summaryrefslogtreecommitdiffstats
path: root/Bachelor/Numerische Mathematik/Num05Aufg1.nb
diff options
context:
space:
mode:
authorSven Eisenhauer <sven@sven-eisenhauer.net>2023-11-10 15:11:48 +0100
committerSven Eisenhauer <sven@sven-eisenhauer.net>2023-11-10 15:11:48 +0100
commit33613a85afc4b1481367fbe92a17ee59c240250b (patch)
tree670b842326116b376b505ec2263878912fca97e2 /Bachelor/Numerische Mathematik/Num05Aufg1.nb
downloadStudium-master.tar.gz
Studium-master.tar.bz2
add new repoHEADmaster
Diffstat (limited to 'Bachelor/Numerische Mathematik/Num05Aufg1.nb')
-rw-r--r--Bachelor/Numerische Mathematik/Num05Aufg1.nb1575
1 files changed, 1575 insertions, 0 deletions
diff --git a/Bachelor/Numerische Mathematik/Num05Aufg1.nb b/Bachelor/Numerische Mathematik/Num05Aufg1.nb
new file mode 100644
index 0000000..42bcdbe
--- /dev/null
+++ b/Bachelor/Numerische Mathematik/Num05Aufg1.nb
@@ -0,0 +1,1575 @@
+(************** Content-type: application/mathematica **************
+ CreatedBy='Mathematica 5.0'
+
+ Mathematica-Compatible Notebook
+
+This notebook can be used with any Mathematica-compatible
+application, such as Mathematica, MathReader or Publicon. The data
+for the notebook starts with the line containing stars above.
+
+To get the notebook into a Mathematica-compatible application, do
+one of the following:
+
+* Save the data starting with the line of stars above into a file
+ with a name ending in .nb, then open the file inside the
+ application;
+
+* Copy the data starting with the line of stars above to the
+ clipboard, then use the Paste menu command inside the application.
+
+Data for notebooks contains only printable 7-bit ASCII and can be
+sent directly in email or through ftp in text mode. Newlines can be
+CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
+
+NOTE: If you modify the data for this notebook not in a Mathematica-
+compatible application, you must delete the line below containing
+the word CacheID, otherwise Mathematica-compatible applications may
+try to use invalid cache data.
+
+For more information on notebooks and Mathematica-compatible
+applications, contact Wolfram Research:
+ web: http://www.wolfram.com
+ email: info@wolfram.com
+ phone: +1-217-398-0700 (U.S.)
+
+Notebook reader applications are available free of charge from
+Wolfram Research.
+*******************************************************************)
+
+(*CacheID: 232*)
+
+
+(*NotebookFileLineBreakTest
+NotebookFileLineBreakTest*)
+(*NotebookOptionsPosition[ 53396, 1444]*)
+(*NotebookOutlinePosition[ 54102, 1468]*)
+(* CellTagsIndexPosition[ 54058, 1464]*)
+(*WindowFrame->Normal*)
+
+
+
+Notebook[{
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ Numerik : \ \ Aufgabe\ \
+1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\
+S\ 2005\ *) \),
+ "Subtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ Simulation\ eines\ L -
+ stelligen\ Rechners\ auf\ einem\ n -
+ stelligen\ Rechner\ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Berechnung\ des\ Exponenten\ zur\ Verschiebung\ und\ \
+Ermitteln\ des\ Vorzeichens\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(PaddedForm[1. + 0.6*10^\(-15\), {18, 16}]\),
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ Stellenzahl\ ?\ \ Abschneiden\ oder\ \(\(Runden\)\(\
+\ \ \)\(?\)\)\ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[1, 1, 0]]}]], "Input"],
+
+Cell[BoxData[{\(signum[xN_] := If[xN < 0, \(-1\), 1]\), "\[IndentingNewLine]",
+
+ RowBox[{"st", "=", \(IntegerPart[$MachinePrecision\ + 2]\),
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ st\ wird\ beim\ Abschneiden\ und\ Runden\ \
+gebraucht, \ \(\(warum\)\(\ \)\(?\)\)*) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[1, 1, 0]]}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(expo[xN_, L_] :=
+ If[\ Abs[xN] < 1, L - IntegerPart[Log[10. , Abs[xN]]],
+ L - IntegerPart[Log[10. , Abs[xN]]] - 1]\), " ",
+ "\[IndentingNewLine]",
+ " \
+ ",
