(************** Content-type: application/mathematica ************** CreatedBy='Mathematica 5.0' Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 53396, 1444]*) (*NotebookOutlinePosition[ 54102, 1468]*) (* CellTagsIndexPosition[ 54058, 1464]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ RowBox[{" ", StyleBox[\( (*\ \ \ \ \ \ \ \ Numerik : \ \ Aufgabe\ \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\ S\ 2005\ *) \), "Subtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[" ", "Subtitle", FontColor->RGBColor[1, 0, 0]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{" ", StyleBox[\( (*\ \ \ \ Simulation\ eines\ L - stelligen\ Rechners\ auf\ einem\ n - stelligen\ Rechner\ \ \ *) \), "Subsubtitle", FontColor->RGBColor[1, 0, 0]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ StyleBox[\( (*\ \ \ Berechnung\ des\ Exponenten\ zur\ Verschiebung\ und\ \ Ermitteln\ des\ Vorzeichens\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(PaddedForm[1. + 0.6*10^\(-15\), {18, 16}]\), StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ Stellenzahl\ ?\ \ Abschneiden\ oder\ \(\(Runden\)\(\ \ \ \)\(?\)\)\ \ *) \), "Subsubtitle", FontColor->RGBColor[1, 0, 0], Background->RGBColor[1, 1, 0]]}]], "Input"], Cell[BoxData[{\(signum[xN_] := If[xN < 0, \(-1\), 1]\), "\[IndentingNewLine]", RowBox[{"st", "=", \(IntegerPart[$MachinePrecision\ + 2]\), StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ st\ wird\ beim\ Abschneiden\ und\ Runden\ \ gebraucht, \ \(\(warum\)\(\ \)\(?\)\)*) \), "Subsubtitle", FontColor->RGBColor[1, 0, 0], Background->RGBColor[1, 1, 0]]}]}], "Input"], Cell[BoxData[ RowBox[{\(expo[xN_, L_] := If[\ Abs[xN] < 1, L - IntegerPart[Log[10. , Abs[xN]]], L - IntegerPart[Log[10. , Abs[xN]]] - 1]\), " ", "\[IndentingNewLine]", " \ ", StyleBox[\( (*\ Verschiebung\ beim\ Abschneiden\ bzw . \ Runden*) \), "Subsubtitle", FontColor->RGBColor[1, 0, 0], Background->RGBColor[1, 1, 0]]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox["(*", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[\(Funktionsunterprogramm\ zum\ Abschneiden\ auf\ L\ Stellen\), "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[\(\(\ \)\(\ \ \ \)\), "Subsection", FontColor->RGBColor[1, 0, 1]], StyleBox["*)", "Subsubtitle", FontColor->RGBColor[1, 0, 0]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Abschn[xN_, L_] := \[IndentingNewLine]\ \ \ \ \ \ \ If[xN == 0, 0. , signum[xN]* Floor[Abs[xN]*10. \^expo[xN, L] + 3. *10. \^\((L - st)\)]*10. \^\(-expo[xN, L]\)]\)], "Input"], Cell[BoxData[ RowBox[{ StyleBox["(*", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[\(Funktionsunterprogramm\ zum\ Runden\ auf\ L\ Stellen\), "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[" ", "Subsection", FontColor->RGBColor[1, 0, 1]], StyleBox["*)", "Subsubtitle", FontColor->RGBColor[1, 0, 0]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(\(\(Runden[xN_, L_]\)\(:=\)\(\ \)\(If[xN == 0, 0. , signum[xN]* Floor[Abs[xN]*10. \^expo[xN, L] + 0.5 + 3. *10. \^\((L - st)\)]*10. \^\(-expo[xN, L]\)]\)\(\t\t\t\ \)\)\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \(Be ispiel\)\ zum\ Runden\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Runden[\(-0.00034567\), 4]\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Alle\ vorgegebenen\ n - Werte\ in\ einer\ Liste\ anlegen\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(\(nlist = {10, 50, 100, 200, 300, 500, 800, 1000};\)\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Alle\ Rechengenauigkeiten\ \((L\ Stellen)\)\ \ in\ \ einer\ Liste\ anlegen\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(\(listgen = {3, 6, 12};\)\)], "Input"], Cell[BoxData[ RowBox[{ StyleBox["(*", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], RowBox[{ StyleBox[\(Berechnung\ der\ Summen\ f\[UDoubleDot]r\ alle \(\(\ \)\(\ \ \)\) n - Werte\), "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[",", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[\(\(a lle\)\ Rechengenauigkeiten\ \((L)\)\), "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[",", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]", StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 