summaryrefslogtreecommitdiffstats
path: root/Bachelor/Numerische Mathematik/Num05Aufg0.nb
diff options
context:
space:
mode:
authorSven Eisenhauer <sven@sven-eisenhauer.net>2023-11-10 15:11:48 +0100
committerSven Eisenhauer <sven@sven-eisenhauer.net>2023-11-10 15:11:48 +0100
commit33613a85afc4b1481367fbe92a17ee59c240250b (patch)
tree670b842326116b376b505ec2263878912fca97e2 /Bachelor/Numerische Mathematik/Num05Aufg0.nb
downloadStudium-master.tar.gz
Studium-master.tar.bz2
add new repoHEADmaster
Diffstat (limited to 'Bachelor/Numerische Mathematik/Num05Aufg0.nb')
-rw-r--r--Bachelor/Numerische Mathematik/Num05Aufg0.nb699
1 files changed, 699 insertions, 0 deletions
diff --git a/Bachelor/Numerische Mathematik/Num05Aufg0.nb b/Bachelor/Numerische Mathematik/Num05Aufg0.nb
new file mode 100644
index 0000000..2446849
--- /dev/null
+++ b/Bachelor/Numerische Mathematik/Num05Aufg0.nb
@@ -0,0 +1,699 @@
+(************** Content-type: application/mathematica **************
+ CreatedBy='Mathematica 5.0'
+
+ Mathematica-Compatible Notebook
+
+This notebook can be used with any Mathematica-compatible
+application, such as Mathematica, MathReader or Publicon. The data
+for the notebook starts with the line containing stars above.
+
+To get the notebook into a Mathematica-compatible application, do
+one of the following:
+
+* Save the data starting with the line of stars above into a file
+ with a name ending in .nb, then open the file inside the
+ application;
+
+* Copy the data starting with the line of stars above to the
+ clipboard, then use the Paste menu command inside the application.
+
+Data for notebooks contains only printable 7-bit ASCII and can be
+sent directly in email or through ftp in text mode. Newlines can be
+CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
+
+NOTE: If you modify the data for this notebook not in a Mathematica-
+compatible application, you must delete the line below containing
+the word CacheID, otherwise Mathematica-compatible applications may
+try to use invalid cache data.
+
+For more information on notebooks and Mathematica-compatible
+applications, contact Wolfram Research:
+ web: http://www.wolfram.com
+ email: info@wolfram.com
+ phone: +1-217-398-0700 (U.S.)
+
+Notebook reader applications are available free of charge from
+Wolfram Research.
+*******************************************************************)
+
+(*CacheID: 232*)
+
+
+(*NotebookFileLineBreakTest
+NotebookFileLineBreakTest*)
+(*NotebookOptionsPosition[ 21013, 607]*)
+(*NotebookOutlinePosition[ 21657, 629]*)
+(* CellTagsIndexPosition[ 21613, 625]*)
+(*WindowFrame->Normal*)
+
+
+
+Notebook[{
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ Numerik\ : \ \ Aufgabe\ \
+0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ S\
+S\ 2005\ \ \ \ \ *) \),
+ "Subtitle",
+ FontColor->RGBColor[1, 0, 0]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(\(\(\(\(Off[General::spell]\)\(\ \)\) \)\(;\)\(\ \ \ \ \ \ \)\(Off[
+ General::spell1]\)\(\ \)\)\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ \
+Polynom\ \ vom\ \ Grade\ \ m\ \ in\ \ drei\ \ verschiedenen\ \ Formen\ \ \ \ \
+\ \ \ \ \ *) \),
+ "Section",
+ FontColor->RGBColor[1, 0, 0]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(m = 9;\), " ",
+ StyleBox[\( (*\ \ Grad\ des\ Polynoms\ \ *) \),
+ FontColor->RGBColor[1, 0, 1],
+ Background->GrayLevel[1]]}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ \ eps1, \(\(\ \)\(\ \)\)
+ eps2, \(\(\ \ \)\(\ \)\) eps3\ \ und \(\(\ \)\(\ \)\)
+ eps4\ \ sind\ \ vorgegenene\ \ Konstanten\ \ \ \ \ \ \ \ \ \ \ \ *) \
+\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(eps1 = 0.001; \ \ \ eps2 = 0.005; \ \ eps3\ = \ 0.01; \ \ \ eps4 =
+ 0.05;\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ Vorgegebene\ Nullstellen\ \ x[
+ i], \ \ i\ = \ 1, \ m\ \ \ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(\(x0 = 1.3;\)\), "\n",
+ \(For\ [\ \ i := 1, i <= m, \(i++\), \ x[i]\ = \ i\ x0\ ]\), "\n",
+ \(Table[\ PaddedForm[x[i], 4]\ , {i, 1, m}]\)}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ \ \ \ \ Berechnung\ \ der\ \ Koeffizienten\ \ \ a[
+ i], \ \ i\ = \ 0, \ m\ \ \ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(\(a[0] = 1;\)\), "\n",
