summaryrefslogtreecommitdiffstats
path: root/Bachelor/Numerische Mathematik/Num05Aufg4A.nb
diff options
context:
space:
mode:
authorSven Eisenhauer <sven@sven-eisenhauer.net>2023-11-10 15:11:48 +0100
committerSven Eisenhauer <sven@sven-eisenhauer.net>2023-11-10 15:11:48 +0100
commit33613a85afc4b1481367fbe92a17ee59c240250b (patch)
tree670b842326116b376b505ec2263878912fca97e2 /Bachelor/Numerische Mathematik/Num05Aufg4A.nb
downloadStudium-33613a85afc4b1481367fbe92a17ee59c240250b.tar.gz
Studium-33613a85afc4b1481367fbe92a17ee59c240250b.tar.bz2
add new repoHEADmaster
Diffstat (limited to 'Bachelor/Numerische Mathematik/Num05Aufg4A.nb')
-rw-r--r--Bachelor/Numerische Mathematik/Num05Aufg4A.nb840
1 files changed, 840 insertions, 0 deletions
diff --git a/Bachelor/Numerische Mathematik/Num05Aufg4A.nb b/Bachelor/Numerische Mathematik/Num05Aufg4A.nb
new file mode 100644
index 0000000..16f3e96
--- /dev/null
+++ b/Bachelor/Numerische Mathematik/Num05Aufg4A.nb
@@ -0,0 +1,840 @@
+(************** Content-type: application/mathematica **************
+ CreatedBy='Mathematica 5.0'
+
+ Mathematica-Compatible Notebook
+
+This notebook can be used with any Mathematica-compatible
+application, such as Mathematica, MathReader or Publicon. The data
+for the notebook starts with the line containing stars above.
+
+To get the notebook into a Mathematica-compatible application, do
+one of the following:
+
+* Save the data starting with the line of stars above into a file
+ with a name ending in .nb, then open the file inside the
+ application;
+
+* Copy the data starting with the line of stars above to the
+ clipboard, then use the Paste menu command inside the application.
+
+Data for notebooks contains only printable 7-bit ASCII and can be
+sent directly in email or through ftp in text mode. Newlines can be
+CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
+
+NOTE: If you modify the data for this notebook not in a Mathematica-
+compatible application, you must delete the line below containing
+the word CacheID, otherwise Mathematica-compatible applications may
+try to use invalid cache data.
+
+For more information on notebooks and Mathematica-compatible
+applications, contact Wolfram Research:
+ web: http://www.wolfram.com
+ email: info@wolfram.com
+ phone: +1-217-398-0700 (U.S.)
+
+Notebook reader applications are available free of charge from
+Wolfram Research.
+*******************************************************************)
+
+(*CacheID: 232*)
+
+
+(*NotebookFileLineBreakTest
+NotebookFileLineBreakTest*)
+(*NotebookOptionsPosition[ 27879, 747]*)
+(*NotebookOutlinePosition[ 28541, 770]*)
+(* CellTagsIndexPosition[ 28497, 766]*)
+(*WindowFrame->Normal*)
+
+
+
+Notebook[{
+Cell[BoxData[
+ StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Numerik\ - \
+ Aufgabe\ 4\ \ A\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ \
+2005\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \)\(\ \)\),
+ "Subtitle",
+ FontColor->RGBColor[1, 0, 0]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(\(Interpolation\)\(:\)\),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section"],
+
+ StyleBox[
+ " \
+ ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section"]}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}], "\n",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+1. \ Klassische\ Interpolation\ \((Newton)\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]], "\n",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+2. Nat\[UDoubleDot]rliche\ Kubische\ Spline -
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[
+ General::spell1]\)\(\ \)\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(lauf = 1\), ";", " ",
+ StyleBox[\( (*\ \ Lauf\ mit\ der\ Nummer\ lauf\ \ , \
+ alle\ vorhergehenden\ L\[ADoubleDot]ufe\ bleiben\ \(erhalten\ !\)\ *) \
+\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ Vorgeben\ \(("\<V\>")\)\ der\ m +
