summaryrefslogtreecommitdiffstats
path: root/Bachelor/Numerische Mathematik/Num05Aufg4B.nb
diff options
context:
space:
mode:
authorSven Eisenhauer <sven@sven-eisenhauer.net>2023-11-10 15:11:48 +0100
committerSven Eisenhauer <sven@sven-eisenhauer.net>2023-11-10 15:11:48 +0100
commit33613a85afc4b1481367fbe92a17ee59c240250b (patch)
tree670b842326116b376b505ec2263878912fca97e2 /Bachelor/Numerische Mathematik/Num05Aufg4B.nb
downloadStudium-master.tar.gz
Studium-master.tar.bz2
add new repoHEADmaster
Diffstat (limited to 'Bachelor/Numerische Mathematik/Num05Aufg4B.nb')
-rw-r--r--Bachelor/Numerische Mathematik/Num05Aufg4B.nb1437
1 files changed, 1437 insertions, 0 deletions
diff --git a/Bachelor/Numerische Mathematik/Num05Aufg4B.nb b/Bachelor/Numerische Mathematik/Num05Aufg4B.nb
new file mode 100644
index 0000000..e9223fd
--- /dev/null
+++ b/Bachelor/Numerische Mathematik/Num05Aufg4B.nb
@@ -0,0 +1,1437 @@
+(************** Content-type: application/mathematica **************
+ CreatedBy='Mathematica 5.0'
+
+ Mathematica-Compatible Notebook
+
+This notebook can be used with any Mathematica-compatible
+application, such as Mathematica, MathReader or Publicon. The data
+for the notebook starts with the line containing stars above.
+
+To get the notebook into a Mathematica-compatible application, do
+one of the following:
+
+* Save the data starting with the line of stars above into a file
+ with a name ending in .nb, then open the file inside the
+ application;
+
+* Copy the data starting with the line of stars above to the
+ clipboard, then use the Paste menu command inside the application.
+
+Data for notebooks contains only printable 7-bit ASCII and can be
+sent directly in email or through ftp in text mode. Newlines can be
+CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
+
+NOTE: If you modify the data for this notebook not in a Mathematica-
+compatible application, you must delete the line below containing
+the word CacheID, otherwise Mathematica-compatible applications may
+try to use invalid cache data.
+
+For more information on notebooks and Mathematica-compatible
+applications, contact Wolfram Research:
+ web: http://www.wolfram.com
+ email: info@wolfram.com
+ phone: +1-217-398-0700 (U.S.)
+
+Notebook reader applications are available free of charge from
+Wolfram Research.
+*******************************************************************)
+
+(*CacheID: 232*)
+
+
+(*NotebookFileLineBreakTest
+NotebookFileLineBreakTest*)
+(*NotebookOptionsPosition[ 49607, 1336]*)
+(*NotebookOutlinePosition[ 50269, 1359]*)
+(* CellTagsIndexPosition[ 50225, 1355]*)
+(*WindowFrame->Normal*)
+
+
+
+Notebook[{
+Cell[BoxData[
+ StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Numerik\ - \
+ Aufgabe\ \
+4\ \ B\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ \
+2005\ \ \ \ \ *) \)\(\ \)\),
+ "Subtitle",
+ FontColor->RGBColor[1, 0, 0]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(\(Interpolation\)\(:\)\),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section"],
+
+ StyleBox[
+ " \
+ ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section"]}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}], "\n",
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Parametrische",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Darstellung",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox["x",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox["=",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ RowBox[{