0]]}]], StyleBox[\(mit\ Abschneiden\ und\ Runden\), "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[",", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox[\(wachsend\ und\ fallend\ mit\ den\ zugeh\[ODoubleDot]rigen\ \ Differenzen\), "Subsubtitle", FontColor->RGBColor[1, 0, 0]]}], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], StyleBox["*)", "Subsubtitle", FontColor->RGBColor[1, 0, 0]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{" ", RowBox[{"Do", "[", " ", RowBox[{ RowBox[{"{", " ", RowBox[{\(jab = 2 j - 1\), ",", \(jru = 2 j\), ",", " ", \(L = listgen[\([j]\)]\), ",", "\[IndentingNewLine]", StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\ \[UDoubleDot]r \(\(\ \)\(\ \)\) Abschneiden\ \ und\ \ Wachsen\ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[1, 1, 0]], "\n", "\t ", \(Do[{summe[0] = 0, diff = 0, Do[{summe[i]\ = \ Abschn[summe[i - 1] + Abschn[1. /i, L], L], \n\t\t\t\t\tdiff = Abschn[ diff + summe[i] - summe[i - 1] - Abschn[1. /i, L], L]}, {i, 1, nlist[\([n]\)]}], \n\ \ \t\ \t\ \ \ \ Tabelle[4 n - 3, jab] = \ \(SuAbwa[n, j] = summe[nlist[\([n]\)]]\), \ Tabelle[4 n - 2, jab] = \(DiAbwa[n, j] = diff\)}, {n, 1, 8}]\), ",", "\[IndentingNewLine]", StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ Berechnung\ \ der\ Summen\ \ f\ \[UDoubleDot]r\ \ Runden\ \ \ und\ \ \ \ Wachsen\ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[1, 1, 0]], " ", "\n", " ", \(Do[{summe[0] = 0, diff = 0, Do[{summe[i]\ = \ Runden[summe[i - 1] + Runden[1. /i, L], L], \n\t\t\t\t\tdiff = Runden[ diff + summe[i] - summe[i - 1] - Runden[1. /i, L], L]}, {i, 1, nlist[\([n]\)]}], \n\ \ \ \t\t\ \tTabelle[4 n - 3, jru] = \(SuRuwa[n, j] = summe[nlist[\([n]\)]]\), \ Tabelle[4 n - 2, jru] = \ \(DiRuwa[n, j] = diff\)}, {n, 1, 8}]\), ",", " \t", "\[IndentingNewLine]", " ", StyleBox[\( (*\ \ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\ \[UDoubleDot]r\ \ Abschneiden\ \ und \(\(\ \)\(\ \)\) Fallen\ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[1, 1, 0]], StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], "\n", "\t ", \(Do[{summe[0] = 0, diff = 0, Do[{summe[i] = \ Abschn[ summe[i - 1] + Abschn[1. /\((nlist[\([n]\)] - i + 1)\), L], L], \n\t\t\t\t\ \ diff = Abschn[ diff + summe[i] - summe[i - 1] - Abschn[1. /\((nlist[\([n]\)] - i + 1)\), L], L]}, {\ i, 1, nlist[\([n]\)]}], \n\t\t\t\t\tTabelle[ 4 n - 1, jab] = \(SuAbfal[n, j] = summe[nlist[\([n]\)]]\), Tabelle[4 n, jab] = \(DiAbfal[n, j] = diff\)}, {n, 1, 8}]\), ",", "\[IndentingNewLine]", StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\ \[UDoubleDot]r\ \ Runden\ \ und \(\(\ \)\(\ \)\) Fallen\ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 0], Background->RGBColor[1, 1, 0]], "\n", " \t", \(Do[{summe[0] = 0, diff = 0, Do[{summe[i]\ = \ Runden[ summe[i - 1] + Runden[1. /\((nlist[\([n]\)] - i + 1)\), L], L], \n\t\t\t\ \ \ \ \ diff = Runden[ diff + summe[i] - summe[i - 1] - Runden[1. /\((nlist[\([n]\)] - i + 1)\), L], L]}, {i, 1, nlist[\([n]\)]}], \n\t\t\t\t\tTabelle[ 4 n - 1, jru] = \(SuRufal[n, j] = summe[nlist[\([n]\)]]\), Tabelle[4 n, jru] = \(DiRufal[n, j] = diff\)}, {n, 1, 8}]\)}], "}"}], ",", "\t\t", "\n", " \t \t\t", \({j, 1, 3}\)}], "]"}]}]], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Berechnung\ der\ Summe, \ wachsend\ und\ mit\ voller\ Genauigkeit\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Do[\ {sumgenwa = 0, Do[sumgenwa = sumgenwa + 1. /i, {i, 1, nlist[\([n]\)]}], \n\t\tTabelle[4 n - 3, 7] = sumgenwa}, {n, 1, 8}]\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ \ Berechnung\ der\ Summe, \ \(fall end\)\ und\ mit\ voller\ Genauigkeit\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Do[\ {sumgenfal = 0, Do[sumgenfal = sumgenfal + 1. /\((nlist[\([n]\)] - i + 1)\), {i, 1, nlist[\([n]\)]}], \n\t\t\tTabelle[4 n - 1, 7] = sumgenfal}, {n, 1, 8}]\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ \ Differenzen\ \ bei\ voller\ Genauigkeit \(\(\ \ \)\(\ \)\) Null\ \ setzen\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Do[Tabelle[2 n, 7] = \(diff = 0\), {n, 1, 16}]\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ \ Tabelle\ beschriften\ , \ wachsen\ \ und\ \ fallend\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ RowBox[{"Do", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{\(Tabelle[4 n - 3, \(-1\)]\), "=", "\"\<\!