+ 1\ St\[UDoubleDot]tzpunkte\ , \[IndentingNewLine]\ \ \ \ \ \ \ L\
+\[ODoubleDot]schen\ \(("\< L \>")\)\ , \ \ Einf\[UDoubleDot]gen\ \(("\< E \
+\>")\)\ \ oder\ \ \[CapitalADoubleDot]ndern\ \(("\< K\>")\)\ eines\ Punktes\ \
+\ ?\ \ \ \ \ nichts\ \[CapitalADoubleDot]ndern\ \ \(("\< N \>")\)\ \ \ \ \ \ *) \
+\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(sch = \ "\<V\>"\), ";",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ Erster\ Lauf\ mit\ vorgegebenen\ \(Werten\ \
+!\)\ \ \ \ *) \),
+ FontSize->16,
+ FontColor->RGBColor[0, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[0, 0, 1]], "\[IndentingNewLine]",
+ StyleBox[" ",
+ FontSize->14,
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\( (*\
+ Hier\ \[CapitalADoubleDot]nderungen\ \((L, E,
+ K)\)\ eingeben\ und\ direkt\ ausf\[UDoubleDot]hren\ \
+\[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ oder\ N\ f\[UDoubleDot]r\ nicht\ \
+\[ADoubleDot]ndern\ bei\ einem\ neuen\ Lauf\ *) \),
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input"],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<N\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ \ , \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ 0, .. , m\ \ eingeben\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(\(If[\
+ sch == "\<V\>", {\ \ m = 10, \[IndentingNewLine]\
+ xp[0] = \(-4. \); \ \ \ yp[0] =
+ 0. ; \ \ \ xp[1] = \(-3.95\); \ \ \ \ \ yp[1] =
+ 0.5; \ \ \ \ \ \ xp[2] = \(-3.5\); \ \ \ \ \ \ yp[2] =
+ 1.5; \ \ \ \ \ \ \ xp[3] = \(-3. \); \ \ \ yp[3] =
+ 2. ; \ \ \ xp[4] = \ \(-2\); \ \ \ \ \ \ \ \ \ \ yp[4] =
+ 2.6; \ \ \ \ \ \ xp[5] = \ \(-1\); \ \ \ \ \ \ \ \ \ yp[5] =
+ 2.9; \ \ \ \ \ \ \ \ \ xp[6] = \ \ \ 0. ; \ \ \ yp[6] =
+ 3. ; \ \ xp[7] = \ \ \ 2; \ \ \ \ \ \ \ \ \ \ \ yp[7] =
+ 2.6; \ \ \ \ \ \ \ xp[8] = \(+3. \); \ \ \ \ \ \ \ \ yp[8] =
+ 2. ; \n\ \ \ \ \ \ \ \ xp[9] = \ 3.75; \
+ yp[9] = 1; \ \ \ \ xp[10] = \(+4. \); \ \ \ \ \ \ yp[10] =
+ 0. ;\ \ \ }\ \ \ \ ];\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(Vorgegebene\ St\[UDoubleDot]tzpunkte\ 0, .. , m\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch == "\<V\>",
+ TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], "\< yp[\>", ind, "\<] = \>",
+ PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \
+L\[ODoubleDot]schen\ \ eines\ \ Punktes\ \ mit\ \ der\ \ Nummer\ \ index\ \ \ \
+*) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(index\ = \ 1\), " ", ";", " ",
+ StyleBox[\( (*\
+ Nummer\ des\ zu\ entfernenden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]], " ", "\n",
+ " ", \(If[sch \[Equal] "\<L\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ , {m =
+ m - 1; \n\ \ \ \ \ \ \ \ \ Do[{\ xp[j] = xp[j + 1],
+ yp[j] = yp[j + 1]}, {j, index, m}]}]]\), ";",
+ " "}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Entfernen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<L\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ \ , \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \
+Einf\[UDoubleDot]gen\ \ eins\ \ Punktes\ \ mit\ \ der\ \ Nummer\ i\ ndex\ \ \ \
+\ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(index\ = \ 2\), " ", ";", " ",
+ StyleBox[\( (*\
+ Nummer\ des\ einzuf\[UDoubleDot]genden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]], " ", "\[IndentingNewLine]",
+
+ RowBox[{"If", "[",
+ RowBox[{\(sch \[Equal] "\<E\>"\), ",",
+ RowBox[{"If", "[",
+
+ RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] m\),
+ ",",
+ RowBox[{"{",
+
+ RowBox[{\(m = m + 1\),
+ ";", \(Do[{xp[j], yp[j]}, {j, 0, index - 1}]\), ";",
+ "\[IndentingNewLine]",
+ " ", \(Do[{xp[j] = xp[j - 1], yp[j] = yp[j - 1]}, {j,
+ m, index + 1, \(-1\)}]\), ";", "\[IndentingNewLine]",
+ " ", \(xp[index] = \ \ 3.75\),
+ " ",