+ StyleBox["\[CurlyPhi]",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\((x)\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["und",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["y",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["=",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ StyleBox["\[Psi]",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\((x)\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]}]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[")",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ RowBox[{
+ StyleBox["(",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(f\[UDoubleDot]r\ geschlossene\ Kurven\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[")",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}], "\[IndentingNewLine]",
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ RowBox[{
+ StyleBox["1.",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Klassische",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Interpolation",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\((\ Newton\ )\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]], " "}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}], "\n",
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ RowBox[{
+ StyleBox["2.",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Nat\[UDoubleDot]rliche",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["kubische",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Spline",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox["-",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Funktion",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]], " "}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[
+ General::spell1]\)\(\ \)\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(lauf = 1\), ";", " ",
+ StyleBox[\( (*\ \ Lauf\ mit\ der\ Nummer\ lauf\ \ , \
+ alle\ vorhergehenden\ L\[ADoubleDot]ufe\ bleiben\ \(erhalten\ !\)\ *) \
+\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ Vorgeben\ \(("\<V\>")\)\ der\ m +
+ 1\ St\[UDoubleDot]tzpunkte\ , \[IndentingNewLine]\ \ \ \ \ \ \ L\
+\[ODoubleDot]schen\ \(("\< L \>")\)\ , \ \ Einf\[UDoubleDot]gen\ \(("\< E \
+\>")\)\ \ oder\ \ \[CapitalADoubleDot]ndern\ \(("\< K\>")\)\ eines\ Punktes\ \
+\ ?\ \ \ \ \ \ \ \ nichts\ \[CapitalADoubleDot]ndern\ \ \(("\< N \>")\)\ \ \ \
+\ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(sch = \ "\<V\>"\), ";",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ Erster\ Lauf\ mit\ vorgegebenen\ \(Werten\ \
+!\)\ \ \ \ *) \),
+ FontSize->16,
+ FontColor->RGBColor[0, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[0, 0, 1]], "\[IndentingNewLine]",
+ StyleBox[" ",
+ FontSize->14,
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\( (*\
+ Hier\ \[CapitalADoubleDot]nderungen\ \((L, E,
+ K)\)\ eingeben\ und\ direkt\ ausf\[UDoubleDot]hren\ \
+\[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ oder\ N\ f\[UDoubleDot]r\ nicht\ \
+\[ADoubleDot]ndern\ bei\ einem\ neuen\ Lauf\ *) \),
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input"],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<N\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ \ , \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ 0, .. , m\ \ eingeben\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(\(If[\
+ sch == "\<V\>", {\ \ m =
+ 20, \[IndentingNewLine]xp[0] = \(-4. \); \ \ \ yp[0] =
+ 0. ; \ \ \ xp[1] = \(-3.95\); \ \ \ \ \ yp[1] =
+ 0.5; \ \ \ \ \ \ xp[2] = \(-3.5\); \ \ \ \ \ \ yp[2] =
+ 1.5; \ \ \ \ \ xp[3] = \(-3. \); \ \ \ yp[3] =
+ 2. ; \ \ \ xp[4] = \ \(-2\); \ \ \ \ \ \ \ \ \ \ yp[4] =
+ 2.6; \ \ \ \ \ \ xp[5] = \ \(-1\); \ \ \ \ \ \ \ \ \ yp[5] =
+ 2.9; \ \ \ \ \ \ \ \ xp[6] = \ \ \ 0. ; \ \ \ yp[6] =
+ 3. ; \ \ xp[7] = \ \ \ 2; \ \ \ \ \ \ \ \ \ \ \ yp[7] =
+ 2.6; \ \ \ \ \ \ \ xp[8] = \(+3. \); \ \ \ \ \ \ \ \ yp[8] =
+ 2. ; \nxp[9] = \ 3.75; \ \ \ \ \ \ yp[9] =
+ 1; \ \ \ \ \ \ \ \ \ \ xp[10] = \(+4. \); \ \ \ \ \ \ \ yp[10] =
+ 0. ; \ \ \ \ \ \ \ \ xp[11] =