+ StyleBox[\( (*\ Verschiebung\ beim\ Abschneiden\ bzw . \ Runden*) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[1, 1, 0]]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(Funktionsunterprogramm\ zum\ Abschneiden\ auf\ L\ Stellen\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(\(\ \)\(\ \ \ \)\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Abschn[xN_, L_] := \[IndentingNewLine]\ \ \ \ \ \ \ If[xN == 0, 0. ,
+ signum[xN]*
+ Floor[Abs[xN]*10. \^expo[xN, L] +
+ 3. *10. \^\((L - st)\)]*10. \^\(-expo[xN, L]\)]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(Funktionsunterprogramm\ zum\ Runden\ auf\ L\ Stellen\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(\(Runden[xN_, L_]\)\(:=\)\(\ \)\(If[xN == 0, 0. ,
+ signum[xN]*
+ Floor[Abs[xN]*10. \^expo[xN, L] + 0.5 +
+ 3. *10. \^\((L - st)\)]*10. \^\(-expo[xN, L]\)]\)\(\t\t\t\
+\)\)\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \(Be ispiel\)\ zum\ Runden\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Runden[\(-0.00034567\), 4]\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Alle\ vorgegebenen\ n -
+ Werte\ in\ einer\ Liste\ anlegen\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(nlist = {10, 50, 100, 200, 300, 500, 800, 1000};\)\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Alle\ Rechengenauigkeiten\ \((L\ Stellen)\)\ \ in\ \
+einer\ Liste\ anlegen\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(listgen = {3, 6, 12};\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ StyleBox[\(Berechnung\ der\ Summen\ f\[UDoubleDot]r\ alle \(\(\ \)\(\ \
+\)\) n - Werte\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[",",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(\(a lle\)\ Rechengenauigkeiten\ \((L)\)\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[",",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox[\(mit\ Abschneiden\ und\ Runden\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[",",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(wachsend\ und\ fallend\ mit\ den\ zugeh\[ODoubleDot]rigen\ \
+Differenzen\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["*)",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{"Do", "[", " ",
+ RowBox[{
+ RowBox[{"{", " ",
+
+ RowBox[{\(jab = 2 j - 1\), ",", \(jru = 2 j\), ",",
+ " ", \(L = listgen[\([j]\)]\), ",", "\[IndentingNewLine]",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+
+ StyleBox[\( (*\ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\
+\[UDoubleDot]r \(\(\ \)\(\ \)\) Abschneiden\ \ und\ \ Wachsen\ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[1, 1, 0]], "\n",
+ "\t ", \(Do[{summe[0] = 0, diff = 0,
+ Do[{summe[i]\ = \
+ Abschn[summe[i - 1] + Abschn[1. /i, L],
+ L], \n\t\t\t\t\tdiff =
+ Abschn[
+ diff + summe[i] - summe[i - 1] - Abschn[1. /i, L],
+ L]}, {i, 1,
+ nlist[\([n]\)]}], \n\ \ \t\ \t\ \ \ \ Tabelle[4 n - 3,
+ jab] = \ \(SuAbwa[n, j] = summe[nlist[\([n]\)]]\), \
+ Tabelle[4 n - 2, jab] = \(DiAbwa[n, j] = diff\)}, {n, 1,
+ 8}]\), ",", "\[IndentingNewLine]",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+
+ StyleBox[\( (*\ \ \ \ Berechnung\ \ der\ Summen\ \ f\
+\[UDoubleDot]r\ \ Runden\ \ \ und\ \ \ \ Wachsen\ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[1, 1, 0]], " ", "\n",
+ " ", \(Do[{summe[0] = 0, diff = 0,
+ Do[{summe[i]\ = \
+ Runden[summe[i - 1] + Runden[1. /i, L],
+ L], \n\t\t\t\t\tdiff =
+ Runden[
+ diff + summe[i] - summe[i - 1] - Runden[1. /i, L],
+ L]}, {i, 1,
+ nlist[\([n]\)]}], \n\ \ \ \t\t\ \tTabelle[4 n - 3,
+ jru] = \(SuRuwa[n, j] = summe[nlist[\([n]\)]]\), \
+ Tabelle[4 n - 2, jru] = \ \(DiRuwa[n, j] = diff\)}, {n, 1,
+ 8}]\), ",", " \t", "\[IndentingNewLine]", " ",
+
+
+ StyleBox[\( (*\ \ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\
+\[UDoubleDot]r\ \ Abschneiden\ \ und \(\(\ \)\(\ \)\) Fallen\ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[1, 1, 0]],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]], "\n",
+ "\t ", \(Do[{summe[0] = 0, diff = 0,
+ Do[{summe[i] = \
+ Abschn[
+ summe[i - 1] +
+ Abschn[1. /\((nlist[\([n]\)] - i + 1)\), L],
+ L], \n\t\t\t\t\ \ diff =
+ Abschn[
+ diff + summe[i] - summe[i - 1] -
+ Abschn[1. /\((nlist[\([n]\)] - i + 1)\), L],
+ L]}, {\ i, 1, nlist[\([n]\)]}], \n\t\t\t\t\tTabelle[
