diff options
Diffstat (limited to 'Bachelor/Numerische Mathematik/Num05Aufg4C.nb')
| -rw-r--r-- | Bachelor/Numerische Mathematik/Num05Aufg4C.nb | 1452 |
1 files changed, 1452 insertions, 0 deletions
diff --git a/Bachelor/Numerische Mathematik/Num05Aufg4C.nb b/Bachelor/Numerische Mathematik/Num05Aufg4C.nb new file mode 100644 index 0000000..1ba3a2b --- /dev/null +++ b/Bachelor/Numerische Mathematik/Num05Aufg4C.nb @@ -0,0 +1,1452 @@ +(************** Content-type: application/mathematica **************
+ CreatedBy='Mathematica 5.0'
+
+ Mathematica-Compatible Notebook
+
+This notebook can be used with any Mathematica-compatible
+application, such as Mathematica, MathReader or Publicon. The data
+for the notebook starts with the line containing stars above.
+
+To get the notebook into a Mathematica-compatible application, do
+one of the following:
+
+* Save the data starting with the line of stars above into a file
+ with a name ending in .nb, then open the file inside the
+ application;
+
+* Copy the data starting with the line of stars above to the
+ clipboard, then use the Paste menu command inside the application.
+
+Data for notebooks contains only printable 7-bit ASCII and can be
+sent directly in email or through ftp in text mode. Newlines can be
+CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
+
+NOTE: If you modify the data for this notebook not in a Mathematica-
+compatible application, you must delete the line below containing
+the word CacheID, otherwise Mathematica-compatible applications may
+try to use invalid cache data.
+
+For more information on notebooks and Mathematica-compatible
+applications, contact Wolfram Research:
+ web: http://www.wolfram.com
+ email: info@wolfram.com
+ phone: +1-217-398-0700 (U.S.)
+
+Notebook reader applications are available free of charge from
+Wolfram Research.
+*******************************************************************)
+
+(*CacheID: 232*)
+
+
+(*NotebookFileLineBreakTest
+NotebookFileLineBreakTest*)
+(*NotebookOptionsPosition[ 51563, 1359]*)
+(*NotebookOutlinePosition[ 52225, 1382]*)
+(* CellTagsIndexPosition[ 52181, 1378]*)
+(*WindowFrame->Normal*)
+
+
+
+Notebook[{
+Cell[BoxData[
+ StyleBox[\(\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Numerik\ - \
+ Aufgabe\ 4\ \ C\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ SS\ 2005\ \ \ \ \
+*) \)\(\ \)\),
+ "Subtitle",
+ FontColor->RGBColor[1, 0, 0]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(\(Interpolation\)\(:\)\),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section"],
+
+ StyleBox[
+ " \
+ ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section"]}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}], "\n",
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ StyleBox["Parametrische",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Darstellung",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ StyleBox["(",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ StyleBox["x",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["=",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ RowBox[{
+ StyleBox["\[CurlyPhi]",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\((x)\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["und",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["y",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["=",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ StyleBox["\[Psi]",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\((x)\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]}]}],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[")",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ RowBox[{