+ 3.5; \ \ \ \ \ yp[11] = \(-1.5\); \ \ \ \ \ \ \n
+ xp[12] = \(+3. \); \ \ \ \ \ \ yp[12] = \(-2. \); \ \ \ \ xp[
+ 13] = \ \ \ 1; \ \ \ \ \ \ \ \ \ yp[13] = \(-2.9\); \ \ xp[
+ 14] = \ \ \ 0. ; \ \ \ yp[14] = \(-3. \); \[IndentingNewLine]xp[
+ 15] = \ \(-2\); \ \ \ \ \ \ \ \ yp[15] = \(-2.6\); \
+ xp[16] = \(-3. \); \ \ \ \ \ yp[16] = \(-2. \); \ \ \ \ \ xp[
+ 17] = \(-3.5\); \ \ \ yp[
+ 17] = \(-1.5\); \ \ \ \ \ \ \[IndentingNewLine]xp[
+ 18] = \(-3.75\); \
+ yp[18] = \(-1. \); \ \ xp[19] = \(-3.95\); \ \ \ \ yp[
+ 19] = \(-0.5\); \ \ xp[20] = \(-4. \); \ \ \ yp[20] =
+ 0. ;}];\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(Vorgegebene\ St\[UDoubleDot]tzpunkte\ 0, .. , m\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch == "\<V\>",
+ TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], "\< yp[\>", ind, "\<] = \>",
+ PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \
+L\[ODoubleDot]schen\ \ eines\ \ Punktes\ \ mit\ \ der\ \ Nummer\ \ index\ \ \ \
+*) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(index\ = 9\), " ", ";", " ",
+ StyleBox[\( (*\
+ Nummer\ des\ zu\ entfernenden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]], " ", "\n",
+ " ", \(If[sch \[Equal] "\<L\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ , {m =
+ m - 1; \n\ \ \ \ \ \ \ \ \ Do[{\ xp[j] = xp[j + 1],
+ yp[j] = yp[j + 1]}, {j, index, m}]}]]\), ";",
+ " "}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Entfernen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<L\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ \ , \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \
+Einf\[UDoubleDot]gen\ \ eins\ \ Punktes\ \ mit\ \ der\ \ Nummer\ i\ ndex\ \ \ \
+\ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{
+ RowBox[{\(index\ = \ \ 1\ ;\), " ",
+
+ StyleBox[\( (*\
+ Nummer\ des\ einzuf\[UDoubleDot]genden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]]}], " ",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"If", "[",
+ RowBox[{\(sch \[Equal] "\<E\>"\), ",",
+ RowBox[{"If", "[",
+
+ RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\), ",",
+ RowBox[{"{",
+
+ RowBox[{\(m = m + 1\),
+ ";", \(Do[{xp[j], yp[j]}, {j, 0, index - 1}]\), ";",
+ "\[IndentingNewLine]",
+ " ", \(Do[{xp[j] = xp[j - 1], yp[j] = yp[j - 1]}, {j,
+ m, index + 1, \(-1\)}]\), ";",
+ "\[IndentingNewLine]",
+ " ", \(xp[index] = \ \ \(-\ 3.75\)\),
+ " ",
+ StyleBox[\( (*\ xp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ " ", \(yp[index] = \ \ \ 1.0\)}],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox[\( (*\ yp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["}",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]]}]}]}]], "Input"],
+
+Cell[BoxData[
+ \(\(nummer[lauf] = m;\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<E\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m, \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \[CapitalADoubleDot]ndern\ des\ Punktes\ mit\ \
+der\ Nummer\ index\ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{
+ RowBox[{\(index\ = \ \ 19\ ;\), " ",
+
+ StyleBox[\( (*\
+ Nummer\ des\ zu\ \[ADoubleDot]ndernden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]]}], " ", "\n", " ",
+ RowBox[{
+ RowBox[{"If", "[",
+ RowBox[{\(sch \[Equal] "\<K\>"\), ",",
+ RowBox[{"If", "[",
+
+ RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\), ",",
+ RowBox[{"{", " ",
+
+ RowBox[{\(xp[index] = \ \ \ \(-3.90\)\),
+ " ",
+ StyleBox[\( (*\ xp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ " ", \(yp[index] = \ \ \ \(-0.5\)\)}],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox[\( (*\ yp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["}",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]]}]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<K\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m, \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ Bereitstellen\ des\ Parameters\ tp\ f\