+ 4 n - 1, jab] = \(SuAbfal[n, j] =
+ summe[nlist[\([n]\)]]\),
+ Tabelle[4 n, jab] = \(DiAbfal[n, j] = diff\)}, {n, 1,
+ 8}]\), ",", "\[IndentingNewLine]",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+
+ StyleBox[\( (*\ \ \ \ \ \ Berechnung\ \ der\ \ Summen\ \ f\
+\[UDoubleDot]r\ \ Runden\ \ und \(\(\ \)\(\ \)\) Fallen\ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[1, 1, 0]], "\n",
+ " \t", \(Do[{summe[0] = 0, diff = 0,
+ Do[{summe[i]\ = \
+ Runden[
+ summe[i - 1] +
+ Runden[1. /\((nlist[\([n]\)] - i + 1)\), L],
+ L], \n\t\t\t\ \ \ \ \ diff =
+ Runden[
+ diff + summe[i] - summe[i - 1] -
+ Runden[1. /\((nlist[\([n]\)] - i + 1)\), L],
+ L]}, {i, 1, nlist[\([n]\)]}], \n\t\t\t\t\tTabelle[
+ 4 n - 1, jru] = \(SuRufal[n, j] =
+ summe[nlist[\([n]\)]]\),
+ Tabelle[4 n, jru] = \(DiRufal[n, j] = diff\)}, {n, 1,
+ 8}]\)}], "}"}], ",", "\t\t", "\n",
+ " \t \t\t", \({j, 1, 3}\)}], "]"}]}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Berechnung\ der\ Summe, \
+ wachsend\ und\ mit\ voller\ Genauigkeit\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Do[\ {sumgenwa = 0,
+ Do[sumgenwa = sumgenwa + 1. /i, {i, 1,
+ nlist[\([n]\)]}], \n\t\tTabelle[4 n - 3, 7] = sumgenwa}, {n, 1,
+ 8}]\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ \ Berechnung\ der\ Summe, \ \(fall
+ end\)\ und\ mit\ voller\ Genauigkeit\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Do[\ {sumgenfal = 0,
+ Do[sumgenfal = sumgenfal + 1. /\((nlist[\([n]\)] - i + 1)\), {i, 1,
+ nlist[\([n]\)]}], \n\t\t\tTabelle[4 n - 1, 7] = sumgenfal}, {n,
+ 1, 8}]\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ Differenzen\ \ bei\ voller\ Genauigkeit \(\(\ \
+\)\(\ \)\) Null\ \ setzen\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Do[Tabelle[2 n, 7] = \(diff = 0\), {n, 1, 16}]\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ Tabelle\ beschriften\ , \
+ wachsen\ \ und\ \ fallend\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ RowBox[{"Do", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{\(Tabelle[4 n - 3, \(-1\)]\), "=", "\"\<\!\(\*
+StyleBox[\"wa\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}], ",",
+
+ RowBox[{\(Tabelle[4 n - 1, \(-1\)]\), "=", " ", "\"\<\!\(\*
+StyleBox[\"fa\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}]}],
+ "}"}], ",", " ", \({\ n, 1, 8}\)}],
+ "]"}], "\n", \(Do[{Tabelle[4 n - 2, \(-1\)] = "\<diwa\>",
+ Tabelle[4 n, \(-1\)] = \ "\<difa\>"}, \ {\ n, 1, 8}]\)}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Tabelle\ beschriften\ , \ \ n - Werte\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(Do[Tabelle[4 n - 3, 0] = \(Tabelle[4 n - 1, 0] = \
+ nlist[\([n]\)]\), {n, 1, 8}]\ \), "\n",
+ \(Do[Tabelle[4 n - 2, 0] = \(Tabelle[4 n, 0] = \ "\< \>"\), {n, 1,
+ 8}]\)}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Tabelle\ beschriften, \ \ \
+\[CapitalUDoubleDot]berschriften \(\(\ \)\(\ \)\) angeben\ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{\(Tabelle[0, 0]\), "=", "\"\<\!\(\*
+StyleBox[\(\\\ \\\ \*
+StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\*
+StyleBox[\"n\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\) \>\""}], ";",
+
+ RowBox[{\(Tabelle[0, 1]\), "=", "\"\<\!\(\*
+StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\*
+StyleBox[\"Absch\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}],
+ ";",
+ RowBox[{\(Tabelle[0, 2]\), "=", "\"\<\!\(\*
+StyleBox[\(\\\ \*
+StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\*
+StyleBox[\"Rund\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}],
+ ";"}], "\n",
+ RowBox[{
+ RowBox[{\(Tabelle[0, 3]\), "=", "\"\< \!\(\*
+StyleBox[\"Abschn\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}],
+ ";",
+ RowBox[{\(Tabelle[0, 4]\), "=", "\"\<\!\(\*
+StyleBox[\(\\\ \\\ \\\ \*
+StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)]\)\!\(\*
+StyleBox[\"Runden\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}],
+ ";",
+ RowBox[{\(Tabelle[0, 5]\), "=", "\"\< \!\(\*
+StyleBox[\"Abschnei\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}],
+ ";"}], "\n",
+ RowBox[{
+ RowBox[{\(Tabelle[0, 6]\), "=", "\"\< \!\(\*