+ StyleBox["(",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\(f\[UDoubleDot]r\ geschlossene\ Kurven\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[")",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}], "\[IndentingNewLine]",
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ RowBox[{
+ StyleBox["1.",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Klassische",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Interpolation",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\((\ Newton\ )\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]], " "}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}], "\n",
+ RowBox[{
+ StyleBox["(*",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ RowBox[{
+ RowBox[{
+ StyleBox["2.",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Periodische",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["kubische",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Spline",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox["-",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["Funktion",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]], " "}]],
+ StyleBox["*)",
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[
+ General::spell1]\)\(\ \)\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(lauf = 1\), ";", " ",
+ StyleBox[\( (*\ \ Lauf\ mit\ der\ Nummer\ lauf\ \ , \
+ alle\ vorhergehenden\ L\[ADoubleDot]ufe\ bleiben\ \(erhalten\ !\)\ *) \
+\),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ Vorgeben\ \(("\<V\>")\)\ der\ m +
+ 1\ St\[UDoubleDot]tzpunkte\ , \[IndentingNewLine]\ \ \ \ \ \ \ L\
+\[ODoubleDot]schen\ \(("\< L \>")\)\ , \ \ Einf\[UDoubleDot]gen\ \(("\< E \
+\>")\)\ \ oder\ \ \[CapitalADoubleDot]ndern\ \(("\< K\>")\)\ eines\ Punktes\ \
+\ ?\ \ \ \ \ \ \[IndentingNewLine]\ \ \ nichts\ \[CapitalADoubleDot]ndern\
+\ \ \(("\< N \>")\)\ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(sch = \ "\<V\>"\), ";",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ Erster\ Lauf\ mit\ vorgegebenen\ \(Werten\ \
+!\)\ \ \ \ *) \),
+ FontSize->16,
+ FontColor->RGBColor[0, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[0, 0, 1]], "\[IndentingNewLine]",
+ StyleBox[" ",
+ FontSize->14,
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[\( (*\
+ Hier\ \[CapitalADoubleDot]nderungen\ \((L, E,
+ K)\)\ eingeben\ und\ direkt\ ausf\[UDoubleDot]hren\ \
+\[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ oder\ N\ f\[UDoubleDot]r\ nicht\ \
+\[ADoubleDot]ndern\ bei\ einem\ neuen\ Lauf\ *) \),
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[" ",
+ FontSize->16,
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input"],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<N\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ \ , \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ 0, .. , m\ \ eingeben\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(\(If[\
+ sch == "\<V\>", {\ \ m =
+ 12, \[IndentingNewLine]xp[0] = \(-4.5\); \ \ \ yp[0] =
+ 0. ; \ \ \ xp[1] = \(-3.0\); \ \ \ \ \ yp[1] =
+ 3. ; \ \ \ \ \ \ \ \ \ \ xp[2] = \(-1.0\); \ \ \ \ \ \ yp[2] =
+ 1.5; \ \ \ \ \ xp[3] = 0.0; \ \ \ \ \ yp[3] = 0.0; \ \ xp[4] = \
+ 1. ; \ \ \ \ \ \ \ \ \ \ yp[4] = \(-1.5\); \ \ \ \ \ xp[5] = \
+ 3; \ \ \ \ \ \ \ \ \ yp[5] = \(-3. \); \ \ \ \ \ \ \ \ xp[6] = \
+ 4.5; \ \ \ \ yp[6] =
+ 0.0; \ \ xp[7] = \ \ 3; \ \ \ \ \ \ \ \ \ \ \ yp[7] = \
+ 3.0; \ \ \ \ \ \ \ xp[8] = \(+1. \); \ \ \ \ \ \ \ \ yp[8] = \
+ 1.5; \n\ \ \ \ \ \ xp[9] = \ 0.0; \ \ \ \ \ yp[9] =
+ 0.0; \ \ xp[10] = \ \(-1.0\); \ \ \ yp[10] = \(-1.5\); \ \ \ xp[
+ 11] = \(-3.0\); \ \ \ \ \ yp[
+ 11] = \ \(-3.0\); \ \ \ \ \ \ \n\ \ \ \ \ \ xp[
