ03oool00`00 +0000oooo0?ooo`3o0?ooofH0oooo00<0003o0?ooo`3oool0103oool00`2IIS<0o`000?ooo`2N0?oo +o`00LP3oool00`000?l00?l00?ooo`050?ooo`030?l0003oool0oooo0?l0ooooI@3oool00`000000 +oooo0?ooo`3o0?ooofL0oooo00<0003o0?ooo`3oool00`3oool00`2IIS<0o`000?ooo`2N0?ooo`00 +L@3oool00`2IIS<0003o0?ooo`070?ooo`030?l0003oool0oooo0?l0ooooI03oool400000?l0oooo +IP3oool00`000?l0oooo0?ooo`030?ooo`0309UV<`3o0000oooo09h0oooo001a0?ooo`0309UV<`00 +0?l0oooo00P0oooo0P3o003o0?ooof@0oooo00<000000?ooo`3oool0o`3ooomW0?ooo`030000o`3o +ool0oooo00<0oooo00<0VFHc003o003o0000WP3oool00740oooo00<0VFHc0000o`3oool02P3oool0 +0`3o0000oooo0?ooo`3o0?ooof40oooo00<000000?ooo`3oool0o`3ooomX0?ooo`030000o`3oool0 +oooo0080oooo00<0VFHc0?ooo`3o0000WP3oool00740oooo00@0VFHc0000o`00000000002P3oool2 +0?l00:P0oooo1000002d0?ooo`030000003oool0oooo0;@0oooo1000002_0?ooo`030000o`3oool0 +oooo00<0oooo00<0VFHc0?l0000000000P00002K0?ooo`00L@3oool00`2IIS<0003o0000000=0?oo +o`030?l0003oool0oooo0:D0oooo00<000000?ooo`3oool0]@3oool00`000000oooo0?ooo`2d0?oo +o`030000003oool0oooo0;40oooo00<0003o0?ooo`3oool00P3oool0102IIS<0o`000?ooo`00002L +0?ooo`00L03oool00`000000003o00000002000000d0oooo0P3o002V0?ooo`030000003oool0oooo +0;@0oooo00<000000?ooo`3oool0]@3oool00`000000oooo0?ooo`2`0?ooo`030000o`3oool0oooo +0080oooo00<0VFHc0?l0000000000P00002K0?ooo`00JP3oool400000080oooo00@0VFHc0000o`3o +ool00000403oool00`3o0000oooo0?ooo`2L0?ooo`@00000103oool00`000000oooo0?ooo`2c0?oo +o`030000003oool0oooo0;H0oooo00<000000?ooo`3oool0[`3oool00`000?l0oooo0?ooo`020?oo +o`040000002IIS<0oooo000009`0oooo001`0?ooo`0409UV<`000?l0oooo00000140oooo0P3o002R +0?ooo`040000003oool0oooo00000;@0oooo00<000000?ooo`3oool0]03oool010000000oooo0?oo +o`00002a0?ooo`030000o`3oool0oooo0080oooo00<0VFHc0?ooo`000000W03oool00700oooo00@0 +VFHc0000o`00000000004`3oool00`3o0000oooo0?ooo`2P0?ooo`800000]@3oool00`000000oooo +0?ooo`2e0?ooo`800000/P3oool00`000?l0oooo0?ooo`020?ooo`0309UV<`3o0000000009`0oooo +001`0?ooo`0309UV<`000?l0oooo01D0oooo0P3o003o0?oooeP0oooo00<000000?ooo`3oool0o`3o +oom[0?ooo`060000o`3oool0oooo0?ooo`2IIS<0o`00W@3oool00700oooo00<0VFHc0000o`3oool0 +5`3oool00`3o0000oooo0?ooo`3o0?oooeD0oooo00<000000?ooo`3oool0o`3ooom[0?ooo`060000 +o`3oool0oooo0?ooo`2IIS<0o`00W@3oool006l0oooo00<0VFHc003o00000?l06@3oool20?l00?l0 +ooooE@3oool400000?l0ooooJP3oool00`000?l0oooo0?ooo`020?ooo`0309UV<`3oool0oooo09/0 +oooo001_0?ooo`0309UV<`00o`00003o01/0oooo00<0o`000?ooo`3oool0o`3ooomB0?ooo`030000 +003oool0oooo0?l0ooooK03oool01@000?l0oooo0?ooo`3oool0VFHc09d0oooo001_0?ooo`0309UV +<`000?l0oooo01`0oooo0P3o003o0?oooe80oooo00<000000?ooo`3oool0o`3ooom/0?ooo`050000 +o`3oool0oooo0?ooo`2IIS<0W@3oool006l0oooo00<0VFHc0000o`3oool07P3oool00`3o0000oooo +0?ooo`3o0?ooodl0oooo00<000000?ooo`3oool0o`3ooom/0?ooo`050000o`3oool0oooo0?ooo`2I +IS<0W@3oool006l0oooo00<0VFHc0000o`3oool07`3oool20?l00?l0ooooC`3oool00`000000oooo +0?ooo`3o0?ooofd0oooo00@0003o0?ooo`3oool0VFHcW@3oool006l0oooo00<0VFHc0000o`3oool0 +8@3oool00`3o0000oooo0?ooo`3o0?oood`0oooo00<000000?ooo`3oool0o`3ooom]0?ooo`040000 +o`3oool0oooo09UVM0?ooo`00 +K`3oool00`2IIS<0003o0?ooo`0?0?ooo`80o`000P3oool20?l002D0oooo0P3o003o0?oooc@0oooo +00<000000?ooo`3oool0o`3ooom/0?ooo`050000o`3oool0oooo003o002IIS<0W@3oool006l0oooo +00<0VFHc0000o`3oool04@3oool20?l00080oooo0`3o000T0?ooo`80o`00o`3ooolb0?ooo`030000 +003oool0oooo0?l0ooooK03oool01@000?l0oooo0?ooo`00o`00VFHc09d0oooo001_0?ooo`0309UV +<`3oool0003o01<0oooo0P3o00030?ooo`80o`00903oool20?l00?l0oooo<03oool00`000000oooo +0?ooo`3o0?ooof`0oooo00D0003o0?ooo`3oool0o`0009UV<`2M0?ooo`00K`3oool00`2IIS<00?l0 +0000o`0E0?ooo`80o`000`3oool30?l002<0oooo00<0o`000?ooo`3oool0o`3oool]0?ooo`@00000 +o`3ooomZ0?ooo`060000o`3oool0oooo0?ooo`3o0000VFHcW@3oool00700oooo00<0VFHc0000o`3o +ool05P3oool20?l000@0oooo0P3o000R0?ooo`80o`00o`3oool]0?ooo`030000003oool0oooo0?l0 +ooooJ`3oool01@000?l0oooo0?ooo`3oool0VFHc09h0oooo001`0?ooo`0309UV<`000?l0oooo01P0 +oooo0`3o00030?ooo`<0o`008@3oool20?l00?l0oooo:`3oool00`000000oooo0?ooo`3o0?ooofX0 +oooo00H0003o0?ooo`3oool0oooo0?l0002IIS>N0?ooo`00L03oool00`2IIS<0003o0?ooo`0K0?oo +o`80o`00103oool20?l00240oooo00<0o`000?ooo`3oool0o`3ooolX0?ooo`030000003oool0oooo +0?l0ooooJP3oool01P000?l0oooo0?ooo`3oool0o`0009UVN0?ooo`00L03oool00`2IIS<0003o0?oo +o`0O0?ooo`80o`001@3oool20?l001l0oooo0P3o003o0?ooobH0oooo00<000000?ooo`3oool0o`3o +oomY0?ooo`070000o`3oool0oooo0?ooo`00o`00o`0009UV<`2N0?ooo`00L@3oool00`000?l0oooo +0?ooo`0P0?ooo`80o`001@3oool30?l001h0oooo00<0o`000?ooo`3oool0o`3ooolS0?ooo`030000 +003oool0oooo0?l0ooooJ@3oool01P000?l0oooo0?ooo`3oool00?l009UV0?ooo`030000003oool0oooo0?l0ooooH`3oool00`00 +0?l0oooo0?ooo`030?ooo`030?l0002IIS<0oooo0:80oooo001Y0?ooo`030?l0003oool0oooo00T0 +oooo00<0003o0?ooo`3oool02@3oool30?l002l0oooo0P3o000<0?ooo`80o`004@3oool00`3o0000 +oooo0?ooo`3o0?ooo`/0oooo00<000000?ooo`3oool0o`3ooomS0?ooo`030000o`3oool0oooo0080 +oooo00<0o`000?ooo`2IIS<0X`3oool006X0oooo00<0o`000?ooo`3oool0203oool00`2IIS<0003o +0?ooo`0<0?ooo`@0o`00;@3oool20?l000`0oooo0`3o000?0?ooo`80o`00o`3oool;0?ooo`030000 +003oool0oooo0?l0ooooH`3oool00`000?l0oooo0?ooo`020?ooo`030?l0002IIS<0oooo0:<0oooo +001[0?ooo`030?l0003oool0oooo00P0oooo00<0003o0?ooo`3oool03`3oool30?l002`0oooo0P3o +000=0?ooo`80o`003`3oool20?l00?l0oooo2@3oool400000?l0ooooH@3oool00`000?l0oooo0?oo +o`020?ooo`03003o003o0000VFHc0:@0oooo001/0?ooo`030?l0003oool0oooo00L0oooo00<0VFHc +0000o`3oool04P3oool30?l002/0oooo0P3o000=0?ooo`<0o`003P3oool00`3o0000oooo0?ooo`3o +0?ooo`H0oooo00<000000?ooo`3oool0o`3ooomR0?ooo`030000o`3oool0oooo0080oooo00<0o`00 +09UV<`3oool0Y03oool006d0oooo0P3o00080?ooo`030000o`3oool0oooo01@0oooo0`3o000Z0?oo +o`80o`003P3oool20?l000d0oooo0P3o003o0?ooo`H0oooo00<000000?ooo`3oool0o`3ooomQ0?oo +o`030000o`3oool0oooo0080oooo00<00?l00?l0002IIS<0Y@3oool006l0oooo00<0o`000?ooo`3o +ool01@3oool00`2IIS<0003o0?ooo`0G0?ooo`@0o`00:03oool20?l000h0oooo0`3o000<0?ooo`03 +0?l0003oool0oooo0?l0oooo0`3oool00`000000oooo0?ooo`3o0?ooof40oooo00<0003o0?ooo`3o +ool00P3oool00`3o0000VFHc0?ooo`2U0?ooo`00L03oool00`3o0000oooo0?ooo`050?ooo`030000 +o`3oool0oooo01X0oooo0`3o000W0?ooo`80o`003`3oool20?l000/0oooo0P3o003o0?ooo`<0oooo +00<000000?ooo`3oool0o`3ooomQ0?ooo`070000o`3oool0oooo0?ooo`00o`00o`0009UV<`2V0?oo +o`00L@3oool00`3o0000oooo0?ooo`040?ooo`0309UV<`000?l0oooo01d0oooo0`3o000V0?ooo`80 +o`003`3oool30?l000X0oooo0P3o003o0?ooo`40oooo00<000000?ooo`3oool0o`3ooomP0?ooo`03 +0000o`3oool0oooo0080oooo00<0o`0009UV<`3oool0YP3oool00780oooo00<0o`000?ooo`3oool0 +103oool00`000?l0oooo0?ooo`0O0?ooo`<0o`009@3oool30?l000l0oooo0P3o000:0?ooo`030?l0 +003oool0oooo0?d0oooo00<000000?ooo`3oool0o`3ooomP0?ooo`070000o`3oool0oooo0?ooo`3o +0000oooo09UV<`2W0?ooo`00L`3oool20?l000@0oooo00<0VFHc0000o`3oool08P3oool30?l002D0 +oooo0P3o000?0?ooo`80o`002@3oool20?l00?d0oooo00<000000?ooo`3oool0o`3ooomO0?ooo`03 +0000o`3oool0oooo0080oooo00<0o`0009UV<`3oool0Y`3oool007D0oooo00<0o`000?ooo`3oool0 +0P3oool00`2IIS<0003o0?ooo`0T0?ooo`@0o`008`3oool20?l000l0oooo0`3o00080?ooo`80o`00 +n`3oool00`000000oooo0?ooo`3o0?oooel0oooo00L0003o0?ooo`3oool0oooo0?l0003oool0VFHc +0:P0oooo001f0?ooo`060?l0003oool0oooo0?ooo`00o`00003o:@3oool30?l00280oooo0P3o000@ +0?ooo`80o`00203oool00`3o0000oooo0?ooo`3h0?ooo`030000003oool0oooo0?l0ooooG`3oool0 +1P000?l0oooo0?ooo`3o0000oooo09UV[0?oo +o`00NP3oool0103o0000oooo0?ooo`000?lc0?ooo`<0o`007P3oool20?l00180oooo0P3o00050?oo +o`030?l0003oool0oooo0?40oooo00<000000?ooo`3oool0o`3ooomM0?ooo`060000o`3oool0oooo +0?l0003oool0VFHcZ`3oool007/0oooo00@0o`000?ooo`00o`00003o=@3oool30?l001d0oooo0P3o +000B0?ooo`<0o`000`3oool20?l00?40oooo00<000000?ooo`3oool0o`3ooomM0?ooo`050000o`3o +ool00?l00?l0002IIS<0[03oool007`0oooo0P3o00000`000?l0oooo0?ooo`0f0?ooo`<0o`00703o +ool20?l001<0oooo0P3o00030?ooo`80o`00k`3oool00`000000oooo0?ooo`3o0?oooe`0oooo00H0 +003o0?ooo`00o`00o`000?ooo`2IIS>/0?ooo`00OP3oool00`3o0000003o0?ooo`0i0?ooo`<0o`00 +6`3oool20?l001<0oooo0`3o00020?ooo`030?l0003oool0oooo0>`0oooo00<000000?ooo`3oool0 +o`3ooomL0?ooo`050000o`3oool0o`000?ooo`2IIS<0[@3oool007l0oooo00<0003o09UV<`3oool0 +>`3oool40?l001T0oooo0P3o000D0?ooo`80o`0000<0oooo0?l0003o0000k03oool00`000000oooo +0?ooo`3o0?oooe/0oooo00D0003o0?ooo`3o0000oooo09UV<`2^0?ooo`00P03oool30000och0oooo +0`3o000H0?ooo`80o`00503oool50?l00>X0oooo00<000000?ooo`3oool0o`3ooomK0?ooo`050000 +o`3o0000oooo0?ooo`2IIS<0[P3oool007l0oooo1@000?m00?ooo`<0o`005`3oool20?l001D0oooo +0`3o003Y0?ooo`030000003oool0oooo0?l0ooooF`3oool010000?l0o`000?ooo`2IIS>_0?ooo`00 +O`3oool50000od<0oooo0`3o000F0?ooo`<0o`00503oool30?l00>L0oooo00<000000?ooo`3oool0 +o`3ooomJ0?ooo`040000o`3o0000oooo09UV0?ooo`030000003oool0oooo0?l0ooooD@3oool01@000?l0 +oooo0?l00000o`00VFHc0;P0oooo00280?ooo`040000o`3oool0oooo09UV0?ooo`030?l0003oool0oooo00X0oooo0P3o002m0?ooo`030000003oool0oooo0?l0 +ooooB03oool00`000?l0oooo0?ooo`020?ooo`030?l0002IIS<0oooo0;h0oooo002=0?ooo`050?l0 +00000?l0oooo0?ooo`2IIS<0J`3oool30?l000L0oooo0P3o000=0?ooo`80o`00303oool30?l00;X0 +oooo00<000000?ooo`3oool0o`3ooom70?ooo`030000o`3oool0oooo0080oooo00<0o`000?ooo`2I +IS<0_`3oool008h0oooo00D0o`000000o`3oool0oooo09UV<`1]0?ooo`<0o`001P3oool20?l000d0 +oooo0P3o000=0?ooo`80o`00^03oool00`000000oooo0?ooo`3o0?ooodH0oooo00<0003o0?ooo`3o +ool00P3oool00`3o00000?l009UV<`300?ooo`00SP3oool00`3o00000?l00000o`020?ooo`0309UV +<`3oool0oooo06d0oooo0`3o00050?ooo`<0o`00303oool00`3o0000oooo0?ooo`0<0?ooo`<0o`00 +]@3oool00`000000oooo0?ooo`3o0?ooodD0oooo00<0003o0?ooo`3oool00P3oool00`3o00000?l0 +09UV<`310?ooo`00S`3oool00`3o00000?l00000o`020?ooo`0309UV<`3oool0oooo06l0oooo0`3o +00050?ooo`80o`002`3oool20?l000l0oooo0P3o002c0?ooo`030000003oool0oooo0?l0oooo@`3o +ool20000o`<0oooo0P3o00000`00o`00VFHc0?ooo`310?ooo`00T03oool20?l000040000o`3oool0 +oooo09UV@3oool00`000?l0oooo0?ooo`020?ooo`040?l0003o +ool00?l009UV>0?ooo`<0o`006@3oool20?l0 +08d0oooo00<000000?ooo`3oool0o`3oool`0?ooo`80003o103oool20?l00080VFHce03oool00:D0 +oooo00@00?l00000o`000?l0VFHcT03oool30?l001P0oooo0P3o002;0?ooo`@00000o`3oool^0?oo +o`030000o`3oool0oooo00<0oooo00<0o`00003o002IIS<0eP3oool00:L0oooo00@0o`000000o`2I +IS<0VFHcT@3oool30?l001L0oooo0P3o00290?ooo`030000003oool0oooo0?l0oooo;P3oool00`00 +0?l0oooo0?ooo`030?ooo`030?l0002IIS<0VFHc0=L0oooo002X0?ooo`04003o00000?l0003o09UV +F0?ooo`<0o`005@3oool20?l00880 +oooo00<000000?ooo`3oool0o`3oool[0?ooo`030000o`3oool0oooo0080oooo00<0o`0009UV<`00 +o`00f`3oool00:`0oooo00@00?l00?ooo`000?l0003oV03oool30?l001@0oooo0P3o00200?ooo`03 +0000003oool0oooo0?l0oooo:@3oool20000o`@0oooo00<0o`0009UV<`3oool0g03oool00:d0oooo +00D00?l00?ooo`3o0000003o09UV<`2I0?ooo`@0o`004P3oool20?l007h0oooo00<000000?ooo`3o +ool0o`3ooolX0?ooo`030000o`3oool0oooo00<0oooo0P2IIS?N0?ooo`00[P3oool2003o00030?oo +o`000?l0003o09`0oooo0`3o000A0?ooo`<0o`00N`3oool00`000000oooo0?ooo`3o0?ooobL0oooo +00<0003o0?ooo`3oool00P3oool00`3o0000VFHc0?ooo`3O0?ooo`00/03oool2003o00030?ooo`00 +0?l0VFHc09d0oooo0`3o000A0?ooo`80o`00N@3oool00`000000oooo0?ooo`3o0?ooobH0oooo00<0 +003o0?ooo`3oool00P3oool209UVQ0?ooo`@0o`003@3oool30?l00780oooo1000003o0?ooob40oooo00@0003o0?ooo`3oool0oooo +0P2IIS?V0?ooo`00^03oool01000o`00003o0000o`2IIS>S0?ooo`<0o`003@3oool20?l00700oooo +00<000000?ooo`3oool0o`3ooolQ0?ooo`030000o`3oool0oooo0080VFHcj03oool00;T0oooo00@0 +0?l00?ooo`000?l0VFHcY@3oool30?l000`0oooo0P3o001^0?ooo`030000003oool0oooo0?l0oooo +803oool01@000?l0oooo0?ooo`2IIS<00?l00>T0oooo002j0?ooo`800?l00P000?nW0?ooo`<0o`00 +2`3oool20?l006`0oooo00<000000?ooo`3oool0o`3ooolO0?ooo`050000o`3oool0oooo09UV<`00 +o`00jP3oool00;`0oooo00@00?l00?ooo`000?l0003oZ03oool30?l000X0oooo0`3o001Y0?ooo`03 +0000003oool0oooo0?l0oooo7@3oool20000o`030?ooo`2IIS<0VFHc0>`0oooo002m0?ooo`800?l0 +00<0oooo0000o`3o0000Z@3oool40?l000T0oooo0P3o001W0?ooo`030000003oool0oooo0?l0oooo +703oool01@000?l0oooo0?ooo`2IIS<0o`000>d0oooo002o0?ooo`800?l00P000?l00`3o0000oooo +0?ooo`2Y0?ooo`<0o`00203oool20?l006D0oooo00<000000?ooo`3oool0o`3ooolK0?ooo`040000 +o`3oool0VFHc09UVb0?ooo`L0o`00H@3oool00`000000oooo0?ooo`3o0?oooaT0 +oooo00<0003o09UV<`00o`00lP3oool00 +0?ooo`030000003oool0oooo0?l0oooo4P3oool50000ooL0oooo00390?ooo`D0003oo`3oool40?oo +o`030000003oool0oooo00d0oooo1`00003o0?ooo`h0oooo1@000?og0?ooo`00b@3oool70000ool0 +oooo0`3oool00`000000oooo0?ooo`0<0?ooo`030000003oool0oooo0?l0oooo403oool70000ooL0 +oooo003:0?ooo`<0003o0P3oool00`3o0000003o0000o`3n0?ooo`040000003oool0oooo000000d0 +oooo00<000000?ooo`3oool0o`3oool>0?ooo`80003o0P3o0000103oool0003o0000o`000?oh0?oo +o`00d03oool20?l000<0003oo03oool2000000h0oooo00<000000?ooo`3oool0o`3oool;0?ooo`<0 +003o00<00?l00?l0003oool0o@3oool00=80oooo0P3o0000102IIS<0003o0000o`000?oo0?ooo`X0 +oooo00<000000?ooo`3oool0o`3oool80?ooo`<0003o00@0VFHc003o003o0000o`00o`3oool00=@0 +oooo0P3o000209UV<`<0003oo`3oool70?ooo`030000003oool0oooo0?l0oooo1@3oool30000o`80 +VFHc00<00?l00?l0003o0000o`3oool20?ooo`00eP3oool20?l00080VFHc00<0oooo0000o`000?l0 +o`3oool50?ooo`030000003oool0oooo0?l0oooo0`3oool20000o`040?ooo`2IIS<0VFHc003o0080 +o`00o`3oool40?ooo`00f03oool20?l00080VFHc00@0oooo0000o`000?l0003oo`3oool20?ooo`03 +0000003oool0oooo0?l0oooo0`000?l0103oool0VFHc09UV<`00o`020?l00?l0oooo1P3oool00=X0 +oooo0P3o000209UV<`80oooo0`000?on0?ooo`030000003oool0oooo0?`0oooo0`000?l20?ooo`80 +VFHc00<00?l00?l0003o0000o`3oool80?ooo`00g03oool20?l00080VFHc0`3oool20000oo`0oooo +00<000000?ooo`3oool0nP3oool20000o`80oooo0`2IIS<00`3oool0o`000?l0003o0?ooo`X0oooo +003N0?ooo`80o`000P2IIS<30?ooo`<0003on@3oool00`000000oooo0?ooo`3g0?ooo`<0003o0P3o +ool209UV<`04003o003oool0o`000?l00?l0oooo303oool00>00oooo0P3o000409UV<`80oooo0`00 +0?of0?ooo`@00000l`3oool30000o`80oooo0`2IIS<01000o`00o`000?l0003o003o0?ooo`h0oooo +003S0?ooo`80o`0000@00?l009UV<`2IIS<0VFHc0P3oool30000oo<0oooo00<000000?ooo`3oool0 +l@3oool30000o`80oooo0`2IIS<01000o`00o`000?l0003o003o0?oooa40oooo003U0?ooo`<0o`00 +00<00?l009UV<`2IIS<00`3oool20000oo40oooo00<000000?ooo`3oool0k`3oool20000o`<0oooo +0P2IIS<0103oool00?l00?l0003o003o0?oooa@0oooo003X0?ooo`<0o`000P2IIS<30?ooo`<0003o +kP3oool00`000000oooo0?ooo`3/0?ooo`<0003o0P3oool309UV<`04003o003o0000o`000?l00?l0 +oooo5P3oool00>/0oooo0P3o000209UV<`@0oooo0`000?o[0?ooo`030000003oool0oooo0>T0oooo +0`000?l30?ooo`80VFHc00@0oooo003o003o0000o`00o`3ooolI0?ooo`00k@3oool20?l000<0VFHc +103oool30000onP0oooo00<000000?ooo`3oool0iP3oool30000o`@0oooo0P2IIS<2003o0080o`00 +o`3ooolK0?ooo`00l03oool20?l00080VFHc1@3oool20000onH0oooo00<000000?ooo`3oool0i03o +ool20000o`D0oooo0P2IIS<2003o0080o`00o`3ooolM0?ooo`00lP3oool20?l000<0VFHc103oool3 +0000on<0oooo00<000000?ooo`3oool0h@3oool30000o`@0oooo0`2IIS<01000o`00o`000?l0003o +003o0?oooal0oooo003e0?ooo`80o`00102IIS<30?ooo`<0003oh03oool00`000000oooo0?ooo`3N +0?ooo`<0003o0`3oool409UV<`@0o`00o`3ooolR0?ooo`00m`3oool30?l00003003o002IIS<0VFHc +00@0oooo0`000?oM0?ooo`030000003oool0oooo0=/0oooo0`000?l40?ooo`80VFHc00@0oooo003o +003o0000o`00o`3ooolV0?ooo`00nP3oool30?l000<0VFHc103oool20000om/0oooo00<000000?oo +o`3oool0f@3oool20000o`@0oooo0`2IIS<2003o0080o`00o`3ooolX0?ooo`00o@3oool30?l00080 +VFHc103oool30000omP0oooo00<000000?ooo`3oool0eP3oool30000o`@0oooo0P2IIS<3003o0080 +o`00o`3ooolZ0?ooo`00o`3oool20?ooo`050?l0002IIS<0VFHc09UV<`3o00000`3oool30000omD0 +oooo1000003B0?ooo`<0003o103oool309UV<`03003o003o0000o`000080o`00o`3oool/0?ooo`00 +o`3oool50?ooo`03003o002IIS<0VFHc0080VFHc0`3oool30000om80oooo00<000000?ooo`3oool0 +d03oool30000o`<0oooo102IIS<01000o`00o`000?l0003o003o0?oooc00oooo003o0?ooo`L0oooo +0P00o`000`3o0000VFHc09UV<`040?ooo`80003od03oool00`000000oooo0?ooo`3>0?ooo`80003o +103oool209UV<`<00?l00P3o003o0?oooc<0oooo003o0?ooo`/0oooo00@00?l009UV<`2IIS<0VFHc +0`3oool30000old0oooo00<000000?ooo`3oool0b`3oool30000o`<0oooo0`2IIS<00`00o`00o`00 +0?l000020?l00?l0oooo=@3oool00?l0oooo3P3oool01000o`00VFHc09UV<`3o00030?ooo`<0003o +bP3oool00`000000oooo0?ooo`380?ooo`<0003o103oool209UV<`@0o`00o`3oooli0?ooo`00o`3o +ool@0?ooo`03003o002IIS<0VFHc0080VFHc0`3oool20000olP0oooo00<000000?ooo`3oool0aP3o +ool20000o`<0oooo102IIS<00`3o0000oooo0?ooo`3o0?oooc`0oooo003o0?oooa@0oooo00H00?l0 +09UV<`2IIS<0VFHc003o003oool30000olD0oooo00<000000?ooo`3oool0``3oool30000o`030?oo +o`2IIS<0VFHc0080VFHc00<0o`000?ooo`3oool0o`3ooom00?ooo`00o`3ooolH0?ooo`80VFHc00<0 +o`00003o003oool00`000?o20?ooo`030000003oool0oooo0<00oooo0`000?l20?ooo`80VFHc0`3o +003o0?oood@0oooo003o0?oooaX0oooo102IIS<20?ooo`<0003o_`3oool00`000000oooo0?ooo`2m +0?ooo`<0003o00<0oooo09UV<`2IIS<00P2IIS<20?l00?l0ooooA`3oool00?l0oooo7P3oool509UV +<`80003o0`3oool30000okL0oooo00<000000?ooo`3oool0]@3oool30000o`<0oooo0P000?l409UV +<`030?l0003oool0oooo0?l0ooooBP3oool00?l0oooo8P3oool00`3o0000VFHc09UV<`070000okH0 +oooo00<000000?ooo`3oool0]03oool70000o`0309UV<`3o0000o`000?l0ooooD03oool00?l0oooo +9P3oool00`3o0000003o0000o`030000okH0oooo1000002c0?ooo`D0003o0`3o003o0?oooe80oooo +003o0?ooobL0oooo2P000?na0?ooo`030000003oool0oooo0:l0oooo2P000?oo0?oooeD0oooo003o +0?ooobP0oooo0`000?l00`3oool00?l009UV<`0309UV<`D0003o[03oool00`000000oooo0?ooo`2Z +0?ooo`D0003o0`2IIS<00`3o0000oooo0?ooo`030000ool0ooooEP3oool00?l0oooo<03oool00`00 +o`00o`0009UV<`0309UV<`D0003oY`3oool00`000000oooo0?ooo`2U0?ooo`D0003o0`2IIS<00`3o +0000oooo0?ooo`3o0?oooeh0oooo003o0?oooc<0oooo103o000209UV<`03003o003oool0003o00@0 +003oXP3oool00`000000oooo0?ooo`2P0?ooo`D0003o0P3o000209UV<`03003o003oool0oooo0?l0 +ooooHP3oool00?l0oooo=`3oool20?l000@0VFHc00<00?l00?ooo`3oool01P000?nL0?ooo`030000 +003oool0oooo09X0oooo1P000?l30?l000@0VFHco`3ooomW0?ooo`00o`3oooll0?ooo`030?l0002I +IS<0VFHc00<0VFHc00@00?l00?ooo`3oool0oooo1@000?nG0?ooo`030000003oool0oooo09D0oooo +1@000?l40?l000D0VFHco`3ooom[0?ooo`00o`3ooolo0?ooo`<0o`001@2IIS<01000o`00oooo0?oo +o`3oool50000oi80oooo00<000000?ooo`3oool0T03oool50000o`@0o`001@2IIS?o0?ooog00oooo +003o0?oood<0oooo103o000609UV<`<0oooo1@000?n=0?ooo`030000003oool0oooo08/0oooo1@00 +0?l30?l000H0VFHco`3ooome0?ooo`00o`3ooom80?ooo`D0o`001@2IIS<30?ooo`D0003oR03oool0 +0`000000oooo0?ooo`260?ooo`D0003o0`3o000509UV +0?l00?l0oooom03oool00?l0ooooe03oool00`000000oooo0?ooo`090?ooo`D0003oo`3ooooo0?oo +o`l0oooo003o0?ooom40oooo00@000000?ooo`3oool00000303oool30000ool0ooooo`3oool@0?oo +o`00o`3ooooB0?ooo`8000003P3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooo +hP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?oo +o`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool0 +0?