+ StyleBox[\( (*\ xp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ " ", \(yp[index] = \ \ \ 1.0\)}],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox[\( (*\ yp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["}",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<E\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m, \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \[CapitalADoubleDot]ndern\ des\ Punktes\ mit\ \
+der\ Nummer\ index\ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(index\ = \ \ 2\), ";", " ",
+ StyleBox[\( (*\
+ Nummer\ des\ zu\ \[ADoubleDot]ndernden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]], " ", "\n", " ",
+ RowBox[{"If", "[",
+ RowBox[{\(sch \[Equal] "\<K\>"\), ",",
+ RowBox[{"If", "[",
+
+ RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] m\),
+ ",",
+ RowBox[{"{", " ",
+
+ RowBox[{\(xp[index] = \ \ \ \(-3.75\)\),
+ " ",
+ StyleBox[\( (*\ xp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ " ", \(yp[index] = \ \ \ 1.0\)}],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox[\( (*\ yp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["}",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<K\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m, \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ \(\(nummer[lauf] = m;\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\
+\ den\ Graph\ der\ Ellipse\ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(\(nd = 400;\)\)], "Input"],
+
+Cell[BoxData[
+ \(Do[{xel[j] = xp[0] + j*\((xp[m] - xp[0])\)/nd,
+ yel[j] = 3/4*Sqrt[16 - xel[j]^2]}, {j, 0, nd}]\)], "Input"],
+
+Cell[BoxData[
+ \(<< Graphics`Colors`\)], "Input"],
+
+Cell[BoxData[
+ \(\(liste1 = {Red, HotPink, Green, Apricot, Brown, DarkGreen, Cobalt,
+ Brick, Orange, Magenta, IndianRed, ForestGreen};\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ Plotten\ der\ Ellipse\ \ x\^2\/16\
+\ + \ y\^2\/9 = \ 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(ellipsplot =
+ ListPlot[Table[{xel[j], yel[j]}, {j, 0, nd}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \tPlotStyle -> Brown,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(linienplot =
+ ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ True, \t
+ PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \n\tPlotStyle -> Blue,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(punktplot =
+ ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ False, \t
+ PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \n\tPlotStyle -> Blue,
+ Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5,
+ AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(Show[ellipsplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Newton\ - \
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ *) \),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Dividierte\ Differenzen\ f\
+\[UDoubleDot]r\ die\ Newton - Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(Do[DivDiff[k, 1] = \((yp[k + 1] - yp[k])\)/\((xp[k + 1] - xp[k])\), {k,
+ 0, m - 1}]\)], "Input"],
+
+Cell[BoxData[
+ \(Do[Do[
+ DivDiff[k,
+ j] = \((DivDiff[k + 1, j - 1] -
+ DivDiff[k, j - 1])\)/\((xp[k + j] - xp[k])\), {k, 0,
+ m - j}], {j, 2, m}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\ den\ \
+Graph\ der\ Newton - Interpolation\ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(Do[{xnew[j] = xel[j], ynew[j] = yp[0],
+ pro = xel[j] -
+ xp[0], \n\t\tDo[{ynew[j] = ynew[j] + pro*DivDiff[0, i],
+ pro = pro*\((xnew[j] - xp[i])\)}, {i, 1, m}]}, {j, 0,
+ nd}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Graph\ der\ Newton -
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(newtonplot =
+ ListPlot[Table[{xnew[j], ynew[j]}, {j, 0, nd}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \tPlotStyle -> Red,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ Nat\[UDoubleDot]rliche\ Spline -
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \
+\),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Erstellen\ \