\(\* StyleBox[\"wa\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ",", RowBox[{\(Tabelle[4 n - 1, \(-1\)]\), "=", " ", "\"\<\!\(\* StyleBox[\"fa\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}]}], "}"}], ",", " ", \({\ n, 1, 8}\)}], "]"}], "\n", \(Do[{Tabelle[4 n - 2, \(-1\)] = "\", Tabelle[4 n, \(-1\)] = \ "\"}, \ {\ n, 1, 8}]\)}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Tabelle\ beschriften\ , \ \ n - Werte\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ \(Do[Tabelle[4 n - 3, 0] = \(Tabelle[4 n - 1, 0] = \ nlist[\([n]\)]\), {n, 1, 8}]\ \), "\n", \(Do[Tabelle[4 n - 2, 0] = \(Tabelle[4 n, 0] = \ "\< \>"\), {n, 1, 8}]\)}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Tabelle\ beschriften, \ \ \ \[CapitalUDoubleDot]berschriften \(\(\ \)\(\ \)\) angeben\ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[{ RowBox[{ RowBox[{\(Tabelle[0, 0]\), "=", "\"\<\!\(\* StyleBox[\(\\\ \\\ \* StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\* StyleBox[\"n\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\) \>\""}], ";", RowBox[{\(Tabelle[0, 1]\), "=", "\"\<\!\(\* StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* StyleBox[\"Absch\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";", RowBox[{\(Tabelle[0, 2]\), "=", "\"\<\!\(\* StyleBox[\(\\\ \* StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\* StyleBox[\"Rund\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";"}], "\n", RowBox[{ RowBox[{\(Tabelle[0, 3]\), "=", "\"\< \!\(\* StyleBox[\"Abschn\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";", RowBox[{\(Tabelle[0, 4]\), "=", "\"\<\!\(\* StyleBox[\(\\\ \\\ \\\ \* StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\* StyleBox[\"Runden\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";", RowBox[{\(Tabelle[0, 5]\), "=", "\"\< \!\(\* StyleBox[\"Abschnei\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";"}], "\n", RowBox[{ RowBox[{\(Tabelle[0, 6]\), "=", "\"\< \!\(\* StyleBox[\"Runden\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ";", RowBox[{\(Tabelle[0, 7]\), "=", "\"\< \!\(\* StyleBox[\"Volle\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\* StyleBox[\"Genauigkeit\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \ 0]]\)\>\""}], ";", \(Tabelle[0, \(-1\)] = "\< \>"\), "\t", ";", "\[IndentingNewLine]"}]}], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Stellenzahlen\ f\[UDoubleDot]r\ die\ Ausgabe\ \ festlegen\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(\(tabgen = {4, 4, {4, 3}, {4, 3}, {7, 6}, {7, 6}, {13, 12}, {13, 12}, {17, 15}};\)\)], "Input"], Cell[BoxData[ StyleBox[\( (*\ \ \ Ausgabe\ der\ \ vollst\[ADoubleDot]ndigen\ \ Tabelle\ \ mit\ Beschriftung\ \ \ *) \), "Subsection", FontColor->RGBColor[1, 0, 1]]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(TableForm[ Table[AccountingForm[ PaddedForm[Tabelle[n, j - 2], tabgen[\([j]\)]]], \n\t\t{n, 0, 32}, {j, 1, 9}], TableSpacing -> {2, 1}]\)], "Input"], Cell[BoxData[ \(<< Graphics`Colors`\)], "Input"], Cell[BoxData[ RowBox[{ StyleBox[\( (*\ \ \ \ \ \ \ \ Graphische\ \ Darstellung\ \ f\[UDoubleDot]r\ \ die\ \ Rechengenauigkeit\ \ L \ = 3\ \ \ \ \ \ *) \), "Section", FontColor->RGBColor[1, 0, 0]], " "}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ 1. \ \ \ \ \ \ Abschneiden \(\(\ \)\(\ \ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Tabpkte[1]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 1]}, {n, 1, 8}], PlotJoined\ -> \ False, \n\t PlotRange -> {{0, 1000}, {2.0, 7.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Tabsp[1]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 1]}, {n, 1, 8}], PlotJoined\ -> \ True, \n PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Red, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ 2. \ \ \ \ \ \ \ Runden \(\(\ \)\(\ \ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Tabpkte[2]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 2]}, {n, 1, 8}], PlotJoined\ \[Rule] False, \n\t PlotRange -> {{0, 1000}, {2.0, 7.