+ 12] = \(-4.5\); \ \ \ \ yp[12] = 0.0;\ \ }];\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(Vorgegebene\ St\[UDoubleDot]tzpunkte\ 0, .. , m\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch == "\<V\>",
+ TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], "\< yp[\>", ind, "\<] = \>",
+ PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \
+L\[ODoubleDot]schen\ \ eines\ \ Punktes\ \ mit\ \ der\ \ Nummer\ \ index\ \ \ \
+*) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(index\ = 15\), ";", " ",
+ StyleBox[\( (*\
+ Nummer\ des\ zu\ entfernenden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]], " ", "\n",
+ " ", \(If[sch \[Equal] "\<L\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ , {m =
+ m - 1; \n\ \ \ \ \ \ \ \ \ Do[{\ xp[j] = xp[j + 1],
+ yp[j] = yp[j + 1]}, {j, index, m}]}]]\), ";",
+ " "}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Entfernen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<L\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m\ \ , \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \
+Einf\[UDoubleDot]gen\ \ eins\ \ Punktes\ \ mit\ \ der\ \ Nummer\ i\ ndex\ \ \ \
+\ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[""], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(index\ = \ 17\), ";", " ",
+ StyleBox[\( (*\
+ Nummer\ des\ einzuf\[UDoubleDot]genden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]], " ", "\[IndentingNewLine]",
+
+ RowBox[{"If", "[",
+ RowBox[{\(sch \[Equal] "\<E\>"\), ",",
+ RowBox[{"If", "[",
+
+ RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] m\),
+ ",",
+ RowBox[{"{",
+
+ RowBox[{\(m = m + 1\),
+ ";", \(Do[{xp[j], yp[j]}, {j, 0, index - 1}]\), ";",
+ "\[IndentingNewLine]",
+ " ", \(Do[{xp[j] = xp[j - 1], yp[j] = yp[j - 1]}, {j,
+ m, index + 1, \(-1\)}]\), ";", "\[IndentingNewLine]",
+ " ", \(xp[index] = \ \ \(-4.45\)\),
+ " ",
+ StyleBox[\( (*\ xp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ " ", \(yp[index] = \ \ \ \(-\ 0.5\)\)}],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox[\( (*\ yp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["}",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<E\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m, \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \[CapitalADoubleDot]ndern\ des\ Punktes\ mit\ \
+der\ Nummer\ index\ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ RowBox[{\(index\ = \ \ 1\), " ", ";", " ",
+ StyleBox[\( (*\
+ Nummer\ des\ zu\ \[ADoubleDot]ndernden\ Punktes\ \((\
+ index\ )\)\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]], " ", "\n", " ",
+ RowBox[{"If", "[",
+ RowBox[{\(sch \[Equal] "\<K\>"\), ",",
+ RowBox[{"If", "[",
+
+ RowBox[{\(index \[GreaterEqual] 0\ And\ index \[LessEqual] m\),
+ ",",
+ RowBox[{"{", " ",
+
+ RowBox[{\(xp[index] = \ \ \ \(-4.45\)\),
+ " ",
+ StyleBox[\( (*\ xp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]], "\[IndentingNewLine]",
+ " ", \(yp[index] = \ 0.5\)}],
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0]]}]],
+ StyleBox[\( (*\ yp[i]\ eingeben\ *) \),
+ FontColor->RGBColor[1, 0, 0]],
+ StyleBox["}",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}]}],
+ StyleBox["]",
+ FontColor->RGBColor[1, 0, 0]]}],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ RowBox[{
+ StyleBox[\(St\[UDoubleDot]tzpunkte\ \ \ 0\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["..",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["m",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[",",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(nach\ dem\ Einf\[UDoubleDot]gen\ von\ Punkten\),
+ FontColor->RGBColor[1, 0, 1]]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(If[sch \[Equal] "\<K\>",