+\[UDoubleDot]r\ die\ m\ St\[UDoubleDot]tzpunkte\ \ \ \ \ \ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(\(\ \)\(\(tp[0] = 0;\)\[IndentingNewLine]
+ Do[{Delt[k - 1] =
+ Sqrt[\((xp[k] - xp[k - 1])\)^2 + \((yp[k] - yp[k - 1])\)^2],
+ tp[k] = tp[k - 1] + Delt[k - 1]}, {k, 1, m}]\)\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\
+\ die\ Parameterdarstellung\ der\ Ellipse\ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ und\ Bereitstellen\ des\ Parameters\
+\ tj, \ \((\ j, \ 0, \ nd\ )\)\ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(\(nd = 400;\)\)], "Input"],
+
+Cell[BoxData[
+ \(Do[{tj[j] = tp[0] + j*\((tp[m] - tp[0])\)/nd, \
+ tel[j] =
+ 8. *ArcTan[1]/nd*
+ j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xel[j] = \(-\ 4\)*Cos[tel[j]],
+ yel[j] = 3*Sin[tel[j]]}, {j, 0, nd}]\)], "Input"],
+
+Cell[BoxData[
+ \(<< Graphics`Colors`\)], "Input"],
+
+Cell[BoxData[
+ \(\(liste1 = {Red, HotPink, Green, Apricot, Brown, DarkGreen, Cobalt,
+ Brick, Orange, Magenta, IndianRed, ForestGreen};\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ Plotten\ der\ Ellipse\ \ x\ = \ \(4*
+ cos \((t)\)\ \ und\ \ y\ = \
+ 3*sin \((t)\)\)\ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(ellipsplot =
+ ListPlot[Table[{xel[j], yel[j]}, {j, 0, nd}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \tPlotStyle -> Brown,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(punktplot =
+ ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ False, \t
+ PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \n\tPlotStyle -> Blue,
+ Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5,
+ AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(linienplot =
+ ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ True, \t
+ PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \n\tPlotStyle -> Blue,
+ Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5,
+ AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(Show[ellipsplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Newton\ - \
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ *) \),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ Funktionsunterprogramm\ zur\ Berechnung\ \
+der\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ " ",
+ StyleBox[\( (*\ \ \ \ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ \
+Newton - Interpolation\ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], " "}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(FunkDivDiff[xpform_,
+ ypform_] := \ \((\[IndentingNewLine]Do[
+ DivDiffret[k,
+ 1] = \((ypform[k + 1] - ypform[k])\)/\((xpform[k + 1] -
+ xpform[k])\), {k, 0, m - 1}]; \[IndentingNewLine]Do[
+ Do[DivDiffret[k,
+ j] = \((DivDiffret[k + 1, j - 1] -
+ DivDiffret[k, j - 1])\)/\((xpform[k + j] -
+ xpform[k])\), {k, 0, m - j}], {j, 2, m}];
+ DivDiffmatret =
+ Table[DivDiffret[0, j], {j, 1, m}]; {DivDiffmatret})\)\)], "Input"],
+
+Cell[BoxData[
+ \(\(DivDiffxmat = FunkDivDiff[tp, xp]\ ;\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(DivDiffx = DivDiffxmat[\([1]\)];\),
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ x -
+ Werte\ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(DivDiffymat = FunkDivDiff[tp, yp]\ ;\),
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(DivDiffy = DivDiffymat[\([1]\)];\), " ",
+ StyleBox[\( (*\ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ y -
+ Werte\ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ xj\ und\ yj\ f\
+\[UDoubleDot]r\ den\ Graph\ der\ Newton - Interpolation\ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(Do[{xnew[j] = xp[0],
+ prox = tj[j] -
+ tp[0], \[IndentingNewLine]Do[{xnew[j] =
