(************** Content-type: application/mathematica ************** CreatedBy='Mathematica 5.0' Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 21013, 607]*) (*NotebookOutlinePosition[ 21657, 629]*) (* CellTagsIndexPosition[ 21613, 625]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ Numerik\ : \ \ Aufgabe\ \ 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ S\ 2005\ \ \ \ \ *) \), "Subtitle", FontColor->RGBColor[1, 0, 0]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[ General::spell1]\)\(\ \)\)\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Polynom\ \ vom\ \ Grade\ \ m\ \ in\ \ drei\ \ verschiedenen\ \ Formen\ \ \ \ \ \ \ \ \ \ *) \), "Section", FontColor->RGBColor[1, 0, 0]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(m = 9;\), " ", StyleBox[\( (*\ \ Grad\ des\ Polynoms\ \ *) \), FontColor->RGBColor[1, 0, 1], Background->GrayLevel[1]]}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ eps1, \(\(\ \)\(\ \)\) eps2, \(\(\ \ \)\(\ \)\) eps3\ \ und \(\(\ \)\(\ \)\) eps4\ \ sind\ \ vorgegenene\ \ Konstanten\ \ \ \ \ \ \ \ \ \ \ \ *) \ \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(eps1 = 0.001; \ \ \ eps2 = 0.005; \ \ eps3\ = \ 0.01; \ \ \ eps4 = 0.05;\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ \ \ \ \ Vorgegebene\ Nullstellen\ \ x[ i], \ \ i\ = \ 1, \ m\ \ \ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(\(x0 = 1.3;\)\), "\n", \(For\ [\ \ i := 1, i <= m, \(i++\), \ x[i]\ = \ i\ x0\ ]\), "\n", \(Table[\ PaddedForm[x[i], 4]\ , {i, 1, m}]\)}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ \ \ \ \ Berechnung\ \ der\ \ Koeffizienten\ \ \ a[ i], \ \ i\ = \ 0, \ m\ \ \ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(\(a[0] = 1;\)\), "\n", \(Do[\ a[i] = 1; \[IndentingNewLine]Do[\ a[i - j] = a[i - j - 1] - x[i]*a[i - j], {j, 1, i - 1}]; a[0] = \(-x[i]\)*a[0], {i, 1, m}]\), "\n", \(Table[AccountingForm[PaddedForm[a[i], {16, 7}]], {i, 0, m}]\)}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ 1. \ \ Produktform\ \ \ P[x]\ \ \ \ \ \ \ \ \ *) \), "Subsubtitle", FontColor->RGBColor[1, 0, 0]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(P[xx_] := \[Product]\+\(i = 1\)\%m\((xx - x[i])\)\), "\n", \(\ P[xx]\)}], "Input"], Cell[BoxData[ RowBox[{ StyleBox["(*", "Subsection", FontColor->RGBColor[1, 0, 1]], StyleBox[ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Subsection"], StyleBox[\(Grenzen \(\(\ \)\(\ \)\) f\[UDoubleDot]r\ \ die\ \ x - Werte \(\(\ \)\(\ \)\) und\ \ die\ \ y - Werte\ \ in\ \ der\ \ Graphik\ \ setzen\), "Subsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsection", FontColor->RGBColor[1, 0, 1]], StyleBox["*)", "Subsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{\(xmin = 0; \ \ xmax = 16; \ \ \ \ ymin = \(-60000\); \ \ \ \ ymax = 70000;\), "\n", RowBox[{\(<< Graphics`Colors`\), StyleBox[ RowBox[{" ", StyleBox[" ", Background->RGBColor[1, 1, 0]]}]], StyleBox[\( (*\ \ Package\ zur\ Farbdefinition\ in\ der\ Graphik\ \ *) \ \), FontColor->RGBColor[1, 0, 1], Background->RGBColor[1, 1, 0]]}], "\n", RowBox[{ RowBox[{\(Kurv[1]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(P[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {ymin, ymax}}, \[IndentingNewLine]PlotPoints \[Rule] 40, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \ PlotStyle -> Green\), "]"}]}], ";"}]}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ \ 2. \ \ Summenform\ \ \ S[ x]\ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubtitle", FontColor->RGBColor[1, 0, 0]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(S[xx_] := \[Sum]\+\(i = 0\)\%m a[i]\ xx\^i\), "\n", \(S[xx]\)}], "Input"], Cell[BoxData[ RowBox[{ RowBox[{\(Kurv[2]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(S[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, PlotPoints \[Rule] 40, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Red\), "]"}]}], ";"}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ \ 3. \ \ Hornerform\ \ \ \ H[ x]\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubtitle", FontColor->RGBColor[1, 0, 0]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(\(Hsum[xx_] = a[m];\)\ \), "\[IndentingNewLine]", \(Do\ [ Hsum[xx_] = Hsum[xx]*xx + a[m - i], {i, 1, m}]\), "\[IndentingNewLine]", \(Hsum[xx]\)}], "Input"], Cell[BoxData[ \( (*\ \ H[xx_, i_] := \(H[xx, i] = H[xx, i - 1]*xx + a[m - i]\)\ ; \ \ H[ xx_, 0] = 1\ \ \ ; \ (*\ \ Horner\ - \ Schema\ \(rekursiv\ !