+ \(Do[\
+ a[i] = 1; \[IndentingNewLine]Do[\
+ a[i - j] = a[i - j - 1] - x[i]*a[i - j], {j, 1, i - 1}];
+ a[0] = \(-x[i]\)*a[0], {i, 1, m}]\), "\n",
+ \(Table[AccountingForm[PaddedForm[a[i], {16, 7}]], {i, 0, m}]\)}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ 1. \ \ Produktform\ \ \ P[x]\ \ \ \ \ \ \ \ \ *) \),
+
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(P[xx_] := \[Product]\+\(i = 1\)\%m\((xx - x[i])\)\), "\n",
+ \(\ P[xx]\)}], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["(*",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 1]]}]],
+ "Subsection"],
+ StyleBox[\(Grenzen \(\(\ \)\(\ \)\) f\[UDoubleDot]r\ \ die\ \ x -
+ Werte \(\(\ \)\(\ \)\) und\ \ die\ \ y -
+ Werte\ \ in\ \ der\ \ Graphik\ \ setzen\),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]],
+ StyleBox["*)",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 1]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{\(xmin = 0; \ \ xmax =
+ 16; \ \ \ \ ymin = \(-60000\); \ \ \ \ ymax = 70000;\), "\n",
+ RowBox[{\(<< Graphics`Colors`\),
+ StyleBox[
+ RowBox[{" ",
+ StyleBox[" ",
+ Background->RGBColor[1, 1, 0]]}]],
+ StyleBox[\( (*\ \ Package\ zur\ Farbdefinition\ in\ der\ Graphik\ \ *) \
+\),
+ FontColor->RGBColor[1, 0, 1],
+ Background->RGBColor[1, 1, 0]]}], "\n",
+ RowBox[{
+ RowBox[{\(Kurv[1]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(P[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {ymin,
+ ymax}}, \[IndentingNewLine]PlotPoints \[Rule] 40,
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, \
+ PlotStyle -> Green\), "]"}]}], ";"}]}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ \ 2. \ \ Summenform\ \ \ S[
+ x]\ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(S[xx_] := \[Sum]\+\(i = 0\)\%m a[i]\ xx\^i\), "\n",
+ \(S[xx]\)}], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{\(Kurv[2]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[", \(S[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ ymin, ymax}}, PlotPoints \[Rule] 40,
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Red\),
+ "]"}]}], ";"}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ \ 3. \ \ Hornerform\ \ \ \ H[
+ x]\ \ \ \ \ \ \ \ \ \ \ \ \ \ *) \),
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(\(Hsum[xx_] = a[m];\)\ \), "\[IndentingNewLine]",
+ \(Do\ [
+ Hsum[xx_] = Hsum[xx]*xx + a[m - i], {i, 1,
+ m}]\), "\[IndentingNewLine]",
+ \(Hsum[xx]\)}], "Input"],
+
+Cell[BoxData[
+ \( (*\ \ H[xx_, i_] := \(H[xx, i] = H[xx, i - 1]*xx + a[m - i]\)\ ; \ \ H[
+ xx_, 0] =
+ 1\ \ \ ; \ (*\ \ Horner\ - \
+ Schema\ \(rekursiv\ !\)\ \ *) \ \ *) \)], "Input",
+ Background->RGBColor[1, 1, 0]],
+
+Cell[BoxData[
+ RowBox[{\(Kurv[3]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(Hsum[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ ymin, ymax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Blue\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ Summenform\ \ \ S1[
+ x]\ \ mit\ \ \[CapitalADoubleDot]nderung1\ \ in\ \ a[
+ m - 2]\ = \ a[m - 2]\ + \ eps1\ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(Do[\ b[i] = a[i], {i, 0, m}]\), "\n",
+ \(\(b[m - 2] = a[m - 2] + \ eps1;\)\), "\n",
+ \(S1[xx_] := \[Sum]\+\(i = 0\)\%m\ SetPrecision[b[i], 7]\ xx\^i\), "\n",
+ \(\ S1[xx]\)}], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Kurv[4]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(S1[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ ymin, ymax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Brown\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Summenform\ \ S2[
+ x]\ \ mit\ \ \[CapitalADoubleDot]nderung2\ \ in\ \ a[
+ m - 2]\ = \ a[m - 2]\ + \ eps2\ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(Do[\ c[i] = a[i], {i, 0, m}]\), "\n",
+ \(\(c[m - 2] = a[m - 2] + \ eps2;\)\), "\n",
+ \(S2[xx_] := \[Sum]\+\(i = 0\)\%m\ SetPrecision[c[i], 7]\ xx\^i\), "\n",
+ \(S2[xx]\)}], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Kurv[5]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(S2[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ ymin, ymax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Magenta\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Summenform\ \ S3[