+ If[index \[GreaterEqual] 0\ And\ index \[LessEqual]
+ m, \ \ \ \[IndentingNewLine]TableForm[
+ Table[{ind = PaddedForm[i, 2], "\< xp[\>", ind, "\<] = \>",
+ PaddedForm[xp[i], {3, 2}], \[IndentingNewLine]"\< yp[\>",
+ ind, "\<] = \>", PaddedForm[yp[i], {3, 2}]}, {i, 0, m}],
+ TableSpacing \[Rule] {1, 0}]]]\)], "Input"],
+
+Cell[BoxData[
+ \(\(nummer[lauf] = m;\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ Bereitstellen\ des\ Parameters\ tp\ f\
+\[UDoubleDot]r\ die\ m\ St\[UDoubleDot]tzpunkte\ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(\(\(\ \)\(\(tp[0] = 0;\)\[IndentingNewLine]
+ Do[{Delt[k - 1] =
+ Sqrt[\((xp[k] - xp[k - 1])\)^2 + \((yp[k] - yp[k - 1])\)^2],
+ tp[k] = tp[k - 1] + Delt[k - 1]}, {k, 1, m}]\)\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ St\[UDoubleDot]tzstellen\ f\[UDoubleDot]r\
+\ die\ Parameterdarstellung\ einer\ Acht\ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ und\ Bereitstellen\ des\ Parameters\
+\ tj, \ \((\ j, \ 0, \ nd\ )\)\ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(\(nd = 400;\)\)], "Input"],
+
+Cell[BoxData[{
+ \(Do[{\
+ tach[j] =
+ 8. *ArcTan[1]/nd*
+ j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xach[j] = \(-3\)\ Cos[tach[j]] - 1.5,
+ yach[j] = 3*Sin[1.5 tach[j]]}, {j, \(-100\),
+ 100}]\), "\[IndentingNewLine]",
+ \(Do[{\
+ tach[j] =
+ 8. *ArcTan[1]/nd*
+ j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xach[j] = \(-6\) + \ 3*tach[j],
+ yach[j] = \(-1.5\) xach[j]}, {j, 101,
+ 150}]\), "\[IndentingNewLine]",
+ \(Do[{\
+ tach[j] =
+ 8. *ArcTan[1]/nd*
+ j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xach[j] = 6\ - \ 3*tach[251 + j],
+ yach[j] =
+ 1.5 xach[j]}, {j, \(-150\), \(-101\)}]\), "\[IndentingNewLine]",
+ \(\ Do[{\
+ tach[j] =
+ 8. *ArcTan[1]/nd*
+ j, \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ xach[j] =
+ 1.5 + \ 3*Cos[tach[\(-250\) + j]],
+ yach[j] = 3*Sin[1.5 tach[\(-250\) + j]]}, {j, 151, 360}]\)}], "Input"],
+
+Cell[BoxData[
+ \(\(\(\ \)\(Do[
+ tj[j] = tp[0] + j*\((tp[m] - tp[0])\)/nd, {j, 0, nd}];\)\)\)], "Input"],
+
+Cell[BoxData[
+ \(<< Graphics`Colors`\)], "Input"],
+
+Cell[BoxData[
+ \(\(liste1 = {Red, HotPink, Green, Apricot, Brown, DarkGreen, Cobalt,
+ Brick, Orange, Magenta, IndianRed, ForestGreen};\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ Plotten\ der\ \
+Acht\ \ aus\ \ Kreisb\[ODoubleDot]gen\ \ x\ = \ \(3*
+ cos \((t)\)\ \ und\ \ y\ = \ \(3*
+ sin \((t)\)\ und\ \[IndentingNewLine]\ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ \ linearen\ Teilen\ x\ = \ \(-6\) + 3*t\)\)\ , \
+ y\ = \ \(\(-1.5\)*x\ \ \ \ und\ \ x\ = \ 6 - 3*t\)\ , \
+ y\ = \ 1.5*x\ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(achtplot =
+ ListPlot[Table[{xach[j], yach[j]}, {j, \(-146\), 360}],
+ PlotJoined\ \[Rule] True, \n\t
+ PlotRange -> {{\(-6\), 5}, {\(-4\), 4}}, \tPlotStyle -> Brown,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(punktplot =
+ ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ False, \t
+ PlotRange -> {{\(-6\), 5}, {\(-4\), 4}}, \n\tPlotStyle -> Blue,
+ Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5,
+ AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(linienplot =
+ ListPlot[Table[{xp[k], yp[k]}, {k, 0, m}], PlotJoined\ -> \ True, \t
+ PlotRange -> {{\(-6\), 5}, {\(-4\), 4}}, \n\tPlotStyle -> Blue,
+ Prolog\ -> \ AbsolutePointSize[5], AspectRatio -> 0.5,
+ AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(Show[achtplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Newton\ - \
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ *) \),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ Funktionsunterprogramm\ zur\ Berechnung\ \