\)\ \ *) \ \ *) \)], "Input", Background->RGBColor[1, 1, 0]], Cell[BoxData[ RowBox[{\(Kurv[3]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(Hsum[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Blue\), "]"}]}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ Summenform\ \ \ S1[ x]\ \ mit\ \ \[CapitalADoubleDot]nderung1\ \ in\ \ a[ m - 2]\ = \ a[m - 2]\ + \ eps1\ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(Do[\ b[i] = a[i], {i, 0, m}]\), "\n", \(\(b[m - 2] = a[m - 2] + \ eps1;\)\), "\n", \(S1[xx_] := \[Sum]\+\(i = 0\)\%m\ SetPrecision[b[i], 7]\ xx\^i\), "\n", \(\ S1[xx]\)}], "Input"], Cell[BoxData[ RowBox[{\(Kurv[4]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(S1[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Brown\), "]"}]}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Summenform\ \ S2[ x]\ \ mit\ \ \[CapitalADoubleDot]nderung2\ \ in\ \ a[ m - 2]\ = \ a[m - 2]\ + \ eps2\ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(Do[\ c[i] = a[i], {i, 0, m}]\), "\n", \(\(c[m - 2] = a[m - 2] + \ eps2;\)\), "\n", \(S2[xx_] := \[Sum]\+\(i = 0\)\%m\ SetPrecision[c[i], 7]\ xx\^i\), "\n", \(S2[xx]\)}], "Input"], Cell[BoxData[ RowBox[{\(Kurv[5]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(S2[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Magenta\), "]"}]}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Summenform\ \ S3[ x]\ \ mit\ \ \[CapitalADoubleDot]nderung2\ \ in\ \ a[ m - 2]\ = \ a[m - 2]\ + \ eps3\ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(Do[\ d[i] = a[i], {i, 0, m}]\), "\n", \(\(d[m - 2] = a[m - 2] + \ eps3;\)\), "\n", \(S3[xx_] := \[Sum]\+\(i = 0\)\%m d[i]\ xx\^i\), "\n", \(S3[xx]\)}], "Input"], Cell[BoxData[ RowBox[{\(Kurv[6]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(S3[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Apricot\), "]"}]}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ Summenform\ S4[x]\ mit\ \[CapitalADoubleDot]nderung2\ in\ a[m - 2] = a[m - 2] + eps4\ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(Do[\ e[i] = a[i], {i, 0, m}]\), "\n", \(\(e[m - 2] = a[m - 2] + \ eps4;\)\), "\n", \(S4[xx_] := \[Sum]\+\(i = 0\)\%m e[i]\ xx\^i\), "\n", \(\ \ S4[xx]\)}], "Input"], Cell[BoxData[ RowBox[{\(Kurv[7]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(S4[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Brick\), "]"}]}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ Summenform\ \ \ \ S[ x]\ \ \ minus\ \ \ \ Produktform\ \ \ P[x]\ \ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(DiSumPro[xx_] := S[xx] - P[xx]\), "\n", \(\ DiSumPro[xx]\)}], "Input"], Cell[BoxData[{ StyleBox[\(dxmin = 0; \ \ dxmax = 12; \ \ dymin = \(-0.00003\); dymax = 0.00008; \ \ \ \ \ \ \ neuer\ \(\(Ma\[SZ]stab\ !!\)!\)\ ;\), FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], "\[IndentingNewLine]", RowBox[{\(Kurv[8]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(DiSumPro[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ dymin, dymax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, PlotStyle -> HotPink\), "]"}]}]}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ Hornerform\ \ \ H[ x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(DiHomPro[xx_] := Hsum[xx] - P[xx]\), "\n", \(DiHomPro[xx]\)}], "Input"], Cell[BoxData[ RowBox[{\(Kurv[9]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(DiHomPro[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ dymin, dymax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, PlotStyle -> Cobalt\), "]"}]}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ Summenform\ \ S1[ x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(DiS1mPro[xx_] := S1[xx] - P[xx]\), "\n", \(DiS1mPro[xx]\)}], "Input"], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ StyleBox[ RowBox[{ StyleBox["pdiff", "Subsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox["min", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]]}]], StyleBox["=", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox["0", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]]}], StyleBox[";", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[\(pdiffmax = 50000\), FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[";", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]]}], StyleBox[" ", "Subsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[\( (*\ neuer\ Ma\[SZ]stab\ \ f\[UDoubleDot]r\ die\ \(Differenzkurve n\)*) \), FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]]}], "\n", RowBox[{\(Kurv[10]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(DiS1mPro[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {pdiffmin, pdiffmax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Orange\), "]"}]}]}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ Summenform\ \ \ \ S2[ x]\ \ \ \ \ minus\ \ \ \ Produktform\ \ \ \ P[x]\ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{\(DiS2mPro[xx_] := S2[xx] - P[xx]\), "\n", \(DiS2mPro[ xx]\), "\n", RowBox[{\(Kurv[11]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(DiS2mPro[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ pdiffmin, pdiffmax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> ForestGreen\), "]"}]}]}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ Summenform\ \ S3[ x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{\(DiS3mPro[xx_] := S3[xx] - P[xx]\), "\n", \(DiS3mPro[ xx]\), "\n", RowBox[{\(Kurv[12]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(DiS3mPro[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {pdiffmin, pdiffmax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> IndianRed\), "]"}]}]}], "Input"], Cell[BoxData[ \(\(liste1 = {Green, Red, Blue, HotPink, Brown, Magenta, Brick, Apricot, DarkGreen, Cobalt, Orange, IndianRed, ForestGreen};\)\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Summenform\ \ \ S4[ x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ *) \), "Subsection", FontColor->RGBColor[0, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{\(DiS4mPro[xx_] := S4[xx] - P[xx]\), "\n", \(DiS4mPro[ xx]\), "\n", RowBox[{\(Kurv[13]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \(DiS4mPro[xx], {xx, xmin, xmax}, PlotRange -> {{xmin, xmax}, {\ pdiffmin, pdiffmax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> DarkGreen\), "]"}]}]}], "Input"], Cell[BoxData[ RowBox[{" ", StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ \)\) eins\ \ bis\ \ sieben\ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 0]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[\ Kurv[1], Kurv[2], Kurv[3], Kurv[4], Kurv[5], Kurv[6], Kurv[7]]\)], "Input"], Cell[BoxData[ RowBox[{" ", StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ \)\) acht\ \ und\ \ neun\ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 0]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[Kurv[8], Kurv[9]]\)], "Input"], Cell[BoxData[ RowBox[{" ", StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \ \)\) zehn\ \ bis\ \ dreizehn\ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 0]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[Kurv[10], Kurv[11], Kurv[12], Kurv[13]]\)], "Input"], Cell[BoxData[{ RowBox[{ StyleBox[\(diffxmin = \(-0.010\); diffxmax = 0.5; diffymin = \(-0.000000002\); diffymax = 0.000000003;\), FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[\( (*\ \ neuer\ \(\(Ma\[SZ]stab!!\)!