+ x]\ \ mit\ \ \[CapitalADoubleDot]nderung2\ \ in\ \ a[
+ m - 2]\ = \ a[m - 2]\ + \ eps3\ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(Do[\ d[i] = a[i], {i, 0, m}]\), "\n",
+ \(\(d[m - 2] = a[m - 2] + \ eps3;\)\), "\n",
+ \(S3[xx_] := \[Sum]\+\(i = 0\)\%m d[i]\ xx\^i\), "\n",
+ \(S3[xx]\)}], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Kurv[6]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(S3[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ ymin, ymax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Apricot\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\
+ Summenform\ S4[x]\ mit\ \[CapitalADoubleDot]nderung2\ in\ a[m - 2] =
+ a[m - 2] + eps4\ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(Do[\ e[i] = a[i], {i, 0, m}]\), "\n",
+ \(\(e[m - 2] = a[m - 2] + \ eps4;\)\), "\n",
+ \(S4[xx_] := \[Sum]\+\(i = 0\)\%m e[i]\ xx\^i\), "\n",
+ \(\ \ S4[xx]\)}], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Kurv[7]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(S4[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ ymin, ymax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Brick\),
+ "]"}]}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ Summenform\ \ \ \ S[
+ x]\ \ \ minus\ \ \ \ Produktform\ \ \ P[x]\ \ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(DiSumPro[xx_] := S[xx] - P[xx]\), "\n",
+ \(\ DiSumPro[xx]\)}], "Input"],
+
+Cell[BoxData[{
+ StyleBox[\(dxmin = 0; \ \ dxmax = 12; \ \ dymin = \(-0.00003\);
+ dymax = 0.00008; \ \ \ \ \ \ \ neuer\ \(\(Ma\[SZ]stab\ !!\)!\)\ ;\),
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]], "\[IndentingNewLine]",
+ RowBox[{\(Kurv[8]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(DiSumPro[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ dymin, dymax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40,
+ PlotStyle -> HotPink\), "]"}]}]}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ \ Hornerform\ \ \ H[
+ x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(DiHomPro[xx_] := Hsum[xx] - P[xx]\), "\n",
+ \(DiHomPro[xx]\)}], "Input"],
+
+Cell[BoxData[
+ RowBox[{\(Kurv[9]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(DiHomPro[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ dymin, dymax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40,
+ PlotStyle -> Cobalt\), "]"}]}]], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ Summenform\ \ S1[
+ x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{
+ \(DiS1mPro[xx_] := S1[xx] - P[xx]\), "\n",
+ \(DiS1mPro[xx]\)}], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ StyleBox[
+ RowBox[{
+ StyleBox["pdiff",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox["min",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]]}]],
+ StyleBox["=",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox["0",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]]}],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[\(pdiffmax = 50000\),
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[";",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]]}],
+ StyleBox[" ",
+ "Subsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[\( (*\
+ neuer\ Ma\[SZ]stab\ \ f\[UDoubleDot]r\ die\ \(Differenzkurve
+ n\)*) \),
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]]}], "\n",
+ RowBox[{\(Kurv[10]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(DiS1mPro[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {pdiffmin, pdiffmax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotStyle -> Orange\),
+ "]"}]}]}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ Summenform\ \ \ \ S2[
+ x]\ \ \ \ \ minus\ \ \ \ Produktform\ \ \ \ P[x]\ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{\(DiS2mPro[xx_] := S2[xx] - P[xx]\), "\n", \(DiS2mPro[
+ xx]\), "\n",
+ RowBox[{\(Kurv[11]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(DiS2mPro[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ pdiffmin, pdiffmax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"},
+ PlotStyle -> ForestGreen\), "]"}]}]}], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ \ Summenform\ \ S3[
+ x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{\(DiS3mPro[xx_] := S3[xx] - P[xx]\), "\n", \(DiS3mPro[