+StyleBox[\"Runden\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\>\""}],
+ ";",
+ RowBox[{\(Tabelle[0, 7]\), "=", "\"\< \!\(\*
+StyleBox[\"Volle\",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\*
+StyleBox[\" \",\nFontSize->14,\nFontColor->RGBColor[1, 0, 0]]\)\!\(\*
+StyleBox[\"Genauigkeit\",\nFontSize->14,\nFontColor->RGBColor[1, 0, \
+0]]\)\>\""}], ";", \(Tabelle[0, \(-1\)] = "\< \>"\), "\t", ";",
+ "\[IndentingNewLine]"}]}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Stellenzahlen\ f\[UDoubleDot]r\ die\ Ausgabe\ \
+festlegen\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(tabgen = {4,
+ 4, {4, 3}, {4, 3}, {7, 6}, {7, 6}, {13, 12}, {13, 12}, {17,
+ 15}};\)\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Ausgabe\ der\ \ vollst\[ADoubleDot]ndigen\ \
+Tabelle\ \ mit\ Beschriftung\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(TableForm[
+ Table[AccountingForm[
+ PaddedForm[Tabelle[n, j - 2], tabgen[\([j]\)]]], \n\t\t{n, 0,
+ 32}, {j, 1, 9}], TableSpacing -> {2, 1}]\)], "Input"],
+
+Cell[BoxData[
+ \(<< Graphics`Colors`\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[\( (*\ \ \ \ \ \ \ \
+Graphische\ \ Darstellung\ \ f\[UDoubleDot]r\ \ die\ \ Rechengenauigkeit\ \ L \
+= 3\ \ \ \ \ \ *) \),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]], " "}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ 1. \ \ \ \ \ \ Abschneiden \(\(\ \)\(\
+\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Tabpkte[1]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 1]}, {n, 1,
+ 8}], PlotJoined\ -> \ False, \n\t
+ PlotRange -> {{0, 1000}, {2.0, 7.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Tabsp[1]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 1]}, {n, 1,
+ 8}], PlotJoined\ -> \ True, \n
+ PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Red,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ 2. \ \ \ \ \ \ \ Runden \(\(\ \)\(\ \
+\)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Tabpkte[2]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 2]}, {n, 1,
+ 8}], PlotJoined\ \[Rule] False, \n\t
+ PlotRange -> {{0, 1000}, {2.0, 7.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green,
+ AspectRatio -> 0.7, \ AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Tabsp[2]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0], Tabelle[4 n - 3, 2]}, {n, 1,
+ 8}], PlotJoined\ -> \ True, \n
+ PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Green,
+ AspectRatio -> 0.6, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ RowBox[{
+ StyleBox["(*",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(3. \ \ \ \ \ \ \ \ Abschneiden \(\(\ \)\(\ \)\)
+ und\ \ fallend\),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Tabpkte[3]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 1]}, {n, 1,
+ 8}], PlotJoined\ \[Rule] False, \n\t
+ PlotRange -> {{0, 1000}, {2.0, 7.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Tabsp[3]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 1]}, {n, 1,
+ 8}], PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Brown,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ 4. \ \ \ \ \ \ Runden \(\(\ \)\(\ \
+\)\) und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Tabpkte[4]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 2]}, {n, 1,
+ 8}], PlotJoined\ -> \ False, \n
+ PlotRange -> {{0, 1000}, {2.0, 7.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue,
+ AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>",
+ AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Tabsp[4]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0], Tabelle[4 n - 1, 2]}, {n, 1,
+ 8}], PlotJoined\ -> \ True, \n
+ PlotRange -> {{0, 1000}, {2.0, 7.5}}, PlotStyle \[Rule] Blue,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ f(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\[CapitalUDoubleDot]berlagerung\ \ der\ \ vier\ \ Funktionen\ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[Tabsp[1], Tabsp[2], Tabsp[3], Tabsp[4], Tabpkte[1], Tabpkte[2],
+ Tabpkte[3], Tabpkte[4], Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \
+Abschneiden \(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ l\) =
+ 3\ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(AbwTabpkte[1]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 1]}, {n, 1, 8}],
+ PlotJoined\ -> \ False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(AbwTabsp[1]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 1]}, {n, 1, 8}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweixhungen : \ \ \ \ \ \ \ Runden \
+\(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \
+ 3\ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(AbwTabpkte[2]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 2]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green,
+ AspectRatio -> 0.7, \
+ AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(AbwTabsp[2]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 2]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green,
+ AspectRatio -> 0.7, \
+ AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ RowBox[{
+ StyleBox["(*",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["3.",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ StyleBox["Abweichungen",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[":",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ StyleBox["Abschneiden",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(\(\ \)\(\ \)\),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["und",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["fallend",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["l",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]}]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["=",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["3",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(AbwTabpkte[3]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 1]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(AbwTabsp[3]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 1]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.5\), 1.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \
+Runden \(\(\ \)\(\ \)\)
+ und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \
+ 3\ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(AbwTabpkte[4]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 2]}, {n, 1, 8}],
+ PlotJoined\ -> \ False, \nPlotRange -> {{0, 1000}, {\(-0.5\), 1.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue,
+ AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>",
+ AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(AbwTabsp[4]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 2]}, {n, 1, 8}],
+ PlotJoined\ -> \ True, \nPlotRange -> {{0, 1000}, {\(-0.5\), 1.5}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue,
+ AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>",
+ AxesLabel -> {"\<> n\>", "\< ^ abw(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\[CapitalUDoubleDot]\
+berlagerung\ \ der\ \ vier\ \ Abweichungen\ \ \ \ \ \ \ \ l\ = \
+ 3\ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[AbwTabsp[1], AbwTabsp[2], AbwTabsp[3], AbwTabsp[4], AbwTabpkte[1],
+ AbwTabpkte[2], AbwTabpkte[3], AbwTabpkte[4],
+ Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \
+Abschneiden \(\(\ \)\(\ \)\)
+ und\ \ wachsend\ \ \ \ \ \ \ \ \ l\)\ = \ \ 6\ \ \ \ \ \ \ \
+\ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Ab6Tabpkte[1]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 3]}, {n, 1, 8}],
+ PlotJoined\ -> \ False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Ab6Tabsp[1]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 3]}, {n, 1, 8}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweichungen : \ \ \ \ \ \ \ Runden \
+\(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \
+ 6\ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Ab6Tabpkte[2]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 4]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green,
+ AspectRatio -> 0.7, \
+ AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Ab6Tabsp[2]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 4]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green,