+ xnew[j] + prox*DivDiffx[\([i]\)],
+ prox = prox*\((tj[j] - tp[i])\)}, {i, 1,
+ m}], \[IndentingNewLine]ynew[j] = yp[0],
+ proy = tj[j] - tp[0], \n\t
+ Do[{ynew[j] = ynew[j] + proy*DivDiffy[\([i]\)],
+ proy = proy*\((tj[j] - tp[i])\)}, {i, 1, m}]}, {j, 0,
+ nd}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ Parametrische\ Darstellung\ der\ Newton -
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(newtonplot =
+ ListPlot[Table[{xnew[j], ynew[j]}, {j, 0, nd}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \tPlotStyle -> Red,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(\(\(Show[newtonplot, ellipsplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)\(\[IndentingNewLine]\)
+ \)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Nat\[UDoubleDot]rliche\ Spline -
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \
+\),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ Funktionsunterprogramm\ zur\ Berechnung\ \
+der\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ " ",
+ StyleBox[\( (*\ \ \ \ \ Koeffizienten\ f\[UDoubleDot]r\ die\ nat\
+\[UDoubleDot]rlichen\ Spline - Interpolation\ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], " "}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(FunkNatSpl[xpform_, ypform_]\), ":=", " ",
+ RowBox[{
+ "(", "\[IndentingNewLine]", " ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Erstellen\ \
+der\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], "\n",
+ " ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \((\
+ Haupt - \ und\ Nebendiagonale\ )\)\ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ RowBox[{\(Du[0] = xpform[1] - xpform[0]\), ";", "\n",
+ " ", \(Do[{Du[k] = xpform[k + 1] - xpform[k],
+ Dh[k] = 2 \((Du[k - 1] + Du[k])\)}, {k, 1, m - 1}]\), ";",
+ "\[IndentingNewLine]", " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Cholesky -
+ Zerlegung\ der\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ "\[IndentingNewLine]", \(Ch[1] = Sqrt[Dh[1]]\), ";", "\n",
+ " ", \(Do[{Cn[k - 1] = Du[k - 1]/Ch[k - 1],
+ Ch[k] = Sqrt[Dh[k] - Cn[k - 1]^2]}, {k, 2, m - 1}]\), ";",
+ "\[IndentingNewLine]", " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ Vorw\[ADoubleDot]rtsrechnung\ \
+"\<von oben her\>"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["\n",
+ FontColor->RGBColor[1, 0, 1]], " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ und\ Erstellen\ der\ rechten\ \
+Seite\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ "\[IndentingNewLine]", \(Dv[0] = ypform[1] - ypform[0]\), ";",
+ " ", \(Dv[1] = ypform[2] - ypform[1]\), ";", "\n",
+ " ", \(Dr[1] = 3 \((Dv[1]/Du[1] - Dv[0]/Du[0])\)\), ";", "\n",
+ " ", \(Z[1] = Dr[1]/Ch[1]\), ";", "\n",
+ " ", \(Do[{Dv[k] = ypform[k + 1] - ypform[k], \n\t\tDr[k] =
+ 3 \((Dv[k]/Du[k] - Dv[k - 1]/Du[k - 1])\), \n\t\tZ[
+ k] = \((Dr[k] - Z[k - 1]*Cn[k - 1])\)/Ch[k]}, \n\ \ \ {k,
+ 2, m - 1}]\), ";", "\[IndentingNewLine]",
+ " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R\[UDoubleDot]ckw\
+\[ADoubleDot]rtsrechnung\ "\<von unten her\>"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["\n",
+ FontColor->RGBColor[1, 0, 1]], " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \tBerechnung\ der\ \
+Koeffizienten\ B\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ "\[IndentingNewLine]", \(B[m] = 0\), ";",
+ " ", \(B[m - 1] = Z[m - 1]/Ch[m - 1]\), ";", "\n",
+ " ", \(Do[
+ B[k] = \((Z[k] - B[k + 1]*Cn[k])\)/Ch[k], {k, m - 2,
+ 1, \(-1\)}]\), ";", " ", \(B[0] = 0\), ";",
+ "\[IndentingNewLine]", " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ Berechnung\ der\ \
+Koeffizienten\ A\_\(\(k\)\(\ \)\), \ C\_k\ , \
+ D\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ "\[IndentingNewLine]", \(Do[{A[
+ k] = \((B[k + 1] - B[k])\)/\((3
