blob: 7a94f1b50159c1989d6ac895f7e19d262e70d583 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
Zur besseren Lesbarkeit entfällt die Angabe der Zeiteinheit $\mu s$. Die Ausgangswerte für die folgenden Berechnungen sind Tabelle \ref{tab:res:startvalues} zu entnehmen.
\section*{Berechnungen für $m_1$}
\[ U_1=\frac{C_1}{T_1} =\frac{135}{1000}=0,135<1 \]
\[ t^1_1=B_1+\lceil\frac{t^0_1+J_1}{T_1}\rceil C_1 =135+\lceil\frac{135+0}{1000}\rceil 135 =135+1*135=270 \]
\[ t^2_1=B_1+\lceil\frac{t^1_1+J_1}{T_1}\rceil C_1 =135+\lceil\frac{270+0}{1000}\rceil 135 =135+1*135=270 \]
\[ t_1=270 \]
\[ Q_1=\lceil\frac{t_1+J_1}{T_1}\rceil = \lceil\frac{270+0}{1000}\rceil = 1 \]
\[ \omega^0_1\left( 0\right)=B_1=135 \]
\[ \omega^1_1\left( 0\right)=B_1+0*C_1= 135+0*135=135\]
\[ \omega_1\left( 0\right)=135\]
\[ R_1\left( 0\right)=J_1+ \omega_1\left( 0\right)-0*T_1+C_1=0+135-0+135=270 \]
\[ R_1=\max\limits_{q=0\dots 1-1}\left( \{R_1\left( 0\right) \} \right) = \max\limits_{q=0\dots 0}\left( \{270\} \right)=270 \]
\section*{Berechnungen für $m_2$}
\[ U_2=\frac{C_1}{T_1}+\frac{C_2}{T_2} =\frac{135}{1000}+\frac{135}{1000}=0,270<1 \]
\[ t^1_2=B_2+\lceil\frac{t^0_2+J_1}{T_1}\rceil C_1 +\lceil\frac{t^0_2+J_2}{T_2}\rceil C_2 \]
Da in diesem Beispiel $J_1=J_2\dots =J_7$, $T_1=T_2\dots =T_7$ und $C_1=C_2\dots =C_7$, lässt sich einfacher schreiben
\[ t^1_2=B_2+\left(\lceil\frac{t^0_2+J_2}{T_2}\rceil C_2 \right)*2 \]
\[ t^1_2=135+\left(\lceil\frac{135+0}{1000}\rceil 135 \right)*2=135+1*135*2=405 \]
\[ t^2_2=B_2+\left(\lceil\frac{t^1_2+J_2}{T_2}\rceil C_2\right)*2 =135+\left(\lceil\frac{405+0}{1000}\rceil 135\right)*2 =135+1*135*2=405 \]
\[ t_2=405 \]
\[ Q_2=\lceil\frac{t_2+J_2}{T_2}\rceil = \lceil\frac{405+0}{1000}\rceil = 1 \]
\[ \omega^0_2\left( 0\right)=B_2=135 \]
\[ \omega^1_2\left( 0\right)=B_2+0*C_2+\lceil\frac{\omega^0_2\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1= 135+0*135+\lceil\frac{135+0+1}{1000}\rceil *135=135+1*135=270\]
\[ \omega^2_2\left( 0\right)=B_2+0*C_2+\lceil\frac{\omega^1_2\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1= 135+0*135+\lceil\frac{270+0+1}{1000}\rceil *135=135+1*135=270\]
\[ \omega_2\left( 0\right)=270\]
\[ R_2\left( 0\right)=J_2+ \omega_2\left( 0\right)-0*T_2+C_2=0+270-0+135=405 \]
\[ R_2=\max\limits_{q=0\dots 1-1}\left( \{R_2\left( 0\right) \} \right) = \max\limits_{q=0\dots 0}\left( \{405\} \right)=405 \]
\section*{Berechnungen für $m_3$}
\[ U_3=\frac{C_1}{T_1}+\frac{C_2}{T_2}+\frac{C_3}{T_3} =\frac{135}{1000}*3=0,405<1 \]
\[ t^1_3=B_3+\left(\lceil\frac{t^0_3+J_3}{T_3}\rceil C_3 \right)*3 \]