+ AspectRatio -> 0.7, \
+ AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ RowBox[{
+ StyleBox["(*",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["3.",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ StyleBox["Abweichungen",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[":",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ StyleBox["Abschneiden",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(\(\ \)\(\ \)\),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["und",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["fallend",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["l",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]}]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["=",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["6",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Ab6Tabpkte[3]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 3]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Ab6Tabsp[3]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 3]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.0001\), 0.0025}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown,
+ AspectRatio -> 0.7, AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \
+Runden \(\(\ \)\(\ \)\)
+ und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \
+ 6\ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Ab6Tabpkte[4]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 4]}, {n, 1, 8}],
+ PlotJoined\ -> \ False, \n
+ PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue,
+ AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>",
+ AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Ab6Tabsp[4]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 4]}, {n, 1, 8}],
+ PlotJoined\ -> \ True, \n
+ PlotRange -> {{0, 1000}, {\(-0.00002\), 0.00005}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue,
+ AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>",
+ AxesLabel -> {"\<> n\>", "\< ^ ab6(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\[CapitalUDoubleDot]berlagerung\ \ der\ \ \ Abweichungen\ \ \ \ \ eins\ \
+und\ \ drei\ \ \((\ Abschneiden\ )\)\ \ \ l\ = \
+ 6\ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[Ab6Tabsp[1], Ab6Tabsp[3], Ab6Tabpkte[1], Ab6Tabpkte[3],
+ Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\[CapitalUDoubleDot]\
+berlagerung\ \ der\ \ \ \ Abweichungen\ \ \ \ zwei\ \ \ und\ \ vier\ \ \ \((\
+ Runden\ )\)\ \ l\ = \ 6\ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[Ab6Tabsp[2], Ab6Tabsp[4], Ab6Tabpkte[2], Ab6Tabpkte[4],
+ Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ 1. \ \ \ \ \(Abweichungen : \ \ \ \ \ \
+Abschneiden \(\(\ \)\(\ \)\)
+ und\ \ wachsend\ \ \ \ \ \ \ \ \ l\)\ = \ \ 12\ \ \ \ \ \ \
+\ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Ab12Tabpkte[1]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 5]}, {n, 1, 8}],
+ PlotJoined\ -> \ False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.0000000005\), 0.0000000025}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red,
+ AspectRatio -> 0.7,
+ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Ab12Tabsp[1]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 5]}, {n, 1, 8}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.0000000005\), 0.0000000025}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Red,
+ AspectRatio -> 0.7,
+ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ 2, \ \ \ \ Abweichungen : \ \ \ \ \ \ \ Runden \
+\(\(\ \)\(\ \)\) und\ \ wachsend\ \ \ \ \ \ \ \ \ \ \ \ \ \ l\ = \
+ 12\ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Ab12Tabpkte[2]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 6]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.0000000001\), 0.0000000002}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green,
+ AspectRatio -> 0.7, \
+ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Ab12Tabsp[2]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 3, 0],