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Tabsp[2]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 2]}, {n, 1, 8}], PlotJoined\ -> \ True, \n PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Green, AspectRatio -> 0.6, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], RowBox[{ StyleBox["(*", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[\(3. \ \ \ \ \ \ \ \ Abschneiden \(\(\ \)\(\ \)\) und\ \ fallend\), "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["*)", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Tabpkte[3]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 1]}, {n, 1, 8}], PlotJoined\ \[Rule] False, \n\t PlotRange -> {{0, 1000}, {2.0, 7.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Tabsp[3]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 1]}, {n, 1, 8}], PlotJoined\ -> \ True, \n\t PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Brown, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ 4. \ \ \ \ \ \ Runden \(\(\ \)\(\ \ \)\) und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Tabpkte[4]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 2]}, {n, 1, 8}], PlotJoined\ -> \ False, \n PlotRange -> {{0, 1000}, {2.0, 7.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Tabsp[4]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 2]}, {n, 1, 8}], PlotJoined\ -> \ True, \n PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Blue, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[CapitalUDoubleDot]berlagerung\ \ der\ \ vier\ \ Funktionen\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[Tabsp[1], Tabsp[2], Tabsp[3], Tabsp[4], Tabpkte[1], Tabpkte[2], Tabpkte[3], Tabpkte[4], Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \ Abschneiden \(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ l\) = 3\ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(AbwTabpkte[1]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 1]}, {n, 1, 8}], PlotJoined\ -> \ False, \n\t PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(AbwTabsp[1]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 1]}, {n, 1, 8}], PlotJoined\ -> \ True, \n\t PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweixhungen : \ \ \ \ \ \ \ Runden \ \(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \ 3\ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(AbwTabpkte[2]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 2]}, {n, 1, 8}], PlotJoined\ \[Rule] False, \n\t PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(AbwTabsp[2]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 2]}, {n, 1, 8}], PlotJoined\ \[Rule] True, \n\t PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], RowBox[{ StyleBox["(*", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{ StyleBox["3.", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ StyleBox["Abweichungen", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[":", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ StyleBox["Abschneiden", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[\(\(\ \)\(\ \)\), "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox["und", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox["fallend", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["l", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}]}]}], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["=", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["3", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["*)", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(AbwTabpkte[3]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 1]}, {n, 1, 8}], PlotJoined\ \[Rule] False, \n\t PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(AbwTabsp[3]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 1]}, {n, 1, 8}], PlotJoined\ \[Rule] True, \n\t PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \ Runden \(\(\ \)\(\ \)\) und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \ 3\ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(AbwTabpkte[4]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 2]}, {n, 1, 8}], PlotJoined\ -> \ False, \nPlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(AbwTabsp[4]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 2]}, {n, 1, 8}], PlotJoined\ -> \ True, \nPlotRange -> {{0, 1000}, {\(-0.5\), 1.5}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[CapitalUDoubleDot]\ berlagerung\ \ der\ \ vier\ \ Abweichungen\ \ \ \ \ \ \ \ l\ = \ 3\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[AbwTabsp[1], AbwTabsp[2], AbwTabsp[3], AbwTabsp[4], AbwTabpkte[1], AbwTabpkte[2], AbwTabpkte[3], AbwTabpkte[4], Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \ Abschneiden \(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ l\)\ = \ \ 6\ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Ab6Tabpkte[1]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 3]}, {n, 1, 8}], PlotJoined\ -> \ False, \n\t PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Ab6Tabsp[1]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 3]}, {n, 1, 8}], PlotJoined\ -> \ True, \n\t PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweichungen : \ \ \ \ \ \ \ Runden \ \(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \ 6\ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Ab6Tabpkte[2]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 4]}, {n, 1, 8}], PlotJoined\ \[Rule] False, \n\t PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Ab6Tabsp[2]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 4]}, {n, 1, 8}], PlotJoined\ \[Rule] True, \n\t PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], RowBox[{ StyleBox["(*", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{ StyleBox["3.", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ StyleBox["Abweichungen", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[":", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ StyleBox["Abschneiden", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[\(\(\ \)\(\ \)\), "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox["und", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox["fallend", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["l", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}]}]}], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["=", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["6", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["*)", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Ab6Tabpkte[3]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 3]}, {n, 1, 8}], PlotJoined\ \[Rule] False, \n\t PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Ab6Tabsp[3]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 3]}, {n, 1, 8}], PlotJoined\ \[Rule] True, \n\t PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \ Runden \(\(\ \)\(\ \)\) und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \ 6\ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Ab6Tabpkte[4]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 4]}, {n, 1, 8}], PlotJoined\ -> \ False, \n PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Ab6Tabsp[4]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 4]}, {n, 1, 8}], PlotJoined\ -> \ True, \n PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[CapitalUDoubleDot]berlagerung\ \ der\ \ \ Abweichungen\ \ \ \ \ eins\ \ und\ \ drei\ \ \((\ Abschneiden\ )\)\ \ \ l\ = \ 6\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[Ab6Tabsp[1], Ab6Tabsp[3], Ab6Tabpkte[1], Ab6Tabpkte[3], Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[CapitalUDoubleDot]\ berlagerung\ \ der\ \ \ \ Abweichungen\ \ \ \ zwei\ \ \ und\ \ vier\ \ \ \((\ Runden\ )\)\ \ l\ = \ 6\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[Ab6Tabsp[2], Ab6Tabsp[4], Ab6Tabpkte[2], Ab6Tabpkte[4], Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \ Abschneiden \(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ l\)\ = \ \ 12\ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Ab12Tabpkte[1]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 5]}, {n, 1, 8}], PlotJoined\ -> \ False, \n\t PlotRange -> {{0, 