\[ t^1_3=135+\left(\lceil\frac{135+0}{1000}\rceil 135 \right)*3=135+1*135*3=540 \]
\[ t^2_3=B_3+\left(\lceil\frac{t^1_3+J_3}{T_3}\rceil C_3\right)*3 =135+\left(\lceil\frac{540+0}{1000}\rceil 135\right)*3 =135+1*135*3=540 \]
\[ t_3=540 \]
\[ Q_3=\lceil\frac{t_3+J_3}{T_3}\rceil = \lceil\frac{540+0}{1000}\rceil = 1 \]
\[ \omega^0_3\left( 0\right)=B_3=135 \]
\[ \omega^1_3\left( 0\right)=B_3+0*C_3+\lceil\frac{\omega^0_3\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1+\lceil\frac{\omega^0_3\left( 0\right)+J_2+\tau_{bit}}{T_2}\rceil C_2 \]
Da in diesem Beispiel $J_1=J_2\dots =J_7$, $T_1=T_2\dots =T_7$ und $C_1=C_2\dots =C_7$, lässt sich auch hier einfacher schreiben
\[ \omega^1_3\left( 0\right)=B_3+0*C_3+\left(\lceil\frac{\omega^0_3\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*2 \]
\[ \omega^1_3\left( 0\right)=135+0*135+\left(\lceil\frac{135+0+1}{1000}\rceil 135\right)*2 = 135+1*135*2=405\]
\[
\begin{split}
\omega^2_3\left( 0\right)=B_3+0*C_3+\left(\lceil\frac{\omega^1_3\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*2=\\ 135+0*135+\left(\lceil\frac{270+0+1}{1000}\rceil *135\right)*2=135+1*135*2=405
\end{split}
\]
\[ \omega_3\left( 0\right)=405\]
\[ R_3\left( 0\right)=J_3+ \omega_3\left( 0\right)-0*T_3+C_3=0+405-0+135=540 \]
\[ R_3=\max\limits_{q=0\dots 1-1}\left( \{R_3\left( 0\right) \} \right) = \max\limits_{q=0\dots 0}\left( \{540\} \right)=540 \]
\section*{Berechnungen für $m_4$}
\[ U_4=\frac{C_1}{T_1}*4 =\frac{135}{1000}*4=0,540<1 \]
\[ t^1_4=B_4+\left(\lceil\frac{t^0_4+J_1}{T_1}\rceil C_1 \right)*4 \]
\[ t^1_4=135+\left(\lceil\frac{135+0}{1000}\rceil 135 \right)*4=135+1*135*4=675 \]
\[ t^2_4=B_4+\left(\lceil\frac{t^1_4+J_1}{T_1}\rceil C_1\right)*4 =135+\left(\lceil\frac{675+0}{1000}\rceil 135\right)*4 =135+1*135*4=675 \]
\[ t_4=675 \]
\[ Q_4=\lceil\frac{t_4+J_4}{T_4}\rceil = \lceil\frac{675+0}{1000}\rceil = 1 \]
\[ \omega^0_4\left( 0\right)=B_4=135 \]
\[ \omega^1_4\left( 0\right)=B_4+0*C_4+\left(\lceil\frac{\omega^0_4\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*3 \]
\[ \omega^1_4\left( 0\right)=135+0*135+\left(\lceil\frac{135+0+1}{1000}\rceil 135\right)*3 = 135+1*135*3=540 \]
\[
\begin{split}
\omega^2_4\left( 0\right)=B_4+0*C_4+\left(\lceil\frac{\omega^1_4\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*3=\\ 135+0*135+\left(\lceil\frac{540+0+1}{1000}\rceil *135\right)*3=135+1*135*3=540
\end{split}
\]
\[ \omega_4\left( 0\right)=540\]
\[ R_4\left( 0\right)=J_4+ \omega_4\left( 0\right)-0*T_4+C_4=0+540-0+135=675 \]
\[ R_4=\max\limits_{q=0\dots 1-1}\left( \{R_4\left( 0\right) \} \right) = \max\limits_{q=0\dots 0}\left( \{675\} \right)=675 \]