+ Du[k])\), \n\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ Cc[k] =
+ Dv[k]/Du[k] - Du[k]*\((B[k + 1] + 2 B[k])\)/3, \
+ Dc[k] = ypform[k]}, {k, 0, m - 1}]\), ";",
+ "\[IndentingNewLine]",
+ " ", \(Aret = Table[A[k], \ {k, 0, m - 1}]\), ";",
+ " ", \(Bret = Table[B[k], {k, 0, m}]\), ";", " ",
+ "\[IndentingNewLine]", " ", \(Cret = Table[Cc[k], {k, 0, m - 1}]\),
+ ";", " ", \(Dret = Table[Dc[k], {k, 0, m - 1}]\), ";",
+ "\[IndentingNewLine]", \({Aret, Bret, Cret, Dret}\)}],
+ ")"}]}]], "Input"],
+
+Cell[BoxData[
+ \(\(ABCDxmat = FunkNatSpl[tp, xp]\ \ ;\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Anatx = ABCDxmat[\([1]\)]\ ;\), " ",
+ StyleBox[\( (*\
+ Koeffizienen\ Ak\ \ \(f \[UDoubleDot]r\)\ die\ x - Werte\ *) \),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Bnatx = ABCDxmat[\([2]\)];\), " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Bk",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Cnatx = ABCDxmat[\([3]\)];\), " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Ck",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Dnatx = ABCDxmat[\([4]\)];\), " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Dk",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input"],
+
+Cell[BoxData[
+ \(\(ABCDymat = FunkNatSpl[tp, yp]\ ;\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Anaty = ABCDymat[\([1]\)];\), " ",
+ StyleBox[\( (*\
+ Koeffizienen\ Ak\ \ \(f \[UDoubleDot]r\)\ die\ x - Werte\ *) \),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Bnaty = ABCDymat[\([2]\)];\), " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Bk",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Cnaty = ABCDymat[\([3]\)];\), " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Ck",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Dnaty = ABCDymat[\([4]\)]\ ;\), " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Dk",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ xj\ und\ yj\ f\
+\[UDoubleDot]r\ den\ Graph\ der\ Spline - Interpolation\ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(Do[{tint = tp[0], \n\t
+ Do[{Dnt[k] = tp[k + 1] - tp[k],
+ If[\((tj[j] \[GreaterEqual]
+ tint\ )\)\ \[And] \ \ \((tj[j] \[LessEqual]
+ tint + Dnt[k]\ )\), {knt = k, Break[]}\ ,
+ tint = tint + Dnt[k]]}, {k, 0, m - 1}], \n\t
+ Dntmj = tj[j] - tp[knt], \[IndentingNewLine]\ \ \ \ \ xnat[j] =
+ Anatx[\([knt + 1]\)]*Dntmj^3 + Bnatx[\([knt + 1]\)]*Dntmj^2 +
+ Cnatx[\([knt + 1]\)]*Dntmj + Dnatx[\([knt + 1]\)]\ , \n\t
+ ynat[j] =
+ Anaty[\([knt + 1]\)]*Dntmj^3 + Bnaty[\([knt + 1]\)]*Dntmj^2 +
+ Cnaty[\([knt + 1]\)]*Dntmj + \ \ Dnaty[\([knt + 1]\)]\ }, \n\t{j,
+ 0, nd}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Graph\ der\ nat . \ Spline -
+ Funktion\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(natsplplot =
+ ListPlot[Table[{xnat[j], ynat[j]}, {j, 0, nd}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{\(-5\), 5}, {\(-4\), 4}}, \tPlotStyle -> Green,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(graf[lauf] =
+ Show[natsplplot, newtonplot, ellipsplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"],
+
+Cell[BoxData[
+ \(Do[{Print["\< Lauf Nummer \>", l\ , "\< mit \>",
+ nummer[l], "\< St\[UDoubleDot]tzpunkten \>"\ ], Show[graf[l]]}, {l,
+ 1, lauf}]\)], "Input"]
+},
+FrontEndVersion->"5.0 for Microsoft Windows",
+ScreenRectangle->{{0, 1024}, {0, 685}},
+WindowSize->{1016, 651},
+WindowMargins->{{0, Automatic}, {Automatic, 0}},
+Magnification->1
+]
+
+(*******************************************************************
+Cached data follows. If you edit this Notebook file directly, not
+using Mathematica, you must remove the line containing CacheID at
+the top of the file. The cache data will then be recreated when
+you save this file from within Mathematica.