+der\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], "\n",
+ " ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \((\
+ Haupt - \ und\ Nebendiagonale\ )\)\ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[{
+ \(\(Du[0] = xp[1] - xp[0];\)\), "\n",
+ \(Do[{Du[k] = xp[k + 1] - xp[k], Dh[k] = 2 \((Du[k - 1] + Du[k])\)}, {k,
+ 1, m - 1}]\)}], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Cholesky -
+ Zerlegung\ der\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[{
+ \(\(Ch[1] = Sqrt[Dh[1]];\)\), "\n",
+ \(Do[{Cn[k - 1] = Du[k - 1]/Ch[k - 1],
+ Ch[k] = Sqrt[Dh[k] - Cn[k - 1]^2]}, {k, 2, m - 1}]\)}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Vorw\
+\[ADoubleDot]rtsrechnung\ "\<von oben her\>"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ *) \)\(\n\)\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tund\ \
+Erstellen\ der\ rechten\ Seite\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \)\),
+
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[{
+ \(Dv[0] = yp[1] - yp[0]; \ \ \ \ \ \ \ Dv[1] = yp[2] - yp[1];\), "\n",
+ \(\(Dr[1] = 3 \((Dv[1]/Du[1] - Dv[0]/Du[0])\);\)\), "\n",
+ \(\(Z[1] = Dr[1]/Ch[1];\)\), "\n",
+ \(Do[{Dv[k] = yp[k + 1] - yp[k], \n\t\tDr[k] =
+ 3 \((Dv[k]/Du[k] - Dv[k - 1]/Du[k - 1])\), \n\t\tZ[
+ k] = \((Dr[k] - Z[k - 1]*Cn[k - 1])\)/Ch[k]}, \n{k, 2,
+ m - 1}]\)}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+R\[UDoubleDot]ckw\[ADoubleDot]rtsrechnung\ "\<von unten her\>"\ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ *) \)\(\n\)\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \tBerechnung\ der\ Koeffizienten\ B\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ *) \)\),
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[{
+ \(B[m] = 0; \ \ B[m - 1] = Z[m - 1]/Ch[m - 1];\), "\n",
+ \(Do[B[k] = \((Z[k] - B[k + 1]*Cn[k])\)/Ch[k], {k, m - 2, 1, \(-1\)}]; \
+ B[0] = 0;\)}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tBerechnung\ der\ \
+Koeffizienten\ A\_\(\(k\)\(\ \)\), \ C\_k\ , \
+ D\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(Do[{A[
+ k] = \((B[k + 1] - B[k])\)/\((3
+ Du[k])\), \n\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ Cc[k] =
+ Dv[k]/Du[k] - Du[k]*\((B[k + 1] + 2 B[k])\)/3, \
+ Dc[k] = yp[k]}, {k, 0, m - 1}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\ den\ \
+Graph\ der\ Spline - Interpolation\ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(Do[{xnat[j] = xel[j],
+ xint = xp[0], \n\t\tDo[{Dnt[k] = xp[k + 1] - xp[k],
+ If[\((xnat[j] >= xint\ )\)\ \[And] \ \ \((xnat[j] <=
+ xint + Dnt[k]\ )\), {knt = k, Break[]}\ ,
+ xint = xint + Dnt[k]]}, {k, 0, m - 1}], \n\t\tDntmj =
+ xnat[j] - xp[knt], \n\t\t\t\t\t\tynat[j] =
+ A[knt]*Dntmj^3 + B[knt]*Dntmj^2 + Cc[knt]*Dntmj +
+ Dc[knt]\ }, \n\t{j, 0, nd}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Graph\ der\ nat . \ Spline -
+ Funktion\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(natsplplot =
+ ListPlot[Table[{xnat[j], ynat[j]}, {j, 0, nd}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{\(-5\), 5}, {\(-1\), 4}}, \tPlotStyle -> Green,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(graf[lauf] =
+ Show[natsplplot, newtonplot, ellipsplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"],
+
+Cell[BoxData[
+ \(Do[{Print["\< Lauf Nummer \>", l\ , "\< mit \>",
+ nummer[l], "\< St\[UDoubleDot]tzpunkten \>"\ ], Show[graf[l]]}, {l,
+ 1, lauf}]\)], "Input"]
+},
+FrontEndVersion->"5.0 for Microsoft Windows",
+ScreenRectangle->{{0, 1024}, {0, 685}},
+WindowSize->{1016, 651},
+WindowMargins->{{0, Automatic}, {Automatic, 0}},
+Magnification->1
+]
+
+(*******************************************************************
+Cached data follows. If you edit this Notebook file directly, not
+using Mathematica, you must remove the line containing CacheID at
+the top of the file. The cache data will then be recreated when
+you save this file from within Mathematica.