\section*{Berechnungen für $m_5$}
\[ U_5=\frac{C_1}{T_1}*5 =\frac{135}{1000}*5=0,675<1 \]
\[ t^1_5=B_5+\left(\lceil\frac{t^0_5+J_1}{T_1}\rceil C_1 \right)*5 \]
\[ t^1_5=135+\left(\lceil\frac{135+0}{1000}\rceil 135 \right)*5=135+1*135*5=810 \]
\[ t^2_5=B_5+\left(\lceil\frac{t^1_5+J_1}{T_1}\rceil C_1\right)*5 =135+\left(\lceil\frac{810+0}{1000}\rceil 135\right)*5 =135+1*135*5=810 \]
\[ t_5=810 \]
\[ Q_5=\lceil\frac{t_5+J_5}{T_5}\rceil = \lceil\frac{810+0}{1000}\rceil = 1 \]
\[ \omega^0_5\left( 0\right)=B_5=135 \]
\[ \omega^1_5\left( 0\right)=B_5+0*C_5+\left(\lceil\frac{\omega^0_5\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*4 \]
\[ \omega^1_5\left( 0\right)=135+0*135+\left(\lceil\frac{135+0+1}{1000}\rceil 135\right)*4 = 135+1*135*4=675 \]
\[
\begin{split}
\omega^2_5\left( 0\right)=B_5+0*C_5+\left(\lceil\frac{\omega^1_5\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*4=\\ 135+0*135+\left(\lceil\frac{675+0+1}{1000}\rceil *135\right)*4=135+1*135*4=675
\end{split}
\]
\[ \omega_5\left( 0\right)=675\]
\[ R_5\left( 0\right)=J_5+ \omega_5\left( 0\right)-0*T_5+C_5=0+675-0+135=810 \]
\[ R_5=\max\limits_{q=0\dots 1-1}\left( \{R_5\left( 0\right) \} \right) = \max\limits_{q=0\dots 0}\left( \{810\} \right)=810 \]
\section*{Berechnungen für $m_6$}
\[ U_6=\frac{C_1}{T_1}*6 =\frac{135}{1000}*6=0,810<1 \]
\[ t^1_6=B_6+\left(\lceil\frac{t^0_6+J_1}{T_1}\rceil C_1 \right)*6 \]
\[ t^1_6=135+\left(\lceil\frac{135+0}{1000}\rceil 135 \right)*6=135+1*135*6=945 \]
\[ t^2_6=B_6+\left(\lceil\frac{t^1_6+J_1}{T_1}\rceil C_1\right)*6 =135+\left(\lceil\frac{945+0}{1000}\rceil 135\right)*6 =135+1*135*6=945 \]
\[ t_6=945 \]
\[ Q_6=\lceil\frac{t_6+J_6}{T_6}\rceil = \lceil\frac{945+0}{1000}\rceil = 1 \]
\[ \omega^0_6\left( 0\right)=B_6=135 \]
\[ \omega^1_6\left( 0\right)=B_6+0*C_6+\left(\lceil\frac{\omega^0_6\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*5 \]
\[ \omega^1_6\left( 0\right)=135+0*135+\left(\lceil\frac{135+0+1}{1000}\rceil 135\right)*5 = 135+1*135*5=810 \]
\[
\begin{split}
\omega^2_6\left( 0\right)=B_6+0*C_6+\left(\lceil\frac{\omega^1_6\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*5=\\ 135+0*135+\left(\lceil\frac{810+0+1}{1000}\rceil *135\right)*5=135+1*135*5=810
\end{split}
\]
\[ \omega_6\left( 0\right)=810\]
\[ R_6\left( 0\right)=J_6+ \omega_6\left( 0\right)-0*T_6+C_6=0+810-0+135=945 \]
\[ R_6=\max\limits_{q=0\dots 1-1}\left( \{R_6\left( 0\right) \} \right) = \max\limits_{q=0\dots 0}\left( \{945\} \right)=945 \]
\section*{Berechnungen für $m_7$}
\[ U_7=\frac{C_1}{T_1}*7 =\frac{135}{1000}*7=0,945<1 \]