+der\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ " ",
+ StyleBox[\( (*\ \ \ \ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ \
+Newton - Interpolation\ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], " "}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(FunkDivDiff[xpform_,
+ ypform_] := \ \((\[IndentingNewLine]Do[
+ DivDiffret[k,
+ 1] = \((ypform[k + 1] - ypform[k])\)/\((xpform[k + 1] -
+ xpform[k])\), {k, 0, m - 1}]; \[IndentingNewLine]Do[
+ Do[DivDiffret[k,
+ j] = \((DivDiffret[k + 1, j - 1] -
+ DivDiffret[k, j - 1])\)/\((xpform[k + j] -
+ xpform[k])\), {k, 0, m - j}], {j, 2, m}];
+ DivDiffmatret =
+ Table[DivDiffret[0, j], {j, 1, m}]; {DivDiffmatret})\)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{\(DivDiffxmat = FunkDivDiff[tp, xp]\ ;\), "\n",
+ RowBox[{\(DivDiffx = DivDiffxmat[\([1]\)];\),
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+
+ StyleBox[\( (*\ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ x \
+- Werte\ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}],
+ "\n", \(DivDiffymat = FunkDivDiff[tp, yp]\ ;\),
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]], "\n",
+ RowBox[{\(DivDiffy = DivDiffymat[\([1]\)];\), " ",
+
+ StyleBox[\( (*\ \ Dividierte\ Differenzen\ f\[UDoubleDot]r\ die\ y \
+- Werte\ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]}],
+ "\[IndentingNewLine]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ xj\ und\ yj\ f\
+\[UDoubleDot]r\ den\ Graph\ der\ Newton - Interpolation\ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(Do[{xnew[j] = xp[0],
+ prox = tj[j] -
+ tp[0], \[IndentingNewLine]Do[{xnew[j] =
+ xnew[j] + prox*DivDiffx[\([i]\)],
+ prox = prox*\((tj[j] - tp[i])\)}, {i, 1,
+ m}], \[IndentingNewLine]ynew[j] = yp[0],
+ proy = tj[j] - tp[0], \n\t
+ Do[{ynew[j] = ynew[j] + proy*DivDiffy[\([i]\)],
+ proy = proy*\((tj[j] - tp[i])\)}, {i, 1, m}]}, {j, 0,
+ nd}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ Parametrische\ Darstellung\ der\ Newton -
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(newtonplot =
+ ListPlot[Table[{xnew[j], ynew[j]}, {j, 0, nd}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{\(-6.0\), 5}, {\(-4\), 4}}, \tPlotStyle -> Red,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(\(\(Show[achtplot, newtonplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)\(\[IndentingNewLine]\)
+ \)\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ Periodische\ Spline -
+ Interpolation\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \
+\),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ Funktionsunterprogramm\ zur\ Berechnung\ \
+der\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ " ",
+ StyleBox[\( (*\ \ \ \ \ Koeffizienten\ f\[UDoubleDot]r\ die\ \
+periodischen\ Spline - Interpolation\ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], " "}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(FunkPerSpl[xpform_, ypform_]\), ":=", " ",
+ RowBox[{
+ "(", "\[IndentingNewLine]", " ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Erstellen\ der\ \
+"\<fast\>"\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]], "\n",
+ " ",
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \((\
+ Haupt - \ und\ Nebendiagonale\ )\)\ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ RowBox[{\(Du[0] = xpform[1] - xpform[0]\), ";",
+ " ", \(Du[m - 1] = xpform[m] - xpform[m - 1]\), ";",
+ "\[IndentingNewLine]", \(Dh[0] = 2*\((\ Du[m - 1] + Du[0]\ )\)\),
+ ";", "\n",
+ " ", \(Do[{Du[k] = xpform[k + 1] - xpform[k],
+ Dh[k] = 2 \((Du[k - 1] + Du[k])\), Dp[k] = 0}, {k, 1, m - 2}]\),
+ ";", "\[IndentingNewLine]", \(Dp[m - 2] = Du[m - 2]\), ";",