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000 +oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo +3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool4 +00000?l0ooooo`3oool>0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?oo +o`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000 +003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3o +ool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?oo +o`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0 +ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3o +oooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0 +oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?oo +o`00o`3ooooR0?ooo`@00000o`3ooooo0?ooo`h0oooo003o0?ooon80oooo00<000000?ooo`3oool0 +o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o +0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?oo +o`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0 +oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<0 +00000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo +0?ooo`l0oooo003o0?ooon80oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80 +oooo00<000000?ooo`3oool0o`3ooooo0?ooo`l0oooo003o0?ooon80oooo1000003o0?ooool0oooo +3P3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool0 +0`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?oo +ool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooo +hP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?oo +o`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool0 +0?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000 +oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo +3`3oool00?l0oooohP3oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0oooohP3oool4 +00000?l0ooooo`3oool>0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?oo +o`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000 +003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3o +ool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?oo +o`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0 +ooooo`3oool?0?ooo`00o`3ooooR0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3o +oooC0?ooo`<00000303oool00`000000oooo0?ooo`3o0?ooool0oooo3`3oool00?l0ooooe03oool0 +0`000000oooo0?ooo`0;0?ooo`030000003oool0oooo0?l0ooooo`3oool?0?ooo`00o`3ooooA0?oo +o`D00000303oool700000?l0ooooo`3oool;0?ooo`00o`3ooooA0?ooo`040000003oool0oooo0000 +0?l0ooooo`3ooolO0?ooo`00o`3ooooB0?ooo`030000003oool000000?l0ooooo`3ooolO0?ooo`00 +o`3ooooC0?ooo`800000o`3ooooo0?oooal0oooo003o0?ooool0ooooo`3ooood0?ooo`00o`3ooooo +0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0ooooo`3ooood0?ooo`00 +o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0ooooo`3ooood +0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0oooo +o`3ooood0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?oo +ool0ooooo`3ooood0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo +003o0?ooool0ooooo`3ooood0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oo +oo@0oooo003o0?ooool0ooooo`3ooood0?ooo`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3o +oooo0?oooo@0oooo003o0?ooool0ooooo`3ooood0?ooo`00o`3oooo/0?ooo`800000o`3ooooo0?oo +o`H0oooo003o0?ooond0oooo00<000000?ooo`3oool0o`3ooooo0?ooo`@0oooo003o0?ooonh0oooo +00<000000?ooo`3oool0o`3ooooo0?ooo`<0oooo003o0?ooond0oooo00<000000?ooo`000000o`3o +oooo0?ooo`@0oooo003o0?ooon`0oooo00@000000?ooo`3oool00000o`3ooooo0?ooo`@0oooo003o +0?ooon/0oooo0`0000000`3oool000000000003o0?ooool0oooo0`3oool00?l0ooooh03oool01000 +0000oooo0?ooo`00003o0?ooool0oooo403oool00?l0ooooh@3oool200000?l0ooooo`3ooolA0?oo +o`00o`3ooooo0?ooool0oooom03oool00?l0ooooo`3ooooo0?oooo@0oooo003o0?ooool0ooooo`3o +oood0?ooo`00\ +\>"], + ImageRangeCache->{{{0, 1008}, {503.5, 0}} -> {-5.1993, -4.0778, 0.0107998, \ +0.0172797}}] +}, Open ]] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + StyleBox[ + RowBox[{" ", + StyleBox[" ", + FontColor->RGBColor[1, 0, 1]]}]], + StyleBox[\( (*\ \ \ \ Nach\ Einf\[UDoubleDot]gen\ von\ x = 2, \ + y = \(-2.6\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), + FontColor->RGBColor[1, 0, 1]]}]], "Input"] +}, +FrontEndVersion->"5.1 for Microsoft Windows", +ScreenRectangle->{{0, 1280}, {0, 951}}, +WindowSize->{859, 568}, +WindowMargins->{{0, Automatic}, {Automatic, 0}} +] + +(******************************************************************* +Cached data follows. If you edit this Notebook file directly, not +using Mathematica, you must remove the line containing CacheID at +the top of the file. The cache data will then be recreated when +you save this file from within Mathematica. +*******************************************************************) + +(*CellTagsOutline +CellTagsIndex->{} +*) + +(*CellTagsIndex +CellTagsIndex->{} +*) + +(*NotebookFileOutline +Notebook[{ + +Cell[CellGroupData[{ +Cell[1776, 53, 315, 6, 30, "Input"], +Cell[2094, 61, 57427, 2018, 386, 22070, 1577, "GraphicsData", "PostScript", \ +"Graphics"] +}, Open ]], + +Cell[CellGroupData[{ +Cell[59558, 2084, 315, 6, 30, "Input"], +Cell[59876, 2092, 78647, 2282, 445, 22094, 1579, "GraphicsData", \ +"PostScript", "Graphics"] +}, Open ]], + +Cell[CellGroupData[{ +Cell[138560, 4379, 315, 6, 30, "Input"], + +Cell[CellGroupData[{ +Cell[138900, 4389, 72642, 2196, 361, 21856, 1564, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[211545, 6587, 86921, 2413, 590, 25735, 1653, "GraphicsData", \ +"PostScript", "Graphics"], +Cell[298469, 9002, 85084, 2399, 513, 25866, 1663, "GraphicsData", \ +"PostScript", "Graphics"] +}, Open ]] +}, Open ]], +Cell[383580, 11405, 321, 8, 30, "Input"] +} +] +*) + + + +(******************************************************************* +End of Mathematica Notebook file. +*******************************************************************) + diff --git a/Bachelor/Numerische Mathematik/uni-muenster-skript.pdf b/Bachelor/Numerische Mathematik/uni-muenster-skript.pdf new file mode 100644 index 0000000..f70ec3a Binary files /dev/null and b/Bachelor/Numerische Mathematik/uni-muenster-skript.pdf differ -- cgit v1.2.3