+ Tabelle[4 n - 3, 7] - Tabelle[4 n - 3, 6]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.0000000001\), 0.0000000002}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Green,
+ AspectRatio -> 0.7, \
+ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ RowBox[{
+ StyleBox["(*",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["3.",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ StyleBox["Abweichungen",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[":",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ StyleBox["Abschneiden",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(\(\ \)\(\ \)\),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["und",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["fallend",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["l",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]}]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["=",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["12",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Ab12Tabpkte[3]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 5]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] False, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.000000001\), 0.0000000025}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown,
+ AspectRatio -> 0.7,
+ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Ab12Tabsp[3]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 5]}, {n, 1, 8}],
+ PlotJoined\ \[Rule] True, \n\t
+ PlotRange -> {{0, 1000}, {\(-0.000000001\), 0.0000000025}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Brown,
+ AspectRatio -> 0.7,
+ AxesLabel -> {"\<> n\>", "\< ^ a126(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ 4. \ \ \ \ \ \ \ \(Abweichungen : \ \ \ \ \
+Runden \(\(\ \)\(\ \)\)
+ und\ \ fallend\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ l\)\ = \
+ 12\ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Ab12Tabpkte[4]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 6]}, {n, 1, 8}],
+ PlotJoined\ -> \ False, \n
+ PlotRange -> {{0, 1000}, {\(-0.00000000002\), 0.00000000009}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue,
+ AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>",
+ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Ab12Tabsp[4]\), "=",
+ RowBox[{
+ StyleBox["ListPlot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \(Table[{Tabelle[4 n - 1, 0],
+ Tabelle[4 n - 1, 7] - Tabelle[4 n - 1, 6]}, {n, 1, 8}],
+ PlotJoined\ -> \ True, \n
+ PlotRange -> {{0, 1000}, {\(-0.00000000002\), 0.00000000009}},
+ Prolog\ -> \ AbsolutePointSize[4], PlotStyle \[Rule] Blue,
+ AspectRatio -> 0.7, PlotLabel \[Rule] "\< \>",
+ AxesLabel -> {"\<> n\>", "\< ^ ab12(n)\>"}\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\[CapitalUDoubleDot]berlagerung\ \ der\ \ \ Abweichungen\ \ \ \ \ eins\ \
+und\ \ drei\ \ \((\ Abschneiden\ )\)\ \ \ l\ = \
+ 12\ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[Ab12Tabsp[1], Ab12Tabsp[3], Ab12Tabpkte[1], Ab12Tabpkte[3],
+ Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubtitle"]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\[CapitalUDoubleDot]\
+berlagerung\ \ der\ \ \ \ Abweichungen\ \ \ \ zwei\ \ \ und\ \ vier\ \ \ \((\
+ Runden\ )\)\ \ \ l\ = \ 12\ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[Ab12Tabsp[2], Ab12Tabsp[4], Ab12Tabpkte[2], Ab12Tabpkte[4],
+ Prolog\ -> \ AbsolutePointSize[4]]\)], "Input"]
+},
+FrontEndVersion->"5.0 for Microsoft Windows",
+ScreenRectangle->{{0, 1024}, {0, 685}},
+WindowSize->{1018, 650},
+WindowMargins->{{0, Automatic}, {Automatic, 0}},
+PrintingCopies->1,
+PrintingPageRange->{Automatic, Automatic}
+]
+
+(*******************************************************************
+Cached data follows. If you edit this Notebook file directly, not
+using Mathematica, you must remove the line containing CacheID at
+the top of the file. The cache data will then be recreated when
+you save this file from within Mathematica.
+*******************************************************************)
+
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+
+(*NotebookFileOutline
+Notebook[{