+*******************************************************************)
+
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+
+(*NotebookFileOutline
+Notebook[{
+Cell[1754, 51, 324, 6, 59, "Input"],
+Cell[2081, 59, 1439, 38, 97, "Input"],
+Cell[3523, 99, 133, 2, 30, "Input"],
+Cell[3659, 103, 294, 6, 30, "Input"],
+Cell[3956, 111, 518, 10, 69, "Input"],
+Cell[4477, 123, 1032, 26, 70, "Input"],
+Cell[5512, 151, 434, 7, 70, "Input"],
+Cell[5949, 160, 724, 23, 46, "Input"],
+Cell[6676, 185, 851, 14, 110, "Input"],
+Cell[7530, 201, 450, 13, 46, "Input"],
+Cell[7983, 216, 305, 6, 70, "Input"],
+Cell[8291, 224, 292, 7, 46, "Input"],
+Cell[8586, 233, 567, 12, 70, "Input"],
+Cell[9156, 247, 1235, 39, 46, "Input"],
+Cell[10394, 288, 434, 7, 70, "Input"],
+Cell[10831, 297, 300, 7, 46, "Input"],
+Cell[11134, 306, 1927, 41, 110, "Input"],
+Cell[13064, 349, 1246, 39, 46, "Input"],
+Cell[14313, 390, 430, 7, 70, "Input"],
+Cell[14746, 399, 292, 6, 49, "Input"],
+Cell[15041, 407, 1607, 35, 70, "Input"],
+Cell[16651, 444, 1246, 39, 46, "Input"],
+Cell[17900, 485, 430, 7, 70, "Input"],
+Cell[18333, 494, 54, 1, 30, "Input"],
+Cell[18390, 497, 362, 9, 46, "Input"],
+Cell[18755, 508, 46, 1, 30, "Input"],
+Cell[18804, 511, 135, 2, 30, "Input"],
+Cell[18942, 515, 52, 1, 30, "Input"],
+Cell[18997, 518, 162, 2, 30, "Input"],
+Cell[19162, 522, 374, 9, 54, "Input"],
+Cell[19539, 533, 275, 5, 50, "Input"],
+Cell[19817, 540, 262, 4, 50, "Input"],
+Cell[20082, 546, 307, 5, 50, "Input"],
+Cell[20392, 553, 115, 2, 30, "Input"],
+Cell[20510, 557, 337, 7, 49, "Input"],
+Cell[20850, 566, 317, 6, 46, "Input"],
+Cell[21170, 574, 124, 2, 30, "Input"],
+Cell[21297, 578, 204, 5, 30, "Input"],
+Cell[21504, 585, 272, 5, 46, "Input"],
+Cell[21779, 592, 245, 5, 50, "Input"],
+Cell[22027, 599, 371, 9, 46, "Input"],
+Cell[22401, 610, 275, 5, 50, "Input"],
+Cell[22679, 617, 323, 7, 49, "Input"],
+Cell[23005, 626, 538, 10, 66, "Input"],
+Cell[23546, 638, 168, 3, 50, "Input"],
+Cell[23717, 643, 309, 6, 46, "Input"],
+Cell[24029, 651, 172, 3, 50, "Input"],
+Cell[24204, 656, 402, 7, 66, "Input"],
+Cell[24609, 665, 405, 7, 150, "Input"],
+Cell[25017, 674, 416, 7, 66, "Input"],
+Cell[25436, 683, 181, 3, 50, "Input"],
+Cell[25620, 688, 267, 5, 46, "Input"],
+Cell[25890, 695, 252, 5, 50, "Input"],
+Cell[26145, 702, 272, 5, 46, "Input"],
+Cell[26420, 709, 470, 8, 130, "Input"],
+Cell[26893, 719, 350, 9, 46, "Input"],
+Cell[27246, 730, 277, 5, 50, "Input"],
+Cell[27526, 737, 161, 3, 30, "Input"],
+Cell[27690, 742, 185, 3, 30, "Input"]
+}
+]
+*)
+
+
+
+(*******************************************************************
+End of Mathematica Notebook file.
+*******************************************************************)
+