+ xx]\), "\n",
+ RowBox[{\(Kurv[12]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(DiS3mPro[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {pdiffmin, pdiffmax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"},
+ PlotStyle -> IndianRed\), "]"}]}]}], "Input"],
+
+Cell[BoxData[
+ \(\(liste1 = {Green, Red, Blue, HotPink, Brown, Magenta, Brick, Apricot,
+ DarkGreen, Cobalt, Orange, IndianRed, ForestGreen};\)\)], "Input"],
+
+Cell[BoxData[
+ StyleBox[\( (*\ \ \ Summenform\ \ \ S4[
+ x]\ \ \ minus\ \ \ Produktform\ \ P[x]\ \ \ \ \ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[0, 0, 1]]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[{\(DiS4mPro[xx_] := S4[xx] - P[xx]\), "\n", \(DiS4mPro[
+ xx]\), "\n",
+ RowBox[{\(Kurv[13]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \(DiS4mPro[xx], {xx, xmin, xmax},
+ PlotRange -> {{xmin, xmax}, {\ pdiffmin, pdiffmax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"},
+ PlotStyle -> DarkGreen\), "]"}]}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \
+\)\) eins\ \ bis\ \ sieben\ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[\ Kurv[1], Kurv[2], Kurv[3], Kurv[4], Kurv[5], Kurv[6],
+ Kurv[7]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \
+\)\) acht\ \ und\ \ neun\ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[Kurv[8], Kurv[9]]\)], "Input"],
+
+Cell[BoxData[
+ RowBox[{" ",
+ StyleBox[\( (*\ \ Schaubild\ f\[UDoubleDot]r\ \ die\ Kurven \(\(\ \)\(\ \
+\)\) zehn\ \ bis\ \ dreizehn\ \ *) \),
+ "Subsection",
+ FontColor->RGBColor[1, 0, 0]]}]], "Input",
+ Background->RGBColor[0, 1, 0]],
+
+Cell[BoxData[
+ \(Show[Kurv[10], Kurv[11], Kurv[12], Kurv[13]]\)], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ StyleBox[\(diffxmin = \(-0.010\); diffxmax = 0.5;
+ diffymin = \(-0.000000002\); diffymax = 0.000000003;\),
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[\( (*\ \ neuer\ \(\(Ma\[SZ]stab!!\)!\)\ \ \ \(f\[UDoubleDot]
+ r\)\ die\ Differenzkurven\ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]]}], "\n",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]], "[",
+ " ", \({\ DiSumPro[xx], DiHomPro[xx], DiS1mPro[xx], DiS2mPro[xx]}, {xx,
+ diffxmin,
+ diffxmax}, \[IndentingNewLine]PlotRange \[Rule] {{diffxmin,
+ diffxmax}, {\ diffymin, diffymax}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"}, PlotPoints \[Rule] 40, \
+ PlotStyle -> {\ HotPink, Cobalt, Orange, ForestGreen\ }\),
+ "]"}]}], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[\( (*\
+ Neuer\ \ Ma\[SZ]stab\ \ f\[UDoubleDot]\
+r\ \ die\ \ Differenzkurvenkurven\ \ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]]}]], "Input"],
+
+Cell[BoxData[
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \({\ DiSumPro[xx], DiHomPro[xx], DiS1mPro[xx]}, {xx, 0, 12},
+ PlotPoints \[Rule] 100,
+ PlotRange -> {{0, 2}, {\(-0.000000005\), 0.000000005}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"},
+ PlotStyle -> {HotPink, Cobalt, Orange}\), "]"}]], "Input"],
+
+Cell[BoxData[{
+ RowBox[{
+ StyleBox[\(xplmin = 11.6999999999; \ \ xplmax = 11.7000000001;\),
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[" ",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]],
+ StyleBox[\( (*\
+ neuer\ Ma\[SZ]stab\ f\[UDoubleDot]r\ die\ Kurven\ 1\ bis\ 3\ *) \),
+ "Subsubsection",
+ FontColor->RGBColor[1, 0, 0],
+ Background->RGBColor[0, 1, 1]]}], "\n",
+ RowBox[{\(Kurv[14]\), "=",
+ RowBox[{
+ StyleBox["Plot",
+ "Subsubtitle",
+ FontColor->RGBColor[1, 0, 0]],
+ "[", \({P[xx], S[xx], Hsum[xx]\ }, {xx, xplmin - 0.0000049998,
+ xplmax + 0.0000011},
+ PlotRange -> {{xplmin, xplmax}, {\(-0.000000006\), 0.000000006}},
+ AxesLabel \[Rule] {\ "\<-> X\>", "\< ^ Y\>"},
+ PlotStyle -> {Green, Red, Blue}\), "]"}]}]}], "Input"]
+},
+FrontEndVersion->"5.0 for Microsoft Windows",
+ScreenRectangle->{{0, 1024}, {0, 695}},
+WindowSize->{1016, 651},
+WindowMargins->{{0, Automatic}, {Automatic, 0}}
+]
+
+(*******************************************************************
+Cached data follows. If you edit this Notebook file directly, not
+using Mathematica, you must remove the line containing CacheID at
+the top of the file. The cache data will then be recreated when
+you save this file from within Mathematica.