1000}, {\(-0.0000000005\), 0.0000000025}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Ab12Tabsp[1]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 5]}, {n, 1, 8}], PlotJoined\ -> \ True, \n\t PlotRange -> {{0, 1000}, {\(-0.0000000005\), 0.0000000025}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweichungen : \ \ \ \ \ \ \ Runden \ \(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \ 12\ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Ab12Tabpkte[2]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 6]}, {n, 1, 8}], PlotJoined\ \[Rule] False, \n\t PlotRange -> {{0, 1000}, {\(-0.0000000001\), 0.0000000002}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Ab12Tabsp[2]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 6]}, {n, 1, 8}], PlotJoined\ \[Rule] True, \n\t PlotRange -> {{0, 1000}, {\(-0.0000000001\), 0.0000000002}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green, AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], RowBox[{ StyleBox["(*", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{ StyleBox["3.", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ StyleBox["Abweichungen", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[":", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], RowBox[{ StyleBox["Abschneiden", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[\(\(\ \)\(\ \)\), "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox["und", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox["fallend", "Subsubsection", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["l", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}]}]}], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["=", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["12", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}], StyleBox[" ", "Subsubtitle", FontColor->RGBColor[1, 0, 1]], StyleBox["*)", "Subsubtitle", FontColor->RGBColor[1, 0, 1]]}]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Ab12Tabpkte[3]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 5]}, {n, 1, 8}], PlotJoined\ \[Rule] False, \n\t PlotRange -> {{0, 1000}, {\(-0.000000001\), 0.0000000025}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Ab12Tabsp[3]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 5]}, {n, 1, 8}], PlotJoined\ \[Rule] True, \n\t PlotRange -> {{0, 1000}, {\(-0.000000001\), 0.0000000025}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown, AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ a126(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \ Runden \(\(\ \)\(\ \)\) und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \ 12\ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ RowBox[{\(Ab12Tabpkte[4]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 6]}, {n, 1, 8}], PlotJoined\ -> \ False, \n PlotRange -> {{0, 1000}, {\(-0.00000000002\), 0.00000000009}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{\(Ab12Tabsp[4]\), "=", RowBox[{ StyleBox["ListPlot", "Subsubtitle", FontColor->RGBColor[1, 0, 0]], "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 6]}, {n, 1, 8}], PlotJoined\ -> \ True, \n PlotRange -> {{0, 1000}, {\(-0.00000000002\), 0.00000000009}}, Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue, AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>", AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[CapitalUDoubleDot]berlagerung\ \ der\ \ \ Abweichungen\ \ \ \ \ eins\ \ und\ \ drei\ \ \((\ Abschneiden\ )\)\ \ \ l\ = \ 12\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[Ab12Tabsp[1], Ab12Tabsp[3], Ab12Tabpkte[1], Ab12Tabpkte[3], Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"], Cell[BoxData[ RowBox[{ StyleBox[ RowBox[{" ", StyleBox[" ", "Subsubtitle"]}]], StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[CapitalUDoubleDot]\ berlagerung\ \ der\ \ \ \ Abweichungen\ \ \ \ zwei\ \ \ und\ \ vier\ \ \ \((\ Runden\ )\)\ \ \ l\ = \ 12\ \ \ \ \ \ \ \ \ \ \ \ \ *) \), "Subsubsection", FontColor->RGBColor[1, 0, 1]]}]], "Input", Background->RGBColor[0, 1, 0]], Cell[BoxData[ \(Show[Ab12Tabsp[2], Ab12Tabsp[4], Ab12Tabpkte[2], Ab12Tabpkte[4], Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"] }, FrontEndVersion->"5.0 