\)\ \ \ \(f\[UDoubleDot] r\)\ die\ Differenzkurven\ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]]}], "\n", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", " ", \({\ DiSumPro[xx], DiHomPro[xx], DiS1mPro[xx], DiS2mPro[xx]}, {xx, diffxmin, diffxmax}, \[IndentingNewLine]PlotRange \[Rule] {{diffxmin, diffxmax}, {\ diffymin, diffymax}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, \ PlotStyle -> {\ HotPink, Cobalt, Orange, ForestGreen\ }\), "]"}]}], "Input"], Cell[BoxData[ RowBox[{ StyleBox[" ", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[\( (*\ Neuer\ \ Ma\[SZ]stab\ \ f\[UDoubleDot]\ r\ \ die\ \ Differenzkurvenkurven\ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \({\ DiSumPro[xx], DiHomPro[xx], DiS1mPro[xx]}, {xx, 0, 12}, PlotPoints \[Rule] 100, PlotRange -> {{0, 2}, {\(-0.000000005\), 0.000000005}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> {HotPink, Cobalt, Orange}\), "]"}]], "Input"], Cell[BoxData[{ RowBox[{ StyleBox[\(xplmin = 11.6999999999; \ \ xplmax = 11.7000000001;\), FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[" ", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]], StyleBox[\( (*\ neuer\ Ma\[SZ]stab\ f\[UDoubleDot]r\ die\ Kurven\ 1\ bis\ 3\ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[0, 1, 1]]}], "\n", RowBox[{\(Kurv[14]\), "=", RowBox[{ StyleBox["Plot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \({P[xx], S[xx], Hsum[xx]\ }, {xx, xplmin - 0.0000049998, xplmax + 0.0000011}, PlotRange -> {{xplmin, xplmax}, {\(-0.000000006\), 0.000000006}}, AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> {Green, Red, Blue}\), "]"}]}]}], "Input"] }, FrontEndVersion->"5.0 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{1016, 651}, WindowMargins->{{0, Automatic}, {Automatic, 0}} ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1754, 51, 280, 6, 59, "Input"], Cell[2037, 59, 133, 2, 30, "Input"], Cell[2173, 63, 246, 6, 54, "Input"], Cell[2422, 71, 197, 4, 30, "Input"], Cell[2622, 77, 324, 7, 46, "Input"], Cell[2949, 86, 113, 2, 30, "Input"], Cell[3065, 90, 233, 5, 46, "Input"], Cell[3301, 97, 179, 3, 70, "Input"], Cell[3483, 102, 245, 5, 46, "Input"], Cell[3731, 109, 293, 6, 90, "Input"], Cell[4027, 117, 200, 5, 49, "Input"], Cell[4230, 124, 108, 2, 71, "Input"], Cell[4341, 128, 750, 23, 46, "Input"], Cell[5094, 153, 885, 21, 90, "Input"], Cell[5982, 176, 215, 5, 49, "Input"], Cell[6200, 183, 99, 2, 71, "Input"], Cell[6302, 187, 399, 9, 50, "Input"], Cell[6704, 198, 221, 5, 49, "Input"], Cell[6928, 205, 201, 5, 70, "Input"], Cell[7132, 212, 247, 5, 46, "Input"], Cell[7382, 219, 358, 9, 50, "Input"], Cell[7743, 230, 288, 6, 46, "Input"], Cell[8034, 238, 216, 4, 113, "Input"], Cell[8253, 244, 357, 9, 30, "Input"], Cell[8613, 255, 284, 6, 46, "Input"], Cell[8900, 263, 214, 4, 113, "Input"], Cell[9117, 269, 359, 9, 50, "Input"], Cell[9479, 280, 284, 6, 46, "Input"], Cell[9766, 288, 196, 4, 113, "Input"], Cell[9965, 294, 359, 9, 50, "Input"], Cell[10327, 305, 248, 6, 46, "Input"], Cell[10578, 313, 200, 4, 113, "Input"], Cell[10781, 319, 357, 9, 30, "Input"], Cell[11141, 330, 231, 5, 46, "Input"], Cell[11375, 337, 96, 2, 50, "Input"], Cell[11474, 341, 634, 13, 70, "Input"], Cell[12111, 356, 229, 5, 46, "Input"], Cell[12343, 363, 97, 2, 50, "Input"], Cell[12443, 367, 389, 9, 50, "Input"], Cell[12835, 378, 220, 5, 46, "Input"], Cell[13058, 385, 95, 2, 50, "Input"], Cell[13156, 389, 1741, 48, 70, "Input"], Cell[14900, 439, 236, 5, 46, "Input"], Cell[15139, 446, 454, 10, 90, "Input"], Cell[15596, 458, 230, 5, 46, "Input"], Cell[15829, 465, 450, 10, 90, "Input"], Cell[16282, 477, 168, 2, 30, "Input"], Cell[16453, 481, 226, 5, 46, "Input"], Cell[16682, 488, 452, 10, 90, "Input"], Cell[17137, 500, 285, 6, 46, "Input"], Cell[17425, 508, 109, 2, 30, "Input"], Cell[17537, 512, 283, 6, 46, "Input"], Cell[17823, 520, 55, 1, 30, "Input"], Cell[17881, 523, 287, 6, 46, "Input"], Cell[18171, 531, 77, 1, 30, "Input"], Cell[18251, 534, 1061, 24, 90, "Input"], Cell[19315, 560, 357, 10, 30, "Input"], Cell[19675, 572, 398, 9, 50, "Input"], Cell[20076, 583, 933, 22, 70, "Input"] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)