+ " ", \(Dh[m - 1] = 2*\((\ Du[m - 2] + Du[m - 1])\)\), ";",
+ "\[IndentingNewLine]", " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ Cholesky -
+ Zerlegung\ der\ "\<fast\>"\ Tridiagonalmatrix\ \ \ \ \ \ \ \ \
+\ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 1]],
+ "\[IndentingNewLine]", \(Ch[0] = Sqrt[Dh[0]]\), ";",
+ " ", \(Cp[0] = Du[m - 1]/Ch[0]\), ";", "\n",
+ " ", \(Do[{Cn[k - 1] = Du[k - 1]/Ch[k - 1],
+ Ch[k] = Sqrt[Dh[k] - Cn[k - 1]^2], \ \ \ Cp[
+ k] = \((\ Dp[k] - Cp[k - 1]*Cn[k - 1]\ )\)/Ch[k]}, {k, 1,
+ m - 2}]\), ";", "\[IndentingNewLine]", " ", \(Csum = 0\),
+ ";", " ", \(Do[\ Csum = Csum + Cp[i]^2, {i, 1, m - 2}]\), ";",
+ "\[IndentingNewLine]", " ", \(Cn[m - 2] = Cp[m - 2]\), ";",
+ " ", \(Ch[m - 1] = Sqrt[\ Dh[m - 1] - Csum]\), ";",
+ "\[IndentingNewLine]", " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ Vorw\[ADoubleDot]rtsrechnung\ \
+"\<von oben her\>"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["\n",
+ FontColor->RGBColor[1, 0, 1]], " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ und\ Erstellen\ der\ rechten\ \
+Seite\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ "\[IndentingNewLine]", \(Dv[0] = ypform[1] - ypform[0]\), ";",
+ " ", \(Dv[m - 1] = ypform[m] - ypform[m - 1]\), ";", "\n",
+ " ", \(Dr[0] = 3 \((Dv[0]/Du[0] - Dv[m - 1]/Du[m - 1])\)\), ";",
+ "\n", " ", \(Z[0] = Dr[0]/Ch[0]\), ";", "\n",
+ " ", \(Do[{Dv[k] = ypform[k + 1] - ypform[k], \n\t\tDr[k] =
+ 3 \((Dv[k]/Du[k] - Dv[k - 1]/Du[k - 1])\), \n\t\tZ[
+ k] = \((Dr[k] - Z[k - 1]*Cn[k - 1])\)/
+ Ch[k]}, \n\ \ \ \ \ \ {k, 1, m - 1}]\), ";",
+ "\[IndentingNewLine]", " ", \(Zsum = 0\), ";",
+ " ", \(Do[\ Zsum = Zsum + Cp[i]*Z[i], {i, 0, m - 2}]\), ";",
+ "\[IndentingNewLine]",
+ " ", \(Z[m - 1] = \((\ Dr[m - 1] - Zsum\ )\)/Ch[m - 1]\), ";",
+ "\[IndentingNewLine]", " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R\[UDoubleDot]ckw\
+\[ADoubleDot]rtsrechnung\ "\<von unten her\>"\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
+\ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["\n",
+ FontColor->RGBColor[1, 0, 1]], " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \tBerechnung\ der\ \
+Koeffizienten\ B\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]",
+ " ", \(Cp[m - 2] = 0\), ";", "\[IndentingNewLine]",
+ " ", \(B[m - 1] = Z[m - 1]/Ch[m - 1]\), ";", "\n",
+ " ", \(Do[
+ B[k] = \((\ Z[k] - B[k + 1]*Cn[k] - Cp[k]*B[m - 1])\)/Ch[k], {k,
+ m - 2, 0, \(-1\)}]\), ";", "\[IndentingNewLine]",
+ " ", \(B[m] = B[0]\), ";", "\[IndentingNewLine]",
+ " ",
+
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \ \ \ Berechnung\ der\ \
+Koeffizienten\ A\_\(\(k\)\(\ \)\), \ C\_k\ , \
+ D\_k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]],
+ "\[IndentingNewLine]", \(Do[{A[
+ k] = \((B[k + 1] - B[k])\)/\((3
+ Du[k])\), \n\t\t\ \ \ \ \ \ \ \ \ \ \ \ \ Cc[k] =
+ Dv[k]/Du[k] - Du[k]*\((B[k + 1] + 2 B[k])\)/3, \
+ Dc[k] = ypform[k]}, {k, 0, m - 1}]\), ";",
+ "\[IndentingNewLine]",
+ " ", \(Aret = Table[A[k], \ {k, 0, m - 1}]\), ";",
+ " ", \(Bret = Table[B[k], {k, 0, m}]\), ";", " ",
+ "\[IndentingNewLine]", " ", \(Cret = Table[Cc[k], {k, 0, m - 1}]\),
+ ";", " ", \(Dret = Table[Dc[k], {k, 0, m - 1}]\), ";",
+ "\[IndentingNewLine]", \({Aret, Bret, Cret, Dret}\)}],
+ ")"}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{\(ABCDxmat = FunkPerSpl[tp, xp]\ \ ;\), "\n",
+ RowBox[{\(Aperx = ABCDxmat[\([1]\)]\ ;\), " ",
+
+ StyleBox[\( (*\
+ Koeffizienen\ Ak\ \ \(f \[UDoubleDot]r\)\ die\ x -
+ Werte\ *) \),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}], "\n", \(Bperx = ABCDxmat[\([2]\)];\),
+ " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Bk",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}],