+Cell[1754, 51, 406, 10, 59, "Input"],
+Cell[2163, 63, 299, 7, 49, "Input"],
+Cell[2465, 72, 232, 5, 46, "Input"],
+Cell[2700, 79, 397, 10, 30, "Input"],
+Cell[3100, 91, 509, 11, 50, "Input"],
+Cell[3612, 104, 521, 10, 50, "Input"],
+Cell[4136, 116, 563, 17, 46, "Input"],
+Cell[4702, 135, 229, 4, 51, "Input"],
+Cell[4934, 141, 544, 17, 46, "Input"],
+Cell[5481, 160, 234, 5, 31, "Input"],
+Cell[5718, 167, 177, 4, 46, "Input"],
+Cell[5898, 173, 59, 1, 30, "Input"],
+Cell[5960, 176, 217, 5, 46, "Input"],
+Cell[6180, 183, 85, 1, 30, "Input"],
+Cell[6268, 186, 224, 5, 46, "Input"],
+Cell[6495, 193, 58, 1, 30, "Input"],
+Cell[6556, 196, 1617, 49, 66, "Input"],
+Cell[8176, 247, 4905, 99, 390, "Input"],
+Cell[13084, 348, 224, 5, 46, "Input"],
+Cell[13311, 355, 191, 4, 50, "Input"],
+Cell[13505, 361, 239, 5, 46, "Input"],
+Cell[13747, 368, 224, 4, 50, "Input"],
+Cell[13974, 374, 227, 5, 46, "Input"],
+Cell[14204, 381, 80, 1, 30, "Input"],
+Cell[14287, 384, 212, 5, 46, "Input"],
+Cell[14502, 391, 592, 12, 50, "Input"],
+Cell[15097, 405, 187, 4, 46, "Input"],
+Cell[15287, 411, 228, 4, 50, "Input"],
+Cell[15518, 417, 233, 5, 46, "Input"],
+Cell[15754, 424, 1784, 37, 90, "Input"],
+Cell[17541, 463, 207, 5, 46, "Input"],
+Cell[17751, 470, 139, 3, 30, "Input"],
+Cell[17893, 475, 223, 5, 46, "Input"],
+Cell[18119, 482, 195, 4, 50, "Input"],
+Cell[18317, 488, 52, 1, 30, "Input"],
+Cell[18372, 491, 278, 7, 49, "Input"],
+Cell[18653, 500, 417, 10, 46, "Input"],
+Cell[19073, 512, 495, 11, 70, "Input"],
+Cell[19571, 525, 445, 10, 50, "Input"],
+Cell[20019, 537, 412, 10, 46, "Input"],
+Cell[20434, 549, 502, 11, 70, "Input"],
+Cell[20939, 562, 447, 10, 50, "Input"],
+Cell[21389, 574, 774, 23, 46, "Input"],
+Cell[22166, 599, 500, 11, 70, "Input"],
+Cell[22669, 612, 449, 10, 50, "Input"],
+Cell[23121, 624, 411, 10, 46, "Input"],
+Cell[23535, 636, 522, 11, 70, "Input"],
+Cell[24060, 649, 446, 10, 50, "Input"],
+Cell[24509, 661, 434, 11, 46, "Input"],
+Cell[24946, 674, 168, 2, 30, "Input"],
+Cell[25117, 678, 454, 11, 46, "Input"],
+Cell[25574, 691, 542, 12, 70, "Input"],
+Cell[26119, 705, 539, 12, 70, "Input"],
+Cell[26661, 719, 449, 11, 46, "Input"],
+Cell[27113, 732, 549, 12, 70, "Input"],
+Cell[27665, 746, 546, 12, 70, "Input"],
+Cell[28214, 760, 2463, 71, 46, "Input"],
+Cell[30680, 833, 547, 12, 70, "Input"],
+Cell[31230, 847, 544, 12, 70, "Input"],
+Cell[31777, 861, 495, 12, 46, "Input"],
+Cell[32275, 875, 560, 11, 70, "Input"],
+Cell[32838, 888, 557, 11, 70, "Input"],
+Cell[33398, 901, 458, 12, 46, "Input"],
+Cell[33859, 915, 199, 3, 50, "Input"],
+Cell[34061, 920, 464, 12, 46, "Input"],
+Cell[34528, 934, 548, 12, 70, "Input"],
+Cell[35079, 948, 545, 12, 70, "Input"],
+Cell[35627, 962, 449, 11, 46, "Input"],
+Cell[36079, 975, 557, 12, 70, "Input"],
+Cell[36639, 989, 554, 12, 70, "Input"],
+Cell[37196, 1003, 2463, 71, 46, "Input"],
+Cell[39662, 1076, 553, 12, 70, "Input"],
+Cell[40218, 1090, 550, 12, 70, "Input"],
+Cell[40771, 1104, 495, 12, 46, "Input"],
+Cell[41269, 1118, 577, 12, 70, "Input"],
+Cell[41849, 1132, 574, 12, 70, "Input"],
+Cell[42426, 1146, 477, 12, 46, "Input"],
+Cell[42906, 1160, 136, 2, 30, "Input"],
+Cell[43045, 1164, 480, 12, 46, "Input"],
+Cell[43528, 1178, 136, 2, 30, "Input"],
+Cell[43667, 1182, 465, 12, 46, "Input"],
+Cell[44135, 1196, 563, 12, 70, "Input"],
+Cell[44701, 1210, 559, 12, 70, "Input"],
+Cell[45263, 1224, 450, 11, 46, "Input"],
+Cell[45716, 1237, 569, 12, 70, "Input"],
+Cell[46288, 1251, 566, 12, 70, "Input"],
+Cell[46857, 1265, 2463, 71, 46, "Input"],
+Cell[49323, 1338, 566, 12, 70, "Input"],
+Cell[49892, 1352, 563, 12, 70, "Input"],
+Cell[50458, 1366, 496, 12, 46, "Input"],
+Cell[50957, 1380, 591, 12, 70, "Input"],
+Cell[51551, 1394, 588, 12, 70, "Input"],
+Cell[52142, 1408, 478, 12, 46, "Input"],
+Cell[52623, 1422, 140, 2, 30, "Input"],
+Cell[52766, 1426, 483, 12, 46, "Input"],
+Cell[53252, 1440, 140, 2, 30, "Input"]
+}
+]
+*)
+
+
+
+(*******************************************************************
+End of Mathematica Notebook file.
+*******************************************************************)
+