\[ t^1_7=B_7+\left(\lceil\frac{t^0_7+J_1}{T_1}\rceil C_1 \right)*7 \]
\[ t^1_7=135+\left(\lceil\frac{135+0}{1000}\rceil 135 \right)*7=135+1*135*7=1080 \]
\[ t^2_7=B_7+\left(\lceil\frac{t^1_7+J_1}{T_1}\rceil C_1\right)*7 =135+\left(\lceil\frac{1080+0}{1000}\rceil 135\right)*7 =135+2*135*7=2025 \]
\[ t^3_7=B_7+\left(\lceil\frac{t^2_7+J_1}{T_1}\rceil C_1\right)*7 =135+\left(\lceil\frac{2025+0}{1000}\rceil 135\right)*7 =135+3*135*7=2970 \]
\[ t^4_7=B_7+\left(\lceil\frac{t^3_7+J_1}{T_1}\rceil C_1\right)*7 =135+\left(\lceil\frac{2970+0}{1000}\rceil 135\right)*7 =135+3*135*7=2970 \]
\[ t_7=2970 \]
\[ Q_7=\lceil\frac{t_7+J_7}{T_7}\rceil = \lceil\frac{2970+0}{1000}\rceil = 3 \]
\[ \omega^0_7\left( 0\right)=B_7=0 \]
\[ \omega^1_7\left( 0\right)=0+0*C_7+\left(\lceil\frac{\omega^0_7\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*6 \]
\[ \omega^1_7\left( 0\right)=0+0*135+\left(\lceil\frac{0+0+1}{1000}\rceil 135\right)*6 = 0+1*135*6=810 \]
\[ \omega^2_7\left( 0\right)=0+0*C_7+\left(\lceil\frac{\omega^1_7\left( 0\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*6= 0+0*135+\left(\lceil\frac{810+0+1}{1000}\rceil *135\right)*5=0+1*135*6=810\]
\[ \omega_7\left( 0\right)=810\]
\[ R_7\left( 0\right)=J_7+ \omega_7\left( 0\right)-0*T_7+C_7=0+810-0+135=945 \]
\[ \omega^0_7\left( 1\right)=\omega_7\left( 0\right)+C_7=810+135=945 \]
\[ \omega^1_7\left( 1\right)=0+1*C_7+\left(\lceil\frac{\omega^0_7\left( 1\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*6 \]
\[ \omega^1_7\left( 1\right)=0+1*135+\left(\lceil\frac{945+0+1}{1000}\rceil 135\right)*6 = 1*135+1*135*6=945 \]
\[ \omega_7\left( 1\right)=945\]
\[ R_7\left( 1\right)=J_7+ \omega_7\left( 1\right)-1*T_7+C_7=0+945-1000+135=80 \]
\[ \omega^0_7\left( 2\right)=\omega_7\left( 1\right)+C_7=945+135=1080 \]
\[ \omega^1_7\left( 2\right)=0+2*C_7+\left(\lceil\frac{\omega^0_7\left( 2\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*6 \]
\[ \omega^1_7\left( 2\right)=0+2*135+\left(\lceil\frac{1080+0+1}{1000}\rceil 135\right)*6 = 2*135+2*135*6=1890 \]
\[ \omega^2_7\left( 2\right)=0+2*C_7+\left(\lceil\frac{\omega^1_7\left( 2\right)+J_1+\tau_{bit}}{T_1}\rceil C_1\right)*6 \]
\[ \omega^2_7\left( 2\right)=0+2*135+\left(\lceil\frac{1890+0+1}{1000}\rceil 135\right)*6 = 2*135+2*135*6=1890 \]
\[ \omega_7\left( 2\right)=1890\]
\[ R_7\left( 2\right)=J_7+ \omega_7\left( 2\right)-2*T_7+C_7=0+1890-2000+135=25 \]
\[ R_7=\max\limits_{q=0\dots 3-1}\left( \{R_7\left( 0\right);R_7\left( 1\right);R_7\left( 2\right) \} \right) = \max\limits_{q=0\dots 2}\left( \{945;80;25\} \right)=945 \]
|