+ "\n", \(Cperx = ABCDxmat[\([3]\)];\), " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Ck",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}],
+ "\n", \(Dperx = ABCDxmat[\([4]\)];\)}], " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Dk",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{\(ABCDymat = FunkPerSpl[tp, yp]\ ;\), "\n",
+ RowBox[{\(Apery = ABCDymat[\([1]\)];\), " ",
+
+ StyleBox[\( (*\
+ Koeffizienen\ Ak\ \ \(f \[UDoubleDot]r\)\ die\ x -
+ Werte\ *) \),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}], "\n", \(Bpery = ABCDymat[\([2]\)];\),
+ " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Bk",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}],
+ "\n", \(Cpery = ABCDymat[\([3]\)];\), " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Ck",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}],
+ "\n", \(Dpery = ABCDymat[\([4]\)]\ ;\)}], " ",
+ RowBox[{
+ StyleBox["(*",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ RowBox[{
+ RowBox[{
+ StyleBox["Koeffizienen",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["Dk",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[\(f \[UDoubleDot]r\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["die",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["x",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox["-",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None],
+ StyleBox["Werte",
+ FontColor->RGBColor[1, 0, 1],
+ Background->None]}],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ FontColor->RGBColor[1, 0, 1]]}], "\[IndentingNewLine]"}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ \ \ St\[UDoubleDot]tzstellen\ xj\ und\ yj\ f\
+\[UDoubleDot]r\ den\ Graph\ der\ Spline - Interpolation\ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(Do[{tint = tp[0], \n\t
+ Do[{Dnt[k] = tp[k + 1] - tp[k],
+ If[\((tj[j] \[GreaterEqual]
+ tint\ )\)\ \[And] \ \ \((tj[j] \[LessEqual]
+ tint + Dnt[k]\ )\), {knt = k, Break[]}\ ,
+ tint = tint + Dnt[k]]}, {k, 0, m - 1}], \n\t
+ Dntmj = tj[j] - tp[knt], \[IndentingNewLine]\ \ \ \ \ xper[j] =
+ Aperx[\([knt + 1]\)]*Dntmj^3 + Bperx[\([knt + 1]\)]*Dntmj^2 +
+ Cperx[\([knt + 1]\)]*Dntmj + Dperx[\([knt + 1]\)]\ , \n\t
+ yper[j] =
+ Apery[\([knt + 1]\)]*Dntmj^3 + Bpery[\([knt + 1]\)]*Dntmj^2 +
+ Cpery[\([knt + 1]\)]*Dntmj + \ \ Dpery[\([knt + 1]\)]\ }, \n\t{j,
+ 0, nd}]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ Graph\ der\ nat . \ Spline -
+ Funktion\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ \(persplplot =
+ ListPlot[Table[{xper[j], yper[j]}, {j, 0, nd}],
+ PlotJoined\ -> \ True, \n\t
+ PlotRange -> {{\(-6\), 5}, {\(-4\), 4}}, \tPlotStyle -> Green,
+ AspectRatio -> 0.5, AxesLabel -> {"\<> x\>", "\< ^ y\>"}]\)], "Input"],
+
+Cell[BoxData[
+ \(Show[achtplot, persplplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"],
+
+Cell[BoxData[
+ \(graf[lauf]\ = \
+ Show[achtplot, persplplot, newtonplot, linienplot, punktplot,
+ Prolog\ -> \ AbsolutePointSize[5]]\)], "Input"],
+
+Cell[BoxData[
+ \(Do[{Print["\< Lauf Nummer \>", l\ , "\< mit \>",
+ nummer[l], "\< St\[UDoubleDot]tzpunkten \>"\ ], Show[graf[l]]}, {l,
+ 1, lauf}]\)], "Input"]
+},
+FrontEndVersion->"5.0 for Microsoft Windows",
+ScreenRectangle->{{0, 1024}, {0, 685}},
+WindowSize->{1012, 651},
+WindowMargins->{{0, Automatic}, {Automatic, 0}},
+Magnification->1
+]
+
+(*******************************************************************
+Cached data follows. If you edit this Notebook file directly, not
+using Mathematica, you must remove the line containing CacheID at
+the top of the file. The cache data will then be recreated when
+you save this file from within Mathematica.