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 685}}, WindowSize->{1018, 650}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{Automatic, Automatic} ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1754, 51, 406, 10, 59, "Input"], Cell[2163, 63, 299, 7, 49, "Input"], Cell[2465, 72, 232, 5, 46, "Input"], Cell[2700, 79, 397, 10, 30, "Input"], Cell[3100, 91, 509, 11, 50, "Input"], Cell[3612, 104, 521, 10, 50, "Input"], Cell[4136, 116, 563, 17, 46, "Input"], Cell[4702, 135, 229, 4, 51, "Input"], Cell[4934, 141, 544, 17, 46, "Input"], Cell[5481, 160, 234, 5, 31, "Input"], Cell[5718, 167, 177, 4, 46, "Input"], Cell[5898, 173, 59, 1, 30, "Input"], Cell[5960, 176, 217, 5, 46, "Input"], Cell[6180, 183, 85, 1, 30, "Input"], Cell[6268, 186, 224, 5, 46, "Input"], Cell[6495, 193, 58, 1, 30, "Input"], Cell[6556, 196, 1617, 49, 66, "Input"], Cell[8176, 247, 4905, 99, 390, "Input"], Cell[13084, 348, 224, 5, 46, "Input"], Cell[13311, 355, 191, 4, 50, "Input"], Cell[13505, 361, 239, 5, 46, "Input"], Cell[13747, 368, 224, 4, 50, "Input"], Cell[13974, 374, 227, 5, 46, "Input"], Cell[14204, 381, 80, 1, 30, "Input"], Cell[14287, 384, 212, 5, 46, "Input"], Cell[14502, 391, 592, 12, 50, "Input"], Cell[15097, 405, 187, 4, 46, "Input"], Cell[15287, 411, 228, 4, 50, "Input"], Cell[15518, 417, 233, 5, 46, "Input"], Cell[15754, 424, 1784, 37, 90, "Input"], Cell[17541, 463, 207, 5, 46, "Input"], Cell[17751, 470, 139, 3, 30, "Input"], Cell[17893, 475, 223, 5, 46, "Input"], Cell[18119, 482, 195, 4, 50, "Input"], Cell[18317, 488, 52, 1, 30, "Input"], Cell[18372, 491, 278, 7, 49, "Input"], Cell[18653, 500, 417, 10, 46, "Input"], Cell[19073, 512, 495, 11, 70, "Input"], Cell[19571, 525, 445, 10, 50, "Input"], Cell[20019, 537, 412, 10, 46, "Input"], Cell[20434, 549, 502, 11, 70, "Input"], Cell[20939, 562, 447, 10, 50, "Input"], Cell[21389, 574, 774, 23, 46, "Input"], Cell[22166, 599, 500, 11, 70, "Input"], Cell[22669, 612, 449, 10, 50, "Input"], Cell[23121, 624, 411, 10, 46, "Input"], Cell[23535, 636, 522, 11, 70, "Input"], Cell[24060, 649, 446, 10, 50, "Input"], Cell[24509, 661, 434, 11, 46, "Input"], Cell[24946, 674, 168, 2, 30, "Input"], Cell[25117, 678, 454, 11, 46, "Input"], Cell[25574, 691, 542, 12, 70, "Input"], Cell[26119, 705, 539, 12, 70, "Input"], Cell[26661, 719, 449, 11, 46, "Input"], Cell[27113, 732, 549, 12, 70, "Input"], Cell[27665, 746, 546, 12, 70, "Input"], Cell[28214, 760, 2463, 71, 46, "Input"], Cell[30680, 833, 547, 12, 70, "Input"], Cell[31230, 847, 544, 12, 70, "Input"], Cell[31777, 861, 495, 12, 46, "Input"], Cell[32275, 875, 560, 11, 70, "Input"], Cell[32838, 888, 557, 11, 70, "Input"], Cell[33398, 901, 458, 12, 46, "Input"], Cell[33859, 915, 199, 3, 50, "Input"], Cell[34061, 920, 464, 12, 46, "Input"], Cell[34528, 934, 548, 12, 70, "Input"], Cell[35079, 948, 545, 12, 70, "Input"], Cell[35627, 962, 449, 11, 46, "Input"], Cell[36079, 975, 557, 12, 70, "Input"], Cell[36639, 989, 554, 12, 70, "Input"], Cell[37196, 1003, 2463, 71, 46, "Input"], Cell[39662, 1076, 553, 12, 70, "Input"], Cell[40218, 1090, 550, 12, 70, "Input"], Cell[40771, 1104, 495, 12, 46, "Input"], Cell[41269, 1118, 577, 12, 70, "Input"], Cell[41849, 1132, 574, 12, 70, "Input"], Cell[42426, 1146, 477, 12, 46, "Input"], Cell[42906, 1160, 136, 2, 30, "Input"], Cell[43045, 1164, 480, 12, 46, "Input"], Cell[43528, 1178, 136, 2, 30, "Input"], Cell[43667, 1182, 465, 12, 46, "Input"], Cell[44135, 1196, 563, 12, 70, "Input"], Cell[44701, 1210, 559, 12, 70, "Input"], Cell[45263, 1224, 450, 11, 46, "Input"], Cell[45716, 1237, 569, 12, 70, "Input"], Cell[46288, 1251, 566, 12, 70, "Input"], Cell[46857, 1265, 2463, 71, 46, "Input"], Cell[49323, 1338, 566, 12, 70, "Input"], Cell[49892, 1352, 563, 12, 70, "Input"], Cell[50458, 1366, 496, 12, 46, "Input"], Cell[50957, 1380, 591, 12, 70, "Input"], Cell[51551, 1394, 588, 12, 70, "Input"], Cell[52142, 1408, 478, 12, 46, "Input"], Cell[52623, 1422, 140, 2, 30, "Input"], Cell[52766, 1426, 483, 12, 46, "Input"], Cell[53252, 1440, 140, 2, 30, "Input"] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)