+*******************************************************************)
+
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+
+(*NotebookFileOutline
+Notebook[{
+Cell[1754, 51, 318, 7, 59, "Input"],
+Cell[2075, 60, 7848, 236, 137, "Input"],
+Cell[9926, 298, 133, 2, 30, "Input"],
+Cell[10062, 302, 294, 6, 30, "Input"],
+Cell[10359, 310, 527, 10, 69, "Input"],
+Cell[10889, 322, 1032, 26, 70, "Input"],
+Cell[11924, 350, 434, 7, 70, "Input"],
+Cell[12361, 359, 724, 23, 46, "Input"],
+Cell[13088, 384, 1583, 26, 170, "Input"],
+Cell[14674, 412, 450, 13, 46, "Input"],
+Cell[15127, 427, 305, 6, 70, "Input"],
+Cell[15435, 435, 292, 7, 46, "Input"],
+Cell[15730, 444, 565, 12, 70, "Input"],
+Cell[16298, 458, 1235, 39, 46, "Input"],
+Cell[17536, 499, 434, 7, 70, "Input"],
+Cell[17973, 508, 300, 7, 46, "Input"],
+Cell[18276, 517, 2079, 45, 110, "Input"],
+Cell[20358, 564, 54, 1, 30, "Input"],
+Cell[20415, 567, 1246, 39, 46, "Input"],
+Cell[21664, 608, 430, 7, 70, "Input"],
+Cell[22097, 617, 292, 6, 49, "Input"],
+Cell[22392, 625, 1728, 38, 70, "Input"],
+Cell[24123, 665, 1246, 39, 46, "Input"],
+Cell[25372, 706, 430, 7, 70, "Input"],
+Cell[25805, 715, 405, 10, 46, "Input"],
+Cell[26213, 727, 228, 4, 50, "Input"],
+Cell[26444, 733, 700, 16, 66, "Input"],
+Cell[27147, 751, 46, 1, 30, "Input"],
+Cell[27196, 754, 324, 6, 50, "Input"],
+Cell[27523, 762, 52, 1, 30, "Input"],
+Cell[27578, 765, 162, 2, 30, "Input"],
+Cell[27743, 769, 411, 10, 46, "Input"],
+Cell[28157, 781, 275, 5, 50, "Input"],
+Cell[28435, 788, 307, 5, 50, "Input"],
+Cell[28745, 795, 307, 5, 50, "Input"],
+Cell[29055, 802, 115, 2, 30, "Input"],
+Cell[29173, 806, 337, 7, 49, "Input"],
+Cell[29513, 815, 570, 11, 66, "Input"],
+Cell[30086, 828, 566, 11, 90, "Input"],
+Cell[30655, 841, 73, 1, 30, "Input"],
+Cell[30731, 844, 346, 8, 30, "Input"],
+Cell[31080, 854, 143, 3, 30, "Input"],
+Cell[31226, 859, 244, 4, 30, "Input"],
+Cell[31473, 865, 285, 5, 46, "Input"],
+Cell[31761, 872, 460, 10, 90, "Input"],
+Cell[32224, 884, 380, 9, 46, "Input"],
+Cell[32607, 895, 275, 5, 50, "Input"],
+Cell[32885, 902, 163, 3, 50, "Input"],
+Cell[33051, 907, 333, 7, 49, "Input"],
+Cell[33387, 916, 585, 11, 66, "Input"],
+Cell[33975, 929, 4213, 77, 552, "Input"],
+Cell[38191, 1008, 71, 1, 30, "Input"],
+Cell[38265, 1011, 262, 5, 30, "Input"],
+Cell[38530, 1018, 1452, 41, 30, "Input"],
+Cell[39985, 1061, 1453, 41, 30, "Input"],
+Cell[41441, 1104, 1453, 41, 30, "Input"],
+Cell[42897, 1147, 69, 1, 30, "Input"],
+Cell[42969, 1150, 262, 5, 30, "Input"],
+Cell[43234, 1157, 1452, 41, 30, "Input"],
+Cell[44689, 1200, 1453, 41, 30, "Input"],
+Cell[46145, 1243, 1454, 41, 30, "Input"],
+Cell[47602, 1286, 285, 5, 46, "Input"],
+Cell[47890, 1293, 728, 13, 150, "Input"],
+Cell[48621, 1308, 350, 9, 46, "Input"],
+Cell[48974, 1319, 277, 5, 50, "Input"],
+Cell[49254, 1326, 161, 3, 30, "Input"],
+Cell[49418, 1331, 185, 3, 30, "Input"]
+}
+]
+*)
+
+
+
+(*******************************************************************
+End of Mathematica Notebook file.
+*******************************************************************)
+