+*******************************************************************)
+
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+
+(*NotebookFileOutline
+Notebook[{
+Cell[1754, 51, 276, 6, 59, "Input"],
+Cell[2033, 59, 7880, 237, 137, "Input"],
+Cell[9916, 298, 133, 2, 30, "Input"],
+Cell[10052, 302, 294, 6, 30, "Input"],
+Cell[10349, 310, 548, 10, 93, "Input"],
+Cell[10900, 322, 1033, 26, 70, "Input"],
+Cell[11936, 350, 434, 7, 70, "Input"],
+Cell[12373, 359, 724, 23, 46, "Input"],
+Cell[13100, 384, 998, 16, 130, "Input"],
+Cell[14101, 402, 450, 13, 46, "Input"],
+Cell[14554, 417, 305, 6, 70, "Input"],
+Cell[14862, 425, 292, 7, 46, "Input"],
+Cell[15157, 434, 561, 12, 70, "Input"],
+Cell[15721, 448, 1235, 39, 46, "Input"],
+Cell[16959, 489, 434, 7, 70, "Input"],
+Cell[17396, 498, 300, 7, 46, "Input"],
+Cell[17699, 507, 26, 0, 30, "Input"],
+Cell[17728, 509, 1935, 41, 110, "Input"],
+Cell[19666, 552, 1246, 39, 46, "Input"],
+Cell[20915, 593, 430, 7, 70, "Input"],
+Cell[21348, 602, 292, 6, 49, "Input"],
+Cell[21643, 610, 1605, 35, 70, "Input"],
+Cell[23251, 647, 1246, 39, 46, "Input"],
+Cell[24500, 688, 430, 7, 70, "Input"],
+Cell[24933, 697, 54, 1, 30, "Input"],
+Cell[24990, 700, 383, 9, 46, "Input"],
+Cell[25376, 711, 228, 4, 50, "Input"],
+Cell[25607, 717, 699, 16, 66, "Input"],
+Cell[26309, 735, 46, 1, 30, "Input"],
+Cell[26358, 738, 1261, 28, 170, "Input"],
+Cell[27622, 768, 113, 2, 30, "Input"],
+Cell[27738, 772, 52, 1, 30, "Input"],
+Cell[27793, 775, 162, 2, 30, "Input"],
+Cell[27958, 779, 634, 14, 66, "Input"],
+Cell[28595, 795, 286, 5, 50, "Input"],
+Cell[28884, 802, 307, 5, 50, "Input"],
+Cell[29194, 809, 307, 5, 50, "Input"],
+Cell[29504, 816, 113, 2, 30, "Input"],
+Cell[29620, 820, 337, 7, 49, "Input"],
+Cell[29960, 829, 570, 11, 66, "Input"],
+Cell[30533, 842, 566, 11, 90, "Input"],
+Cell[31102, 855, 848, 20, 110, "Input"],
+Cell[31953, 877, 285, 5, 46, "Input"],
+Cell[32241, 884, 460, 10, 90, "Input"],
+Cell[32704, 896, 380, 9, 46, "Input"],
+Cell[33087, 907, 277, 5, 50, "Input"],
+Cell[33367, 914, 161, 3, 50, "Input"],
+Cell[33531, 919, 322, 7, 49, "Input"],
+Cell[33856, 928, 574, 11, 66, "Input"],
+Cell[34433, 941, 5284, 94, 712, "Input"],
+Cell[39720, 1037, 4840, 132, 130, "Input"],
+Cell[44563, 1171, 4862, 132, 130, "Input"],
+Cell[49428, 1305, 285, 5, 46, "Input"],
+Cell[49716, 1312, 728, 13, 150, "Input"],
+Cell[50447, 1327, 350, 9, 46, "Input"],
+Cell[50800, 1338, 277, 5, 50, "Input"],
+Cell[51080, 1345, 125, 2, 30, "Input"],
+Cell[51208, 1349, 163, 3, 30, "Input"],
+Cell[51374, 1354, 185, 3, 30, "Input"]
+}
+]
+*)
+
+
+
+(*******************************************************************
+End of Mathematica Notebook file.
+*******************************************************************)
+
|