+*******************************************************************)
+
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+
+(*NotebookFileOutline
+Notebook[{
+Cell[1754, 51, 280, 6, 59, "Input"],
+Cell[2037, 59, 133, 2, 30, "Input"],
+Cell[2173, 63, 246, 6, 54, "Input"],
+Cell[2422, 71, 197, 4, 30, "Input"],
+Cell[2622, 77, 324, 7, 46, "Input"],
+Cell[2949, 86, 113, 2, 30, "Input"],
+Cell[3065, 90, 233, 5, 46, "Input"],
+Cell[3301, 97, 179, 3, 70, "Input"],
+Cell[3483, 102, 245, 5, 46, "Input"],
+Cell[3731, 109, 293, 6, 90, "Input"],
+Cell[4027, 117, 200, 5, 49, "Input"],
+Cell[4230, 124, 108, 2, 71, "Input"],
+Cell[4341, 128, 750, 23, 46, "Input"],
+Cell[5094, 153, 885, 21, 90, "Input"],
+Cell[5982, 176, 215, 5, 49, "Input"],
+Cell[6200, 183, 99, 2, 71, "Input"],
+Cell[6302, 187, 399, 9, 50, "Input"],
+Cell[6704, 198, 221, 5, 49, "Input"],
+Cell[6928, 205, 201, 5, 70, "Input"],
+Cell[7132, 212, 247, 5, 46, "Input"],
+Cell[7382, 219, 358, 9, 50, "Input"],
+Cell[7743, 230, 288, 6, 46, "Input"],
+Cell[8034, 238, 216, 4, 113, "Input"],
+Cell[8253, 244, 357, 9, 30, "Input"],
+Cell[8613, 255, 284, 6, 46, "Input"],
+Cell[8900, 263, 214, 4, 113, "Input"],
+Cell[9117, 269, 359, 9, 50, "Input"],
+Cell[9479, 280, 284, 6, 46, "Input"],
+Cell[9766, 288, 196, 4, 113, "Input"],
+Cell[9965, 294, 359, 9, 50, "Input"],
+Cell[10327, 305, 248, 6, 46, "Input"],
+Cell[10578, 313, 200, 4, 113, "Input"],
+Cell[10781, 319, 357, 9, 30, "Input"],
+Cell[11141, 330, 231, 5, 46, "Input"],
+Cell[11375, 337, 96, 2, 50, "Input"],
+Cell[11474, 341, 634, 13, 70, "Input"],
+Cell[12111, 356, 229, 5, 46, "Input"],
+Cell[12343, 363, 97, 2, 50, "Input"],
+Cell[12443, 367, 389, 9, 50, "Input"],
+Cell[12835, 378, 220, 5, 46, "Input"],
+Cell[13058, 385, 95, 2, 50, "Input"],
+Cell[13156, 389, 1741, 48, 70, "Input"],
+Cell[14900, 439, 236, 5, 46, "Input"],
+Cell[15139, 446, 454, 10, 90, "Input"],
+Cell[15596, 458, 230, 5, 46, "Input"],
+Cell[15829, 465, 450, 10, 90, "Input"],
+Cell[16282, 477, 168, 2, 30, "Input"],
+Cell[16453, 481, 226, 5, 46, "Input"],
+Cell[16682, 488, 452, 10, 90, "Input"],
+Cell[17137, 500, 285, 6, 46, "Input"],
+Cell[17425, 508, 109, 2, 30, "Input"],
+Cell[17537, 512, 283, 6, 46, "Input"],
+Cell[17823, 520, 55, 1, 30, "Input"],
+Cell[17881, 523, 287, 6, 46, "Input"],
+Cell[18171, 531, 77, 1, 30, "Input"],
+Cell[18251, 534, 1061, 24, 90, "Input"],
+Cell[19315, 560, 357, 10, 30, "Input"],
+Cell[19675, 572, 398, 9, 50, "Input"],
+Cell[20076, 583, 933, 22, 70, "Input"]
+}
+]
+*)
+
+
+
+(*******************************************************************
+End of Mathematica Notebook file.
+*******************************************************************)
+